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Abstract

Secure multiparty computation (MPC) is perhaps the most popular paradigm in the area of cryp-
tographic protocols. It allows several mutually untrustworthy parties to jointly compute a function of
their private inputs, without revealing to each other information about those inputs. In the case of
unconditional (information-theoretic) security, protocols are known which tolerate a dishonest minority
of players, who may coordinate their attack and deviate arbitrarily from the protocol specification.

It is typically assumed in these results that parties are connected pairwise by authenticated, private
channels, and that in addition they have access to a “broadcast” channel. Broadcast allows one party
to send a consistent message to all other parties, guaranteeing consistency even if the broadcaster is
corrupted. Because broadcast cannot be simulated on the point-to-point network when more than a
third of the parties are corrupt, it is impossible to construct general MPC protocols in this setting
without using a broadcast channel (or some equivalent addition to the model).

A great deal of research has focused on increasing the efficiency of MPC, primarily in terms of
round complexity and communication complexity. In this work we propose a refinement of the round
complexity which we term broadcast complexity. We view the broadcast channel as an expensive resource
and seek to minimize the number of rounds in which it is invoked.

1. We construct an MPC protocol which uses the broadcast channel only three times in a preprocessing
phase, after which it is never required again. Ours is the first unconditionally secure MPC protocol
for t < n/2 to achieve such a low number of broadcast rounds. In contrast, combining the best
previous techniques yields a protocol with twenty-four broadcast rounds.

2. In the negative direction, we show a lower bound of two broadcast rounds for the specific function-
ality of Weak Secret Sharing (a.k.a. Distributed Commitment), also a very natural functionality
and central building block of many MPC protocols.

The broadcast-efficient MPC protocol relies on new constructions of Pseudosignatures and Verifiable
Secret Sharing, both of which might be of independent interest.
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1 Introduction

A number of mutually distrustful parties wish to jointly compute a function (y1, . . . , yn) = f(x1, . . . , xn),
where player Pi holds the private input xi and receives output yi. Under what conditions can they do
so without revealing any information about their private inputs, other than what is implied by the
function’s output? Attempts to answer this question led to the development of an entire field of research
in cryptography known as secure multiparty computation (MPC).

In an early triumph of the field, MPC researchers proved the following beautiful result: Assuming
only the existence of pairwise private and authenticated channels, it is possible to construct uncondition-
ally, a.k.a information-theoretically secure MPC protocols. These protocols remain robust and private
even in the presence of a computationally unbounded adversary who actively corrupts up to t < n/3
participants, coordinating their attack and directing them to deviate arbitrarily from the protocol spec-
ification [BGW88, CCD88].

Our focus in this work is rather on unconditionally secure protocols with honest majority (t < n/2).
Here an addition to the model is necessary, as secure channels by themselves no longer suffice. In
fact when t ≥ n/3, the specific functionality of Byzantine agreement/broadcast [LSP82, PSL80] is
impossible to securely realize, even probabilistically. In some sense, however, the inability of players
to reach consensus is the only obstacle, as a second early triumph of the field reveals: Namely, if we
grant a “physical broadcast channel” (that is, a black-box which securely implements broadcast), then
unconditionally secure MPC becomes possible once again for t < n/2 [RB89, Bea91b, CDD+01]. (Even
with a broadcast channel, protocols with n/3 ≤ t < n/2 are subject to some (negligibly small) error
probability [DDWY93, CCD88] and cannot achieve so-called perfect security, which is possible when
t < n/3.1 By contrast, when t ≥ n/2, even computationally secure MPC is impossible without some
additional physical assumptions [Cle86].)

Other assumptions may replace the physical broadcast channel to allow secure computation with
t ≥ n/3, the most common being the existence of a PKI setup and secure signatures. With these in
hand, it becomes possible to simulate broadcast on point-to-point channels for any t < n by means of an
authenticated broadcast protocol. In a closely related vein, Pfitzmann and Waidner [PW96] introduced
pseudosignatures, an information-theoretic analogue of digital signatures which tolerates an unbounded,
active adversary. Given a pseudosignature setup, authenticated broadcast becomes possible for any
t < n, and hence unconditional MPC is possible for t < n/2 by simulating physical broadcast with
authenticated broadcast. However, the construction of pseudosignatures in [PW96] still relies on physical
broadcast in a preprocessing phase. A key contribution of the current work is a dramatically more
efficient pseudosignature construction in the case t < n/2 (the relevant case for unconditional MPC).

As with other distributed protocols, the efficiency of MPC is commonly measured in terms of round
complexity and communication complexity. Our focus in this work is on a refinement of round complexity,
namely broadcast complexity : the number of rounds in which the broadcast primitive is invoked.

High-level descriptions of MPC protocols tend to treat broadcast as a black-box. When t < n/3,
this may be viewed simply as a convenient abstraction, since broadcast in any case can be simulated
in a point-to-point network using Byzantine agreement. (Trouble comes, however, when analyzing
round complexity: as observed in [KK07, Koo07, KKK08], Byzantine agreement is round-expensive,
and the compilation from black-box broadcast to simulated broadcast blows up the number of rounds
substantially.)

When t < n/2, the black-box treatment of broadcast is (as described above) no longer a convenience
but a requirement. Nevertheless, we argue there are still good reasons to consider it more expensive
than “mere” secure channels. Indeed the latter can be realized via the physical exchange (using trusted
couriers) of large one-time pads between every pair of players, which may be done in an asynchronous
preprocessing phase and without any centrally trusted party. By contrast, we see no equally straight-
forward approach to physically implement broadcast without a trusted party, and when the participants
are geographically scattered. Hence it seems quite plausible to treat physical broadcast as an expen-
sive resource, and in particular to treat a protocol’s broadcast rounds as more expensive than ordinary
rounds. Additionally, the question of how many broadcast rounds are required for MPC is compelling
from a theoretical perspective.

1The result is mentioned also in [RB89, BGW88]; [CCD88] give an informal argument and [DDWY93] a formal proof.
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Our results. Thus motivated to better understand the broadcast requirements of secure computation
when t < n/2, in this work we present new upper and lower bounds on the broadcast complexity of
MPC and Verifiable Secret Sharing (VSS).

In the positive direction, we present an MPC protocol for t < n/2 which uses only a constant number
of broadcast rounds—namely, three. It is based on our construction of a constant-round, linear VSS which
uses 3 broadcasts in the sharing phase and none in reconstruction—what we call a (3, 0)-broadcast VSS.
In fact, we derive our MPC result by means of a broadcast-round-preserving reduction to any (∗, 0)-
broadcast linear VSS; hence a future construction of (in particular) a (2, 0)-broadcast linear VSS would
translate directly to an MPC with two broadcasts. Previous work implies at best the existence of a
protocol with 22 broadcast rounds (see next section), hence the improvement to 3 is substantial.

As an additional attractive feature of our construction, all broadcasts occur in a preprocessing phase
during which players need not know their inputs nor the function to be computed. (It shares this feature
with the pseudosignature approach [PW96, CR90], which inspires our solution.)

On the negative side, we address an open question of Katz and Koo [KK07], who ask whether there
exist any constant-round MPC protocols for t < n/2 using only a single broadcast round, that do not
rely on a PKI. We show that when the adversary is computationally unbounded, the Weak Secret Sharing
functionality in particular (and hence VSS, and MPC in general) requires at least two physical broadcast
rounds for t ≥ 2

5n; in fact this lower bound holds independently of the overall round complexity of the
WSS protocol!

Related work. The role of broadcast in multiparty protocols has been studied in a number of
previous works. Katz et al. [KKK08, KK07, Koo07], seeking to improve overall round complexity when
broadcast is simulated over point-to-point channels, construct constant-round protocols for VSS and
MPC whose descriptions use only a single broadcast round. However, for t < n/2 they assume a PKI
infrastructure (e.g. pseudosignatures) is already in place, whereas our (complementary) goal is precisely
to generate such a setup using as few physical broadcasts as possible.

Fitzi et al. [FGMR02, FGH+02], as well as Goldwasser and Lindell [GL05], consider broadcast and
MPC protocols for t < n which do not use physical broadcast at all (nor equivalent assumptions), but
instead weaken the guarantees provided by the protocol. In particular these protocols are not robust
and so may fail to deliver any output at all. On the other hand, the so-called detectable broadcast (and
detectable MPC ) protocols of [FGMR02, FGH+02] do achieve consistency among honest players: either
the broadcast (MPC) succeeds and all honest parties receive output, or it fails, in which case all honest
parties agree that it failed. (Such protocols are especially interesting with regard to the light they shed
on our lower bound—see second Remark in Appendix B.)

As we have seen, our MPC construction is based on pseudosignatures [PW96, CR90], about which
we defer further details to Section 2.

To our knowledge, the most efficient VSS protocol in terms of broadcast rounds for t < n/2 is the
(2, 2)-broadcast, (3, 2)-round protocol of Kumaresan et al. [KPC10], which is exponential-time and not
(apparently) linear. They also give a (3, 2)-broadcast, (4, 2)-round VSS which is polynomial-time. Hence
our (3, 0)-broadcast protocol improves overall broadcast complexity (although it is not as round-efficient
at (9, 1) overall rounds).

Turning now to survey the most broadcast-efficient MPC protocols in the literature, we first recall
the general shape of an MPC protocol in the “share-compute-reveal” paradigm. (1) In the share phase,
each Pi commits to his input using Verifiable Secret Sharing. (2) In the compute phase, the shared inputs
are used to evaluate an arithmetic circuit C gate-by-gate. Typically a linear VSS scheme is used, so that
each player may non-interactively compute addition and scalar-multiplication gates; on the other hand,
multiplication gates require interaction, and in general are quite costly—more on this in a moment.
(3) When the computation reaches the circuit’s output gate, the players collectively possess a verifiable
sharing of f(x1, . . . , xn); the reveal phase follows, in which they publicly reconstruct this value.

Again, the computation of multiplication gates is the most expensive part of an MPC protocol, and
multiplication subroutines for t < n/2 typically require the broadcast channel. Using such a protocol in
the compute phase incurs Ω(D) broadcast rounds, where D is the (multiplicative) depth of the circuit
to be evaluated.

To address this issue, Beaver [Bea91a] introduced a technique for evaluating multiplication gates
efficiently based on multiplication triples, vectors (a, b, c) ∈ F3 such that ab = c. Beaver showed that
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players who verifiably share a random multiplication triple (that is, with a and b uniformly random)
can subsequently compute one multiplication gate at the low cost of one VSS reconstruction phase. A
caveat is that to generate the triples requires the use of a pre-existing multiplication subprotocol; hence
the primary savings comes from generating all triples in parallel in preprocessing.

In terms of broadcast rounds, this will not improve on Ω(D) unless the VSS reconstruction phase
in question uses zero broadcasts. Descriptions of VSS protocols in the broadcast model often do make
use of broadcast rounds during reconstruction, but in all cases we are aware of these can be replaced
with point-to-point communications without affecting the correctness of reconstruction. This is the case,
in particular, in the well-known efficient protocols of Rabin and Ben-Or [RB89, Rab94] and Cramer et
al. [CDD+01]. (For the former, the variant presented in [Rab94] already eliminates broadcast from the
reconstruction description.) The most broadcast-efficient linear VSS we are aware of is that presented
in [Rab94], which is (7, 0)-broadcast—recall this means 7 broadcast rounds in the sharing phase, 0 in
reconstruction. Using this VSS to share inputs and generate multiplication triples (via the multiplication
technique of [CDD+01]), yields after obvious optimizations, the state of the art prior to this work: an
MPC protocol with 24 rounds of broadcast.2

As our focus in this work is on reducing the overall number of broadcast rounds, rather than broadcast
(or otherwise) communication complexity, we forgo explicit treatment of the latter. We do however
note that protocols described herein can be compiled via generic techniques into significantly more
communication-efficient versions; see work of Fitzi and Hirt [FH06], as well as recent work by Ben-
Sasson et al. [BFO12].

Finally, one drawback of our VSS and MPC protocols is that they are only proved secure for static
adversaries. It would be interesting to extend these results to obtain a low constant-broadcast, adaptively
secure MPC.

For the sake of readability, only a proof sketch of the lower bound appears in the main body; the full
proof can be found in the appendix.

2 Model, Definitions and Tools

We consider a complete, synchronous network of n players P1, . . . , Pn who are pairwise connected by
secure (private and authenticated) channels, and who additionally have access to a broadcast channel.
Some of these players are corrupted by a centralized adversary A with unbounded computing power. The
adversary is active, directing players under his control to deviate from the protocol in arbitrary ways.
As noted, we consider only static rather than adaptive adversary in this work, meaning that he chooses
which players to corrupt prior to the start of protocol execution. The computation evolves as a series of
rounds. In a given round, honest players’ messages depend only on information available to them from
prior rounds; A, however, is rushing, and receives all messages (and broadcasts) sent by honest players
before deciding on the messages (and broadcasts) of corrupted players. Sometimes we refer to A thus
defined as a t-adversary. We consider statistical security (since, as mentioned above, perfect security is
unachievable in this setting), and let κ = poly(n) denote the error parameter, κ ≥ 2n.

