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Abstract. Attribute-based signature allows the signer to announce his
endorsement using a signing policy without revealing the identity, and
only the signer whose attributes satisfy the signing policy can gener-
ate a valid signature. Attribute-based signature can provide flexible ac-
cess control policy and has many application in real scenarios requiring
both privacy and authentication. In this paper, we present a new con-
struction of efficient attribute-based signature schemes based on Waters’
ciphertext-policy attribute-based encryption schemes. Our scheme is ex-
istentially unforgeable in the standard model for the selective adversary
and can achieve perfect privacy. Compared with other attribute-based
signature schemes supporting the general access structure, our scheme
has the shortest signature size and the best computation efficiency.

Keywords: attribute-based signature, ciphertext policy, existential un-
forgeability, general access structure

1 Introduction

In traditional public key cryptography, the communication model is one-to-one,
that is, any encrypted message using a particular public key can be decrypted
only with the corresponding secret key. For example, when one wants to dis-
tribute a message to a specific set of users, he has to encrypt it under each
user’s public key or identity, which is inefficient as the ciphertext size and com-
putational cost of encryption/decryption algorithms increase linearly with the
number of receivers. In other application scenarios, it is desirable to be able to
encrypt without exact knowledge of the public key of intended receivers. In most
cases, the qualified receivers share some common attributes, such as working lo-
cation, gender or age range. Attribute-based cryptography was proposed as an
efficient method to solve these problems.

Since the introduction of attribute-based encryption (ABE for short) by Sa-
hai and Waters [21] in 2005, a lot of ABE schemes [21,7,5,9,16,2,24] have been
proposed. Goyal et al. [7] further extended ABE and introduced two variants:
key policy attribute-based encryption (KP-ABE, e.g., [7,2]) and ciphertext pol-
icy attribute-based encryption (CP-ABE, e.g., [5,9,16,24]). In a CP-ABE system,
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a user’s private key is associated with a set of attributes and encrypted cipher-
text will specify an access policy over attributes. A user can decrypt if and only
if his attributes satisfy the ciphertext’s policy. While in a KP-ABE system, the
situation is reversed: the private key is associated with an access policy, and the
ciphertext is associated with a set of attributes. A user can decrypt if and only
if the attributes associated with the ciphertext satisfy the user’s private key pol-
icy. Attribute-based cryptosystem has significant advantages over the traditional
public key cryptosystems since it provides flexible policy, which is an important
tool for secure and fine-grained data sharing and access control.

With the development of ABE, research in attribute-based signature (ABS
for short) has been a very active area in recent years. The notion of ABS was
introduced explicitly in the first version of [15] by Maji et al. Up to now, a
number of ABS schemes have been proposed. According to the structure of
access policy, these schemes can be divided into two categories: ABS for single
threshold structure (such as [12,19,11,10]) and ABS for general access structure
(such as [15,17,6,18]).

In an ABS scheme, users receive a secret key from a master entity depending
on the attributes that they hold. Later, a user can use the private key and
a signing policy (which must be satisfied by his attributes) to compute the
signature on a message. The verifier is convinced that some user holding a set of
attributes satisfying the signing policy has endorsed the message. In particular,
the signature releases no other identity or attribute information about the actual
signer. ABS has found many important applications, such as attribute-based
messaging, attribute-based authentication, trust negotiation and leaking secrets
(see [15] for detailed descriptions of applications).

Let us take a private access control mechanism for example: a server first
chooses and publishes an access policy, and then users who want to access the
restricted resource should first sign on a fresh challenge message chosen by the
server. Note that only the user whose attributes satisfy the access policy can
generate a valid signature on the challenge message and the access policy. For
others whose attributes do not satisfy the policy, it is (computationally) difficult
to produce a valid ABS even through collusion.

