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Abstract. This paper presents new explicit formulae for the point dou-
bling, tripling and addition for ordinary Weierstraß elliptic curves with
a point of order 3 and their equivalent Hessian curves over finite fields
of characteristic three. The cost of basic point operations is lower than
that of all previously proposed ones. The new doubling, mixed addi-
tion and tripling formulae in projective coordinates require 3M + 2C,
8M + 1C + 1D and 4M + 4C + 1D respectively, where M, C and D
is the cost of a field multiplication, a cubing and a multiplication by a
constant. Finally, we present several examples of ordinary elliptic curves
in characteristic three for high security levels.
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1 Introduction

Elliptic curve cryptosystems which was discovered by Neal Koblitz [14] and
Victor Miller [17] independently requires smaller key sizes than the other public
cryptosystems such as RSA at the same level of security. For example, a 160-
bit elliptic curve key is competitive with a 1024-bit RSA key at the AES 80-bit
security level. Thus it may be advantageous to use elliptic curve cryptosystems in
resource-constrained environments, such as smart cards and embedded devices.

Scalar multiplication is a central operation in elliptic curve cryptographic
schemes. There are numerous investigations of fast point multiplication on el-
liptic curves over large prime fields or binary fields. We refer to [3, 9, 7] for the
two cases. Note that ordinary elliptic curves in characteristic three could be ap-
plied in cryptographic schemes. For example, Koblitz implemented the digital
signature algorithm on a special family of supersingular elliptic curves in char-
acteristic three with great efficiency [15]. Compared to elliptic curves on large
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prime fields or binary fields, Smart et al. first pointed out that ordinary ellip-
tic curve in characteristic three can be an alternative for implementing elliptic
curve cryptosystems [21]. Recently, the improved formulae on this case are given
in [18, 13]. In [11], Hisil et al. gave a new tripling formulae for Hessian curve in
characteristic three. The generalized form of Hessian curves has been presented
by Farashahi, Joye, Bernstein, Lange and Kohel [6, 4].

The goal of the present work is to speed up scalar multiplication on ordinary
elliptic curves in characteristic three. We study the ordinary Weierstraß elliptic
curves with a point of order 3 and their birationally equivalent Hessian curves
over finite fields of characteristic 3.

The main contribution of this paper is given as follows:

– A modified projective coordinate system is presented for the Weierstraß el-
liptic curves with a rational point of order 3 over finite fields of characteristic
3. It is named as the scaled projective coordinate system which offers better
performance than other projective coordinate systems.

– The basic point operations of addition, doubling, and tripling are investi-
gated in the new scaled coordinate system for Weierstraß curves. The pro-
posed formulae are faster than the previous known results.

– The new tripling formulae are presented for Hessian curves over finite fields
of characteristic 3.

– The doubling and tripling formulae are complete for all input points in the
rational group of these curves. Furthermore, the unified addition formulae
are valid for all input points in the rational subgroup which is employed in
practical cryptographic applications.

– Examples of ordinary elliptic curves over characteristic three are provided
for different security levels.

The paper is organized as follows. §2 recalls the necessary background for
Weierstraßcurves and Hessian curves over the finite fields F3m . §3 presents new
doubling, addition and tripling formulae for Weierstraß elliptic curves over F3m

with a point of order three. §4 presents the new addition and tripling formulae
for Hessian curves. §5 gives the efficiency consideration and timing results and
§6 concludes the paper.

2 Preliminaries

2.1 Weierstraß elliptic curves over F3m

Elliptic curves over any field can be divided into two classes of ordinary and
supersingular elliptic curves. Every ordinary elliptic curve over the finite filed
F3m can be written in the Weierstraß form y2 = x3 + ax2 + b, where a, b ∈ F3m

and ab 6= 0. It is known, [21], that every ordinary elliptic curve over F3m with a
point of order three can be written in the form

Eb : y2 = x3 + x2 + b
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where b ∈ F3m .
The sum of two (different) points (x1, y1), (x2, y2) on Eb is the point (x3, y3)

given by
x3 = λ2 − x1 − x2 − 1, and y3 = λ(x1 − x3)− y1, (1)

where λ = (y2 − y1)/(x2 − x1).
The doubling of the point (x1, y1) on Eb is the point (x3, y3) given by

x3 = λ2 + x1 − 1, and y3 = λ(x1 − x3)− y1, (2)

where λ = ax1/y1. Also, the inverse of the point (x1, y1) on Eb is the point
(x1,−y1). Furthermore, the tripling of the point (x1, y1) on Eb is the point
(x3, y3) given by

x3 =
(x31 + b)3 − bx31

(x1 + b)2
, and y3 =

y91 − y31(x31 + b)2

(x1 + b)3
. (3)

