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Abstract—The SHA-3 finalist Skein is built from the tweakable
Threefish block cipher. In order to have a better understanding of
the computational efficiency of Skein (resource sharing, memory
access scheme, scheduling, etc.), we design a low-area coprocessor
for Threefish and describe how to implement Skein on our
architecture. We harness the intrinsic parallelism of Threefish
to design a pipelined ALU and interleave several tasks in order
to achieve a tight scheduling. From our point of view, the main
advantage of Skein over other SHA-3 finalists is that the same
coprocessor allows one to encrypt or hash a message.

I. INTRODUCTION

In this article, we propose a novel hardware implementation
of the SHA-3 finalist Skein [1]. As emphasized by Kerckhof et
al., “fully unrolled and pipelined architectures may sometimes
hide a part of the algorithms’ complexity that is better revealed
in compact implementations” [2]. In order to have a deeper un-
derstanding of the computational efficiency of Skein (resource
sharing, memory access scheme, scheduling, etc.), we decided
to design a low-area coprocessor on a Field-Programmable
Gate Array (FPGA). Furthermore, such an implementation is
valuable for constrained environments, where some security
protocols mainly rely on cryptographic hash functions (see
for instance [3]).

Skein is built from the tweakable Threefish block cipher,
defined with a 256-, 512-, and 1024-bit block size. The main
contribution of this article is a lightweight implementation of
Threefish (Section II). Then, we describe how to implement
Skein on our coprocessor (Section III). We have prototyped
our architecture on a Xilinx Virtex-6 device and discuss our
results in Section IV.

II. THE THREEFISH BLOCK CIPHER

A. Algorithm Specification

Threefish operates entirely on unsigned 64-bit integers and
involves only three operations: rotation of k bits to the left
(denoted by≪ k), bitwise exclusive OR (denoted by ⊕), and
addition modulo 264 (denoted by �). Therefore, the plaintext
P and the cipher key K are converted to Nw 64-bit words.
Note that the number of words Nw and the number of rounds
Nr depend on the key size (Table I).

The key schedule generates the subkeys from a block
cipher key K = (k0, k1, . . . , kNw−1) and a 128-bit tweak

Table I
NUMBER OF ROUNDS FOR DIFFERENT KEY SIZES (REPRINTED FROM [1]).

Key size # words # rounds
[bits] Nw Nr

256 4 72
512 8 72

1024 16 80

T = (t0, t1). K and T are extended with one parity word
(Algorithm 1, lines 1 and 2). Each subkey is a combination
of Nw words of the extended key, two words of the extended
tweak, and a counter s (Algorithm 1, lines 5 to 9). Note that
the extended key and the extended tweak are rotated by one
word position between two consecutive subkeys.

Algorithm 1 Key schedule.
Input: A block cipher key K = (k0, k1, . . . , kNw−1);

a tweak T = (t0, t1); the constant C240 =
1BD11BDAA9FC1A22.

Output: Nr/4 + 1 subkeys ks,0, ks,1, . . . , ks,Nw−1, where
0 ≤ s ≤ Nr/4.

1. kNw ← C240 ⊕
Nw−1⊕
i=0

ki;

2. t2 ← t⊕ t1;
3. for s← 0 to Nr/4 do
4. for i← 0 to Nw − 4 do
5. ks,i ← k(s+i) mod (Nw+1);
6. end for
7. ks,Nw−3 ← k(s+Nw−3) mod (Nw+1) � ts mod 3;
8. ks,Nw−2 ← k(s+Nw−2) mod (Nw+1) � t(s+1) mod 3;
9. ks,Nw−1 ← k(s+Nw−1) mod (Nw+1) � s;

10. end for
11. return ks,0, ks,1, . . . , ks,Nw−1, where 0 ≤ s ≤ Nr/4;

A series of Nr rounds (Figure 1 and Algorithm 2, lines 4
to 19) and a final subkey addition (Algorithm 2, line 21) are
applied to produce the ciphertext. The core of a round is
the simple non-linear mixing function Mixd,j (Algorithm 2,
lines 13 and 14). It consists of an addition, a rotation by a
constant Rd mod 8,j (repeated every eight rounds and defined



in [1, Table 4]), and a bitwise exclusive OR. A word permu-
tation π(i) (defined in [1, Table 3]) is then applied to obtain
the output of the round (Algorithm 2, line 17). Furthermore,
a subkey is injected every four rounds (Algorithm 2, line 7).

e4,3

f4,3

e4,2e4,1

R4,0

e4,0

v4,2

M
ix

4,
0

v4,3v4,0

v5,1v5,0 v5,3v5,2

v4,1

k1,0

M
ix

4,
1

Pe
rm

ut
e

k1,2 k1,3k1,1

R4,1 ≪≪

f4,0 f4,1 f4,2

Figure 1. One of the 72 rounds of Threefish-256.

