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Abstract: We combine the H Coe�cients technique and the Coupling technique
to improve security bounds of balanced Feistel schemes. For q queries and round
functions of n−bits to n−bits, we �nd that the CCA Security of 4 + 2r rounds

Feistel schemes is upperbounded by q
r+2

(
2q
2n

)r+1
+ q(q−1)

2·22n . This divides by roughly
3 the number of needed rounds for a given CCA Security, compared to the previ-
ous results. Independently of this result, using a new theorem on H Coe�cients,
we compose 6 rounds Feistel schemes to upperbound the CCA security of 6r

rounds Feistel schemes:
(
8q
2n

)r
+ q(q−1)

2·22n when q ≤ 2n

67n .
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1 Introduction and Previous Results

1.1 Introduction

Since the seminal article of Luby and Racko� [7] in 1989, security proofs of
Feistel schemes have been extensively studied ([6], [10], [11], [13], [9], [19], [5]). It
is particularly interesting and di�cult to obtain such proofs beyond the birthday
bound and ideally to the bound of "the information theory". After this bound,
we can no longer hope to prove security against an attacker with an unbounded
power of computation. Two techniques have been developed to give beyond the
birthday bound proofs. The �rst one, the Coupling technique, gives very good
results when we study schemes with many rounds (Maurer [10], Hoang/Rogaway
[6]). The second one, the H Coe�cients technique, gives better results when the
number of rounds is relatively small (Patarin [13] [14] [16]). Nevertheless, this
technique leads sometimes to complex computations. In this article, we use the
Coupling ideas to improve the H Coe�cients technique in two di�erent ways.
First, we use intertwined conditions inspired by the Coupling technique to count
H Coe�cients and we �nd that the CCA Security of 4+2r rounds Feistel schemes
veri�es:

AdvccaΨ4+2r (q) ≤
q

r + 2

(
2q

2n

)r+1

+
q(q − 1)

2 · 22n
.

Then, we introduce a new theorem: the "H Coe�cients Composition Theorem".
We use this theorem to study the security of 6r rounds Feistel schemes using



previous results of Patarin [16] for 6 rounds Feistel schemes. For q ≤ 2n

67n , the
CCA Security of 6r rounds Feistel schemes veri�es

AdvccaΨ6r (q) ≤
(
8q

2n

)r
+
q(q − 1)

2 · 22n
.

These methods can also be applied to many other schemes such as unbalanced
Feistel schemes ([18]), alternating Feistel schemes ([2], [8]), type − 1, type − 2
and type− 3 Feistel schemes ([20]), Benes schemes ([1]), Misty's schemes ([17]),
Feistel's with bijective round functions or format-preserving encryption ([4],[3])
which are beyond the scope of this work.

In a �rst section, we will present the H Coe�cients technique (including proofs).
We will use this technique in section 2 and 3. In section 2, we introduce our
new technique, using intertwined conditions. This technique is inspired by the
Coupling technique and the work of Hoang-Rogaway [6]. This way, we prove
that we get the same CCA security than the previous best known bound of [6]
using roughly 3 times less rounds. In section 3, we introduce a new theorem on
H Coe�cients and apply it to prove CCA security of 6r rounds Feistel schemes
when the number of queries is not too big.

1.2 Notations

Let n be an integer and In = {0; 1}n. Let Fn be the set of all functions from In
to In and Bn the set of all permutations from In. Let f1 be a function of Fn.
Let L,R be two n−bit strings in In. Let Ψ(f1) denotes the permutation of B2n

de�ned by:

Ψf ([L,R]) = [R,L⊕ f(R)].

More generally, if f1, ..., fr are r functions of Fn, let Ψ
r(f1, ..., fr) denotes the

permutation of B2n de�ned by:

Ψr(f1, ..., fr) = Ψ(fr) ◦ · · · ◦ Ψ(f1).

This permutation is called a balanced Feistel scheme with r rounds or shortly Ψr.
When the functions f1, ..., fr are randomly chosen in F rn , Ψ

r is called a "generic"
Feistel scheme with r rounds, or a Luby-Racko� construction.