Our Contributions. Motivated by the recent work of [17,18], we give a new
general construction of ABS scheme based on Waters CP-ABE schemes [24].
Our concrete scheme is provably secure against selective attacks under the as-
sumption of computation q-Diffie-Hellman Exponent problem (qDHE), which
is a modified assumption of the decisional q-Bilinear Diffie-Hellman Exponent
problem (qBDHE). qBDHE assumption is introduced and shown to be hard in
the generic group model by Boneh et al. in [3], and has been proved useful for
constructing hierarchical identity-based encryption [3], broadcast encryption [4]
and ABE [2,24] schemes. Compared with other ABS schemes supporting gen-
eral access structures, this construction provides better efficiency in terms of the
computational cost and communicational cost. What is more, the signature size
in our construction is even shorter than Maji et al.’s [15] most efficient construc-
tion, the security for which is only proven in the generic group model. It is well
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known that the generic group model is not a standard model in the security
proof, while our scheme can be proved secure in the standard model (that is,
without using the random oracle or the generic group heuristic). Note that this
general construction can also work for the fully secure CP-ABE scheme of [13],
and can turn their scheme into a fully secure ABS in composite order groups.
Organization. The rest of the paper is organized as follows. In the next section,
we review some preliminaries, including the bilinear map, hardness assumption
and the syntax definition of ABS. The security model of ABS scheme is given in
Section 3. We present our concrete ABS scheme in Section 4. Further, we compare
the efficiency and security of the proposed ABS scheme with others existing ABS
schemes in Section 5. Finally, conclusions will be made in Section 6.

2 Preliminaries

2.1 Bilinear Maps

Let G1,G2,GT be cyclic multiplicative groups of prime order p. Let g be a
generator of G1 and h be a generator of G2. A bilinear map e : G1 ×G2 → GT
has the following properties:

– Bilinearity: For all g ∈ G1, h ∈ G2 and all a, b ∈ Z∗p, we have e(ga, hb) =

e(g, h)ab.
– Non-degeneracy: e(g, h) 6= 1.
– Computability: There’s an efficient algorithm to compute e(u, v) for any
u ∈ G1 and v ∈ G2.

2.2 Hardness Assumption

The security of our construction is based on the computational q-Diffie-Hellman
Exponentiation assumption, which is modified from the decisional q-Bilinear
Diffie-Hellman Exponentiation (qBDHE)[3].

Let G be a bilinear group with prime order p, the qBDHE problem in G is
stated as follows: Given the following 2q+1 elements (g, h, ga, ga

2

, ..., ga
q

, ga
q+2

, ..., ga
2q

) ∈
G2q+1 as input, where a is chosen at random from Zp, the goal of the qBDHE

problem is to output e(g, h)a
q+1

.

Definition 1. (q-Diffie-Hellman Exponentiation, qDHE) We say the (t, ε) qDHE
assumption holds in a group G, if there is no probabilistic polynomial time ad-
versary who is able to compute ga

q+1

just given (g, ga, ga
2

, ..., ga
q

, ga
q+2

, ..., ga
2q

)
running in time at most t with probability at least ε, where a ∈ Zp and g ∈ G
are chosen independently and uniformly.

2.3 Access Structure and Linear Secret Sharing Scheme

Definition 2. (Access structure[1]) Let {P1, P2, ..., Pn} be a set of parties. A col-
lection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then C ∈
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A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of {P1, P2, ..., Pn},
i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the authorized sets, and the
sets not in A are called the unauthorized sets.

Definition 3. (Linear secret sharing scheme [1], LSSS ) A secret sharing scheme
Π over a set of parties P is called linear if

1. The shares for each party form a vector over Zp;
2. There exists a matrix M with ` rows and k columns called the share generating

matrix for Π. For all i = 1, ..., `, the ith row of M we let the function ρ defined
the party labeling row i as ρ(i). When we consider the column vector v =
(s, r2, ..., rk), where s ∈ Zp is the secret to be shared, and r2, ..., rk ∈ Zp are
randomly chosen, then Mv is the vector of ` shares of the secret s according
to Π. The share (Mv)i belongs to party ρ(i).

Suppose that Π is an LSSS for the access structure A. Let S ∈ A be an
authorized set, and let I ⊆ {1, 2, ..., `} be defined as I = {i : ρ(i) ∈ S}. Then,
there exist constants {wi ∈ Zp}i∈I such that, if {λi}i∈I are valid shares of any
secret s according to Π, then

∑
i∈I λiwi = s. It is shown in [1] that these

constants wi can be found in polynomial in the size of the share generating
matrix M .

Using standard techniques [1], one can convert any monotonic boolean for-
mulas into an LSSS representation. An access tree of ` nodes will result in an
LSSS matrix of ` rows. It is shown in [14] that, one can convert any access tree
into an LSSS matrix. The signing predicate we will use in our signature scheme
is LSSS access structure.

