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Abstract: We combine the H Coe�cients technique and the Coupling technique
to improve security bounds of balanced Feistel schemes. For q queries and round
functions of n−bits to n−bits, we �nd that the CCA Security of 4 + 2r rounds

Feistel schemes is upperbounded by 2q
r+3

(
4q
2n

) r+1
2

+ q(q−1)
2·22n . This divides by

roughly 1.5 the number of needed rounds for a given CCA Security, compared
to the previous results of Hoang and Rogaway [?] who found an advantage of
2q
r+1

(
4q
2n

)r
for 6r− 1 rounds Feistel schemes . Independently of this result, using

a new theorem on H Coe�cients, we compose 6 rounds Feistel schemes to up-

perbound the CCA security of 6r rounds Feistel schemes:
(
8q
2n

)r
+ q(q−1)

2·22n when

q ≤ 2n

67n .
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1 Introduction and Previous Results

1.1 Introduction

Since the seminal article of Luby and Racko� [?] in 1989, security proofs of
Feistel schemes have been extensively studied ([?], [?], [?], [?], [?], [?], [?]). It is
particularly interesting and di�cult to obtain such proofs beyond the birthday
bound and ideally to the bound of "the information theory". After this bound,
we can no longer hope to prove security against an attacker with an unbounded
power of computation. Two techniques have been developed to give beyond the
birthday bound proofs. The �rst one, the Coupling technique, gives very good
results when we study schemes with many rounds (Maurer [?], Hoang/Rogaway
[?]). The second one, the H Coe�cients technique, gives better results when
the number of rounds is relatively small (Patarin [?] [?] [?]). Nevertheless, this
technique leads sometimes to complex computations. In this article, we use the
Coupling ideas to improve the H Coe�cients technique in two di�erent ways.
First, we use intertwined conditions inspired by the Coupling technique to count
H Coe�cients and we �nd that the CCA Security of 4+2r rounds Feistel schemes
veri�es:

AdvccaΨ4+2r (q) ≤
2q

r + 3

(
4q

2n

) r+1
2

+
q(q − 1)

2 · 22n
.



Then, we introduce a new theorem: the "H Coe�cients Composition Theorem".
We use this theorem to study the security of 6r rounds Feistel schemes using
previous results of Patarin [?] for 6 rounds Feistel schemes. For q ≤ 2n

67n , the
CCA Security of 6r rounds Feistel schemes veri�es

AdvccaΨ6r (q) ≤
(
8q

2n

)r
+
q(q − 1)

2 · 22n
.

These methods can also be applied to many other schemes such as unbalanced
Feistel schemes ([?]), alternating Feistel schemes ([?], [?]), type − 1, type − 2
and type− 3 Feistel schemes ([?]), Benes schemes ([?]), MISTY's schemes ([?]),
Feistel's with bijective round functions or format-preserving encryption ([?],[?])
which are beyond the scope of this work.

In a �rst section, we will present the H Coe�cients technique (including proofs).
We will use this technique in Section 2 and 3. In Section 2, we introduce our
new technique, using intertwined conditions. This technique is inspired by the
Coupling technique and the work of Hoang-Rogaway [?]. This way, we prove that
we get the same CCA security than the previous best known bound of [?] using
roughly 1.5 times fewer rounds. In Section 3, we introduce a new theorem on
H Coe�cients and apply it to prove CCA security of 6r rounds Feistel schemes
when the number of queries is not too big.

1.2 Notations

Let n be an integer, Fn be the set of all functions from {0; 1}n to {0; 1}n and Bn
the set of all permutations from {0; 1}n. Let f1 be a function of Fn. Let L,R be
two n−bit strings in {0; 1}n. Let Ψ(f1) denotes the permutation of B2n de�ned
by:

Ψf ([L,R]) = [R,L⊕ f(R)].

More generally, if f1, ..., fr are r functions of Fn, let Ψ
r(f1, ..., fr) denotes the

permutation of B2n de�ned by:

Ψr(f1, ..., fr) = Ψ(fr) ◦ · · · ◦ Ψ(f1).