Projective coordinate systems are preferred for point operations to avoid
field inversions. There are some different types of projective coordinates which
have the respective advantages in efficiency. The relationship between affine co-
ordinates (x, y) and projective coordinates (X,Y, Z) is (x, y) = (X/Z, Y/Z), for
Jacobian projective coordinates, (x, y) = (X/Z2, Y/Z3), and for López Dahab
projective coordinates [16], (x, y) = (X/Z, Y/Z2).

2.2 Hessian curves over F3m

A Hessian curve over a finite field F3m is given by the cubic equation

Hd : u3 + v3 + 1 = duv , (4)

for some d ∈ F3m with d 6= 0 [10]. Furthermore, the generalized form of Hessian
curves, called twisted Hessian as well, have been studied in [6, 4]. A generalized
Hessian curve Hc,d over F3m is defined by the equation

Hc,d : u3 + v3 + c = duv ,

where c, d ∈ F3m with c, d 6= 0. Clearly, a Hessian curve Hd is a generalized
Hessian curve Hc,d with c = 1. Furthermore, the generalized Hessian curve Hc,d

over F3m , via the map (u, v) 7→ (ũ, ṽ) given by ũ = u/ζ, ṽ = v/ζ, with ζ = 3
√
c,

is isomorphic to the Hessian curve H d
ζ

: ũ3 + ṽ3 + 1 = d
ζ ũṽ. So, the families of

Hessian curves and generalized Hessian over F3m are the same. For simplicity,
from now on we consider the family of Hessian curves over F3m . Furthermore,
we recall from [6, Theorem 5] that the number of Fq-isomorphism classes of the
family of Hessian (or generalized Hessian) curves over Fq is q − 1.

The sum of two (different) points (u1, v1), (u2, v2) on Hd is the point (u3, v3)
given by

u3 =
v1

2u2 − v22u1
u2v2 − u1v1

and v3 =
u1

2v2 − u22v1
u2v2 − u1v1

.
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The doubling of the point (u1, v1) on Hd is the point (u3, v3) given by

u3 =
v1(1− u13)

u13 − v13
and v3 =

u1(v1
3 − 1)

u13 − v13
.

Also, the inverse of the point (u1, v1) on Hd is the point (v1, u1).
The projective closure of the curve Hd is

Hd : U3 + V 3 +W 3 = dUVW .

The neutral element of the group of F-rational points of Hd is the point at
infinity (1,−1, 0) and the inverse of the point P = (U1, V1,W1) on Hd, is the
point −P = (V1, U1,W1).

The sum of the points (U1, V1,W1), (U2, V2,W2) on Hd is the point (U3, V3,W3)
with

U3 = U2W2V1
2 − U1W1V2

2, V3 = V2W2U1
2 − V1W1U2

2,

W3 = U2V2W1
2 − U1V1W2

2 . (5)

The doubling of the point (U1, V1,W1) on Hd is the point (U3, V3,W3) given
by

U3 = V1(W1
3 − U1

3), V3 = U1(V1
3 −W1

3), W3 = W1(U1
3 − V13) . (6)

We note that the addition formulae (5) is not unified, i.e., the formulae do
not work to double a point. The following set of formulae are unified which make
Hessian curves interesting against side-channel attacks [1, 2].

The sum of the points (U1, V1,W1) and (U2, V2,W2) on Hd is the point
(U3, V3,W3) given by

U3 = V2W2W1
2 − U1V1U2

2, V3 = U2V2V1
2 − U1W1W2

2,

W3 = U2W2U1
2 − V1W1V2

2 . (7)

Furthermore, by swapping the order of the points in the addition formulae (7),
we obtain the following unified formulae.

U3 = V1W1W2
2 − U2V2U1

2, V3 = U1V1V2
2 − U2W2W1

2,

W3 = U1W1U2
2 − V2W2V1

2 . (8)

We recall [6, Propositions 1], which describes the exceptional cases of the
addition formulae (5).

Proposition 1. The addition formulae (5) work for all pairs of points P1, P2

on Hd if and only if P1 − P2 is not the point at infinity.

Since the curve Hd over F3m has only one F3m-rational point at infinity, the
addition formulae (5) work for all distinct pairs of F3m -rational inputs.