2.4 Syntax of ABS Scheme

According to [15], an ABS scheme is made up of four algorithms: Setup, Ex-
tract, Sign and Verify. For a fixed security parameter λ, these algorithms work
as follows:

– Setup(λ): The Setup algorithm takes input the security parameter λ, and
it returns some public parameters params and the master secret key msk.
The public parameters contain the universe of attributes U.

– Extract(msk, params, S) The Extract algorithm takes the master secret
key msk, the public parameters params and a user’s attribute set S ⊆ U as
input, and the attribute authority computes the attribute private key SKS

as the algorithm’s output.
– Sign(m, params, Υ, SKS): The Sign algorithm takes a message m, the public

parameters params, a signing predicate Υ and a user’s attribute key SKS

with attribute set S satisfying predicate Υ (we say that an attribute set S
satisfies the predicate Υ if Υ (S) = 1 ) as input, and outputs a valid signature
σ.
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– Verify(m, params, Υ, σ): The Verify algorithm takes the public parameters
params, the signing predicate Υ , the message m and its signature σ as input,
and outputs a boolean value either “valid” or “invalid”.

Correctness. For any correctly generated signature on the message m by a
signer with attributes w satisfying the claim-predicate Υ , we have

Verify(params, Υ,m,Sign(params, Υ, SKS ,m)) = valid.

3 Security Models

An ABS scheme must satisfy two security properties: unforgeability and perfect
privacy. The definition of unforgeability is based on the idea that an adversary
should not be able to generate a valid signature if his attribute set S does not
satisfy the predicate Υ . For the perfect privacy, the signature reveals nothing
about the identity or attributes of the signer. Our security model combines the
security model proposed by Maji et al. [15] and Li et al.[11]

3.1 Unforgeability

Our scheme is existentially unforgeable against selective predicate attacks, which
is a weaker security model than the adaptive chosen predicate attack. The dif-
ference is that the adversary of the selective predicate model has to give the
challenge predicate at the beginning of the security game. This model has also
been used in other attribute-based scheme [7,2,11,12,19]. The formal definition
is given in the following game between a challenger C and an adversary A:

– Initial Phase: The adversary A declares a challenge predicate Υ ∗ , which
will be used in the forgery signature.

– Setup Phase: After receiving the challenge predicate Υ ∗, the challenger C
chooses a security parameter λ and runs Setup algorithm to generate the
master secret key msk and public parameters params. C gives params to
the adversary A, while keeps the msk secretly.

– Queries Phase: The adversary A can adaptively query Extraction Oracle
and Signing Oracle for a polynomially bounded times, and C answers the
queries with the master secret key msk:
• Extraction Oracle: A can request a private key SKS for any attribute

set S ⊆ U.
• Signing Oracle: A can request a signature for any message m and pred-

icate Υ .
– Forgery Phase: Finally, the adversary A outputs a signature σ∗ on a mes-

sage m∗ with respect to the challenge predicate Υ ∗. We say that the adver-
sary wins the game if
1. A has not made Extraction Oracle for any attribute set S∗ that S∗

satisfying Υ ∗;
2. (m∗, Υ ∗) has not been queried to the Signing Oracle;
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3. σ∗ is a valid signature on the message m∗ and predicate Υ ∗.

The advantage AdvsP−CMA−EUF
ABS,A is defined as the probability that A wins above

game.

Definition 4. An adversary A (t, qK , qS , ε) breaks an ABS scheme if A runs in
time at most t, and makes at most qK and qS times Extraction Oracle queries
and Signing Oracle queries, while the advantage AdvsP−CMA−EUF

ABS,A is at least ε.
A signature scheme is (t, qK , qS , ε) existentially unforgeable if there is no forger
that can (t, qK , qS , ε) break it.

3.2 Perfect Privacy

Definition 5. An ABS scheme satisfies perfect privacy if for any two attribute
sets S1 and S2, a message m, a signature σ on predicate Υ with Υ (S1) = Υ (S2) =
1, any adversary A cannot identify which attribute set S1 or S2 is used to gen-
erate the signature σ better than random guessing.

If the perfect privacy holds, then a signature does not leak which set of
attributes of signing key was used to generate it. This holds even the adversary
has unbounded computational power and has access to the signer’s private keys,
that is, the signature is simply independent of everything except the message
and the predicate.