Let q be the number of queries. For a given Ψr, we note X1, ..., Xq the q inputs
and Y1, ..., Yq the q outputs. For all i ∈ [1, q] and k ∈ [0; r], we note Xk

i the �rst
n bits of the outputs of Xi after k rounds and Xr+1

i the last n bits of Yi. This
means, for example, that Xi = [X0

i , X
1
i ] and Yi = [Xr

i , X
r+1
i ].

To simplify computations, we will note Jq = 22n× (22n−1)×· · ·× (22n− q+1).



1.3 The coe�cients H technique

In this article, we will prove security bounds using the general framework given
by the "H Coe�cients technique" of Patarin [14][12].

Theorem 1 (H Coe�cients Theorem, 1991). Let F be a subset of B2n

indexed by a set of keys K: F = {fk, k ∈ K}. If there exists a real number α > 0
such that, for all Y1, ..., Yq ∈ I2n pairwise distinct and for all X1, ..., Xq ∈ I2n
pairwise distinct, the number H(X,Y ) of keys k, such that, for all i, fk sends

Xi to Yi, veri�es:

H(X,Y ) ≥ (1− α) |K|
22nq

,

Then the advantage of any CCA attacker to distinguish between permutations fk
of F , with k ∈R K, and random permutations veri�es:

AdvccaF (q) ≤ α+
q(q − 1)

2 · 22n
.

Proof: See Appendix A

There are many variants of this H Coe�cients Theorem (cf [14][12]). For example
we have:

Theorem 2 (H Coe�cients Theorem, 1991). Let F be a subset of B2n

indexed by a set of keys K: F = {fk, k ∈ K}. If there exists a real number α > 0
such that, for all Y1, ..., Yq ∈ I2n pairwise distinct and for all X1, ..., Xq ∈ I2n
pairwise distinct, the number H(X,Y ) of keys k, such that, for all i, fk sends

Xi to Yi, veri�es:

H(X,Y ) ≥ (1− α) |K|
Jq

,

Then the advantage of any CCA attacker to distinguish between permutations fk
of F , with k ∈R K, and random permutations veri�es:

AdvccaF (q) ≤ α.

Proof: See Appendix B

In section 3.1, we will prove a new theorem on these H coe�cients.

2 Proving Security of 4 + 2r rounds Feistel Schemes with
intertwine conditions

2.1 The CCA Security of Ψ4+2r

We will use the theorem of Patarin we just introduced in the previous section 1.3
to �nd the CCA security of Ψ4+2r for any positive integer r. We �x q inputs X`



and q outputs Y` and our goal is to count the number of (f1, f2, ..., f4+2r) ∈ F 4+2r
n

such that Ψ(f1, f2, ..., f4+2r)(X`) = Y` for all ` ≤ q.

It means that we have to �nd the (f1, ..., f4+2r) such that, for all ` ≤ q, it exists
X2
` , ..., X

2+2r
` verifying the 4 + 2r equations:



X2
` = X0

` ⊕ f1(X1
` )

X3
` = X1

` ⊕ f2(X2
` )

...

Xi+1
` = Xi−1

` ⊕ fi(Xi
`)

...
X5+2r
` = X3+2r

` ⊕ f4+2r(X
4+2r
` )

For every ` ≤ q, any f1, ..., f4 and any k ∈ [1; r + 1], we note:

X2k
` (f1, ..., f2k−1) = Left(Ψ(f1, ..., f2k−1)([X

0
` , X

1
` ]))

X2k+1
` (f2k+2, ..., f4+2r) = Left(Ψ−1(f2k+2, ..., f4+2r)[X

4+2r
` , X5+2r

` ]))

More intuitively, we compute X2k
` (f1, ..., f2k−1) "from the top": X0

` and X1
`

are already de�ned, then f1 will de�ne X2
` , f2 will de�ne X3

` and so on to
X2k
` (f1, ..., f2k−1). We de�ned X2k

` (f1, ..., f2k−1) such that the �rst 2k− 1 equa-
tions are trivially veri�ed.

In a symmetric way, we compute X2k+1
` (f2k+2, ..., f4+2r) "from the bottom":

X4+2r
` and X5+2r

` are already de�ned, then f4+2r will de�ne X
3+2r
` , f3+2r will

de�ne X2+2r
` and so on to X2k+1

` (f2k+2, ..., f4+2r).