We recall [6, Propositions 2], that explains the exceptional cases of the addi-
tion formulae (7).
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Proposition 2. The addition formulae (7) work for all pairs of points P1, P2

on Hd if and only if P1 − P2 6= (−1, 0, 1).

Similarly, the addition formulae (8) work for all pairs of points P1, P2 on Hd if
and only if P1−P2 is not a 3-torsion point of Hd with X-coordinate equals 0. So,
the set of formulae (7) and (8) are complement of each other, i.e., if formulae (7)
do not work for the pair of inputs P1, P2, then the other do work.

As a consequence, the doubling formulae (6) work for all points of the curve
Hd. Moreover, for the subgroup H of Hd(F3m) not including the point (−1, 0, 1),
the addition formulae (7) (and (8)) work for all pairs of points in H.

2.3 Birational equivalence

We note that every Hessian curve Hd over F3m has a point of order 3. Moreover,
every elliptic curve over F3m with a point of order 3 can be given in generalized
Hessian form (see [6]) and so in Hessian form. From §2.1, we recall that an
ordinary elliptic curve over F3m has a point of order 3 if and only if it can be
written in the form y2 = x3 + x2 + b, for some b ∈ Fq. Therefore, we have the
birational equivalence between these two forms.

The ordinary elliptic curve Eb in Weierstraß form Eb : y2 = x3 +x2 + b, with
b 6= 0 via the map (x, y) 7→ (u, v) defined by

x = d(u+ v) and y = d(u− v)

is birationally equivalent to Hessian curve Hd : u3 + v3 + 1 = duv, where d3 =
−1/b. The inverse map (u, v) 7→ (x, y) is given by

x = −(u+ v)/d and y = −(u− v)/d.

In the projective model, the point (U, V,W ) on the projective curve

Hd : U3 + V 3 +W 3 = dUVW,

is mapped to the point (−(U +V ),−(U −V ), dW ) on the projective Weierstraß
curve

Eb : ZY 2 = X3 +X2Z + bZ3,

where d3 = −1/b. Furthermore, via the inverse map, the point (X,Y, Z) on Eb is
corresponded to the point (X +Y,X −Y, Z/d) on Hd. So, we suggest to use the
scaled projective coordinate system (X,Y, T ), where dT = Z and (X,Y, Z) is a
point on Eb. Then, the scaled point (X,Y, T ) on Eb is corresponded to the point
(X +Y,X −Y, T ) on Hd. Furthermore, via the inverse map, the point (U, V,W )
on Hd is corresponded to the scaled point (−(U + V ),−(U − V ),W ) on Eb.

3 Explicit formulae for ordinary Weierstraß form

In this section, we show how to use a new projective coordinate system to speed
up basic point operations on ordinary Weierstraß elliptic curves with a point of
order 3 over finite fields of characteristic three.
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Here, we consider elliptic curves in Weierstraß form

Eb : Y 2Z = X3 +X2Z + bZ3,

where b ∈ F3m , b 6= 0. We let b = −1/a3 for some a ∈ Fq, i.e., a = (−1
b )3

(m−1)

. We
use the scaled projective system, where the point (X,Y, T ) is a scaled point, if
T = Z/a and (X,Y, Z) is a point on E−1/a3 . We note that points (1/a,±1/a, 1)
are the points of order three on E−1/a3 . The correspondence between the scaled
projective coordinates and the affine coordinates is given as follows

(
X

aT
,
Y

aT
)↔ (X,Y, T ).

3.1 Point Doubling

Here, using the scaled projective coordinates system, we provide a new formulae
for point doubling for the elliptic curve E−1/a3 : Y 2Z = X3 + X2Z − Z3/a3,
where a ∈ F3m .

Let (X1, Y1, T1) be a scaled point on E−1/a3 , i.e., T1 = Z1/a and (X1, Y1, Z1)
is a point on E−1/a3 . So, aY 2

1 T1 = X3
1 + aX2

1T1 − T 3
1 . Let (X3, Y3, T3) =

[2](X1, Y1, T1), which is the doubling in the scaled projective coordinates sys-
tem. From the affine doubling formula (2), we have

X3 = a(X2
1Y1 − Y 3

1 )T1 +X1Y
3
1 , Y3 = a(X1Y

2
1 −X3

1 )T1 − Y 4
1 , T3 = T1Y

3
1 .

Then
X3 = X1Y

3
1 −X3

1Y1 + Y1(X3
1 + aX2

1T1 − aY 2
1 T1),

Y3 = X1(aY 2
1 T1 − aX2

1T1)− Y 4
1 = X1(X3

1 − T 3
1 )− Y 4

1 .