4 New Construction of ABS Scheme

In this section, we present an efficient ABS scheme with short signature size,
which is proven selective secure under the qDHE assumption (Definition 1) in
the standard model. We also show a fully security construction in composite
order groups based on [13] in Appendix B.

– Setup: Let G1 and GT be cyclic multiplication groups of prime order p, and
e : G1 × G1 → GT is an efficient bilinear map. Note that this construction
can also work on asymmetric pairing groups, where e : G1 × G2 → GT and
G1 6= G2. The universal set of attributes U (|U| = U,U ∈ Zp) used in this
system is public known. First, a random generator g ∈ G1, two exponents
α, a ∈ Z∗p are chosen. Then, pick random h1, h2, ..., hU , u0, u1, u2, ..., un ∈ G1.
We use u0, u1, u2, ..., un as the Waters’ hash function [23], and n is the length
of a message used in this system. The master key is gα and the public
parameters are params = (g, ga, e(g, g)α, h1, h2, ..., hU , u0, u1, u2, ..., un).

– Extract: The private key for a user with attributes S ⊆ U is generated as
follows:
1. The attribute authority randomly chooses t ∈ Zp, then computes K =
gαgat, L = gt;

2. For each attribute x ∈ S, the attribute authority computes Kx = htx;
3. Finally, the attribute authority outputs the private key: SKS = (K,L, {Kx}x∈S).
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– Sign: Let the signing predicate Υ can be represented by an LSSS access
structure (M,ρ), that is, M is an `×k matrix, and ρ is an injective function
that associates rows of M to attributes. The signature for the message m =
(µ1, µ2, ..., µn) ∈ {0, 1}n is constructed as follows:
1. The signer should first blind his private key SKS as follows: The signer

chooses a random t′ ∈ Zp, and sets K ′ = Kgat
′

= gαga(t+t
′), L′ = Lgt

′
=

gt+t
′
,∀x ∈ S : K ′x = Kxh

t′

x = h
(t+t′)
x . Then the signer’s new private key

SK ′S = (K ′, L′, {K ′x}x∈S).
2. As the signer’s attribute set S should satisfy the signing predicate Υ ,

that is Υ (S) = 1, then the signer can find −→α = (α1, α2, ..., α`) that
satisfies −→αM = (1, 0, ..., 0). In additional, the signer find another random
−→
β = (β1, β2, ..., β`) that satisfies

−→
β M = (0, 0, ..., 0). For the existence of

−→
β , we have a discussion in Section 5.2.

3. For each i ∈ [1, `], the signer computes si = (L′)αigβi , and sets y =∏̀
i=1

((K ′ρ(i))
αi(hρ(i))

βi). Then, the signer random chooses r ∈ Zp and

computes: σ1 = yK ′(u0
∏n
j=1 (uj)

µj )r , σ2 = gr.
Note: The signer may not have the key K ′ρ(i) for every attribute ρ(i) in
the computation of y. However, in this case, αi = 0, and so the value is
not needed.

4. Finally, the signer outputs the signature σ = (s1, ..., s`, σ1, σ2).
– Verify: Given a signature σ = (s1, ...s`, σ1, σ2) of a messagem = (µ1, µ2, ..., µn) ∈
{0, 1}n for the predicate Υ (corresponding to (M`×k, ρ) ), firstly, the verifier
chooses randomly v1 = 1, v2, ..., vk from Zp, sets −→v = (1, v2, ..., vk) and com-

putes λi =
k∑
j=1

vjMi,j , where Mi is the vector corresponding to the ith row

of matrix M . The verifier accepts the signature if and only if the following
equation holds, otherwise rejects it.

e(g, g)αe((u0
∏n

j=1
(uj)

µj ), σ2)
∏̀
i=1

e(gaλihρ(i), si)?e(g, σ1).

5 Security Analysis

The correctness of this Verify algorithm follows from the correctness of the
Waters’ CP-ABE scheme [24], and is shown in Appendix A.

5.1 Existential Unforgeability

Theorem 1. The new ABS scheme is existentially unforgeable under the selec-
tive predicate attack, assuming that the qDHE assumption holds in G1.