We have:

X1
` −→

f1
· · · −→

f2k−1

X2k
` (f1, ..., f2k−1)

?←→ X2k+1
` (f2k+2, ..., f4+2r) ←−

f2k+2

· · · ←−
f4+2r

X4+2r
`

For any f1, ..., f4+2r, any ` and any k ∈ [1; r + 1], we de�ned internal variables
such that the �rst 2k − 1 equations are veri�ed and the last (4 + 2r)− (2k + 1)
equations are veri�ed. We only need to verify two more equations: f2k(X

2k
` (f1, ..., f2k−1)) = X2k−1

` ⊕X2k+1
` (f2k+2, ..., f4+2r)

f2k+1(X
2k+1
` (f2k+2, ..., f4+2r)) = X2k

` (f1, ..., f2k−1)⊕X2k+2
`

So far, we made no restrictions on the round functions fi. Now, we need f2k and
f2k+1 to verify this two equations. We could just take the (f1, ..., f4+2r) such
that the two equations are veri�ed for the `-th query. The problem is that, if
X2k
` collides with a previous query (ie X2k

` = X2k
i for some i < `), the functions



f2k would already be de�ned in X2k
i and we are not sure we can always choose

functions f2k verifying the �rst equation. And we have the same problem for
f2k+1.

This is why we need to choose the functions f1, ..., f2k−1, f2k+2, ..., f4+2r such
that X2k

` (f1, ..., f2k−1) and X
2k+1
` (f2k+2, ..., f4+2r) don't collide. We will make

this selection for every query. After that, we will connect X2k
` (f1, ..., f2k−1) to

X2k+1
` (f2k+2, ..., f4+2r) for each query. Note that k depends of `, we will not

always connect in the same place.

We explained our strategy, we now turn to details.

For any ` and any k ∈ [1; r + 1], we note :
- Col2k the event "X2k

` = X2k
i for some i < `".

- Col2k+1 the event "X2k+1
` = X2k+1

i for some i < `".

We want to select f1, ..., f4+2r such that, for each query, it is possible to �nd k
such that Col2k and Col2k+1 are both wrong. We note:

C` =

r+1⋃
k=1

(
¬Col2k ∩ ¬Col2k+1

)
,

this is the event that the query ` is "connectable" : we can �nd k such that
X2k
` and X2k+1

` don't collide so we can select f2k and f2k+1 to verify the two
"connection" equations.

We want all the queries connectable so we want to compute the probability of

q⋂
`=1

C`.

We have:

P

(⋂q
`=1 C`

)
= 1− P

(⋃q
`=1 ¬C`

)

≥ 1−
q∑
`=1

P

(
¬C`

) (1)

Lemma 1. For every ` ∈ [1; q], we have:

P

(
¬C`

)
≤
(
2(`− 1)

2n

)r+1

.



Proof: Let ` ∈ [1; q], we have:

¬C` =
r+1⋂
k=1

(
Col2k ∪ Col2k+1

)

=
⋃

α∈{0;1}r+1

r+1⋂
k=1

Col2k+α(k)

(2)

We noted α(k) the k−th bit of α. This equality implies that:

P (¬C`) ≤
∑

α∈{0;1}r+1

P

( r+1⋂
k=1

Col2k+α(k)
)
. (3)

We will now prove that, for every α, we have:

P

( r+1⋂
k=1

Col2k+α(k)
)
≤
(
`− 1

2n

)r+1

. (4)

To prove that, we show that each event is dependent of di�erent rounds functions.
More precisely, for every k, we see that the event Col2k is a condition on the
round function f2k−1 because X2k = f2k−1(X

2k−1) ⊕ X2k+1. No matter the
values of the other round functions ie the values of X2k−1 (which depends of
f1, ..., f2k−2) and X

2k+1 (which depends of f2k+2, ..., f4+2r), the value of X
2k =

f2k−1(X
2k−1) ⊕ X2k+1 is uniformly random when f2k−1 is uniformly random.

In a same way, we �nd that Col2k+1 is a condition on f2k+2.