Algorithm 2 Encryption with the Threefish block cipher.
Input: A plaintext block P = (p0, p1, . . . , pNw−1); Nr/4+1

subkeys ks,0, ks,1, . . . , ks,Nw−1, where 0 ≤ s ≤ Nr/4;
4Nw rotation constants Ri,j , where 0 ≤ i ≤ 7 and 0 ≤
j ≤ Nw/2.

Output: A ciphertext block C = (c0, c1, . . . , cNw−1).
1. for i← 0 to Nw − 1 do
2. v0,i ← pi;
3. end for
4. for d← 0 to Nr − 1 do
5. for i← 0 to Nw − 1 do
6. if d mod 4 = 0 then
7. ed,i ← vd,i � kd/4,i; (Key injection)
8. else
9. ed,i ← vd,i; (Rename)

10. end if
11. end for
12. for j ← 0 to Nw/2− 1 do
13. fd,2j ← ed,2j � ed,2j+1; (Mixd,j)
14. fd,2j+1 ← fd,2j ⊕ (ed,2j+1≪ Rd mod 8,j);
15. end for
16. for i← 0 to Nw − 1 do
17. vd+1,i ← fd,π(i); (Permute)
18. end for
19. end for
20. for i← 0 to Nw − 1 do
21. ci ← vNr,i � kNr/4,i; (Key injection)
22. end for
23. return C = (c0, c1, . . . , cNw−1);

B. The UBI Chaining Mode

Let E(K,T, P ) be a tweakable encryption function. The
Unique Block Iteration (UBI) chaining mode allows one to
build a compression function out of E. Each block Mi of the
message is processed with a unique tweak value Ti encoding
how many bytes have been processed so far, a type field
(see [1] for details), and two bits specifying whether it is the
first and/or last block. The UBI chaining mode is computed
as:

H0 ← G,
Hi+1 ←Mi ⊕ E(Hi, Ti,Mi),

where G is a starting value of Nw words.

C. Hardware Implementation

This short description of Threefish gives us the first hints on
designing a dedicated coprocessor (Figure 2). Our architecture
consists of a register file implemented by means of dual-
ported memory, an ALU, and a control unit. The register file
is organized into 64-bit words, and stores a plaintext block,
an internal state (ed,i, where 0 ≤ i ≤ Nw − 1), an extended
block cipher key, an extended tweak, the constant C240, and
all possible values of s involved in the key schedule. Thanks
to this approach, the word permutation π(i) and the word
rotation of the key schedule are conveniently implemented
by addressing the register file accordingly. Since the round
constants repeat every eight rounds (Algorithm 2, line 14),
we decided to unroll eight iterations of the main loop of
Threefish (Algorithm 2, lines 4 to 19). The rotation constants
Rd,i are included in the microcode executed by the control
unit. Note that our register file is designed for Threefish-1024
(i.e. Nw = 16 and Nr = 80). It is therefore straightforward
to implement the two other variants of the algorithm on our
architecture.
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Figure 2. Architecture of the Threefish coprocessor.

The next step consists in defining the architecture of the
ALU and the instruction set of our coprocessor. In the fol-
lowing, Ri denotes a 64-bit register. Figure 3a illustrates our
scheduling of the two mixing functions Mix4,0 and Mix4,1 of
the fifth round of Threefish-256:
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Figure 3. Arithmetic and logic unit for Threefish encryption.

• The operand e4,1 is loaded in register R1; at the same
time, we start the computation of e4,1 ≪ R4,0; this
operation requires three clock cycles and intermediate
results are stored in R4, R5, and R6.

• Then, e4,0 is loaded in register R2; the content of R1 is
not modified (i.e. R1 must be controlled by an enable
signal).

• We execute the instruction R3← R1� R2.
• R3 and R6 contain f4,0 and e4,1 ≪ R4,0, respectively.