Proof. Suppose there exists an adversary A with non-negligible advantage ε
against our scheme, then we can construct a probability polynomial time algo-
rithm that can solve the qDHE problem. We define the game between a challenger
C and the adversary A as follows:
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Init : The challenger C is given qDHE challenge (g, ga, ga
2

, ..., ga
q

, ga
q+2

, ..., ga
2q

)

and asked to compute ga
q+1

. The game begins with A sends a challenge predicate
Υ ∗(M∗, ρ∗), where the size of the the challenge predicate matrix M∗ is `∗ × k∗
with k∗ 6 q.

Setup: C first defines the parameters h1, h2, ..., hU as follows. For each at-
tribute x in this system, C chooses a random value zx ∈ Zp. If attribute x
appeared in the challenge predicate Υ ∗(M∗, ρ∗), that is, there exists an i such

that ρ∗(i) = x, then let hx = gzxgaM
∗
i,1ga

2M∗i,2 ...ga
k∗M∗i,k∗ . Otherwise hx = gzx .

Further more, C randomly chooses α′, bj ∈ Zp, aj ∈ {−1, 0, 1} for each 0 6 j 6 n,

and sets e(g, g)α = e(ga, ga
q

) · e(g, g)α
′
, uj = g

aj
1 g

bj (0 6 j 6 n), with g1 = ga
q

.

We note that the master secret key gα = ga
q+1 · gα′ is unknown to C. For conve-

nience, let a(m) = a0 +
∑n
i=1 aimi, b(m) = b0 +

∑n
i=1 bimi.

Queries: The adversary A can adaptively query the following oracles for a
polynomially bounded times, and C answers these queries in the following way:

– Extraction Oracles: Suppose the adversary A asks the private key of at-
tributes set S with the restriction that S does not satisfy M∗. The challenger
C first randomly chooses t1 ∈ Zp, then it finds a vector −→w = (w1, ..., wk∗) ∈
Zk∗p such that w1 = −1 and for all i where ρ∗(i) ∈ S we have −→w ·M∗i = 0.

By implicitly defining t = t1 +w1a
q +w2a

q−1 + ...+wk∗a
q−k∗+1, C outputs

the private key SKS = (K,L, {Kx}x∈S) as follows:

K = gαgat = gα
′
gat1

∏
i=2,...k∗

(ga
q+2−i

)wi

L = gt = gt1
∏

i=1,...k∗

(ga
q+1−i

)wi

Kx = Lzx
∏

j=1,...k∗
(ga

jt1
∏

k=1,...,k∗

k 6=j

(ga
q+1+j−k

)wk)
M∗i,j

for ρ∗(i) = x ∈ S, and

Kx = (hx)t = Lzx for attribute x does not appear in the challenge predicate,
that is, there is no i such that ρ∗(i) = x.

– Signing Oracles: Consider a query for a signature of m = (µ1, µ2, ..., µn) ∈
{0, 1}n on predicate Υ (M`×k, ρ) with attribute set S that satisfies Υ (S) = 1.
The challenger will construct a signature in the following way:

1. If S does not satisfy the challenge predicate Υ ∗, C can get the private
key of S by querying the Extraction Oracles, and then generate the valid
signature normally using these private keys

2. If S does satisfy the challenge predicate Υ ∗, that is Υ ∗(S) = 1. C first
check a(m) = a0 +

∑n
i=1 aiµi equals 0 or not. If a(m) = 0, C outputs

“failure”and stops this game. Otherwise, when a(m) 6= 0, C first compute
−→α = (α1, α2, ..., α`) and

−→
β = (β1, β2, ..., β`) with −→αM = (1, 0, ..., 0),

−→
β M = (0, 0, ..., 0) as Υ (S) = 1. C randomly chooses r′, t′ ∈ Zp and
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assigns r = r′ − (a/a(m)), and then computes the signature:

si = gαit
′+βi(i = 1, 2..., `)

y =
∏̀
i=1

(hρ(i))
αi·t′+βi

σ1 = ygα+at
′
(g
a(m)
1 gb(m))r) = y(gα

′
(ga)t

′
(ga

q

)r
′a(m)gb(m)·(r′−a/a(m)))

σ2 = gr
′−(a/a(m)) = gr

′
(ga)−(1/a(m))

Forgery : Finally, the adversaryA outputs a forged signature σ∗ = (s∗1, ...s
∗
` , σ
∗
1 , σ
∗
2)

of a message m∗ = (µ∗1, µ
∗
2, ..., µ

∗
n) ∈ {0, 1}n for the challenge predicate Υ ∗ (the

corresponding monotone span program is (M∗`∗×k∗ , ρ
∗) ). If a(m∗) 6= 0, C will

abort. Otherwise, C can give the solution to the qDHE problem. C implicitly sets

−→v = (s = −1,−a,−a2...,−ak∗−1), and computes λi = −→v ·M∗i = −
`∗∑
j=1

M∗i,ja
j−1.