This permutation is called a balanced Feistel scheme with r rounds or, in short,
Ψr. When the functions f1, ..., fr are randomly chosen in F rn , Ψ

r is called a
"generic" Feistel scheme with r rounds, or a Luby-Racko� construction.

Let q be the number of queries. For a given Ψr, let X1, ..., Xq denote the q inputs
and Y1, ..., Yq the q outputs. For all i ∈ [1, q] and k ∈ [0; r], let Xk

i denote the
�rst n bits of the outputs of Xi after k rounds and Xr+1

i the last n bits of Yi.
This means, for example, that Xi = [X0

i , X
1
i ] and Yi = [Xr

i , X
r+1
i ].

To simplify computations, we will note Jq = 22n× (22n−1)×· · ·× (22n− q+1).



1.3 The coe�cients H technique

In this article, we will prove security bounds using the general framework given
by the "H Coe�cients technique" of Patarin [?][?].

Theorem 1 (H Coe�cients Theorem, 1991). Let F be a subset of B2n

indexed by a set of keys K: F = {fk, k ∈ K}. If there exists a real number α > 0
such that, for all Y1, ..., Yq ∈ {0; 1}2n pairwise distinct and for all X1, ..., Xq ∈
{0; 1}2n pairwise distinct, the number H(X,Y ) of keys k, such that, for all i, fk
sends Xi to Yi, veri�es:

H(X,Y ) ≥ (1− α) |K|
22nq

,

Then the advantage of any CCA attacker to distinguish between permutations fk
of F , with k ∈R K, and random permutations veri�es:

AdvccaF (q) ≤ α+
q(q − 1)

2 · 22n
.

Proof: See Appendix ??

There are many variants of this H Coe�cients Theorem (cf [?][?]). For example
we have:

Theorem 2 (H Coe�cients Theorem, 1991). Let F be a subset of B2n

indexed by a set of keys K: F = {fk, k ∈ K}. If there exists a real number α > 0
such that, for all Y1, ..., Yq ∈ {0; 1}2n pairwise distinct and for all X1, ..., Xq ∈
{0; 1}2n pairwise distinct, the number H(X,Y ) of keys k, such that, for all i, fk
sends Xi to Yi, veri�es:

H(X,Y ) ≥ (1− α) |K|
Jq

,

Then the advantage of any CCA attacker to distinguish between permutations fk
of F , with k ∈R K, and random permutations veri�es:

AdvccaF (q) ≤ α.

Proof: See Appendix ??

In Section ??, we will prove a new theorem on these H coe�cients.



2 Proving Security of 4 + 2r rounds Feistel Schemes with
intertwine conditions

2.1 The CCA Security of Ψ4+2r

We will use the theorem of Patarin we just introduced in the previous Section ??
to �nd the CCA security of Ψ4+2r for any positive integer r. We �x q inputs X`

and q outputs Y` and our goal is to count the number of (f1, f2, ..., f4+2r) ∈ F 4+2r
n

such that Ψ(f1, f2, ..., f4+2r)(X`) = Y` for all ` ≤ q.

It means that we have to �nd the (f1, ..., f4+2r) such that, for all ` ≤ q, it exists
X2
` , ..., X

2+2r
` verifying the 4 + 2r equations:



X2
` = X0

` ⊕ f1(X1
` )

X3
` = X1

` ⊕ f2(X2
` )

...

Xi+1
` = Xi−1

` ⊕ fi(Xi
`)

...
X5+2r
` = X3+2r

` ⊕ f4+2r(X
4+2r
` )

For every ` ≤ q and any f1, ..., f4+2r, we de�ne
−→
X 0
` , ...,

−→
X 5+2r
` by induction :

−→
X 0
` = X0

` ,
−→
X 1
` = X1

` and ∀i ∈ {2, ..., 5 + 2r}:

−→
X i
` =
−→
X i−2
` ⊕ fi−1(

−→
X i−1
` ).