Information checking. An information checking scheme (IC) [RB89] is a triple of protocols
(ICSetup, ICValidate, ICReveal) which achieves a limited signature-like functionality for three players: a
dealer D, intermediary I, and receiver R. D holds as input a secret s ∈ F, which he passes to I in
ICSetup. ICValidate insures that even if D cheats, I knows a value which R will accept. In ICReveal, I
sends s to R, together with some authenticating data, on the basis of which R accepts or rejects s as
having originated from D. More formally, the scheme should satisfy the following guarantees:

Correctness: If D, I, and R are honest, then R will accept s in ICReveal.

Non-Forgery: If D and R are honest, then R will reject any incorrect value s∗ 6= s passed to him in
ICReveal, except with negligible probability.

Commitment: If I and R are honest, then at the end of ICValidate I knows a value s such that R will
accept s in ICReveal, except with negligible probability.

2In order to achieve the quoted number, Rabin and Ben-Or’s original information-checking protocol should also be replaced
with the linear IC protocol of [CDD+01] in order to avoid performing a new WSS (and associated broadcasts) for each gate
of the circuit.
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Privacy: If D and I are honest, then prior to ICReveal, a cheating R has no information on s.

We call an IC scheme linear if it meets the following additional condition.

Linearity: If D, I, and R have invoked ICSetup and ICValidate with respect to several secrets {si},
then I may (without further interaction) invoke ICReveal to authentically disclose any (public)
linear combination of the si.

Our weak secret sharing and verifiable secret sharing protocols make use of a linear IC subproto-
col based on that of [CDD+01], with some minor adjustments to increase broadcast efficiency. For
completeness, the protocol and proof of security appear in Appendix A.

Weak secret sharing. An (n, t)-weak secret sharing scheme (WSS) is a pair of protocols (WSS-Share,
WSS-Rec) for a set of players P = {P1, . . . , Pn}, one of whom, the dealer D, holds input s ∈ F. It must
satisfy the following guarantees in the presence of an unbounded adversary corrupting up to t of the
parties:

Weak Commitment: W.h.p., at the end of WSS-Share there exists a fixed value s∗ ∈ F∪ {⊥}, defined
by the joint view of the honest parties, such that all honest parties will output the same value, either
s∗ or ⊥, in WSS-Rec. If D is honest, then w.h.p. all honest parties will output s∗ = s.

Privacy: If D is honest, then prior to WSS-Rec A gains no information on s (i.e., his view is statistically
independent of s).

WSS is useful as an information-theoretic, distributed commitment for the dealer D. Thus we may
say that a dealer who completes WSS-Share has committed to his (effective) input s, and that upon
completing WSS-Rec he decommits (if a proper value is reconstructed). We call a commitment to
a value in F a proper commitment (regardless of whether it equals the dealer’s actual input), and a
commitment to ⊥ an improper (or garbage) commitment. We will also need a slightly relaxed version of
WSS called WSS-without-agreement (or very weak secret sharing [BPW91]), in which the Commitment
property above is replaced by

Weak Commitment Without Agreement: W.h.p., at the end of WSS-Share there exists a fixed
value s∗ ∈ F∪ {⊥}, defined by the joint view of the honest parties, such that each honest party will
output either s∗ or ⊥ in WSS-Rec (but some may output s∗ and others ⊥). If D is honest, then
w.h.p. all honest parties will output s∗ = s.

Furthermore, we will call a WSS(-without-agreement) linear if it satisfies the following in addition:

Linearity: If D has properly committed to several secrets {s(k)}, then he may (without further inter-
action) invoke WSS-Rec to decommit to any (public) linear combination of the s(k). If some of the
commitments are garbage, there still exists a fixed value s∗ ∈ F ∪ ⊥ which is reconstructed as the
“linear combination” (w.h.p.).

We can slightly strengthen this requirement in the case of the sum of two values, to say that if one is
properly committed and the other is garbage, their sum is garbage also (as opposed to any fixed value,
which Linearity gives). We will use this property later on in the construction of VSS protocols.

Proper + Improper: If D has committed separately to s ∈ F and to ⊥, then the reconstruction of
the sum s+⊥ (or ⊥+ s) will yield ⊥ (w.h.p.).

Our WSS(-without-agreement) protocol is presented in Section 3.2. It has a single sharing phase,
which uses two broadcasts, and two different reconstruction phases: one which uses a single broadcast
round and achieves ordinary WSS, and one which uses no broadcast but achieves only WSS-without-
agreement.

Verifiable secret sharing. An (n, t)-verifiable secret sharing scheme [CGMA85] is a pair of pro-
tocols (VSS-Share,VSS-Rec) for a set of players P = {P1, . . . , Pn}, one of whom, the dealer D, holds
input s ∈ F. In addition to the Privacy property above in the WSS case, VSS must satisfy the following,
stronger guarantee in the presence of an unbounded adversary corrupting up to t of the parties:

Commitment: W.h.p., at the end of VSS-Share there exists a fixed value s∗ ∈ F, defined by the joint
view of the honest parties, such that all honest parties will output s∗ in VSS-Rec. If D is honest,
then s∗ = s. On the other hand, if D is dishonest, then the value of s∗ is efficiently computable
given the sharing-phase views (messages sent and received) of all corrupt parties. (Combined with

5



Privacy, this latter property guarantees malicious dealers’ inputs are independent of honest dealers’
inputs when several copies of VSS are run in parallel.)

VSS strengthens WSS by guaranteeing that even when a cheating D does not cooperate in the
Reconstruction phase, the honest players can still recover the value he committed to (which we now
require to be a proper field element, not ⊥). This makes possible a stronger variant of linearity, in which
honest players can reconstruct linear combinations of secrets shared by different dealers. This strong
linearity property is crucial for MPC applications of VSS.

We say that the parties verifiably share a secret s if each (honest) party maintains some state such
that, when the honest parties invoke VSS-Rec on that joint state, they will reconstruct the value s
(w.h.p.). Clearly, if a dealer D has just completed VSS-Share with effective input s, then the parties
verifiably share s.

Linearity: If the parties verifiably share secrets {s(k)}, then they also (without further interaction)
verifiably share any (public) linear combination of the secrets.

Our VSS protocol, which uses 3 broadcast rounds in the sharing phase and none in reconstruction,
appears in Section 3.2.

Pseudosignatures. Pseudosignatures, introduced by Pfitzmann and Waidner [PW96] as an exten-
sion of and improvement to a scheme by Chaum and Roijakkers [CR90], are an information-theoretic
authentication technique for multiparty protocols. Suppose there is a setup phase during which the par-
ties enjoy access to a physical broadcast channel (but need not know their future inputs). The parties
may use such a setup phase to implement pseudosignatures; then, using the pseudosignatures for au-
thentication, they may simulate future invocations of broadcast by running an authenticated Byzantine
agreement protocol (e.g., [DS83]), thus avoiding any need for a physical broadcast channel during the
main phase of the protocol.

One does pay a price in removing cryptographic assumptions—in the case of pseudosignatures, the
price is limited transferability. The integrity of a pseudosignature “degrades” each time it is passed from
one party to another, so that it only remains valid for an a priori bounded number of transfers3.

At a high level, the pseudosignatures of [PW96] rely on a subprotocol implementing a secure, many-
to-one anonymous channel [Cha88] to any single player P ∗ such that the following conditions are satisfied
in the presence of a t-adversary A:

Anonymity: Even if P ∗ is corrupt, A learns no more than the multi-set of messages sent by the honest
players (and in particular gains no information on which messages came from which honest players).

Privacy: If P ∗ is honest, then A learns no information on messages sent by honest players.

(1− ε)-Reliability: Let {x1, . . . , xk} be the set of honest senders’ messages, which we assume for
simplicity are all unique.4 If P ∗ is honest, then with probability ≥ 1 − ε, his output will be an
ordered list Y , which includes each value xi.

Non-Malleability: If P ∗ is honest and honest messages {x1, . . . , xk} are drawn uniformly at random,
then the distribution of the output list Y is statistically indistinguishable from a copy of Y in which
honest messages are removed, k independently sampled values are added, and the list is re-sorted.
(Note this does not follow immediately from Privacy!)

Privacy and anonymity may hold either perfectly, or statistically (in which case a statistically negligible
amount of information may be leaked). We (and they) additionally require these security properties to
hold under parallel composition of the anonymous channel.

Assuming such a channel, the pseudosignature scheme is roughly as follows, for a one-time signature
(see [PW96] for formal details): Each player chooses a large number of random keys, which will function
as information-theoretic message authentication codes. The players invoke the anonymous channel
many times in parallel, each sending one key per invocation, privately and anonymously, to the signer
P ∗. Hence for each invocation of the channel, P ∗ receives an associated signature block containing n− 1
anonymous keys. In order to (pseudo)sign a message M , P ∗ simply signs it (i.e., computes the message
authentication code on the message) using every authentication key, in every block—these individual

3Another price is finite, fixed-in-advance player set!
4If not, have players append random tags to their messages, which P ∗ strips off upon receipt—this decreases reliability by

at most a negligible amount (the probability two honest tags collide).
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signatures are referred to as minisignatures, and the collection of all of them, arranged in blocks, is P ∗’s
pseudosignature on M .

Verification is more involved. The first verifier V1 (i.e., the player to whom P ∗ originally sends
M with pseudosignature) accepts the signature provided that, in every signature block, one of the
minisignatures matches the key V1 sent for that block. The second verifier V2 accepts the signature
provided that, in most of the signature blocks, one of the minisignatures matches the key V2 sent for
that block. The third verifier accepts the signature provided a fair number of minisignatures check out,
and so on, where each new verifier has a lower acceptance threshold than the previous one.

The rationale for the increasingly tolerant verifiers is the fear that a cheating signer P ∗, even though
he does not know whose keys are whose in any given block, could (for example) correctly sign M with
every key except for half the keys in a certain block. There is a good chance then that V1 will find a
correct minisignature in every block, but will pass it on to V2 who will not find a correct minisignature
in the half-signed block. If V1 accepts the signature while V2 rejects, P ∗ has successfully broken the
signature scheme.

The anonymous channel in [PW96] is implemented using algebraic techniques; it relies on a broad-
cast channel and is not robust to malicious behavior. Rather, the protocol uses fault detection and
localization: any failed invocation leads to public identification of either a single corrupt player, or a
pair of players at least one of whom is corrupt. Even with honest majority, there are Ω(n2) pairs of
players with one of them corrupt; therefore the adversary can force Ω(n2) rounds where broadcast is
used. In contrast, in Section 3.1 we show how to implement the anonymous channel in a robust fash-
ion, using only black-box access to a linear VSS scheme. On the other hand, we should note that the
[PW96] construction of pseudosignatures works for any t < n, while ours is limited to t < n/2 (which is
not any additional limitation when the purpose of the pseudosignatures is to simulate broadcast in an
honest-majority MPC protocol).

We are now ready to describe our construction. For the sake of simplicity, we adopt in all our protocols
the usual convention that whenever a party fails to send an expected message, or sends a syntactically
incorrect message, it is replaced with some default message. Thus we do not deal separately with the
case of missing or improper messages.

3 Honest-Majority MPC in Three Broadcast Rounds

As discussed in Section 1, in order to achieve MPC with no further broadcasts, it suffices to implement
a broadcast-efficient anonymous channel (secure under parallel composition). If we can do this using
only three broadcast rounds, then we are done.

Our main idea is to instantiate the anonymous channel using a special-purpose MPC protocol. Each
player’s input to the computation will be his randomly chosen authentication key, and the output—
revealed only to the designated signer!—will be a random permutation of the inputs. The players
collectively sample a permutation π at random by the method of “throwing darts” (e.g., [Hag91]). To
wit, each player chooses a random index in a long vector, and that player’s message appears at that
location. (Collisions, of course, may occur.) Provided the players can correctly simulate the dart-
throwing in such a way that each player’s choice of index remains private from the receiver, and so that
the values of the messages are revealed only to the receiver, the resulting permutation is clearly uniform
and so the channel will be anonymous.

3.1 A new pseudosignature construction

With ingredients in hand, we now present a protocol, AnonChan, which implements an anonymous
channel for t < n/2 using only black-box access to a linear VSS protocol. Although the VSS itself must
rely on physical broadcast when t ≥ n/3, our construction uses no additional broadcast rounds beyond
those required by the calls to VSS. In fact, if the VSS uses Bs broadcast rounds in the sharing phase
and Br broadcast rounds in the reconstruction phase, then our protocol uses only Bs + 3Br broadcast
rounds. When VSS is implemented with the (3, 0)-broadcast VSS protocol of Section 3.2, AnonChan
therefore uses a total of 3 broadcast rounds.