As

hρ∗(i) = gzρ∗(i)gaM
∗
i,1ga

2M∗i,2 ...ga
k∗M∗i,k∗ = gzρ∗(i)g−aλi ,

C can compute

gασ
b(m∗)
2 (

∏`∗

i=1 s
zρ∗(i)
i ) = σ1

According to gα = ga
q+1 · gα′ , C outputs

ga
q+1

= σ1(σ2)−b(m∗)g−α
′∏`∗

i=1
s
−zρ∗(i)
i

as the solution to the submitted instance of the qDHE problem, which contradicts
with qDHE assumption.

Probability : For the simulation to complete without aborting, we require the
following conditions fulfilled

1. For eachmi to be queried in the Signing Oracle queries, we have that a(mi) 6=
0;

2. For the outputting forgery message m∗, we have that a(m∗) = 0.

Using the technique of (1, qS , 0, P ) programmable hash function in [20], we can
get the probability of C not aborting as P = O( 1

qS
√
n

), where qS is the maximum

number of Signing Oracle queries the adversary A can make. Therefore, we can
get the probability of solving qDHE problem as ε′ > ε · P , if the adversary A
succeeds breaking our ABS scheme with probability ε. �

5.2 Perfect Privacy

Theorem 2. The attribute-based signature scheme we proposed in Section 4 can
achieve perfect privacy.
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Proof. First we note that the role of the vector
−→
β = (β1, β2, ..., β`) is to hide

the real attributes the signer used to sign the message. For any predicate Υ (The
corresponding LSSS access structure is (M`×k, ρ) ), if rank(M) < `, it is obvious

that there exists polynomial numbers of
−→
β that satisfies

−→
β M = (0, 0, ..., 0).

For a simple example, M could be (1, 1, 1, 1)T (a column vector, which is the
transpose of (1, 1, 1, 1) for a policy of A1 or A2 or A3 or A4 (following the way

of [14] in the construction of M). In that case,
−→
β = (β1, β2, β3, β4) could be

(1,−1, 1,−1) or (1, 1, 1,−3) or any other values that satisfies β1 +β2 +β3 +β4 =
0. On the other hand, if the matrix M is full rank, then there is only one−→
β = (0, 0, ..., 0) that satisfies

−→
β M = (0, 0, ..., 0). But in this case, as −→αM =

(1, 0, ..., 0), −→α = (1, 1, ..., 1), which means the signing predicate are limited to
conjunction or (n,n)-threshold predicate, and there is no attribute privacy at all.
So here, we just consider the case of rank(M) < `.

The perfect privacy game begins with the challenger running Setup to get
the public parameters params and the master key gα. The challenger also gives
the adversary params and gα. After these interactions, the adversary outputs a
challenge predicate Υ and two attributes S1 and S2 with Υ (S1) = Υ (S2) = 1.
Assume the challenger or adversary has generated the private keys as

SKS1
= (gαgat1 , gt1 , {(hx)t1}x∈S1

),

SKS2
= (gαgat2 , gt2 , {(hx)t2}x∈S2

).

Then the adversary outputs a message m and asks the challenger to generate a
signature on the message m and predicate Υ with the private key SKS either
SKS1 or SKS2 . The challenger chooses a random bit b ∈ {1, 2}, and outputs
a signature σ∗ = (sb1, ..., s

b
`, σ

b
1, σ

b
2) by running algorithm Sign with the private

key SKSb

Since the challenger can generate a valid signature either by using SKS1

or SKS2 , and for our purpose, we just have to show that the distributions of
signatures created by using SKS1 or SKS2 are identical. Here, we show that a
signature created by using SKS1

can also be generated by using SKS2
:

Using the private key SKS1
, the challenge signature σ∗ = (s11, ..., s

1
` , σ

1
1 , σ

1
2)

is in the form of

{s1i = gα
1
i t+β

1
i }i=1,2,...,`

y1 =
∏̀
i=1

(hρ(i))
α1
i t+β

1
i

σ1
1 = y1gαgat(u0

∏n

j=1
(uj)

µj )r
1

)

σ1
2 = gr

1

,

where t = t1 + t′1( t′1 and r1 are randomly chosen by the challenger),
−→
α1 =

(α1
1, α

1
2, ..., α

1
` ) satisfies

−→
α1M = (1, 0, ..., 0) according to attributes set S1, and
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the vector
−→
β1 = (β1

1 , β
1
2 , ..., β

1
` ) satisfying

−→
β1M = (0, 0, ..., 0) is also randomly

chosen by the challenger.