The instruction R3← R3⊕R6 allows us to compute f4,1.
We schedule Mix4,1 as soon as e4,0 has been read, and manage
to keep the pipeline continuously busy. In summary, our ALU
must be able to carry out any rotation of a 64-bit word and to
perform the following operation (Figure 3b):

R3←

{
R1� R2 when Ctrl10 = 0,
R3⊕ R6 otherwise,

(1)

where Ctrl10 denotes a control bit. Our ALU is therefore
similar to the one proposed by Beuchat et al. [4] for the
SHA-3 finalist BLAKE, and we can take advantage of their
strategy to share hardware resources between the adder and the
array of XOR gates (we propose here a more general approach
that does not require a low-level VHDL description relying on
libraries provided by Xilinx). Let us define two 64-bit operands
a and b such that:

(a, b) =

{
(R1,R2) when Ctrl10 = 0,
(R3,R6) otherwise.

It is well-known that a � b = (a ∨ b) � (a ∧ b) and a ⊕
b = (a ∨ b)� (a ∧ b), where ∨, ∧, and � denote the bitwise
OR, the bitwise AND, and the subtraction modulo 264 of two
operands, respectively [5]. Thus, Equation (1) can be rewritten
as follows:

R3← (a ∨ b)� ((a ∧ b)⊕ Ctrl10)� Ctrl10. (2)

Figure 3c describes the implementation of Equation (2) on a
Virtex-6 device. Since there is a single control signal to choose
the arithmetic operation and to select a and b, Equation (2) in-
volves only five variables, and is advantageously implemented
by 64 LUT6 2 primitives and dedicated carry logic.

In order to reduce the number of operands stored in the
register file, we interleave the key schedule (Algorithm 1) and
the encryption process (Algorithm 2). This approach allows us
to generate the subkeys on-the-fly. It is however necessary to
compute t2 and kNw

before the first key injection. The easiest
way to compute t2 would be to load t0 and t1 in registers
R1 and R2, respectively, and to execute the instruction R3←
R1⊕R2. Unfortunately, this solution requires one more control
bit to select the inputs of the arithmetic operator, and it is not
possible to implement the multiplexers and the adder on the
same LUT6 2 primitive anymore. Since the critical path of
our coprocessor is located in the 64-bit adder, an extra level
of LUTs would decrease the clock frequency. However, we
are able to compute t2 using only the functionalities defined
by Equation (1). Since t2 = (t0 � 0) ⊕ (t1 ≪ 0), it suffices
to execute the following instructions:

R4← t1≪ 0,
R1← t0, R2← 0, R5← R4≪ 0,
R3← R1� R2, R6← R5≪ 0,
R3← R3⊕ R6.

This approach assumes that we can read simultaneously two
values from the register file. Thanks to the multiplexer con-
trolled by Ctrl7, we can load data from port A or port B
into register R2 (Figure 3b). A similar strategy allows us to
compute kNw

.
The implementation of the key injection is more straightfor-

ward. Note that the multiplexers controlled by Ctrl6 and Ctrl8
allow us to bypass the register file and to use the content
of R3 as an input to the ALU. Let us consider for instance
the first key injection of Threefish-256: e0,2 is defined as
p2 � k0,2 = p2 � k2 � t1 and is computed as follows:

R1← k2, R2← t1,
R3← R1� R2
R1← R3, R2← p2,
R3← R1� R2.

Figure 4 describes how we schedule the instructions of
Threefish-256.
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Figure 4. Scheduling of Threefish-256. @d denotes the address of the 64-bit word d in the register file. “Rename” and “Permute” refer to lines 9 and 17
of Algorithm 2, respectively.

The UBI chaining mode can be combined with the final key
injection of Threefish encryption. It suffices to modify line 21
of Algorithm 2 as follows: eNr,i ← vNr,i � kNr/4,i and ci ←
eNr,i⊕pi. The only difference between this operation and the
mixing function MIXd,j is that no permutation is applied to
the second operand of the bitwise exclusive OR.

The control unit consists of an instruction memory, a small
table to generate the address of k(s+i) mod (Nw+1) during the
key schedule (Algorithm 1), and a simple finite-state machine.
Since we unroll only eight rounds, we manage to keep the
instruction memory compact. In the case of Threefish-512,
we need for instance 145 instructions and 881 clock cycles to
encrypt a plaintext block in UBI mode.

III. SKEIN HASHING

In this work, we focus on the simple Skein hash computation
and refer the reader to [1] for a description of the other modes
of operation. Three UBI invocations allow one to compute the
digest of a message M = (M0,M1, . . . ,Mb−1) of up to 299−8
bits, where each Mi is a block of Nw 64-bit word. We explain

this process with an example: how to hash a message of 170
bytes M = (M0,M1,M2) with Skein-512-512 (Figure 5):

1) Configuration block. The 32-byte string C encodes
the desired output length and several parameters de-
fined in [1]. In the simple hashing mode, G0 =
UBI(0, C, Tcfg2

120) depends only on the output size, and
can be precomputed (see [1, Appendix B]).