The round functions are independent and uniformly random so

P

( r+1⋂
k=1

Col2k+α(k)
)

=

r+1∏
k=1

P

(
Col2k+α(k)

)
(5)

To prove (4), we just need to prove that, for every k, P (Col2k+α(k)) ≤ `−1
2n . As

we just see, the value of X2k+α(k) is uniformly random so there is a collision
with a probability less or equal to `−1

2n . This proves (4) and using (3), we have:

P (¬C`) ≤ 2r+1 ×
(
`− 1

2n

)r+1

. (6)

ut



Using the inequation 1 and the previous Lemma, we have:

P

( q⋂
`=1

C`

)
≥ 1−

q∑
`=1

(
2(`− 1)

2n

)r+1

≥ 1−
(

2

2n

)r+1

×
q−1∑
`=0

`r+1

≥ 1−
(

2

2n

)r+1

× qr+2

r + 2

≥ 1− q

r + 2

(
2q

2n

)r+1

.

(7)

Now that we compute the probability of making all queries connectable, we need
to actually connect them. For every `, let note D` the event "Ψ(f1, ..., f4+2r)
sends X` to Y`". We have:

P

(
q⋂
`=1

D`

⋂ q⋂
`=1

C`

)
= P

(
q⋂
`=1

C`

)
× P

(
q⋂
`=1

D`|
q⋂
`=1

C`

)

= P

(
q⋂
`=1

C`

)
×

q∏
`=1

P

(
D`|

q⋂
`=1

C`
⋂⋂

i<`

Di

) (8)

Lemma 2. For every ` ∈ [1; q], we have:

P

(
D`|

q⋂
`=1

C`
⋂⋂

i<`

Di

)
≥ 1

22n
.

Proof: If C` is true, it exists k ∈ [1; r + 1] such that X2k
` (f1, ..., f2k−1) and

X2k+1
` (f2k+2, ..., f4+2r) don't collide. Since the round functions are independent

and uniformly random, the following equations happen with probability 1
22n : f2k(X

2k
` (f1, ..., f2k−1)) = X2k−1

` ⊕X2k+1
` (f2k+2, ..., f4+2r)

f2k+1(X
2k+1
` (f2k+2, ..., f4+2r)) = X2k

` (f1, ..., f2k−1)⊕X2k+2
`

With probability 1
22n , we have connected X` to Y`. Indeed, we have choosen the

�rst 2k − 1 internal variables to trivially verify the �rst 2k − 1 equations. We
then choose the last (4 + 2r)− (2k + 1) internal variables to trivially verify the
last (4 + 2r)− (2k+ 1) equations. As we just proved, the last two equations are
true with probability 1

22n so all needed equations are veri�ed and D` is true. ut



From the previous lemmma, the equation 8 and the inequation 7, we have:

P

(
q⋂
`=1

D`

⋂ q⋂
`=1

C`

)
≥
(
1− q

r + 2

(
2q

2n

)r+1)
× 1

22nq
. (9)

Remember that we de�nedH the number of (f1, ..., f4+2r) such that Ψ(f1, ..., f4+2r)(X`) =
Y` for every `. It implies that

P

(
q⋂
`=1

D`

⋂ q⋂
`=1

C`

)
≤ H

|Fn|4+2r
.

This two inequations imply that:

H ≥
(
1− q

r + 2

(
2q

2n

)r+1)
× |Fn|

4+2r

22nq
. (10)

Using the Theorem 1 of Patarin, we have:

AdvccaΨ4+2r (q) ≤
q

r + 2

(
2q

2n

)r+1

+
q(q − 1)

2 · 22n
.

2.2 Results

In the following graphics, the x−axis gives the log base-2 of the number of
adversarial queries and the y−axis gives upper bounds on an adversary's CCA
advantage. The dashed lines are the bounds of Hoang-Rogaway [6] and the solid
lines are our bounds.

n = 32 with 12 and 48 rounds n = 64 with 12 and 48 rounds

We recall the bound of Hoang-Rogaway and our bound :

Hoang-Rogaway: AdvccaΨ6r−1(q) ≤
2q

r + 1

(
4q

2n

)r
.

Our bound: AdvccaΨ4+2r (q) ≤
q

r + 2

(
2q

2n

)r+1

+
q(q − 1)

2 · 22n
.



Studying the formulas, we see that the previous best known bound of Hoang-
Rogaway needs roughly 3 times more rounds to prove the same security obtained
with our bound. On the graphics, for n = 32, it multiplies by roughly 26 the
number of queries to obtain the same CCA security for 12 rounds. For n = 64, it
multiplies by roughly 210 the number of queries to obtain the same CCA security
for 12 rounds.