At a high level, the protocol follows the “throwing darts” paradigm described above. Each player Pi
commits, by invoking the VSS sharing phase in many parallel executions, to a sufficiently long and sparse
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vector v(i) in which the few nonzero entries are set equal to Pi’s input. If all players do so correctly,
then the sum of the vectors will have relatively few collisions among nonzero entries—in particular, it
will preserve at least one instance of each input value with high probability. Then the players use the
linearity of the VSS scheme to locally compute shares of the sum of the v(i)’s, and send the resulting
shares to the receiver P ∗ (privately). P ∗ then simulates the VSS reconstruction function internally to
recover the sum, which contains at least one copy of each player’s input (along with some additional
garbage, which we can tolerate).

Of course, dishonest players may not prepare their v(i)’s properly—if a cheater were to commit to
(say) a vector full of random entries, then including it in the sum would destroy all information about
honest players’ inputs. Therefore we require that, after committing to his vector, each player must prove
that it is indeed sparse, and that nonzero entries are equal. A simple cut-and-choose proof suffices: The

prover Pi prepares many additional vectors w
(i)
j , 1 ≤ j ≤ κ, in the same manner as the original v(i),

except that he rerandomizes the locations of nonzero entries. He also commits, for each w
(i)
j , to both the

list of locations of nonzero entries, and to a permutation on vector entries which sends nonzero locations

of v(i) to nonzero locations of w
(i)
j .

The parties then jointly generate a random challenge r: For each w
(i)
j , Pi is challenged to reveal

either (a) the permutation, in which case the parties reconstruct the difference of the permuted v(i)

and w
(i)
j , to verify it is the zero vector; or (b) the nonzero entries of w

(i)
j , in which case the parties

reconstruct the alleged zero entries to verify they are all zero, and reconstruct the differences of nonzero
entries, which should be zero to verify that all nonzero entries are equal. Vectors which fail this check
are excluded, and with overwhelming probability all accepted vectors are indeed sparse, with nonzero
entries equal.

The protocol parameters are the player set P = {P1, . . . , Pn}, a designated receiver P ∗ ∈ P, and
error parameter κ. All computations are done over a finite field F = GF (2κ), where we require |F| > n.
Protocol AnonChan is shown in Figure 1.

Theorem 1. Let VSS be a linear verifiable secret sharing protocol which is either perfectly or statistically
private and (1 − 2−Ω(κ))-reliable in the presence of an unbounded adversary corrupting up to t < n/2
parties. Then protocol AnonChan implements a statistically anonymous, statistically private, (1−2−Ω(κ))-
reliable many-to-one channel.

Proof. Anonymity. Without loss of generality consider an adversary corrupting P ∗. By the perfect
(statistical) privacy of VSS, A’s view of the VSS sharing phases at the end of step 1 reveals zero
(negligible) information on the honest players’ inputs. The random value r, reconstructed in step 2, is
independent of the honest players’ inputs.

With probability ≥ 1− 2−Ω(κ), no honest player is disqualified in any instance of VSS-Share. More-

over, each honest player Pi will (with high probability) have correctly shared sparse vectors v(i),w
(i)
j .

Consequently, in step 3 A can predict beforehand (with high probability of correctness), the outcome of
all reconstructions associated with honest players’ vectors (namely, they will be zero), and so A learns
negligible information on honest inputs. Also, w.h.p. all honest players will be included in PASS.

In step 4, P ∗ receives shares of v =
∑
Pi∈PASS v(i). Because A knows the value of v(j) for each

dishonest player Pj in PASS, he may subtract these from v and obtain vhonest =
∑
Pi honest v(i). Which

is to say, A learns no more information from v than he would from learning vhonest directly. But since
each honest Pi chose his 4κ indices of v(i) independently at random, the distribution of vhonest is a
function only of the set of honest players’ (unique) values. Hence A gains no information from seeing
vhonest other than what he could learn from seeing the set of honest players’ values.

Privacy. Assume P ∗ is honest. As above, by the privacy of VSS, A learns at most a negligible
amount about honest players’ inputs from the VSS sharing phases in step 1; no information from the
reconstruction of r in step 2, which is independent of the xi’s; and a negligible amount from the step
3 proof of sparseness, the outcome of which he can predict with all but negligible probability. Then
statistical privacy is ensured since all communication in step 4 is on the private channels to P ∗.

(1− 2−Ω(κ))-Reliability. We must show that the list output by an honest P ∗ contains a copy of each
honest input xi, with overwhelming probability. As noted in the proof of Anonymity, each honest player
is included in PASS with high probability.
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Protocol AnonChan(P, P ∗, κ)

Input: Each Pi ∈ P \ {P ∗} has as input a message xi ∈ F \ {0}. For simplicity assume all xi are unique (see
Footnote 2).
Output: P ∗ outputs a list Y = {y1, . . . , yn′} (n′ = O(n)) which (with overwhelming probability) contains xi for
every honest Pi (but may contain other values). Moreover, an adversary corrupting up to t < n/2 players gains
no information regarding which honest players sent which messages.

1. Set ` = 96κn. Pi constructs a random 4κ-sparse vector v(i) ∈ F` whose 4κ nonzero entries are xi.
At the same time, Pi constructs κ additional random, 4κ-sparse vectors w

(i)
1 , . . . ,w

(i)
κ ∈ F`. Each w

(i)
j , like

v(i), has xi at its nonzero entries.
For each w

(i)
j , Pi chooses a random permutation π

(i)
j : [`] → [`] such that v(i)[k] = w

(i)
j [π

(i)
j (k)] for all

k ∈ [`]. (I.e., π
(i)
j is random subject to the condition that it send nonzero indices of v(i) to nonzero indices

of w
(i)
j .)

Pi invokes VSS-Share O(κ2n) times in parallel to verifiably share each of the following values:

Each coordinate of v(i) and of the w
(i)
j ’s;

each of the permutations π
(i)
j ;

for each w
(i)
j , its list of nonzero indices;

a random element r(i) ∈ F.

Any player disqualified during some VSS-Share is disqualified here.

2. The players invoke VSS-Rec to reconstruct the sum r :=
∑
r(i), and interpret it as a random bit-string of

length κ.

3. For each bit bj ∈ r (in parallel):

bj = 0: 1. The players invoke n instances of VSS-Rec to reconstruct the permutations π
(i)
j , for all Pi. (If

the result is not a valid permutation, Pi is disqualified.)

2. For each w
(i)
j , the players invoke ` instances of VSS-Rec to reconstruct the vector u := π

(i)
j (v(i))−

w
(i)
j . If u 6= 0 ∈ F`, Pi is disqualified. (π

(i)
j acts on a vector by permuting its components.)

bj = 1: 1. The players invoke n instances of VSS-Rec to reconstruct the list of nonzero indices for w
(i)
j , for

all Pi. (If the result is not a valid list of 4κ distinct indices in [`], Pi is disqualified.)

2. For each w
(i)
j , invoke ` − 4κ instances of VSS-Rec to reconstruct the values at (alleged) zero-

indices of w
(i)
j . If any are actually nonzero, Pi is disqualified. Also invoke 4κ − 1 instances of

VSS-Rec to reconstruct consecutive differences of (alleged) nonzero entries of w
(i)
j . If any such

differences are nonzero, Pi is disqualified.

4. Let PASS denote the set of players who are not disqualified. Each player locally computes his shares of the
vector v :=

∑
Pi∈PASS v(i). He sends the shares, over private channel, to the receiver P ∗.

P ∗ uses the received shares to internally simulate VSS-Rec and recover the vector v. He outputs the list Y
of nonzero entries which appear ≥ 3κ times in v.

Figure 1: A protocol implementing secure anonymous channel using black-box VSS.

Call a vector improper if it is not 4κ-sparse, or if it has unequal nonzero entries. We claim that if a
dishonest Pi shares in step 1 an improper vector v(i), he will be disqualified with probability ≥ 1−2−Ω(κ).

Note Pi must commit to all w
(i)
j ’s in step 1, before A has any information on the value of the challenge

r, which will be uniformly distributed over GF (2κ).

For each j: If w
(i)
j is proper, then no permutation will map the entries of an improper v(i) onto

matching entries of w
(i)
j ; hence the vector u := π

(i)
j (v(i))−w

(i)
j will be nonzero and Pi will be disqualified

w.h.p. provided bj = 0. Alternatively, if w
(i)
j is improper, then either the alleged zero entries will actually

contain some nonzero value, or the alleged nonzero entries will contain unequal values (or both). In
either case, opening the alleged zero entries, and the differences of alleged nonzero entries, will reveal
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an error and Pi will be disqualified w.h.p. provided bj = 1.5

Since each bj is uniformly random, Pi will be disqualified with probability ≥ 1 − 2−Ω(κ), and with
probability ≥ 1 − t · 2−Ω(κ) = 1 − 2−Ω(κ), every dishonest Pi who commits to an improper v(i) will be
disqualified.

Condition on the event that v(i) is proper for all Pi ∈ PASS. W.h.p. P ∗ will correctly reconstruct the
sum v =

∑
Pi∈PASS v(i), and having done so he takes as output Y the list of values in v which appear

≥ 3κ times. Fix an honest Pi, and we must show that w.h.p. v contains xi at least 3κ times.
Now there are at most 4κ(n− 1) ≤ 4κn nonzero indices associated with all the other proper vectors.

Assume exactly 4κn such indices (for simplicity). The intersection of Pi’s choice of 4κ indices, and these
fixed indices, follows a hypergeometric distribution: There is an urn consisting of ` = 96κn balls, and
4κn of which are red (corresponding to the fixed indices). We will draw 4κ balls without replacement,
and we wish to bound the probability that the number of red balls drawn is ≥ κ.

Let X denote the number of red balls, then E[X] = 4κ ·4κn/` = κ/6, and we may invoke the (weaker)
tail bound on the hypergeometric distribution appearing in [Chv79] to conclude that, for any C ≥ 0:

Pr[X ≥ E[X] + C · 4κ] ≤ exp(−C2 · 4κ).

In particular, we may take (say) C = 1/6 to obtain

Pr[X ≥ 5

6
κ] ≤ exp(−1

9
κ) = 2−Ω(κ).

Given that X ≤ 5
6κ, then in particular X ≤ κ and at least 3κ indices at which Pi placed xi are untouched,

so P ∗ receives xi correctly.

Non-Malleability. By independence of inputs for the VSS, all the values which dishonest players
commit to in step 1 are independent of those which honest players commit to in step 1.

Consider the output list Y = {y1, . . . , yn′} of an honest receiver P ∗, and condition on the (high-
probability) events that all honest players are included in PASS and all cheaters who shared improper
vectors are excluded. The list Y consists of all nonzero entries of v which appear ≥ 3κ times. Write
v := vhonest + vdishonest, where

vhonest :=
∑

Pi honest

v(i), and vdishonest =
∑

Pi dishonest
Pi∈PASS

v(i)

The first observation we make is that vhonest consists of ≤ 4κn nonzero entries, each of which has
marginal distribution uniformly random in F \ {0} Likewise there are at most 4κt ≤ 4κn nonzero entries
of vdishonest (though they may not be random at all). It follows by union bound that the probability
of any intersection between the set of nonzero values in vhonest, and those in vdishonest, is negligible.
Therefore we condition on the event that no such intersection exists.

In the same vein, consider a pair of nonzero entries of v, say v[j],v[k], j 6= k, and suppose v[j] = v[k].
By definition of v, this means that

vhonest[j] + vdishonest[j] = vhonest[k] + vdishonest[k]

=⇒ vhonest[j]− vhonest[k] = vdishonest[k]− vdishonest[j].

Now if vhonest[j] 6= vhonest[k], then its value has marginal distribution uniform over F \ {0}. Since
there are ≤ 4κn nonzero entries in vhonest (resp., vdishonest), there are ≤ (4κn)2 pairs of nonzero
values from vhonest (resp., vdishonest), and by a union bound the probability that any nonzero difference
vhonest[j]−vhonest[k] equals vdishonest[j]−vdishonest[k], is negligible. Condition on the event that no such
equality holds.

It follows that v[j] = v[k] only holds when vhonest[j] = vhonest[k]. In this case we of course have
vdishonest[j] = vdishonest[k] as well. The following two claims will come in handy.

Claim 2. Let Shonest = {x1, . . . , xn−t} denote the set of honest players’ messages. With overwhelming
probability, no two distinct, nonempty subsets I, J ⊆ Shonest have the same sum.