Therefore, we obtain

X3 = X1Y
3
1 + Y1T

3
1 −X3

1Y1, Y3 = X4
1 − Y 4

1 −X1T
3
1 , T3 = T1Y

3
1 . (9)

The following algorithm computes (X3, Y3, T3), i.e., the doubling of the point
(X1, Y1, T1).

A = X1 + Y1, B = X1 − Y1, D = (T1 −A)3,
E = (B − T1)3, F = B ·D, G = A · E, H = T1 · (D + E),
X3 = F +G, Y3 = F −G, T3 = H.

The cost of above algorithm is 3M + 2C, where M is the cost of a field multi-
plication and C is the cost of cubing.

The following proposition shows that the doubling formulae is complete.

Proposition 3. The doubling formulae (9) work for all input points on E−1/a3 .

Proof. Let P = (X1, Y1, T1) be a scaled point on E−1/a3 such that the doubling
formulae (9) do not work for the input P . Thus, we have

X3 = X1Y
3
1 + Y1T

3
1 −X3

1Y1 = 0, Y3 = X4
1 − Y 4

1 −X1T
3
1 = 0, T3 = T1Y

3
1 = 0.
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From T3 = 0, we have T1 = 0 or Y1 = 0. By the curve equation we have
aY 2

1 T1 = X3
1 + aX2

1T1 + T 3
1 . If T1 = 0 then X1 = 0. From Y3 = 0, we obtain

Y1 = 0. So (X1, Y1, T1) = (0, 0, 0) which is a contradiction. If Y1 = 0, by Y3 = 0
we have X1(X1−T1)3 = 0. Then, by the curve equation we obtain T1 = 0, which
is a contradiction. ut

3.2 Point Addition

Now, we provide the addition formulae for the scaled points on E−1/a3 : Y 2Z =
X3 +X2Z − Z3/a3

Let P1 = (X1, Y1, T1) and P2 = (X2, Y2, T2) be two scaled points on E−1/a3 ,
i.e., T1 = Z1/a, T2 = Z2/a and (X1, Y1, Z1), (X2, Y2, Z2) are points on E−1/a3 .
Let (X3, Y3, T3) be the sum of P1 and P2, where T3 = Z3/a and (X3, Y3, Z3) is
a point on E−1/a3 . From the affine addition formulae (1), we have

X3 = aT1T2(X2T1 −X1T2)((Y2T1 − Y1T2)2 − (X2T1 −X1T2)2)
−(X2T1 −X1T2)3(X2T1 +X1T2),

Y3 = −aT1T2(Y2T1 − Y1T2)((Y2T1 − Y1T2)2 − (X2T1 −X1T2)2)
+(X2T1 −X1T2)3(Y2T1 + Y1T2),

T3 = T1T2(X2T1 −X1T2)3.

Then, we obtain

X3 = T2(X2
1X2 +X1Y1Y2 +X2Y

2
1 )− T1(X1X

2
2 + Y1X2Y2 +X1Y

2
2 ),

Y3 = T2(X2
1Y2 +X1Y1X2 + Y2Y

2
1 )− T1(Y1X

2
2 +X1X2Y2 + Y1Y

2
2 ),

T3 = T 2
1 (X2 + Y2)(X2 − Y2)− T 2

2 (X1 + Y1)(X1 − Y1).
(10)

The following addition algorithm performs the addition formulae (10), which
requires 12M.

A1 = X1 + Y1, B1 = X1 − Y1, A2 = X2 + Y2, B2 = X2 − Y2,
D = T1 ·A2, E = T1 ·B2, F = T2 ·A, G = T2 ·B,
H = A1 ·B2, I = A2 ·B1, X3 = G · I − E ·H,
Y3 = F ·H −D · I, T3 = D · E − F ·G.

Notice that (T1 −X1)3 = aT1(X1 + Y1)(X1 − Y1). Then, we have

T1T2 · (T 2
1 (X2 + Y2)(X2 − Y2)− T 2

2 (X1 + Y1)(X1 − Y1))
= (1/a)(T 3

1 (T2 −X2)3 − T 3
2 (T1 −X1)3) = (1/a)(X1T2 −X2T1)3.