For private key SKS2
, there is another vector

−→
α2 = (α2

1, α
2
2, ..., α

2
` ) satisfies

−→
α2M = (1, 0, ..., 0). We have random t′2 and r2 satisfy t2 + t′2 = t = t1 + t′1,
r2 = r1, respectively.

In addition, we set
−→
β2 = (β2

1 , β
2
2 , ..., β

2
` ) and for each β2

i = (α1
i − α2

i )t + β1
i .

We can check that

−→
β2M =

∑`

i=1
β2
iMi

=
∑`

i=1
(α1
i − α2

i )tMi +
∑`

i=1
β1
iMi

= t(
−→
α1M)− t(

−→
α2M) + (

−→
β1M)

= (t, 0, ..., 0)− (t, 0, ..., 0) + (0, 0, ..., 0)

= (0, 0, ..., 0)

So, choosing proper random t′2, r2 and
−→
β2, the challenger can generate the

same valid signature σ∗ = (s11, ..., s
1
` , σ

1
1 , σ

1
2) from the private key SKS2 . By using

the similar proof, one can also get the following result: if a signature is generated
by the private key SKS2

, it can also be generated form private key SKS1
. From

the proof, we have shown that the ABS scheme satisfies perfect privacy. �

5.3 Efficiency

In this section, we compare our scheme with other existing ABS schemes that
support the general access structure in the literature. Since the instantiations
1,2 in [15] and the schemes in [6] can be seen as the general constructions, and
these schemes are much complicated and very inefficient as they will employ the
Groth-Sahai non-interactive proof [8], which can be indicated by the comparison
in [17]. We refer interested readers to [17] for the complexity of ABS scheme using
the Groth-Sahai proof [8], so here, we do not compare their schemes in Table 1.
Let ` and k represent the size of the underlying access structure matrix M`×k
for a signing predicate. The signature size of our scheme is `+ 2 group elements,
and the complexity is only ` + 3 paring operations (Here we only consider the
complex pairing operations for our convenience in the Table 1).

Note that the ABS scheme [10] with constant size signatures can be extended
to admit some other more expressive kinds of monotone predicates (such as hier-
archical threshold predicates [22] but not the fully expressive access structure),
in which case the signature size is no longer constant. Our scheme is more effi-
cient compared with [10] for the expressive access structure such as the CNF or
DNF form.
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Table 1. Comparison with other ABS schemes

Schemes MPR11 [15] OT11 [17] OT12 [18] Ours

Signature Size ` + k + 2 7` + 11 13` ` + 2

Complexity k` + k + 3 7` + 15 13` ` + 3

Security full full full selective

Model generic group standard random oracle standard

Predicate monotone non-monotone non-monotone monotone

Multi-authority No Yes Yes No

6 Conclusion

In this paper, we give a new construction of ABS scheme based on Waters’ CP-
ABE framework [24]. Under the qDHE assumption, this scheme can be proved ex-
istentially unforgeable against selective predicate attack in the standard model.
Compared with other ABS schemes that supports the general signing policies,
our scheme can achieve the best efficiency in terms of the signature size and
computation costs, at the expense of a weaker security.
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A Correctness

If σ = (s1, ..., s`, σ1, σ2) is a valid signature of the message m = (µ1, µ2, ..., µn) ∈
{0, 1}n for the predicate Υ (corresponding to (M`×k, ρ) ), then

σ1 = yK ′(u0
∏n

j=1
(uj)

µj )r)

= K ′
∏̀
i=1

((K ′ρ(i))
αi(hρ(i))

βi)(u0
∏n

j=1
(uj)

µj )r

= gαgat
∏̀
i=1

(hαit+βiρ(i) )(u0
∏n

j=1
(uj)