5The reason Pi will only be disqualified “with high probability” is that, with negligible probability, the adversary may
succeed in causing incorrect values to be reconstructed for one or more of the VSS sharings.
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Proof. By canceling common terms, we may assume I and J are disjoint. In fact since we are working
in a field of characteristic 2, the condition

∑
i∈I xi =

∑
j∈J xj for disjoint I, J ⊆ [n− t] is equivalent to∑

i∈I∪J xi = 0, so it suffices to show that with high probability there is no subset of Shonest which sums
to zero. For any fixed non-empty subset, the probability that the subset sums to zero is 1/|F| = 2−κ

(here the probability is over the uniformly random choices of the xi in that subset). But the number of
such subsets is 2n−t ≤ 2n ≤ 2κ/2 (recall we assume κ ≥ 2n). Hence by a union bound the probability
that there exists any subset summing to zero is ≤ 2κ/2 · 2−κ = 2−κ/2 = 2−Ω(κ), which completes the
proof of the claim.

Claim 3. With overwhelming probability, any nonzero x ∈ F which appears ≥ 2κ times in vhonest is
actually some honest message, i.e., x ∈ Shonest.

Proof. Condition on the event that no two nonempty subsets of Shonest have the same sum, which
occurs w.h.p. by the previous claim. Then x /∈ Shonest will only appear ≥ 2κ times in vhonest if some
fixed subset of honest players have overlap of size ≥ 2κ on the indices they choose. But by the proof
of reliability, each individual honest player chooses ≥ 3κ entirely unique indices (w.h.p.), leaving ≤ κ
possible overlapping indices.

Now we return to consider a set of ≥ 3κ indices in v which are equal (and hence determine an
element of the output list Y ). By the argument above, we may condition on the event that in fact the
corresponding entries of vhonest are all equal. If the latter are equal to zero, then the resulting y ∈ Y
is independent of vhonest and, in particular, of all honest players’ messages. Alternatively, if the vhonest

entries are nonzero, then by Claim 3 they are equal to some honest message x ∈ Shonest. Since all
the corresponding entries of vdishonest must be equal as well, we need only bound the probability that
nonzero entries of vdishonest have overlap ≥ 3κ with some honest message. But the proof of reliability
guarantees that even an overlap of ≥ κ is of negligible probability.

Hence any occurrence of ≥ 3κ equal entries in v either corresponds to an honest message, or to an
output which is independent of all honest messages, which proves the Non-Malleability property.

3.2 A broadcast-efficient VSS protocol

In this section we present our new (3, 0)-broadcast VSS protocol for t < n/2. Its overall round complexity
is (9, 1). This is the first linear VSS protocol enjoying such a small number of broadcast rounds
without trusted setup. To our knowledge, the most broadcast-efficient unconditional VSS protocol in
the literature, due to Kumaresan et al. [KPC10], has broadcast complexity (2, 2), with (3, 2) rounds
overall. However, the authors do not claim it to be linear, and it has exponential communication
complexity. The same authors give a (3, 2)-broadcast, (4, 2)-round protocol which is polynomial-time
and linear (we believe—though the authors do not claim it here either), at the expense of an additional
round in the sharing phase.

Considering linear protocols which use zero broadcasts during reconstruction—which are more suit-
able for broadcast-efficient MPC (see next section)—the most broadcast-efficient we are aware of is the
(7, 0)-broadcast protocol described in [RB89, Rab94], as mentioned above.

Our VSS protocol is inspired by that protocol, but leverages a number of optimizations to reduce
the overall round and broadcast complexity from 7 to 3. Its sharing phase uses a WSS protocol, which
we now describe.

Weak secret sharing protocol. Our WSS(-without-agreement) protocol uses two broadcasts in
its sharing phase, and admits two different reconstruction phases: one which uses a single broadcast
round and achieves ordinary WSS, and one which uses no broadcast but achieves only WSS-without-
agreement. In turn, the protocol makes use of a linear IC subprotocol based on that in [CDD+01]
(Appendix A). The WSS protocol(s) is shown in Figure 2. Since its sharing and reconstruction phases
are invoked at different rounds of the VSS protocol’s sharing phase, we specify them as separate protocols
for convenience.

Theorem 4. WSS = (WSS-Share,WSS-Rec) is a linear weak secret sharing scheme secure against a
static, unbounded adversary corrupting t < n/2 players. Furthermore, WSS∗ = (WSS-Share,WSS-Rec-NoBC)
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Protocol WSS-Share(P, D, s)

1. D chooses a random polynomial f(x) of degree ≤ t such that f(0) = s, and sets si := f(i); this will be Pi’s
share. For each pair Pi, Pj ∈ P − {D}, run ICSetup(D,Pi, Pj , si).

2–5. 2 x BROADCAST in 4,5: For each Pi, Pj ∈ P − {D}, run ICValidate(D,Pi, Pj , si).

Protocol WSS-Rec(P, D, s)

1. For each pair Pi, Pj ∈ P − {D}, run ICReveal(Pi, Pj , si).

2. BROADCAST: D broadcasts the polynomial f(x) which he used to share the secret. Pi broadcasts the
list of pieces {(j, sj)} which he accepted in ICReveal in the previous step.
Let HAPPY denote the set of players who accept at least n− t pieces, and all of whose accepted pieces lie
on the polynomial f(x). If |HAPPY| ≥ n− t, all players take s = f(0) to be the secret, otherwise ⊥.

Protocol WSS-Rec-NoBC(P, D, s)

1. For each pair Pi, Pj ∈ P −{D}, run ICReveal(Pi, Pj , si). If Pi accepts at least n− t pieces, and all accepted
pieces lie on a polynomial f(x) of degree ≤ t, then Pi takes s = f(0) to be the secret, otherwise ⊥.

Figure 2: The WSS protocol, with its two different reconstruction phases.

is a linear WSS-without-agreement scheme, secure against a static, unbounded adversary who corrupts
t < n/2 players.

Proof. Commitment. First consider a cheatingD. At the end of WSS-Share, an honest Pi holds si which
all honest parties will accept (due to the Commitment property of the IC protocol). Now these pieces si
held by the honest parties define a polynomial f∗(x); if deg f∗(x) > t, then each honest party will accept
pieces not lying on the dealer’s broadcast polynomial f(x). Therefore we will have |HAPPY| < n − t,
and ⊥ will be reconstructed. Note that this situation is precisely a garbage commitment.

Otherwise deg f∗(x) ≤ t (and the commitment is proper). If the dealer’s broadcast polynomial
f(x) 6= f∗(x) then again each honest party will accept pieces not on f(x), and so ⊥ will be reconstructed.
If f∗(x) = f(x) then it may be the case that ⊥ is reconstructed (depending on the values honest parties
accept from dishonest parties), or that s∗ = f(0) = f∗(0) is reconstructed. Regardless, there is only one
non-⊥ value which may be reconstructed, and it is fixed by the joint view of the honest parties at the
end of WSS-Share.

Now if D is honest, then by the IC Non-Forgery property no cheating party can fool an honest party
into accepting a value other than si during ICReveal (except with negligible probability). It follows
that each honest player will accept ≥ n − t pieces, and all their accepted values will lie on the dealer’s
polynomial f(x). Thus |HAPPY| ≥ n− t and the parties output s = f(0).

Privacy. If D is honest, then by the IC Privacy property, the adversary has no information on any
si value held by an honest player Pi prior to ICReveal. Hence the adversary learns only the t points on
the polynomial f(x) corresponding to dishonest players’ shares, and in particular has no information on
f(0) = s prior to WSS-Rec.

Commitment Without Agreement. Define f∗(x) as above, by the shares of the honest parties. As
before if deg f∗(x) > t, all honest parties will accept a set of pieces which do not lie on any degree t
polynomial, and they will all output ⊥.

If deg f∗(x) ≤ t, then honest party Pi will output s∗ = f∗(0) only if all the pieces he accepts from
dishonest parties lie on f∗(x); otherwise the set of pieces he accepts will lie on no polynomial of degree
t, and he will output ⊥.

For an honest D, the argument is the same as in the with-agreement case: Due to IC Non-Forgery,
all honest parties will (w.h.p.) accept only values which lie on f(x), and so all will output the correct
value s = f(0).

Linearity. Suppose D has properly committed to values {s(k)}, using polynomials fk(x). Then for

each value s(k), player Pi holds a share s
(k)
i . To decommit to a linear combination of the s(k), in WSS-Rec

Pi reveals the linear combination of his s
(k)
i during ICReveal (in place of “si”), and D broadcasts the
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linear combination of these polynomials (in place of “f(x)”). Then the properties of commitment and
privacy remain in place, since taking a linear combination of polynomials of degree at most t results in
a new polynomial of degree at most t.

If some of the commitments were garbage, this means exactly that some of the polynomials (defined
by the shares of the honest players) were of degree > t. Nevertheless, taking a linear combination of
these polynomials results in a single, fixed polynomial whose free term is the only possible non-⊥ value
which honest parties will reconstruct (and then only if the new polynomial has degree ≤ t).
Proper + Improper. A proper commitment is associated with a polynomial of degree ≤ t, and an
improper commitment with one of degree > t. Thus the sum of the two has degree > t, corresponds to
another improper commitment, and will yield ⊥ (w.h.p.).

The broadcast-efficient VSS protocol. Here we present our new VSS protocol, which requires
three broadcast rounds, and uses the WSS protocol from the last section in its sharing phase. At a
high level, the protocol is inspired by that of Rabin and Ben-Or [RB89], and has a similar structure.
First D distributes shares of a t-degree polynomial f where s := f(0) and of additional random t-degree
polynomials gk. Each player Pi commits to all shares via WSS. Then the parties jointly carry out a
cut-and-choose process in which the players are challenged to reconstruct either gk or f + gk for each k,
which must be degree t. Players who complain of incompatible shares, or fail to participate, have their
shares broadcast (and hence fixed) by D.

As mentioned earlier, Rabin and Ben-Or’s VSS requires 7 broadcast rounds in the share phase. One
novelty which allows us to reduce broadcast round complexity to 3 is that we require the dealer as well
as the players to commit via WSS to the shares he distributed, which constrains the misbehavior of a
cheating dealer. After all commitments are in place, the players broadcast a round of cut-and-choose
challenges in step 7. In step 8, parties respond to the challenges by using WSS-without-agreement
to reconstruct the shares of the appropriate polynomials. In the final step 9, a broadcast is used to
confirm the results of the WSS-without-agreement; at the same time D has a chance (and is obligated)
to broadcast shares of players for whom he did not reconstruct the correct share in step 8.

An additional trick which saves us a broadcast round can be seen in step 6, which is inserted between
the last two rounds of the WSS share phase. In this step, the parties perform a pre-broadcast by sending
each other player their intended WSS final-round broadcast on point-to-point channels. In step 7, they
officially complete WSS by echoing the pre-broadcast. This forces a cheating player to “semi-commit”
in step 6 to one of at most n− t possible final-round broadcasts for WSS, since a majority (including at
least one honest player) must confirm his pre-broadcast. Luckily, semi-commitment restricts cheaters’
options enough that players are able to broadcast the cut-and-choose challenges in the same round—step
7—rather than waiting for full commitment and then using another broadcast. (Note that in the case
of a non-rushing adversary, step 6 is unnecessary.)

Protocol VSS-Share(P, D, s)
1. D chooses a random polynomial f(x) of degree ≤ t such that f(0) = s, and sets si := f(i). Also for

1 ≤ k ≤ κn, D chooses random polynomials gk(x) of degree ≤ t, and sets tki := gk(i). D sends (si, {tki}k)
to Pi.

2–5. BROADCAST: Pi and D will now each act as WSS dealers to commit to Pi’s share si. We reserve si
to denote the value D commits to, and let s∗i denote that which Pi commits to (these may be different if
D and/or Pi is dishonest). D and Pi act as dealer in steps 1–4 of WSS-Share(D, si), WSS-Share(Pi, s

∗
i ),

WSS-Share(D, tki), and WSS-Share(Pi, t
∗
ki) (1 ≤ k ≤ κn).

6. The parties have just completed WSS-Share step 4/ICValidate step 3. In the next step (corresponding
to WSS-Share step 5/ICValidate step 4) the WSS/IC dealer will resolve conflicts. Instead of doing so
immediately, let BCi denote the broadcast which Pi would make. Pi first sends-to-all BCi.
Also, if D conflicted with any Pi in the previous step (namely in ICValidate step 3) then in the following
round D will broadcast all the values (si, {tki}k). For now, D sends-to-all these values, which we call public
pieces.

7. BROADCAST: Now Pi broadcasts BCi, which completes WSS-Share step 5/ICValidate step 4, and D
broadcasts the values (si, {tki}k) which he sent-to-all in the previous step. Of course each player broadcasts
his view of the previous step; if it is not the case that at least t+ 1 players agree that Pi’s broadcast this
round matches what he told them in the previous round, then Pi is disqualified.
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Additionally, each Pi 6= D broadcasts a random challenge Ci ∈ {0, 1}κ for D and for the other Pj ’s. The
challenge indicates, for each index k ∈ [κn] assigned to Pi (κ such in total), whether:

(1) D and Pj should reveal f(x) + gk(x), in which case set vkj = sj + tkj and v∗kj = s∗j + t∗kj ; or

(2) D and Pj should reveal gk(x), in which case set vkj = tkj and v∗kj = t∗kj .