Therefore, we obtain

X3 = T2T
2
1 (X1X

2
2 + Y1X2Y2 +X1Y

2
2 )− T1T 2

2 (X2
1X2 +X1Y1Y2 +X2Y

2
1 ),

Y3 = T2T
2
1 (Y1X

2
2 +X1X2Y2 + Y1Y

2
2 )− T1T 2

2 (X2
1Y2 +X1Y1X2 + Y2Y

2
1 ),

T3 = (1/a)(X2T1 −X1T2)3.
(11)

We write

X3 = T1(X2 + Y2)T 2
2 (X1 − Y1)2 + T1(X2 − Y2)T 2

2 (X1 + Y1)2

−T2(X1 + Y1)T 2
1 (X2 − Y2)2 − T2(X1 − Y1)T 2

1 (X2 + Y2)2
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and

Y3 = T1(X2 + Y2)T 2
2 (X1 − Y1)2 − T1(X2 − Y2)T 2

2 (X1 + Y1)2

−T2(X1 + Y1)T 2
1 (X2 − Y2)2 + T2(X1 − Y1)T 2

1 (X2 + Y2)2.

Therefore, we have the following addition algorithm which requires 10M+ 1C+
1D, where D is the cost of a field multiplication by the constant 1/a.

A1 = X1 + Y1, B1 = X1 − Y1, A2 = X2 + Y2, B2 = X2 − Y2,
D = B1 · T2, E = A2 · Z1, F = A1 · T2, G = B2 · T1, H = D · E
I = F ·G, J = F · I, K = E ·H, X3 = D ·H + J −G · I −K,
Y3 = X3 + FI + EH, Z3 = (1/a)(D + F − E −G)3.

The cost of mixed scaled addition formulae is 8M + 1C + 1D, by setting
T1 = 1.

3.3 Unified Addition Formulae

Here, we study the unified addition formulae. In general, the unified addition
formulae work for all but finitely many pairs of points. The complete addition
formulae emphasize to work for all inputs. We recall that the affine addition
formulae (1) and projective formulae (11) do not work to double a point. More
precisely, the addition formula (11) do not work for the points P1 and P2 if and
only if P1 − P2 = (0, 1, 0).

Hereafter, we give some unified addition formulae for E−1/a3 : Y 2Z = X3 +
X2Z −Z3/a3. The unified addition formulae make the curve E−1/a3 interesting
against side-channel attacks.

Let P1 = (X1, Y1, T1) and P2 = (X2, Y2, T2) be two scaled points on E−1/a3 ,
where T1 = Z1/a, T2 = Z2/a and (X1, Y1, Z1), (X2, Y2, Z2) are points on E−1/a3 .
Then, Q1 = (X1 + Y1, X1 − Y1, T1) and Q2 = (X2 + Y2, X2 − Y2, T2) are points
of Hd. From the unified formulae (7) we obtain the point (U3, V3,W3) on Hd,
where

U3 = T 2
1 T2(X2 − Y2)− (X1 + Y1)(X1 − Y1)(X2 + Y2)2,

V3 = −T1T 2
2 (X1 + Y1) + (X2 + Y2)(X2 − Y2)(X1 − Y1)2,

W3 = T2(X1 + Y1)2(X2 + Y2)− T1(X1 − Y1)(X2 − Y2)2.

Then, the point (X3, Y3, T3) = ((U3 + V3), (U3 − V3),−W3) is a scaled point of
E−1/a3 , which is the sum of P1 and P2. We obtain

X3 = T1T2(T1(X2 − Y2)− T2(X1 + Y1)) + (X1 − Y1)(X2 + Y2)(X1Y2 +X2Y1),
Y3 = T1T2(T1(X2 − Y2) + T2(X1 + Y1)) + (X1 − Y1)(X2 + Y2)(X1X2 + Y1Y2),
T3 = T1(X1 − Y1)(X2 − Y2)2 − T2(X1 + Y1)2(X2 + Y2).

(12)
We note that by swapping the order of the points P1 and P2 we obtain another
unified formulae as follows.

X3 = T1T2(T2(X1 − Y1)− T1(X2 + Y2)) + (X1 + Y1)(X2 − Y2)(X1Y2 +X2Y1),
Y3 = T1T2(T2(X1 − Y1) + T1(X2 + Y2)) + (X1 + Y1)(X2 − Y2)(X1X2 + Y1Y2),
T3 = T2(X1 − Y1)2(X2 − Y2)− T1(X1 + Y1)(X2 + Y2)2.

(13)
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Moreover, the algorithm which performs above addition formulae (12) (or (13))
requires 12M.