3 Proving Security of Feistel Schemes with a new
Theorem on H Coe�cients

3.1 The H Coe�cients Composition Theorem

We �x q inputs X1, ..., Xq and q outputs Y1, ..., Yq. Let F and G be two subsets
of B2n and we note F ◦G the set {f ◦ g, f ∈ F, g ∈ G}. For any subset F of B2n,
we note HF (X,Y ) the number of functions in F sending Xi to Yi for all i ≤ q.

Theorem 3 (2012). If it exists αF and αG in [0; 1] such that, for all X1, ..., Xq

pairwise distinct and for all Y1, ..., Yq pairwise distinct:

HF (X,Y ) ≥ (1− αF )×
|F |
22nq

and HG(X,Y ) ≥ (1− αG)×
|G|
22nq

,

then, for all X1, ..., Xq pairwise distinct and for all Y1, ..., Yq pairwise distinct:

HF◦G(X,Y ) ≥ (1− αFαG)×
|F | × |G|

22nq
.

For any X1, ..., Xq pairwise distinct and Y1, ..., Yq pairwise distinct. We have

HF◦G(X,Y ) =
∑
T

HG(X,T )×HF (T, Y ), (11)

the sum being taken over the T1, ..., Tq pairwise distinct. We notice that we have:∑
T

1 = Jq ≤ 22nq (12)

∑
T

HF (T, Y ) = |F | (13)

∑
T

HG(X,T ) = |G| (14)



We compute the right part of equality (11) by introducing the values mF =

(1− αF )× |F |
22nq and mG = (1− αG)× |G|

22nq :∑
T

HG(X,T )×HF (T, Y )

=
∑
T

((HG(X,T )−mG) +mG)× ((HF (T, Y )−mF ) +mF )

=
∑
T

(HG(X,T )−mG)× (HF (T, Y )−mF )

+
∑
T

mG × (HF (T, Y )−mF ) +
∑
T

(HG(X,T )−mG)×mF +
∑
T

mGmF .

By hypothesis, the �rst term is positive. We now compute the second term:∑
T

mG × (HF (T, Y )−mF )

= (1− αG)×
|G|
22nq

(∑
T

HF (T, Y )−
∑
T

(1− αF )×
|F |
22nq

)

≥ (1− αG)×
|G|
22nq

(
|F | − (1− αF )|F |

(∑
T

1

22nq

))
from (13)

≥ |G| × |F |
22nq

(
(1− αG)− (1− αG)(1− αF )

(∑
T

1

22nq

))

The third term is computed the same way. The fourth term gives:

∑
T

mGmF =
|G||F |
22nq

(
(1− αG)(1− αF )

(∑
T

1

22nq

))
.

Summing the four terms, we have:

∑
T

HG(X,T )×HF (T, Y ) ≥ |G||F |
22nq

(
(1−αG)+(1−αF )−(1−αG)(1−αF )

(∑
T

1

22nq

))
.

There is at most 22nq choices for T (cf (12)) so

(1−αG)+(1−αF )−(1−αG)(1−αF )
(∑

T

1

22nq

)
≥ (1−αG)+(1−αF )−(1−αG)(1−αF ) = 1−αGαF ,

which ends the proof. ut

We will use this theorem in the next section to study 6r rounds Feistel scheme.

The next Theorem is a variant of the previous theorem. This variant is interesting
to understand the geometric gain we obtain by composing Feistel schemes.

We recall that Jq = 22n × (22n − 1)× · · · × (22n − q + 1).



Theorem 4 (2012). If it exists αF and αG in [0; 1] such that, for all X1, ..., Xq

pairwise distinct and for all Y1, ..., Yq pairwise distinct:

HF (X,Y ) ≥ (1− αF )×
|F |
Jq

and HG(X,Y ) ≥ (1− αG)×
|G|
Jq
,

then, for all X1, ..., Xq pairwise distinct and for all Y1, ..., Yq pairwise distinct:

HF◦G(X,Y ) ≥ (1− αFαG)×
|F | × |G|

Jq
.

Proof: See Appendix C

From this theorem 4 and theorem 2, we see that the advantage to distinguish
functions f ◦ g is less or equal to αFαG when the advantage to distinguish
functions f is αF and the advantage to distinguish functions g is αG. We obtain
a geometric gain when we compose functions.