8. ∀k ∈ [κn], j ∈ [n], Pi participates in WSS-Rec-NoBC(D, vkj) and WSS-Rec-NoBC(Pj , v
∗
kj). Pi’s outputs

from these protocols are v
(i)
kj and v

∗(i)
kj , respectively.

9. BROADCAST: Each Pi broadcasts his view of the previous round—namely, the reconstructed shares
v
(i)
kj and v

∗(i)
kj , for all k, j.

If a majority of players agrees on a non-⊥ reconstructed value for vkj (resp. v∗kj), then such value is the
broadcast (BC) consensus for the given commitment, and the players who agree participate in the consensus.
If no BC consensus exists, or if the player who shared the value does not participate, then the sharing
player is disqualified. Consequently, if D is not so disqualified, then there exists a BC consensus (which D
endorses) for all vkj . Assuming this is the case, then D is nevertheless disqualified if for any k, the set of
shares {vkj}j , together with appropriate public pieces, does not lie on a polynomial of degree ≤ t.
In addition to broadcasting his view as described above, D also accuses player Pj , by publicly broadcasting
the shares (sj , {tkj}k), if either of the following occurred:

(1) D output ⊥ in any WSS-Rec-NoBC instance for which Pj was dealer; or

(2) D reconstructed an incorrect value for Pj ’s share of any challenge polynomial (v
∗(D)
kj 6= vkj).

If any such public pieces fail to lie on the appropriate degree-t polynomial, or if D neglects to accuse Pj
when there exists a BC consensus that v∗kj 6= vkj , then D is disqualified.
Let HAPPY denote the set of non-disqualified players who were not accused by D. If |HAPPY| < n− t,
then D is disqualified.

Protocol VSS-Rec(P, s)
1. Each player Pi ∈ HAPPY invokes WSS-Rec-NoBC(Pi, si).

Each player Pi ∈ P creates a list of shares consisting of those sj which he accepts from any WSS-Rec-NoBC(Pj , sj)
(including his own), together with all public pieces sj . He takes any t+ 1 shares from the list, interpolates
a polynomial f(x), and outputs s := f(0) as the secret.

Theorem 5. VSS = (VSS-Share,VSS-Rec) is a linear verifiable secret sharing scheme secure against an
unbounded adversary who corrupts t < n/2 players.

The proof of Theorem 5 is broken up into three lemmas, as follows.

Lemma 6 (Privacy). If D is honest, then w.h.p. the adversary A gains no information on s prior to
VSS-Rec.

Proof. The secret-sharing properties of degree-t polynomials assure that the joint distribution of all
shares handed by D to the corrupted parties in step 1, is uniformly random, in particular independent
of s.

By the privacy property of protocol WSS employed in steps 2–7, the individual shares (si, {tki}k) of
any honest party remain independent of the adversary’s view. If in step 7 D broadcasts (si, {tki}k) for
some Pi who conflicted with D in an instance of ICValidate, then that Pi must have been corrupt and
hence A already knew these values (as well as the fact that D would broadcast them).

In step 7, A learns the honest parties’ random challenges, which are independent of s and its shares,
and thus yield no additional information.

The values reconstructed in step 8 are, for each challenge, either f(x) + gk(x) or gk(x). The gk(x)’s
themselves were chosen uniformly at random, and until step 8 A knew nothing about them except for
the shares held by corrupt parties, by WSS Privacy. Hence, conditioned on A’s view up to that point,
the revealed polynomial is uniformly random subject to consistency with the shares held by corrupted
parties. Since D is honest he will answer all challenges correctly, and so A knows in advance that all
honest parties will “accept” D’s responses.

In step 9, A knows in advance what each honest party reconstructed from each WSS, so those
broadcasts reveal nothing. Additionally, if D accuses Pj , then D output either ⊥ or an incorrect value
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in some instance WSS-Rec-NoBC(Pj , ∗). This implies w.h.p. that Pj was dishonest (WSS Commitment
Without Agreement), in which case A learns nothing when D broadcasts the shares (sj , {tkj}k).6

Lemma 7 (Commitment). With high probability, at the end of VSS-Share there exists a fixed s∗ ∈ F
such that all honest players output s∗ during VSS-Rec. If D is honest, then s∗ = s.

Proof. Consider a cheating D. As in the protocol description, we let (si, tki) denote the values which D
commits to in steps 2–7, and (s∗i , t

∗
ki) the values which Pi commits to. For dishonest players, these may

of course be improper commitments. Nevertheless:

Claim 8. If in step 9 there exists a BC consensus that Pi (or D) reconstructed z 6= ⊥ in step 8 (not a
sum of two shared values), then w.h.p. Pi (D) properly committed to z in steps 2–7.

Proof. Since BC consensus requires a majority, at least one honest player must be part of the BC
consensus. By the Commitment Without Agreement property of WSS, if any honest player reconstructs
a non-⊥ value z, this value must have been properly committed to by the WSS dealer (w.h.p.).

Claim 9. If in step 9 there exists a BC consensus that Pi (or D) reconstructed a sum of two values,
z = z1 + z2 6= ⊥ in step 8, then w.h.p. either (1) z1, z2 were each properly committed to in steps 2–7;
or (2) z1, z2 were both improperly committed to in steps 2–7 via polynomials h1(x), h2(x) of degree > t,
where h1 + h2 is of degree ≤ t. In particular, Pi (D) was committed at the end of step 7 to a fixed,
unique value which honest players would reconstruct as the “sum” z1 + z2.

Proof. Again at least one honest player must have joined the consensus. Then the claim follows directly
from the Proper + Improper property of WSS.

Recall that a player is disqualified if any value which he ostensibly committed to, lacks a BC consensus
in step 9. In light of this, we will say that player P “decommitted” to value v, provided that a BC
consensus agrees (in step 9) that P reconstructed v in step 8. In the case that there is no BC consensus
(or the consensus is ⊥), we say P “failed to decommit” and according to the protocol, P is disqualified.

Claim 10. (1) If any of the shares s∗i committed to by a party Pi is improper, i.e. s∗i = ⊥, then w.h.p.
Pi will be disqualified.

(2) If any of the shares si committed to by D is improper, i.e. si = ⊥, then w.h.p. D will be disqualified.

Proof. (1) Technically, Pi is not committed to s∗i until the end of step 7, since that is when the last step
of the WSS protocol takes place. Nevertheless, at the end of step 6, a Pi who will not be disqualified is
committed to a set of at most n − t possible polynomials which must be his final commitment. Why?
Because Pi is required in step 6 to send-to-all his upcoming broadcast (not including challenges), which
fixes his commitment. According to the protocol, he will be disqualified in step 7 unless at least t + 1
players agree that he has faithfully re-broadcast the message he sent them in step 6; therefore at least
one honest party must have received in step 6 the broadcast which Pi makes in step 7.

Since honest parties also broadcast their challenges in step 7, a rushing adversary can make corrupt
Pi’s commitment depend on these challenges, from among the n − t possibilities fixed in step 6. We
must argue that this is not enough freedom for the adversary to dishonestly circumvent the challenges.
Consider a single possible broadcast, of the potentially n− t which Pi can make in step 7 without being
immediately disqualified, and suppose this broadcast represents an improper commitment to s∗i = ⊥
(and various t∗ki, each of which may or may not be improper). If some associated t∗ki 6= ⊥ is a proper
commitment, then the Proper + Improper property of WSS implies that w.h.p. Pi will fail to decommit
if he must reconstruct s∗i + t∗ki. On the other hand, if Pi made a garbage commitment t∗ki = ⊥, then he
will fail to decommit if challenged to reconstruct t∗ki. It follows that Pi can successfully decommit to at
most one of s∗i + t∗ki or t∗ki.

But each honest challenge consists of κ independent requests to reveal either s∗i + t∗ki or t∗ki (for
varying t∗ki). Thus for a fixed honest challenge Cj , Pi will fail to correctly decommit with probability

6As this discussion suggests, it may happen that D broadcasts an honest party’s shares in step 9; this can only happen if
A succeeds in an IC forgery attempt (hence with negligible probability). As a consequence, our protocol achieves statistical
but not perfect privacy. On the other hand, privacy is perfect conditioned on the event that A is unsuccessful in all forgery
attempts, as a failed forgery by itself reveals nothing about s.
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≥ 1−2−κ. Thus the probability that Cj does not detect s∗i = ⊥ is ≤ 2−κ. Now since Pi can choose from
n− t possible broadcasts in step 7, the probability that there exists at least one improper commitment
which Cj fails to detect, is ≤ (n−t)·2−κ = negl. Therefore w.h.p if Pi makes any improper commitment
(from among the up to n− t potentially available to him in step 7), he will be disqualified w.h.p.
(2) The same argument works if we just replace Pi with D, s∗i with si, and t∗ki with tki.

Claim 11. If any of the shares tki committed to by D is improper, i.e. tki = ⊥, then w.h.p. D will be
disqualified.

Proof. By the preceding claim, a non-disqualified D must have properly committed to all si (w.h.p.).
Condition on an execution where this holds, and suppose D made a garbage commitment to tki = ⊥. If
D must reconstruct vki = si + tki in step 8, then by the Proper + Improper property of WSS, he will
w.h.p. fail to decommit, and be disqualified. Alternatively, if D must reconstruct vki = tki in step 8, he
will fail w.h.p. since tki is itself improperly committed, and be disqualified. He’s required to do one of
these by the relevant challenge broadcast in step 7.

Claim 12. Assume D is not disqualified. If in steps 2–7, Pi committed to s∗i 6= si (i.e., a share different
from the one committed to by D), then w.h.p. either Pi will be disqualified, or Pi will be accused by D
in step 9.

Proof. Assume Pi is not disqualified—then there exists a BC consensus in step 9 for the value v∗ki. Since
D is not disqualified, there exists also a BC consensus for vki (which D participates in). Each consensus
is (w.h.p.) correct in the sense that Pi and D were committed already in steps 2–7 to reconstruct these
values (Claims 8 and 9).

If D does not participate in the BC consensus for v∗ki, then he must accuse Pi. Then Pi will be
unhappy, and we are done. Otherwise D does participate in the BC consensus for v∗ki. Then since
s∗i 6= si, we have that for all k corresponding to some fixed honest challenge, either

si + tki 6= s∗i + t∗ki or tki 6= t∗ki. (1)

Now as in the previous claims, if D and/or Pi are dishonest, they are only partially committed to their
shares at the time they see the honest challenges: At the end of step 6, there exist ≤ n − t possible
broadcasts which each one can make in step 7, finally committing them to a fixed set (si, {tki}k) or
(s∗i , {t∗ki}k). Nevertheless, for any fixed pair of possible broadcasts D and Pi could make in step 7 (and
not be disqualified), the probability that a given honest challenge will force D and Pi to reconstruct some
unequal values vki 6= v∗ki is ≥ 1− 2−κ. There are (at most) (n− t)2 possible pairs of step 7 broadcasts,
hence with probability ≥ 1− (n− t)22−κ = 1−negl, D and Pi will be committed to reconstruct unequal
values regardless of which broadcasts they choose in step 7.

Since BC consensus exists for each of these unequal values (otherwise one or both of D,Pi are
disqualified), D will be disqualified unless he accuses Pi in step 9.

In light of Claims 10 and 11, a cheating D who is not disqualified must have (w.h.p.) committed
to genuine field elements (si, {tki}k) for all k, i. Given that this is the case, and with slight abuse
of notation, let f(x) denote the polynomial interpolating all si, and for each k let gk(x) be the one
interpolating all tki.

Claim 13. If deg f(x) > t, then w.h.p. D is disqualified.

Proof. Suppose that deg f(x) > t. For each fixed k, we have a guarantee that either

deg(f(x) + gk(x)) > t or deg gk(x) > t. (2)

D is partially committed to the set (si, {tki}k) at the end of step 6, in that there are at most n − t
possible broadcasts he can successfully make in step 7 to conclude the WSS. In step 8, based on the step
7 challenges, he must reconstruct either the values vki = si + tki, i.e. the polynomial f(x) + gk(x), or
the values vki = tki, i.e. the polynomial gk(x).

Again, for any single, fixed broadcast D could make, and given honest challenge, the probability that
he can successfully decommit in step 8 (leading to a BC consensus in step 9 involving only polynomials of
degree ≤ t) is negligible; hence even allowing him to choose from among the n− t, his success probability
remains negligible, and w.h.p. he will be disqualified.
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Claim 14. No honest player Pi is disqualified. (Hence at the end of VSS-Share, each honest player is
either happy, or has been accused by D and his shares made public.)

Proof. Honest Pi will not be disqualified for misbehaving during any WSS subprotocol. In step 6, Pi
will faithfully send his pre-broadcast to all other honest players, hence at least t+ 1 players will confirm
it in step 7, and he will not be disqualified there. In step 8, the properties of WSS-Rec-NoBC ensure
that for an honest dealer all honest players will correctly reconstruct v∗ki, thus these values will have BC
consensus in step 9 (in which Pi participates), and he will not be disqualified there.