More intuitively, we compute
−→
X i
` "from the top":

−→
X 0
` and

−→
X 1
` are already de�ned,

then f1 will de�ne
−→
X 2
` , f2 will de�ne

−→
X 3
` and so on to

−→
X i
`. We de�ned

−→
X i
` such

that the �rst i− 1 equations are trivially veri�ed.

In a symmetric way, we de�ne
←−
X 5+2r
` , ...,

←−
X 0
` by induction :

←−
X 5+2r
` = X5+2r

` ,
←−
X 4+2r
` =

X4+2r
` and ∀i ∈ {0, ..., 3 + 2r}:

←−
X i
` =
←−
X i+2
` ⊕ fi+1(

←−
X i+1
` ).

For any k ∈ {1, ..., r+1}, considering internal variables
−→
X 0
` , ...,

−→
X 2k
` ,
←−
X 2k+1
` , ...,

←−
X 5+2r
` ,

we see that, by construction, the �rst 2k − 1 equations are veri�ed and the last
(4 + 2r)− (2k + 1) equations are veri�ed.

We have:

−→
X 1
` −→

f1
· · · −→

f2k−1

−→
X 2k
`

?←→
←−
X 2k+1
` ←−

f2k+2

· · · ←−
f4+2r

←−
X 4+2r
`



For any f1, ..., f4+2r, any ` and any k ∈ {1, ..., r+1}, we de�ned internal variables
such that the �rst 2k − 1 equations are veri�ed and the last (4 + 2r)− (2k + 1)
equations are veri�ed. We only need to verify two more equations:

f2k(
−→
X 2k
` ) =

−→
X 2k−1
` ⊕

←−
X 2k+1
`

f2k+1(
←−
X 2k+1
` ) =

−→
X 2k
` ⊕

←−
X 2k+2
`

So far, we made no restrictions on the round functions fi. Now, we need f2k and
f2k+1 to verify this two equations. We could just take the (f1, ..., f4+2r) such
that the two equations are veri�ed for the `-th query. The problem is that, if−→
X 2k
` collides with a previous query (ie

−→
X 2k
` =

−→
X 2k
i for some i < `), the functions

f2k would already be de�ned in
−→
X 2k
i and we are not sure we can always choose

functions f2k verifying the �rst equation. We have the same problem for f2k+1.

This is why we need to choose the functions f1, ..., f2k−1, f2k+2, ..., f4+2r such

that
−→
X 2k
` and

←−
X 2k+1
` don't collide. We will make this selection for every query.

After that, we will connect
−→
X 2k
` to

←−
X 2k+1
` for each query. Note that k depends

of `, we will not always connect in the same place.

We explained our strategy, we now turn to details.

For any ` and any k ∈ {1, ..., r + 1}, we note :
- Col2k` the event "

−→
X 2k
` =

−→
X 2k
i for some i < `".

- Col2k+1
` the event "

←−
X 2k+1
` =

←−
X 2k+1
i for some i < `".

We want to select f1, ..., f4+2r such that, for each query, it is possible to �nd k
such that Col2k` and Col2k+1

` are both wrong. We note:

C` =

r+1⋃
k=1

(
¬Col2k` ∩ ¬Col2k+1

`

)
,

this is the event that the query ` is "connectable" : we can �nd k such that−→
X 2k
` and

←−
X 2k+1
` don't collide so we can select f2k and f2k+1 to verify the two

"connection" equations.

We want all the queries connectable so we want to compute the probability of

q⋂
`=1

C`.



We have:

P

(⋂q
`=1 C`

)
= 1− P

(⋃q
`=1 ¬C`

)

≥ 1−
q∑
`=1

P

(
¬C`

) (1)

Lemma 1. For every ` ∈ {1, ..., q}, we have:

P

(
¬C`

)
≤
(
4(`− 1)

2n

) r+1
2

.