We recall that the set of formulae (7) and (8) are complement of each other,
so the same property is true for the set of formulae (12) and (13). From Proposi-
tion 2, we see that the addition formulae (12) do not work for the inputs P1, P2

if and only if P1 − P2 = (1, 1, 1).
Then, one can easily see that the doubling formulae (6) work for all points of

the curve Hd. Moreover, for the subgroup G of E−1/a3(F3m) not including the
point (1, 1, a), the addition formulae (12) (and (13)) work for all pairs of points
in G.

3.4 Point Tripling

When implementing scalar multiplication on elliptic curves over finite fields of
characteristic three, it is convenient to choose a base three expansion for an
exponent k since the cubing operation in the finite field is cheaper than other
basic operations. Now point tripling is considered as follows.

From the affine tripling formulae (3), the tripling of the scaled point (X1, Y1, T1)
on E−1/a3 is the point (X3, Y3, T3) given by

X3 = (X3
1 − T 3

1 )(X9
1 − T 9

1 + a3X3
1T

6
1 ),

Y3 = a3Y 3
1 T

3
1 (Y 2

1 −X2
1 − T 2

1 −X1T1)3,
T3 = a2(X9

1T
3
1 − T 12

1 ).
(14)

Then, we have

X3 = (X1 − T1)3(a3Y 6
1 T

3
1 − a3X6

1T
3
1 + a3X3

1T
6
1 )

= −a3T 3
1 · (X1 − T1)3(X6

1 − Y 6
1 −X3

1T
3
1 )

= −a3T 3
1 · (X1 − T1)3(X2

1 − Y 2
1 −X1T1)3,

Y3 = −a3T 3
1 · Y 3

1 (X2
1 +X1T1 + T 2

1 − Y 2
1 )3,

T3 = −a3T 3
1 · (T 9

1 −X9
1 )/a.

So, we obtain
X3 = (X1 − T1)3(X2

1 − Y 2
1 −X1T1)3,

Y3 = Y 3
1 (X2

1 +X1T1 + T 2
1 − Y 2

1 )3,
T3 = (T 9

1 −X9
1 )/a.

(15)

We also write

X2
1 +X1T1 + T 2

1 − Y 2
1 = (X1 − T1 + Y1)(X1 − T1 − Y1),

X2
1 − Y 2

1 −X1T1 = (X2
1 +X1T1 + T 2

1 − Y 2
1 ) +X1T1 − T 2

1 .

Then, we propose the following very fast point tripling algorithm.

A = X1 − T1, B = (A+ Y1)(A− Y1), D = A(B + T1A),

X3 = D3, Y3 = (Y1B)3, T3 = −(1/a)A9 .

We see that the cost for above point tripling algorithm is 4M + 4C + 1D. The
following proposition shows that tripling formulae work for all inputs.
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Proposition 4. The tripling formulae (15) work for all points on E−1/a3 .

Proof. Let P = (X1, Y1, T1) be a scaled point on E−1/a3 : Y 2Z = X3 +X2Z −
Z3/a3 such that the tripling formulae (15) do not work for the point P . Thus,
the formulae (15) output

X3 = 0, Y3 = 0, T3 = (T 9
1 −X9

1 )/a = 0.

From T3 = 0, we have X1 = T1. Then, Y3 = Y 3
1 (X2

1 +X1T1 +T 2
1 −Y 2

1 )3 = −Y 5
1 .

Since Y3 = 0, we have Y1 = 0 and then (X1, Y1, T1) = (0, 0, 0) which is a
contradiction. ut

4 Explicit Formulae for Hessian curves in Characteristic 3

In this section, we present fast point addition and tripling formulae for Hessian
curves over a field F of characteristic 3.

4.1 Addition and doubling formulae

The point addition algorithms for formulae (5) are described in [5, 12, 20] with
the cost of 12M. Also, these addition formulae can be performed in a parallel
way, see [20]. In particular, the addition formulae (5) in a parallel environment
using 3, 4 or 6 processors require 4M, 3M or 2M, respectively.

Furthermore, from the addition formulae (5), the sum of the points (X1 :
Y1, Z1), (X2, Y2, Z2) on Hd is the point (X3, Y3, Z3) given by

X3 = Z1Z2(X2Z2Y1
2 −X1Z1Y2

2), Y3 = Z1Z2(Y2Z2X1
2 − Y1Z1X2

2),

Z3 = Z1Z2(X2Y2Z1
2 −X1Y1Z2

2) = Z3
1 (X2Y2Z2)− Z3

2 (X1Y1Z1)

= Z3
1 (X3

2 + Y 3
2 + Z3

2 )/d− Z3
2 (X3

1 + Y 3
1 + Z3

1 )/d

= (X2Z1 + Y2Z1 −X1Z2 − Y1Z2)3/d.