3.2 Proving Security with mirror theory and the Global H theorem

In [16] p.8, J. Patarin proved this theorem:

Theorem 5 (2010). For Ψ6, for all X1, ..., Xq ∈ I2n pairwise distinct and for

all Y1, ..., Yq ∈ I2n pairwise distinct:

H(X,Y ) ≥
(
1− 8q

2n

)
× |Fn|

6

22nq
if q ≤ 2n

67n
.

Therefore, combining this theorem and using our new "Global H theorem" of
section 3.1, we obtain:

Theorem 6 (2012). For any r ≥ 1 and any q ≤ 2n

67n :

AdvccaΨ6r (q) ≤
(
8q

2n

)r
+
q(q − 1)

2 · 22n
.

This Theorem 6 is, so far, the best security bound known for Feistel schemes
when q ≤ 2n

67n . However, Patarin's proof of Theorem 5 is di�cult (cf [15], [16]).
Nevertheless, some variants of Theorem 5 are much easier to prove: for example,

instead of α = 8q
2n we can use α = q3

22n , α = q4

23n or α = q5

24n (see [15], [16]
for more details). Then, from each of these variants, our Global H theorem will
immediately give a geometrical improvement on the advantage when we multiply
the number of rounds.



4 Conclusion

In this paper, we combine ideas from two di�erent proof techniques: the Cou-
pling technique and the H Coe�cients technique. We introduce a new Theorem:
the "H Coe�cients Composition Theorem". From this new theorem, we are able
to obtain security proofs that combine the e�ciency of the H Coe�cients for
small rounds Feistel schemes and the geometric gain of the Coupling technique.
We apply these results only on the classical balanced generic Feistel schemes
but the technique can also be applied to many di�erent schemes like unbalanced
Feistel schemes or Misty schemes for example. Independently of that, we have
also combined ideas of the Coupling technique and the H Coe�cients technique
to study intertwined conditions. This new approach lead to signi�cant improve-
ments, we divide by roughly 3 the number of needed rounds to obtain a given
CCA security.
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Appendices

A Proof of the Coe�cients H Theorem �rst variant ([12],
1991, p.38)

Consider an attacker A who can query q times an oracle O. The oracle O acts
all the time like a Feistel scheme Ψr or like a random permutation. The attacker
can make direct queries or inverse queries. After q queries, the attacker outputs
1 or 0.

We note

P1 = Probability that A outputs 1 if O is Ψr

and

P ∗1 = Probability that A outputs 1 if O is a random permutation.

Our goal is to upperbound |P1 − P ∗1 |.

We note γ1, ..., γq the q queries and δ1, ..., δq the q answers. If the ith query is
direct, we have δi = O(γi), if the ith query is inverse, we have δi = O−1(γi).

If you know δ1, ..., δq, you have uniquely de�ned the q inputs X1, ..., Xq and the
q outputs Y1, ..., Yq.

For all δ = (δ1, ..., δq), we note X(δ) = (X1, ..., Xq) and
Y (δ) = (Y1, ..., Yq).

We note Σ = {δ such that A outputs 1}. For a �xed δ, a random permutation
send γ on δ with probability

1

22nq(1− q(q−1)
2·22n )

.

Indeed, there is q outputs of 2n bits so there is 22nq di�erent outputs. We need
them to be pairwise distinct and the probability that it exists i < j such that

Yi = Yj is
q(q−1)
2·22n because there is q(q−1)

2 possibilities for the choices of i and j
and a probability 1

22n that these two queries are equal.

so

P ∗1 =
|Σ|

22nq(1− q(q−1)
2·22n )

.



We note C = {(f1, ..., fr) such that A outsputs 1 if O = Ψ(f1, ..., fr)}. We have

P1 =
|C|
|Fn|r

.

If we note, for all δ ∈ Σ, Cδ the set of round functions f1, ..., fr such that
Ψ(f1, ..., fr) sends X(δ) on Y (δ) then

P1 =
∑
δ∈Σ

|Cδ|
|Fn|r

=
∑
δ∈Σ

H(X(δ), Y (δ))

|Fn|r
.

Now, remember the hypothesis :

H(X(δ), Y (δ))

|Fn|r
≥ (1− α)× 1

22nq
.