As for honest D, the same holds. Additionally, since he will have shared si and {tki}k using poly-
nomials of correct degree, and announce correct public pieces in step 7, then all values vki which he
reconstructs in WSS-Rec-NoBC in step 8 will lie on polynomials of appropriate degree.

Recall that in VSS-Rec, each happy party whose share si is not yet public is supposed to invoke
WSS-Rec-NoBC(Pi, si) to reveal it. By Claim 12, we see that all parties in HAPPY can reveal only the
share s∗i = si (or possibly no share at all, if dishonest). In short, all public pieces and all committed
values of happy parties are equal to si and thus lie on f(x), which is of degree ≤ t (Claim 13). Since only
such shares are used during VSS-Rec to construct f(x)—and since at least all ≥ t+ 1 shares associated
with honest parties will be recovered by every honest party—each honest player will reconstruct f(x) and
output s = f(0), a value which is fixed by the joint view of the honest parties at the end of VSS-Share.

It is easy to see that if in fact D is honest, then the polynomial f(x) will satisfy f(0) = s, and all
honest parties will reconstruct the correct value.

Finally, as shown above, if D is dishonest and not disqualified, then w.h.p. the secret s∗ which he
commits to is f(0), where f interpolates all values si which D committed to via WSS. In turn, the
values si are computable from D’s view of the shares D distributed in the WSS sharing phase, which
are themselves computable from D’s messages in the underlying IC protocols. Hence the criterion for
input independence holds as well.

Lemma 15 (Linearity). If the parties verifiably share secrets {s(k)}, then they also (without further
interaction) verifiably share any (public) linear combination of the s(k).

Proof. Consider the situation when parties verifiably share a secret s according to the protocol, for a
dealer D who was not disqualified. By Claim 10 of the Commitment proof, we know that w.h.p. D’s
WSS-commitment to si is proper for all i, and Claim 12 ensures that each happy player has properly
WSS-committed to the same value. Since happy Pi have made proper WSS-commitments, the linearity
of WSS-commitment implies that such Pi can reveal (and are committed to) any linear combination
thereof.

Now consider secrets s(k) which are verifiably shared with shares s
(k)
i , interpolating polynomials

fk(x) all of degree ≤ t. (We ignore the “shares” of players who are disqualified in some execution of
VSS-Share—such players must be corrupt and without loss of generality other players simply ignore their

messages and shares during VSS-Rec.) Then any t + 1 of the summed shares
∑
k s

(k)
i interpolate the

polynomial f(x) =
∑
k fk(x), which is of degree ≤ t with free term

∑
k s

(k).

For any given non-disqualified Pi each share s
(k)
i associated with that player is (w.h.p.) either (1)

properly WSS-shared among all parties; or (2) publicly known. If all the s
(k)
i for Pi are publicly known,

then other players simply use the public sum
∑
k s

(k)
i as Pi’s share during VSS-Rec. Otherwise, by the

linearity property of WSS Pi can reveal any sum of s
(k)
i ’s. In particular, he can reveal exactly the sum

of those s
(k)
i ’s which are not already public, and this is what he does when revealing his “share” in

VSS-Rec. This is of course the functional equivalent of revealing the sum of all the s
(k)
i ’s since the other

players need only add the public values to the reconstructed value to obtain the “true” share
∑
k s

(k)
i of∑

k s
(k). (And revealing the sum of all shares reveals exactly the same information as revealing the sum

of the non-public shares.)

3.3 Putting it all together

Given the (3, 0)-broadcast VSS protocol from last section, in turn used by the anonymous channel
protocol for the pseudosignature setup, we now have all components lined up for our promised result.

17



Theorem 16. Given any efficiently computable functionality (y1, . . . , yn) = f(x1, . . . , xn), there ex-
ists an n-party protocol Πf which computes f in the secure-channels-with-broadcast model. Πf is
information-theoretically secure against an active, rushing, static t-adversary A for any t < n/2. More-
over, Πf requires only three rounds of physical broadcast, and these may occur in a constant-round
preprocessing phase during which the parties need not know their inputs nor the specific functionality f
to be evaluated.

Proof sketch. In Πf , the parties start by invoking the constant-round protocol AnonChan of Section 3.2
with each Pi, 1 ≤ i ≤ n, acting as receiver for many sessions in parallel, in order to generate a pseudosig-
nature setup for future broadcasts, as in [PW96]. For the VSS subroutine, they use the constant-round
VSS protocol of Section 3.1, resulting in a total of 3 broadcasts during the (parallel) sharing phases.

The parties now leverage the information-theoretic PKI to run a constant-round protocol generating
sufficiently-many random multiplication triples, for example the 29-round authenticated protocol of
Koo [Koo07, Section 4.3.5], which requires only one invocation of authenticated broadcast (simulated
over point-to-point channel).78 This concludes the preprocessing phase.

To compute the circuit, parties first share their inputs using VSS, e.g., the protocol of Section 3.2,
replacing calls to physical broadcast with point-to-point authenticated broadcast. (Note: If the parties
already know their inputs in the preprocessing phase, they can share them there during AnonChan and
skip this step.)

Then following [Bea91a], the parties can use the multiplication triples to evaluate any arithmetic
circuit without further use of broadcast channel, at the cost of one multiplication triple used per multi-
plication gate and Ω(D) rounds, where D is the multiplicative depth of the circuit.

It is worth mentioning that the above-described MPC protocol will rely on parallel and sequential
composition of authenticated broadcast protocols, which is generally a subtle issue requiring the existence
of unique session IDs; see Lindell et al. [LLR06]. We stress that the complications described in that work
do not apply to a stand-alone MPC as in the previous theorem, because all instances of authenticated
broadcast can be fully specified and coordinated (and hence assigned unique session IDs) as part of the
larger protocol.

4 Weak Secret Sharing Requires Two Broadcast Rounds

In this section we prove that one broadcast round is not sufficient to implement a weak secret sharing
functionality whenever t ≥ 2

5n. Since the WSS sharing phase is itself a specific functionality which could
be implemented using a generic MPC scheme, it follows that MPC itself requires two broadcast rounds
in general for t ≥ 2

5n.
As an initial observation, we may reduce the general case with t ≥ 2

5n to the specific case n = 5,
t = 2 using a standard player partitioning argument.

Theorem 17. Let Π = (WSS-Share,WSS-Rec) be a perfectly private WSS protocol for n = 5 players,
which tolerates a static, computationally unbounded, non-rushing adversary who corrupts at most t = 2
parties. If Π uses at most a single physical broadcast during WSS-Share and zero broadcasts in WSS-Rec,
then Π will fail to satisfy the Correctness property with probability ≥ 1/20.

Proof sketch. See Appendix B for complete details, including additional remarks.
We consider the player set P = {D,P1, P2, P3, P4}, where the dealer D holds input s ∈ {0, 1}.
Now let Π be a WSS protocol as in the statement of the theorem; we must show Commitment

is violated with constant probability. For each execution, we divide the rounds of Π’s sharing phase
WSS-Share into three segments: all pre-broadcast rounds; the broadcast round itself (which may also
include point-to-point communication); and all post-broadcast rounds.

7The protocol to generate multiplication triples does not require one-way functions in the presence of an alternative
signature setup; only the (expected) constant-round MPC protocol of Theorem 4.3.9 does.

8Koo’s protocol relies on a VSS scheme with additional properties that we do not claim ours has. Rather, once pseudosig-
nature setup has occurred (using our VSS scheme), such an enhanced VSS can then be implemented without any additional
physical broadcast, by replacing such a broadcast with authenticated broadcast.
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Figure 3: Pre-broadcast segment for Strategies A, B, and C.

At the beginning of the protocol, the adversary randomly selects one of three strategies, call them
A, B, and C, which entail the following corruptions:

Strategy A: corrupt D, P1 (probability 1/4);

Strategy B : corrupt D, P2 (probability 1/4);

Strategy C : corrupt P3, P4 (probability 1/2).

Pre-broadcast. In the pre-broadcast segment of the protocol, A internally simulates additional
players, and has the cheating players act in such a manner, so as to simulate a distributed computation
running on one of the isomorphic networks shown in Figure 3(a)–(c), depending on strategy. Here (copies
of) corrupt nodes are bold, and dashed edges and nodes are internally simulated by A.

When A controls both D and D′ (Strategies A, B), they are given random but opposite inputs
s, s′ ∈ {0, 1}. Otherwise A controls only D′ (Strategy C). In the latter case, A makes a random guess
about honest D’s actual input, and assigns the opposite s′ to D′.

The 10 individual (simulated) nodes in each network behave honestly according to their view, and
so the joint distribution of their 10 views remains identical whether in (a), (b), or (c).

Broadcast round. In the broadcast round, A always has corrupt nodes broadcast in such a way
that D ends up in conflict with P3 and P4 (if anyone). We have chosen the labels so that A always gives
the honest broadcast for the unprimed copy of a corrupt node. So we have:

Strategy A: A commits to D, disavows D′, broadcasts honestly with P1;

Strategy B : A commits to D, disavows D′, broadcasts with P2;

Strategy C : A commits to P3, P4, disavows P ′3, P
′
4.

Of course, A will also send any point-to-point messages as called for by the protocol.

Post-broadcast. Now that there are public conflicts between D and P3, and between D and P4 (po-
tentially), the adversary henceforth blocks/disregards all messages between those pairs. Figure 4(a)–(c)
illustrate the simulated network which the adversary creates in the post-broadcast segment, depending
on strategy (and omitting the blocked channels). The dots at left and right indicate that the connection
pattern extends indefinitely in either direction.

In contrast with the situation pre-broadcast, where it was enough to assign random coins (and dealer
input) to each node in the simulated network and then let the network evolve “honestly,” A must now
assign each node a simulated view of the protocol execution all the way up to the broadcast round
(before, again, letting the newly sampled network evolve honestly). For details, see full proof.

Reconstruction. In reconstruction, A continues to simulate the post-broadcast network of Figure 4.
Now Correctness requires that copies of P1 and P2 must both output their dealer’s input with

high probability (otherwise Correctness is violated in Strategy C). It follows that with similarly high
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Figure 4: Post-broadcast segment for Strategies A, B, and C.
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probability the two copies of P1 and P2 which P3 and P4 are connected to disagree (since they have
different dealers). But P3 and P4, even jointly, cannot distinguish which of P1, P2 is dishonest. Therefore
with constant probability they will “side” with the dishonest one and output a different value than the
honest player, which itself violates Correctness.
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A Information Checking Protocol

Here we give the information checking subprotocol used in our WSS and VSS constructions. It is based
on that in [CDD+01] with some minor adjustments to increase broadcast efficiency. The three protocols
ICSetup, ICValidate, and ICReveal are given in Figure A.

Definition A.1. Let s, y, z, α ∈ F. We say that the triple (s, y, z) is 1α-consistent provided that the
three points (0, s), (1, y), and (α, z) are colinear over F.9 One easily verifies that if (s, y, z) and (s′, y′, z′)
are 1α-consistent, then linear combinations of these two vectors are as well.

Remark. Since we ultimately want to run many invocations of the IC protocol in parallel, some of the
protocol steps allow events in parallel instances to affect the current instance. Such instructions are set
off in square brackets (and can be ignored when considering the scheme as a stand-alone protocol).

Theorem 18. IC = (ICSetup, ICValidate, ICReveal) is an IC scheme which remains secure when polyno-
mially many instances of the ICSetup, and then ICValidate, phases are run in parallel. Additionally, it
is linear with respect to such invocations.

The proof is similar to that in [CDD+01] with some minor adjustments. We include it for complete-
ness.

Proof. Correctness. It is easy to see that if D, I, and R are all honest, then they will be satisfied in
step 3 of ICValidate, and R will accept s in ICReveal.

9That is, for some line L(x) = bx+ c over F, we have L(0) = s, L(1) = y, and L(α) = z.
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Protocol ICSetup(D, I,R, s):

1. Dealer D chooses a random value α ∈ F − {0, 1} and additional values y, z ∈ F such that (s, y, z) is 1α-
consistent. [D uses the same α for all parallel instances.] Also he chooses random values s′, y′, z′ ∈ F such
that (s′, y′, z′) is 1α-consistent. D sends (s, s′, y, y′) to the intermediary I, and (α, z, z′) to recipient R.

Protocol ICValidate(D, I,R, s)

1. I chooses a random value d ∈ F and sends it to D.

2. D sends the triple (d, s′ + ds, y′ + dy) to R.

3. BROADCAST: Each player broadcasts the values he sent and received in the previous two rounds. I
broadcasts his view of the triple (d, s′ + ds, y′ + dy). Additionally, R checks that (s′ + ds, y′ + dy, z′ + dz)
is 1α-consistent; if not R broadcasts “reject values.”