Using the next algorithm, the cost of above formulae is 10M + 1C + 1D, where
1D is the cost of the multiplication by the constant 1/d.

A = X2Z1, B = Y2Z1, C = X1Z2, D = Y1Z2, E = AD, F = BC,

X3 = DE −BF, Y3 = CF −AE, Z3 = (1/d)(A+B − C −D)3 . (16)

Also, the mixed addition formulae requires 8M + 1C + 1D. We note that the
addition algorithm (16) is not unified. In [13], Kim et al. first propose a mixed
addition algorithm requires 8M + 1C + 1D.

The next algorithm evaluates the unified addition formulae (7) for the Hessian
curve Hd with 12M.

A = X1X2, B = Y1Y2, C = Z1Z2, D = X1Z2, E = Y1X2, F = Z1Y2,

X3 = CF −AE, Y3 = BE − CD, Z3 = AD −BF .
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The mixed addition formulae requires 10M by setting Z2 = 1. Furthermore, the
addition formulae (7) can be performed in a parallel way. The following addition
algorithm is similar to the addition algorithm (16) which requires 10M+1C+1D.

A = Z2X1, B = X2X1, C = Y1Y2, D = Z1Y2, E = AD, F = BC,

X3 = DE −BF, Y3 = CF −AE, Z3 = (1/d)(A+B − C −D)3 .

Moreover, this addition algorithm is unified. Also, the cost of the mixed addition
formulae is 8M + 1C + 1D by setting X1 = 1.

From the doubling formulae (6), the doubling of the point (X1, Y1, Z1) on Hd

is the point (X3, Y3, Z3) given by

X3 = Y1(Z1 −X1)3, Y3 = X1(Y1 − Z1)3, Z3 = Z1(X1 − Y1)3 .

which requires 3M + 2C([13]).

4.2 Point Tripling

From §2.3, we recall that the scaled point (X,Y, T ) on Eb is corresponded to
the point (X + Y,X − Y, T ) on the Hessian curve Hd. Furthermore, the point
(U, V,W ) on Hd is corresponded to the scaled point ((U + V ), (U − V ),−T ) on
Eb. The point tripling (15) for Weierstraß form Eb can be used to obtain the
following point tripling algorithm for the Hessian curve Hd. The tripling of the
points (U1, V1,W1) on Hd with d3 = −1/b is the scaled point (U3, V3,W3) given
by the next formulae.

U3 = (U1W
2
1 + V1U

2
1 +W1V

2
1 )3,

V3 = (U1V
2
1 + V1W

2
1 +W1U

2
1 )3,

W3 = −(1/a)(U1 + V1 +W1)9.
(17)

Then, we propose the following point tripling algorithm.

A = U1 + V1 +W1, B = (U1 −W1)(V1 −W1), D = A(B −AZ1), E = V1B

U3 = (D + E)3, V3 = (D − E)3, W3 = −(1/a)A9 .

The cost for above point tripling algorithm is 4M + 4C + 1D. Moreover, from
Proposition 4 we see that the tripling formulae work for all inputs.

5 Curve Parameters and Operation Count Comparison

In [21], Smart et al. provided an elliptic curve suitable for the current security
level. According to the methods in [19, 8], more ordinary curves over finite fields
of characteristic three for high security level can be generated in the appendix.

The efficiency of implementing elliptic curve cryptosystems depends on the
speed of basic point operations. In this section, we will compare the new formulae
for point operations with the previously known results on the corresponding
curve.
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We first recall the previous results on ordinary curves in characteristic three.
In [13], Kim et al. propose a type of projective coordinates(ML-coordinates)
which consist of four variables and the relationship between it and affine coor-
dinates is (X,Y, Z, T ) ↔ (X/T, Y/Z3), where T = Z2. In ML-coordinates, the
doubling, mixed addition and tripling formulae in projective coordinates require
5M + 3S + 3C, 8M + 2C and 6M + 6C respectively, where S denote the cost of
a squaring in the finite field of characteristic three. It was noticed that a tripling
algorithm cost 5M + 5C + 1D using Jacobian projective coordinates in [18].

For convenience, we summarize all results into the following Table 1. From
the table, we can see that the new proposed formulae are always more efficient
than all previous formulae published for basic point operations on curves.