So

P1 ≥
|Σ|(1− α)

22nq
.

So

P1 ≥ P ∗1 (1− α)(1−
q(q − 1)

2 · 22n
)

⇒ P1 − P ∗1 ≥ −α−
q(q − 1)

2 · 22n
.

Doing all the same reasoning for the 0 output, we have

(1− P1)− (1− P ∗1 ) ≥ −α−
q(q − 1)

2 · 22n

which is equivalent to

P1 − P ∗1 ≤ α+
q(q − 1)

2 · 22n
.

This proves

|P1 − P ∗1 | ≤ α+
q(q − 1)

2 · 22n
.

ut

B Proof of the Coe�cients H Theorem second variant
([12], 1991, p.38)

Consider an attacker A who can query q times an oracle O. The oracle O acts
all the time like a Feistel scheme Ψr or like a random permutation. The attacker
can make direct queries or inverse queries. After q queries, the attacker outputs
1 or 0.



We note
P1 = Probability that A outputs 1 if O is Ψr

and

P ∗1 = Probability that A outputs 1 if O is a random permutation.

Our goal is to upperbound |P1 − P ∗1 |.

We note γ1, ..., γq the q queries and δ1, ..., δq the q answers. If the ith query is
direct, we have δi = O(γi), if the ith query is inverse, we have δi = O−1(γi).

If you know δ1, ..., δq, you have uniquely de�ned the q inputs X1, ..., Xq and the
q outputs Y1, ..., Yq.

For all δ = (δ1, ..., δq), we note X(δ) = (X1, ..., Xq) and
Y (δ) = (Y1, ..., Yq).

We note Σ = {δ such that A outputs 1}. For a �xed δ, a random permutation
send γ on δ with probability

1

22n(22n − 1)× · · · × (22n − q + 1)

so

P ∗1 =
|Σ|

22n(22n − 1)× · · · × (22n − q + 1)
.

We note C = {(f1, ..., fr) such that A outsputs 1 if O = Ψ(f1, ..., fr)}. We have

P1 =
|C|
|Fn|r

.

If we note, for all δ ∈ Σ, Cδ the set of round functions f1, ..., fr such that
Ψ(f1, ..., fr) sends X(δ) on Y (δ) then

P1 =
∑
δ∈Σ

|Cδ|
|Fn|r

=
∑
δ∈Σ

H(X(δ), Y (δ))

|Fn|r
.

Now, remember the hypothesis :

H(X(δ), Y (δ))

|Fn|r
≥ (1− α)× 1

22n(22n − 1)× · · · × (22n − q + 1)
.

So

P1 ≥
|Σ|(1− α)

22n(22n − 1)× · · · × (22n − q + 1)
.

So
P1 ≥ P ∗1 (1− α)



⇒ P1 − P ∗1 ≥ −α.

Doing all the same reasoning for the 0 output, we have

(1− P1)− (1− P ∗1 ) ≥ −α

which is equivalent to

P1 − P ∗1 ≤ α.

This proves

|P1 − P ∗1 | ≤ α.

ut

C Proof of the variant of the H Coe�cients Composition
Theorem (2012)

We �x X1, ..., Xq pairwise distinct and Y1, ..., Yq pairwise distinct. We have

HF◦G(X,Y ) =
∑
T

HG(X,T )×HF (T, Y ), (15)

the sum being taken over the T1, ..., Tq pairwise distinct. We notice that we have:∑
T

1 = Jq (16)

∑
T

HF (T, Y ) = |F | (17)

∑
T

HG(X,T ) = |G| (18)

We compute the right part of equality (15) by introducing the values mF =

(1− αF )× |F |Jq and mG = (1− αG)× |G|Jq :∑
T

HG(X,T )×HF (T, Y )

=
∑
T

((HG(X,T )−mG) +mG)× ((HF (T, Y )−mF ) +mF )

=
∑
T

(HG(X,T )−mG)× (HF (T, Y )−mF )

+
∑
T

mG × (HF (T, Y )−mF ) +
∑
T

(HG(X,T )−mG)×mF +
∑
T

mGmF .