µj )r

So,

e(g, σ1) = e(g, gαgat
∏̀
i=1

(hαit+βiρ(i) )(u0
∏n

j=1
(uj)

µj )r)

= e(g, g)αe(u0
∏n

j=1
(uj)

µj , gr)e(g, gat
∏̀
i=1

(hαit+βiρ(i) ))

= e(g, g)αe(u0
∏n

j=1
(uj)

µj , σ2)e(g, gat)
∏̀
i=1

e(gαit+βi , hρ(i))

= e(g, g)αe(u0
∏n

j=1
(uj)

µj , σ2)
∏̀
i=1

e(si, g
aλihρ(i))

Note that λi =
k∑
j=1

vjMi,j ,, the last equality is derived by:
∑̀
i=1

λi(αit+ βi) =

t
∑̀
i=1

λi(αi) +
∑̀
i=1

λiβi) = t · 1 + 0 = t.

B Fully Secure ABS Scheme

– Setup: The Setup algorithm first chooses a bilinear group G of order N =
p1p2p3 (three distinct primes). We let Gpi denote the subgroup of order pi
in G. Note that the universal set of attributes U (|U| = U,U ∈ Zp) used in
this system is public known. A random generator g ∈
mathbbGp1 and two exponents α, a ∈ Z∗p are chosen. Then, pick random
h1, h2, ..., hU , u0, u1, u2, ..., un ∈ G1. We use u0, u1, u2, ..., un as the Waters’
hash function [23]. The master key is gα and a generator X3 of Gp3 , while the
public parameters are params = (g, ga, e(g, g)α, h1, h2, ..., hU , u0, u1, u2, ..., un).
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– Extract The private key for a user with attributes S ⊆ U is generated as
follows:
1. The attribute authority randomly chooses t ∈ Zp, R0, R

′
0 ∈ Gp3 , then

computes K = gαgatR0, L = gtR′0;
2. For each attribute x ∈ S, the attribute authority randomly chooses Rx ∈
Gp3 , and computes Kx = htxRx;

3. Finally, the attribute authority outputs the private key: SKS = (K,L, {Kx}x∈S).
– Sign: Let the signing predicate Υ can be represented by an LSSS access

structure (M,ρ), that is, M is an `×k matrix, and ρ is an injective function
that associates rows of M to attributes. The signature for the message m =
(µ1, µ2, ..., µn) ∈ {0, 1}n is constructed as follows:
1. The signer should first blind his private key SKS as follows: The signer

chooses a random t′ ∈ Zp, and sets K ′ = Kgat
′

= gαga(t+t
′)R0, L

′ =

Lgt
′

= gt+t
′
R′0,∀x ∈ S : K ′x = Kxh

t′

x = h
(t+t′)
x Rx. Then the signer’s new

private key SK ′S = (K ′, L′, {K ′x}x∈S).
2. As the signer’s attribute set S should satisfy the signing predicate Υ ,

that is Υ (S) = 1, then the signer can find −→α = (α1, α2, ..., α`) that
satisfies −→αM = (1, 0, ..., 0). In additional, the signer find another random
−→
β = (β1, β2, ..., β`) that satisfies

−→
β M = (0, 0, ..., 0). For the existence of

−→
β , we have a discussion in Section 5.2.

3. For each i ∈ [1, `], the signer computes si = (L′)αigβi , and sets y =∏̀
i=1

((K ′ρ(i))
αi(hρ(i))

βi). Then, the signer random chooses r ∈ Zp and

computes:
σ1 = yK ′(u0

∏n
j=1 (uj)

µj )r) , σ2 = gr.
4. Finally, the signer outputs the signature σ = (s1, ..., s`, σ1, σ2).

– Verify: Given a signature σ = (s1, ...s`, σ1, σ2) of a messagem = (µ1, µ2, ..., µn) ∈
{0, 1}n for the predicate Υ (corresponding to (M`×k, ρ) ), firstly, the verifier
chooses randomly v1 = 1, v2, ..., vk from Zp, sets −→v = (1, v2, ..., vk) and com-

putes λi =
k∑
j=1

vjMi,j , where Mi is the vector corresponding to the ith row

of matrix M . The verifier accepts the signature if and only if the following
equation holds, otherwise reject it.

e(g, g)αe((u0
∏n

j=1
(uj)

µj ), σ2)
∏̀
i=1

e(gaλihρ(i), si)?e(g, σ1).
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