2) Message. Note that M0 and M1 contain 64 bytes of data
each, and M2 is the padded final block with 42 bytes of
data. The tweak encodes whether Mi is the first or last
block of M , and the number of bytes processed so far. In
this example, UBI(G0,M, Tmsg2

120) requires three calls
to Threefish-512.

3) Output transform. The call to UBI(G1, 0, Tout2
120)

achieves hashing-appropriate randomness. If a single
output block is not sufficient, several output transforms
can be run in parallel [1].

In order to process a b-block message M , we load the
precomputed value of G0 in the register file of our coprocessor.
Then, b+1 calls to Threefish allow us to process the message



and to perform the output transform. In the case of Skein-512-
512, the throughput is given by T = 512·b·f

(b+1)·881 bits/s, where f
denotes the clock frequency of our architecture.
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Figure 5. Processing a 3-block message using Skein-512-512 in the simple
hashing mode.

IV. RESULTS AND PERSPECTIVES

We captured our architecture in the VHDL language and
prototyped a fully autonomous implementation of Skein-512-
512 on a Xilinx Virtex-6 FPGA. Table II summarizes our
results and the figures published by other researchers focusing
on compact coprocessors (we refer the reader to the SHA-3
Zoo [12] for an overview of high-speed designs). Note that
we considered the least favorable case, where the message
consists of a single block, to compute the throughput. If
we increase the size of the message, the throughput of our
coprocessor converges asymptotically to 160 Mbits/s. The
other hardware architectures of Skein reported in Table II make
a single call to Threefish-512 and do not perform the output
transform. Let us assume that all SHA-3 finalists provide the
levels of security expected by the NIST. Then, according to
Table II, BLAKE, Keccak, and Skein seem to be the best
candidates for compact implementations on FPGA. Beuchat et
al. [4] designed a low-area ALU for BLAKE on Xilinx
devices. However, the datapath depends on the level of security
one wishes to achieve. In order to overcome this drawback,
Yamazaki et al. [7] proposed a unified coprocessor for the
BLAKE family. Their ALU is built around a 64-bit datapath,
and can process a 512-bit block (BLAKE-512) or two 256-bit
blocks in parallel (BLAKE-256). From our point of view, the
main advantage of Skein over other SHA-3 finalists is that the
same coprocessor allows one to encrypt or hash a message. We
plan to improve our architecture in order to support Threefish
decryption, Skein-MAC, and tree hashing with Skein.
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Table II
COMPACT IMPLEMENTATIONS OF THE FIVE SHA-3 FINALISTS ON VIRTEX-5 AND VIRTEX-6 FPGAS.

Algorithm FPGA
Area 36k memory Frequency Throughput

[slices] blocks [MHz] [Mbits/s]
Aumasson et al. [6] BLAKE-256 xc5vlx110 390 – 91 412

Beuchat et al. [4]† BLAKE-256 xc6vlx75t-2 52 2 456 194
Aumasson et al. [6] BLAKE-512 xc5vlx110 939 – 59 468

Beuchat et al. [4]† BLAKE-512 xc6vlx75t-2 81 3 374 280
Kerckhof et al. [2] BLAKE-512 xc6vlx75t-1 192 – 240 183

Yamazaki et al. [7] BLAKE (unified coprocessor) xc5vlx50-2 138 3 342
2× 150 (BLAKE-256)
264 (BLAKE-512)

Jungk [8] Grøstl-256 xcv5 470 – 354 1132
Kerckhof et al. [2] Grøstl-512 xc6vlx75t-1 260 – 280 640

Jungk [8] JH-256 xcv5 205 – 341 27
Kerckhof et al. [2] JH-512 xc6vlx75t-1 240 – 288 214

Bertoni et al. [9] Keccak[r = 1024, c = 576] xc5vlx50-3 448 – 265 52
Kerckhof et al. [2] Keccak[r = 1024, c = 576] xc6vlx75t-1 144 – 250 68
San & At [10] Keccak[r = 1024, c = 576] xc5vlx50-2 151 3 520 501

This Work Skein-512-512 xc6vlx75t-1 132 2 276 80

Jungk [8]‡ Skein-512-256 xcv5 555 – 271 237

Kerckhof et al. [2]‡ Skein-512-512 xc6vlx75t-1 240 – 160 179

Latif et al. [11]‡ Skein-256-256 xc5vlx110-3 821 Not specified 119 1610
†Modified to implement the tweaked version submitted for the final round of the SHA-3 competition.

‡Single call to Threefish-512.