Based on these broadcasts D may be in conflict with I and/or R:

(1) D and I are in conflict if they disagree about the value of the triple (d, s′ + ds, y′ + dy). [Or if they
conflict in a parallel instance.]

(2) D and R are in conflict if they disagree about what D sent in step 2, or if D is not in conflict with
I, and R broadcast “reject values.” [Or if they conflict in a parallel instance.]

If no such conflicts arise, then all parties are satisfied and the phase ends here. Otherwise continue to step
4.

4. BROADCAST: If D, I are in conflict, then D broadcasts (s, y) and R adjusts z if necessary so that
(s, y, z) is 1α-consistent. This is done regardless whether D, R are in conflict or not, and the phase ends
here.

Otherwise, it must be that D, R are in conflict, but D, I are not. In this case D broadcasts (z, α) and I
adjusts y if necessary so that (s, y, z) is 1α-consistent.

Protocol ICReveal(I, R, s)

1. I sends (s, y) to R, who accepts s if and only if (s, y, z) is 1α-consistent.

Figure 5: Information Checking protocol based on [CDD+01].

Non-Forgery. Since D and R are honest, they will never be in conflict. We claim that I gains
no information on α during the ICSetup and ICValidate phases. The values he receives in ICSetup are
independent of α. After choosing d in step 1 of ICValidate, I knows exactly what D and R will broadcast
in step 3 and so learns nothing. Moreover if D and I conflict, then D broadcasts the values s, y which
I again already possessed.

Now consider the situation I is in upon invoking ICReveal for the first time with value s. He knows
that if he sends the proper values (s, y), R will accept s, and if he alters just one of them, R will reject.
Either way I learns nothing about α, which still appears uniform in F− {0, 1} to him. If he alters both
values, to (s∗, y∗), R will accept only if (s∗, y∗, z) is 1α-consistent. If that is the case then, since (s, y, z)
is also 1α-consistent, it follows that (s− s∗, y− y∗, 0) is as well. From this fact I can deduce the value of
α. In other words, in order to get R to accept a false value, I must guess the value of α, and if R does
not accept, I learns only that this particular α was incorrect. Thus if I makes ` attempts, he has at
best an `/(|F|− `− 2) chance of ever making R accept a false value, which is negligible for polynomial `.

Commitment. Here I and R are honest. If D conflicts with either one of them (or both), the property
is trivial. Otherwise, D, I, and R all agree on the values (d, s′+ds, y′+dy), and R accepted (s′+ds, y′+
dy, z′ + dz) as 1α-consistent. If for some e 6= d, (s′ + es, y′ + ey, z′ + ez) is also 1α-consistent, then their
difference ((d−e)s, (d−e)y, (d−e)z) is as well, and hence (s, y, z). Taking the contrapositive: if (s, y, z)
distributed by D were not 1α-consistent, there is at most one d which would have led R to accept the
values. Since I chooses d randomly, an inconsistent (s, y, z) is detected (and a conflict occurs) except
with negligible probability 1/|F|.
Privacy. Finally, assume D and I are honest. In the course of ICSetup and ICValidate, a cheating R
learns the values α, z, z′, d, s′ + ds, y′ + dy. However, he knows that the values (s′ + ds, y′ + dy, z′ + dz)
are 1α-consistent since D and I are honest. This implies that the value of y′ + dy can be computed
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based on α, z, z′, d, s′ + ds, hence it can be removed from the view. This leaves only α, z, z′, d, s′ + ds.
Now fixing α, z, z′ still leaves s′ uniformly random (since y′ may be any value), and since s′ is used to
blind ds, R learns no information on s.

Linearity. The protocol guarantees that R uses the same α value in all instances (for which the
first two phases are parallel). The property follows immediately from the prior observation that linear
combinations preserve 1α-consistency.

B WSS Requires Two Broadcast Rounds (cont’d)

Before presenting the full proof, we gather some additional remarks which we omitted from the main
body for brevity.

Remark. When n = 2t+ 1 exactly, it may be impossible for a WSS scheme to guarantee that an honest
D’s input remain private even from the other honest players until reconstruction. As Rabin and Ben-
Or [RB89] note regarding their Theorem 4 (a construction of MPC for honest majority): “As in all the
previous results, [our protocol] cannot prevent the bad players from sending all the information they are
holding to some honest player. Likewise, if among three players one of the players is faulty and stops
sending messages, no further secrecy conditions are imposed on the other two honest players left.”

In light of this subtlety, we are careful to give a proof which does not assume that honest players
gain no information on an honest dealer’s secret.

Remark. One natural approach to constructing broadcast-efficient protocols is to start with protocols
which use physical broadcast many times, and replace each broadcast with a detectable broadcast
protocol [FGMR02, FGH+02] (defined in Related Work section). If ever one of the detectable broadcasts
fails, then the parties fall back to a physical broadcast to reconcile their views and proceed.10

Such a (hypothetical) protocol has the property that the round number in which physical broadcast
is invoked is not fixed in advance, but instead adaptive to the execution. In order to capture the
impossibility of this kind of protocol as well, our lower bound does not assume a fixed round number
for broadcast, but only assumes that at the end of any given round all honest players agree whether the
next round will be a broadcast (as would be the case when a detectable broadcast fails).

Remark. Since (in the absence of trusted setup such as public-key infrastructure) the impossibility of
Byzantine agreement for t ≥ n/3 holds even under cryptographic assumptions, it follows that at least
one broadcast round is necessary to achieve MPC when n/3 ≤ t < n/2 regardless of our assumptions on
the adversary’s computational power. On the other hand, if one-way functions exist then one broadcast
round suffices to achieve computationally secure MPC. Indeed: the existence of one-way functions implies
that of secure digital signatures. Thus a single broadcast round allows each party to broadcast his
public key vk for a signature scheme; from this point on future broadcasts can be simulated using an
authenticated broadcast protocol.

Theorem 19. Let Π = (WSS-Share,WSS-Rec) be a perfectly private WSS protocol for n = 5 players,
which tolerates a static, computationally unbounded, non-rushing adversary who corrupts at most t = 2
parties. If Π uses at most a single physical broadcast during WSS-Share and zero broadcasts in WSS-Rec,
then Π will fail to satisfy the Correctness property with probability ≥ 1/20.

Proof. First we establish some notation. We consider the player set P = {D,P1, P2, P3, P4}, where the
dealer D holds input s ∈ {0, 1}. An execution of Π in the presence of a given adversary A may be
identified with a sample of the random coins for all players and for the adversary. Let View`(S) denote
the joint view of the players in set S at the end of round ` ≥ 0, where an individual player’s view consists
of his random coins and all messages sent and received in rounds 1 to `. As noted above, we allow the
broadcast round to be determined dynamically during execution; let bc be the random variable which
records this round number, so that Viewbc(S) indicates the joint view of players in S at the end of the
broadcast round.

Now let Π be a WSS protocol as in the statement of the theorem; we must show Commitment
is violated with constant probability. For each execution, we divide the rounds of Π’s sharing phase

10Of course the hope is to somehow leverage information gained from detectable broadcast failures to ensure that physical
broadcast occurs only once, or at most a few times, rather than for every broadcast in the original protocol!
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Figure 6: Simulated network for pre-broadcast segment.

WSS-Share into three segments: all pre-broadcast rounds; the broadcast round itself (which may also
include point-to-point communication); and all post-broadcast rounds.

At the beginning of the protocol, the adversary randomly selects one of three strategies, call them
A, B, and C, which entail the following corruptions:

• Strategy A: corrupt D, P1 (probability 1/4)

• Strategy B: corrupt D, P2 (probability 1/4)

• Strategy C: corrupt P3, P4 (probability 1/2)

Pre-broadcast. In the pre-broadcast segment of the protocol, A internally simulates additional
players, and has the cheating players act in such a manner, so as to simulate a distributed computation
running on the network shown in Figure 6. . In this network, each node is correctly connected to a copy
of each other node in P. Therefore in this simulated network, each (simulated) node simply follows Π
honestly.

Although the virtual nodes of Figure 6 each follow Π honestly, in simulating this network A has one
or both of the actual corrupted nodes cheat. Diagrams (a)–(c) in Figure 7 illustrate each pre-broadcast
strategy. In these diagrams, the bold nodes are corrupted, while dashed nodes and edges represent
players and channels which are entirely internally simulated by A. Corrupt nodes which appear twice,
in primed and unprimed versions—viz., D/D′ in Strategies A and B, and P3/P

′
3 and P4/P

′
4 in Strategy

C—behave as two completely independent, “honest” copies of themselves which happen to be in different
positions in the simulated network.

When A controls both D and D′ (Strategies A, B), they are given random but opposite inputs
s, s′ ∈ {0, 1}. Otherwise A controls only D′ (Strategy C). In the latter case, A makes a random guess
about honest D’s actual input, and assigns the opposite s′ to D′.

Broadcast round. In the broadcast round, there may be no single broadcast message which is
consistent with the private messages of both copies of a corrupted node. Therefore, each corrupt node
must select just one of its copies, and broadcast a message consistent with the honest view of that copy.
We will say informally that A “commits” to the copy whose broadcast message is chosen, and “disavows”
the other copy. As a result, the broadcast round allows honest players who were connected to disavowed
copies, to learn that those nodes are dishonest; it also allows other honest players to learn that there is
a conflict on these network edges (but crucially, not which of the endpoints are dishonest).11

By design, A always commits in such a way that D ends up in conflict with P3 and P4. We have
chosen the labels so that A always commits to the unprimed copy. So we have:

11Of course whether or not potential conflicts are always detected, by the honest parties involved or by the others, depends
on the details of Π. Nevertheless, it is good intuition, and we shall continue to speak as though the broadcast round necessarily
introduced explicit conflicts, although the proof does not rely on this.
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Figure 7: Pre-broadcast segment for Strategies A, B, and C.

• Strategy A: A commits to D, disavows D′ (and broadcasts honestly with P1).

• Strategy B: A commits to D, disavows D′ (and broadcasts honestly with P2).

• Strategy C: A commits to P3 and P4, disavows P ′3 and P ′4.

Of course, A will also send any point-to-point messages as called for by the protocol.
Before describing the post-broadcast segment, we collect some simple lemmas regarding the pre-

broadcast and broadcast segments.

Lemma 20. Consider the random variables View` (all)
∣∣A, {` < bc}, View` (all)

∣∣B, {` < bc}, and

View` (all)
∣∣C, {` < bc}, {s′ 6= s}, which record the joint view of all 10 nodes (including the natural

“honest” view associated with each corrupt and simulated copy) in the simulated network at the end of
round `, conditioned on the adversary’s choice of Strategy A, B, and C respectively, and on the broadcast
round not having occurred yet. Additionally in Strategy C we condition on the event that A guesses
D’s input correctly, so that the two copies of D have unequal inputs. (This happens automatically in
Strategies A and B, by construction.) Then the distributions of these random variables are identical, i.e.

View` (all)
∣∣A, {` < bc} ≡ View` (all)

∣∣B, {` < bc} ≡ View` (all)
∣∣C, {` < bc}, {s′ 6= s}

Proof. Prior to the first communication round, the view of each node P (in any of the three strategies)
consists only of his random coins (and the random-but-unequal secrets s and s′, if P ∈ {D,D′}). Hence
the claim holds for ` = 0. Then it remains only to observe that (prior to broadcast) the next-message
function for each node—whether in Strategy A, B, or C—is simply the honest next-message function of
Π applied to that node’s current view. Since each experiment begins identically distributed and then
evolves according to identical, deterministic rules (pre-broadcast), the distribution of views remains
identical conditioned on broadcast not having yet occurred.

The following lemma establishes that the joint view remains identically distributed regardless of
the adversary’s strategy, even after the broadcast round itself, when restricted to those nodes from the
simulated network which actually send a broadcast (as opposed to fully simulated nodes and disavowed
copies).

Lemma 21. Consider the random variables Viewbc (all)
∣∣A, Viewbc (all)

∣∣B, and Viewbc (all)
∣∣C, {s′ 6= s},

which represent the joint view of all 5 players in P at the end of the broadcast round, conditioned on A’s
strategy. (Here the view of a corrupted player is the “honest” view associated with the copy A committed
to during broadcast.) Then they are identical:

Viewbc (all)
∣∣A ≡ Viewbc (all)

∣∣B ≡ Viewbc (all)
∣∣C, {s′ 6= s}

Proof. By construction, A always “commits” in such a way that, in terms of Figure 6, the broadcasting
nodes will be D, P1, P2, P3, and P4 (as opposed to any of their primed versions). By the previous lemma,
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Figure 8: Simulated network for post-broadcast segment.

the joint view of these 5 nodes in the larger hypothetical/simulated network is identically distributed
(for each fixed round `), irrespective of A’s choice of Strategy. Then when the broadcast round occurs,
each of the broadcasting nodes simply sends its broadcasts and private messages honestly (according
to its view). Hence the distribution remains independent of A’s strategy when we take the broadcast
round into account.