Table 1. Costs of point operations for different coordinate systems of elliptic curves
over F3m

Coordinate System Mixed addition Doubling Tripling

Projective[21] 9M + 2S + 1C 6M + 0S + 3C 7M + 2S + 5C
Jacobian[21] 7M + 3S + 2C 6M + 2S + 3C 5M + 1S + 4C + 1D

López Dahab[21] 10M + 3S 7M + 4S + 2C 10M + 3S + 5C
Projective in Hessian form[21] 10M 3M + 3C −
Projective in Hessian form[11] - - 6M + 4C + 2D

Jacobian[18] 7M + 3S + 2C + 1D 5M + 2S + 3C 3M + 2S + 5C + 1D

ML-coordinates [13] 8M + 2C 5M + 3S + 3C 6M + 6C

Hessian form [13] 9M + 1C 3M + 2C −
Hessian form(this work) 8M + 1C + 1D 3M + 2C 4M + 4C + 1D

scaled projective(this work) 8M + 1C + 1D 3M + 2C 4M + 4C + 1D

6 Conclusion

In this paper, a new basic operation formulae are presented for Hessian curves
over fields of characteristic 3. Also, new point representation scaled projective
is introduced for Weierstraß elliptic curves in characteristic three. The efficient
basic group operations are provided for the Weierstraß form.

We compared the performance of the proposed formulae to the previously
best results for different coordinates systems. It is shown that the new formulae
are superior to the previously known ones. It should be pointed out that, in
double-base chain representation for a scalar number, the proposed point dou-
bling and tripling may offer better performance.
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A.1 Ordinary Elliptic Curves over Finite Fields of characteristic
Three

The following table lists domain parameters for the ordinary elliptic curves
over the finite field of characteristic three for high security level. The following
parameters are given for each curve:

m The extension degree of the ternary field F3m .
f(z) The reduction polynomial of degree m.
b The coefficients of the elliptic curve E : y2 = x3 + x2 + b.
r The prime order of the base point P .
h The cofactor, that is #E(F3m) = hr.

Table 2. Parameters for Ordinary Elliptic Curves in Characteristic Three

E-151: m = 151, f(z) = z151 + 2z2 + 1, h = 3
b = 0x1FC4865AFE00A9216B0B5FD32C6300C4BED0707AE4072A03E55299F157B;
r = 0x359BA2B98CA11D6864A331B45AE711875640BA8E1297230F9EB217FB8393.

E-181: m = 181, f(z) = z181 + 2z37 + 1, h = 3
b = 0x173CB756670960FD06D9438C9A55BE469574A995718B1786C9DAD40C45A7

AC68C208FC3;
r = 0x27367561CDDFD3AAFB8EA1FD4470B1171C349B993B5282BC17E661A1B1

DF65BCE845A035.

E-263: m = 263, f(z) = z263 + 2z69 + 1, h = 3
b = 0x1E47D9F0855EB0ADDCE5948A2A1E5AF24EBFCC3051D647877CFFB91F5

64568C5103A09F22B234CE422567E0629358A740B8944C;
r = 0x994BBF51A32F5E702E4A3FFB7539AC6AAEAAF9B49E4CCA1DE8CE23F9

79DDA476F721963D0BF18B1216F037A8877236007190FD2F.

E-331: m = 331, f(z) = z331 + 2z2 + 1, h = 3
b = 0x52056E6E1C557FC37DD4D21EFFE1D5CA8E1528695E4B13536CF990AE79

C9242B8602535C92522A4EBB87E522ABF5C1CEA952EE52B9F6EA7389304
02CA3713AA0;

r = 0x8361D3334042B3F713BEB5D2C7BFAE83C436C40B479A21A4D1BE815079
F3C07FF992C36206C4E5B5DC9C2206CFB7F1AC1BD0F98A64CAB13DB5
3403AC4007E4875E5.

E-337: m = 337, f(z) = z337 + 2z3 + 1, h = 3
b = 0x359059FA58F98216D63B1FA12F4C194A09FDCFAF27CEEC308FB55B26938

D4A1D2E73ED6E9A17CDF7A84D1FAEDB14E38FC212CD76E460C3C5BFF
688234724B3EC0921;

r = 0x17621926CF1FDF27A973A13C53AD0D7F539BFF4441EE5E9CE59477E3E2B
471F2C6735F0933BB1C1B7ECA1A64D72D8F8F9336B4EE7CCA98AE54623C
8C15D6EF02AC7395.