By hypothesis, the �rst term is positive. We now compute the second term:∑
T

mG × (HF (T, Y )−mF )

= (1− αG)×
|G|
Jq

(∑
T

HF (T, Y )−
∑
T

(1− αF )×
|F |
Jq

)

≥ (1− αG)×
|G|
Jq

(
|F | − (1− αF )|F |

(∑
T

1

Jq

))
from (17)

≥ |G| × |F |
Jq

× (1− αG)αF from (16)

The third term is computed the same way. The fourth term gives:∑
T

mGmF =
|G||F |
Jq

× (1− αG)(1− αF ).

Summing the four terms, we have:∑
T

HG(X,T )×HF (T, Y ) ≥ |G||F |
Jq

× (1− αFαG).

ut

Theorem:
If it exists αF and αG in [0; 1] such that, for all X1, ..., X`+1 pairwise distinct
and for all Y1, ..., Y`+1 pairwise distinct:

HF
`+1(X,Y ) ≥ (1− αF )×

HF
` (X,Y )

22n − `
and HG

`+1(X,Y ) ≥ (1− αG)×
HG
` (X,Y )

22n − `
,

then, for allX1, ..., X`+1 pairwise distinct and for all Y1, ..., Y`+1 pairwise distinct:

HF◦G
`+1 (X,Y ) ≥ (1− αFαG)×

HF◦G
` (X,Y )

22n − `
.

Proof: We �x X1, ..., X`+1 pairwise distinct and Y1, ..., Y`+1 pairwise distinct. We
have

HF◦G
`+1 (X,Y ) =

∑
T1,...,Tl,T`+1

HG
`+1(X,T )×HF

`+1(T, Y )

and
HF◦G
l (X,Y ) =

∑
T1,...,Tl

HG
l (X,T )×HF

l (T, Y )

with T1, ..., T`+1 pairwise distinct. so we prove the theorem if we prove that, for
every T1, ..., Tl pairwise distinct, we have∑

T`+1

HG
`+1(X,T )×HF

`+1(T, Y ) ≥ (1− αFαG)
HG
` (X,T )×HF

` (T, Y )

22n − `



with the sum taken over the choices of T`+1 such that T1, ..., T`+1 are pairwise
distinct.

We compute the left part of this inequality by introducing the values mF =

(1− αF )× HF
` (T,Y )
22n−` and mG = (1− αG)× HG

` (X,T )
22n−` :∑

T`+1

HG
`+1(X,T )×HF

`+1(T, Y )

=
∑
T`+1

((HG
`+1(X,T )−mG) +mG)× ((HF

`+1(T, Y )−mF ) +mF )

=
∑
T`+1

(HG
`+1(X,T )−mG)× (HF

`+1(T, Y )−mF )

+
∑
T`+1

mG × (HF
`+1(T, Y )−mF ) +

∑
T`+1

(HG
`+1(X,T )−mG)×mF +

∑
T`+1

mGmF .

By hypothesis, the �rst term is positive. We now compute the second term:∑
T`+1

mG × (HF
`+1(T, Y )−mF )

= (1− αG)×
HG
` (X,T )

22n − `

(∑
T`+1

HF
`+1(T, Y )−

∑
T`+1

(1− αF )×
HF
` (X,T )

22n − `

)

≥ (1− αG)×
HG
` (X,T )

22n − `

(
HF
` (T, Y )− (1− αF )HF

` (T, Y )
(∑
T`+1

1

22n − `

))

≥ HG
` (X,T )H

F
` (T, Y )

22n − `

(
(1− αG)− (1− αG)(1− αF )

(∑
T`+1

1

22n − `

))

The third term is computed the same way. The fourth term gives:

∑
T`+1

mGmF =
HG
` (X,T )H

F
` (T, Y )

22n − `

(
(1− αG)(1− αF )

(∑
T`+1

1

22n − `

))
.

Summing the four terms, we have:

∑
T`+1

HG
`+1(X,T )×HF

`+1(T, Y ) ≥ HG
` (X,T )H

F
` (T, Y )

22n − `

(
(1−αG)+(1−αF )−(1−αG)(1−αF )

(∑
T`+1

1

22n − `

))
.

There is at most 22n−` choices for T`+1 because T1, ..., T`+1 are pairwise distinct.
So

(1−αG)+(1−αF )−(1−αG)(1−αF )
(∑
T`+1

1

22n − `

)
≥ (1−αG)+(1−αF )−(1−αG)(1−αF ) = 1−αGαF ,

which ends the proof. ut