Corollary 22. Condition on the event that the sharing phase of Π terminates before a single broadcast
round occurs. Suppose that in Strategy A, with probability ≥ 1− ε the adversary is committed to a value
s∗ at the end of sharing phase. (Here commitment means that during reconstruction, with probability
≥ 1− ε, honest parties will output either s∗ or ⊥ [with agreement]). Then in Strategy C,

Post-broadcast. Now that there are public conflicts between D and P3, and between D and P4, the
adversary will block all messages between those conflicting pairs. That is to say: in Strategies A and
B, A sends no messages D → P3 or D → P4, and alters the view of D by omitting all post-broadcast
messages from them. Similarly, in Strategy C, A sends no messages P3 → D or P4 → D, and alters the
views of P3 and P4 to exclude post-broadcast messages from D, if any.

Figure 8 illustrates the simulated network which the adversary creates in the post-broadcast segment;
for clarity, it omits blocked private channels (those of type D ↔ P3 and D ↔ P4). The dots at left and
right indicate that the connection pattern extends infinitely in either direction. The infinity is merely
a formal convenience, since the length of chain which must actually be constructed by A is finite and
proportional to the number of post-broadcast and reconstruction rounds. The superscripts, which range
over Z, distinguish different translated copies of the same underlying player in P. Although it is not
indicated in the diagram, the adversary’s aim is that alternate copies of the dealer have opposite input
values; i.e. D k holds sk = 0 for k even and sk = 1 for k odd, or vice versa. In Strategy A and B,
this will be ensured directly since all copies of the dealer are corrupt/simulated. In Strategy C, the
adversary uses his previous guess for the dealer’s bit in order to determine which value should be given
to simulated copies of D.

For the adversary’s behavior in each particular strategy, refer to Figure 9, in which again dashed
edges and nodes are internally simulated by A, and bold nodes are (copies of) corrupt nodes.

For sets of nodes S and T , define

Common`(S|T ) := View`(S) ∩ View`(T )

to be the partial transcript shared between S and T , up to round `. For example, Commonbc(D,P1|P2)
consists of:

The broadcasts of all parties;

private messages D ↔ P2;

private messages P1 ↔ P2.

Note that Commonbc(D,P1|P2) does not include private messages D ↔ P1, since those messages are
internal to the set {D,P1}, rather than shared between the two sets.

At this time the reader may wish to refer to diagrams (a)–(c) in Figure 9, which identify the honest,
corrupt, and simulated nodes for each Strategy as it continues post-broadcast. In contrast with the
situation pre-broadcast, where it was enough to assign random coins (and dealer input) to each node
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Figure 9: Post-broadcast segment for Strategies A, B, and C.
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in the simulated network and then let the network evolve “honestly,” A must now assign each node a
simulated view of the protocol execution all the way up to the broadcast round.
A has six “moves” at his disposal to extrapolate the chain leftward or rightward. For simplicity,

we omit superscripts. We do allow A, when sampling a new copy of a dealer (moves (L1) and (R1)),
to choose that copy’s input s∗ ∈ {0, 1}. Recall this is necessary since A wishes to alternate the inputs
assigned to consecutive dealer copies. That this is possible is a consequence of Lemma 25, which states
that the individual view Viewbc(P1) (resp., Viewbc(P2)) is independent of the actual secret s.
Leftward moves

(L1) (P1, D(s∗)) L99 P2: A knows Viewbc(P2). To extend leftward, he obtains views for P1 and D by
sampling from the conditional distribution Viewbc(P1, D)

∣∣Commonbc(P1, D|P2), {s = s∗}.

(L2) (P3, P4) L99 P1: A knows Viewbc(P1). To extend leftward, he obtains views for P3 and P4 by
sampling from the conditional distribution Viewbc(P3, P4)

∣∣Commonbc(P3, P4|P1).

(L3) P2 L99 (P3, P4): A knows Viewbc(P3, P4). To extend leftward, he obtains a view for P2 by sampling
from the conditional distribution Viewbc(P2)

∣∣Commonbc(P2|P3, P4).

Rightward moves

(R1) P1 99K (D(s∗), P2): A knows Viewbc(P1). To extend rightward, he obtains views for D and P2 by
sampling from the conditional distribution Viewbc(D,P2)

∣∣Commonbc(P1|D,P2), {s = s∗}.

(R2) P2 99K (P3, P4): A knows Viewbc(P2). To extend rightward, he obtains views for P3 and P4 by
sampling from the conditional distribution Viewbc(P3, P4)

∣∣Commonbc(P2|P3, P4).

(R3) (P3, P4) 99K P1: A knows Viewbc(P3, P4). To extend rightward, he obtains a view for P1 by
sampling from the conditional distribution Viewbc(P1)

∣∣Commonbc(P3, P4|P1).

With these moves in hand, it is a straightforward matter to see how A generates the chains for each
of the three strategies.

Strategy A. To extend leftward, first re-sample a joint view Viewbc(P 0
1 , D 0) by simulating move (L1).

(This first move is not technically (L1) as we described it because in this case the adversary actually
knows the joint view Viewbc(P1, D) rather than the view Viewbc(P2), but the effect is identical since either
one determines the shared view Commonbc(P1, D|P2).) Then continue leftward from P 0

1 by repeating
the moves (L2), (L3), (L1), . . . .

To extend rightward, re-sample a view Viewbc(P 1
1 ) by simulating move (R3) (as before, this is not

technically (R3) since A uses knowledge of Viewbc(P1) rather than of Viewbc(P3, P4); we do not belabor
the point in Strategy B and C). Then continue rightward from P 1

1 by repeating the moves (R1), (R2),
(R3), . . . .

Strategy B. To extend leftward, first re-sample a view Viewbc(P −1
2 ) by simulating move (L3). Then

continue leftward by repeating the moves (L1), (L2), (L3), . . . .
To extend rightward, first re-sample a joint view Viewbc(D 0,P 0

2 ) by simulating move (R1). Then
continue rightward by repeating the moves (R2), (R3), (R1), . . . .

Strategy C. To extend leftward, first re-sample a joint view Viewbc(P −1
3 , P 0

4 ) by simulating move
(L2). Then continue leftward by repeating the moves (L3), (L1), (L2), . . . .

To extend rightward, first re-sample a joint view Viewbc(P 0
3 , P 1

4 ) by simulating move (R2). Then
continue rightward by repeating the moves (R3), (R1), (R2), . . . .

Having sampled appropriate views for all necessary copies of nodes, A generates all subsequent mes-
sages for corrupt and simulated nodes according to Π’s next-message function for that node’s underlying
player, given that node’s current view (which, of course, evolves each round as messages from its neigh-
bors are received). We note in passing that it is not necessary for A to know in advance any bound
whatsoever on the number of post-broadcast rounds, since he can simply extend the chain diagram one
move in each direction per round.

To analyze the chains so constructed, consider the types of triangles which appear in them—namely,
(P2, P3, P4), (P1, P3, P4), and (D,P1, P2). Given k ∈ Z, we define the kth translate of each of these
triples to be the specific triangle of players in Figure 8 indexed by k—to wit:

• T234(k) := (P k
2 , P k

3 , P k+1
4 )
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• T134(k) := (P k
1 , P k−1

3 , P k
4 )

• TD12(k) := (D k, P k
1 , P k

2 )

The reader will observe (Figure 9(a)–(c)) that in Strategy A, the honest players are exactly T234(0);
in Strategy B, the honest players are T134(0); and in Strategy C, they are TD12(0). The next lemma
asserts that every triangle in the chain (whether for Strategy A, B, or C) has its joint view distributed
identically with the appropriate “honest” triangle.

Lemma 23. Fix k ∈ Z, and consider the triangles of (possibly corrupt/simulated) nodes T234(k), T134(k),
and TD12(k), whose views are defined by the adversary’s sampling process described above (in any of
Strategy A, B, or C).

Then the following pairs of joint views are, for each pair, identically distributed, provided that in case
(3), we further condition on the adversary’s guess for the dealer’s bit being correct when the adversary
uses Strategy C:

Viewbc (T234(k)) ≡ Viewbc (T234(0)) (1)

Viewbc (T134(k)) ≡ Viewbc (T134(0)) (2)

Viewbc (TD12(k)) ≡ Viewbc (TD12(0)) if k ≡ 0 (mod 2) (3)

Viewbc (TD12(k)) ≡ Viewbc (TD12(1)) if k ≡ 1 (mod 2) (4)

Proof. (Sketch.) The proof is inductive, and specifically is an immediate consequence of the fact that
each of the six moves described above, when applied to an initial (joint) view with “honest” marginal
distribution, correctly samples an “honest” joint distribution on the triangle of views. Here by an honest
marginal/joint distribution, we mean precisely (the appropriate restriction of) the one guaranteed by
Lemma 21 to be independent of Strategy. In particular the chain for each Strategy (A, B, or C) has as
its “base case” for leftward or rightward extrapolation, an honest triangle of nodes (T234(0), T134(0), or
TD12(0) respectively) which will have this honest distribution. We again suppress the superscripts for
ease of understanding.

For example, consider (L1), a.k.a. (P1, D(s∗)) L99 P2, and suppose the view Viewbc(P2) which the
adversary uses to extend leftward has correct marginal distribution (i.e., the joint distribution guaranteed
by Lemma 21 to be independent of adversary strategy, restricted to node P2’s view). Then the experiment
of (L1)—in which a view for P2 is chosen and then, conditioning on that view, extended to a joint view for
P1, D(s∗), P2—is identical to an experiment in which the joint view is sampled directly. The distribution
of the latter experiment is once again exactly that appearing in Lemma 21.

The argument for each of the other five moves follows in like manner.

Reconstruction. During reconstruction, A simply continues to simulate the post-broadcast network
of Figure 8 continuing to use it to determine what messages to send to the honest players in each round
of Reconstruction. (Recall we assume that the reconstruction phase does not include broadcast.)

Lemma 24. Consider the same pairs of joint views as in Lemma 23, but extend the views to the entire
WSS protocol. Then the identities still hold (again conditioned on adversary’s correct guess if in Strategy
C), namely:

ViewWSS (T234(k)) ≡ ViewWSS (T234(0)) (1)

ViewWSS (T134(k)) ≡ ViewWSS (T134(0)) (2)

ViewWSS (TD12(k)) ≡ ViewWSS (TD12(0)) if k ≡ 0 (mod 2) (3)

ViewWSS (TD12(k)) ≡ ViewWSS (TD12(1)) if k ≡ 1 (mod 2) (4)

Proof. This follows immediately from Lemma 23, the symmetry of the chain diagrams, and the fact
that, conditioned on the views sampled up to the end of the broadcast round, the protocol evolves
deterministically until the end of reconstruction (since there is no further broadcast round).

Now based on these indistinguishability results we make the following observations, using also the
(1− ε)-correctness of the WSS.
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Copies of P1 and P2 in the same triangle as a given dealer both output the input held by that dealer
with probability ≥ 1 − 2ε (otherwise correctness is violated since A chooses Strategy C, and guesses
correctly, with probability 1/2).

Hence with probability ≥ 1 − 4ε in Strategy A (or B), the copies of P1 and P2 which (P3, P4)
are connected to both agree with their dealers and hence output different values (since dealers have
alternating values).

Since (P3, P4) cannot distinguish which scenario they are in (hence which of P1, P2 to agree with),
then (conditioned on the event that P1, P2 disagree), in at least one of the strategies they will fail to agree
with the correct player with probability at least 1/2. Without loss of generality this occurs in Strategy A.
Since the probability of Strategy A is 1/4, we have that the failure probability is ε ≥ (1− 4ε)(1/2)(1/4).
Solving yields ε ≥ 1/20. This completes the proof of the lower bound.

It remains only to prove the lemma which we deferred from earlier.

Lemma 25. The individual view Viewbc(P1) (resp., Viewbc(P2)) in any of the adversary strategies A,B,C
is independent of the secret s held by the dealer D.

Proof. Even though A never corrupts P1 and P2 at the same time (nor either one individually without
corrupting D), we can describe an adversary A′ who does corrupt P1 and P2 and simulates the same
network as follows:

D

P1 P2

P3 P4

D′

P ′4P ′3

P ′2P ′1

Now the distribution of players’ views in the diagram above is identical with their distribution in
diagrams 7(a)–(c) in the pre-broadcast segment (Lemma 20). But in the diagram above, P1 and P2

are corrupt, and so their joint view should remain independent of s. This holds also when we take into
account the broadcast round itself: for if not, then the broadcasts and private messages of D, and of the
simulated P3 and P4 in the above diagram (corresponding to the actual nodes P3 and P4 in an execution
under Strategy A, B, or C), would reveal information about s. But P1 and P2 see D’s broadcasts and
private messages to them, and A can simulate the broadcasts and private messages from P3, P4 to P1,
P2, so that if these revealed information about s, then A′ would gain information about s in the diagram
above, contradicting WSS privacy.
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