Proof: Let ` ∈ {1, ..., q}, we have:

¬C` =
r+1⋂
k=1

(
Col2k` ∪ Col2k+1

`

)

=
⋃

α∈{0;1}r+1

r+1⋂
k=1

Col
2k+α(k)
`

(2)

We noted α(k) the k−th bit of α. This equality implies that:

P (¬C`) ≤
∑

α∈{0;1}r+1

P

( r+1⋂
k=1

Col
2k+α(k)
`

)

≤
∑

α∈{0;1}r+1

min

(
P

( ⋂
α(k)=0

Col2k`

)
, P

( ⋂
α(k)=1

Col2k+1
`

)) (3)

It is easy to see that, for any k, the event Col2k` depends of the functions
f1, ..., f2k−1. For any �xed f1, ..., f2k−2, the values of X

2k−2
` and X2k−1

` are �xed
so P (Col2k` ) is the probability that it exists i < ` such that f2k−1 veri�es :

f2k−1(X
2k−1
i )⊕ f2k−1(X2k−1

` ) = X2k−2
i ⊕X2k−2

` .

We now use the reasoning of lemma 3 of [?]. We see that ifX2k−1
i = X2k−1

` then it

is impossible to have f2k−1(X
2k−1
i )⊕f2k−1(X2k−1

` ) = X2k−2
i ⊕X2k−2

` because it

would imply thatX2k−2
i = X2k−2

` which is impossible since the queries have been

chosen pairwise distinct. If X2k−1
i 6= X2k−1

` then the equation f2k−1(X
2k−1
i ) ⊕

f2k−1(X
2k−1
` ) = X2k−2

i ⊕ X2k−2
` occurs with probability 2−n because f2k−1 is

uniformly random. We see that, for �xed f1, ..., f2k−2, the event Col2k` occurs
with probability less or equal to `−1

2n . This implies that

P

( ⋂
α(k)=0

Col2k`

)
≤
(
`− 1

2n

)|{k,α(k)=0}|

.



We use the same reasoning for Col2k+1
` and, using ??, we have :

P (¬C`) ≤
∑

α∈{0;1}r+1

min

((
`− 1

2n

)|{k,α(k)=0}|

,

(
`− 1

2n

)|{k,α(k)=1}|)

≤
∑

α∈{0;1}r+1

(
`− 1

2n

) r+1
2

≤
(
4(`− 1)

2n

) r+1
2

(4)

Using the inequation ?? and the previous Lemma, we have:

P

( q⋂
`=1

C`

)
≥ 1−

q∑
`=1

(
4(`− 1)

2n

) r+1
2

≥ 1−
(

4

2n

) r+1
2

×
q−1∑
`=0

`
r+1
2

≥ 1−
(

4

2n

) r+1
2

×
∫ q

0

`
r+1
2 d`

≥ 1−
(

4

2n

) r+1
2

× q
r+1
2 +1

r+1
2 + 1

≥ 1− 2q

r + 3

(
4q

2n

) r+1
2

.

(5)

Now that we compute the probability of making all queries connectable, we need
to actually connect them. For every `, let note D` the event "Ψ(f1, ..., f4+2r)
sends X` to Y`". We have:

P

(
q⋂
`=1

D`

⋂ q⋂
`=1

C`

)
= P

(
q⋂
`=1

C`

)
× P

(
q⋂
`=1

D`|
q⋂
`=1

C`

)

= P

(
q⋂
`=1

C`

)
×

q∏
`=1

P

(
D`|

q⋂
`=1

C`
⋂⋂

i<`

Di

) (6)

Lemma 2. For every ` ∈ {1, ..., q}, we have:

P

(
D`|

q⋂
`=1

C`
⋂⋂

i<`

Di

)
≥ 1

22n
.



Proof: If C` is true, it exists k ∈ {1, ..., r + 1} such that
−→
X 2k
` and

←−
X 2k+1
` don't

collide. Since the round functions are independent and uniformly random, the
following equations happen with probability 1

22n :
f2k(
−→
X 2k
` ) =

−→
X 2k−1
` ⊕

←−
X 2k+1
`

f2k+1(
←−
X 2k+1
` ) =

−→
X 2k
` ⊕

←−
X 2k+2
`

With probability 1
22n , we have connected X` to Y`. Indeed, we have choosen the

�rst 2k − 1 internal variables to trivially verify the �rst 2k − 1 equations. We
then choose the last (4 + 2r)− (2k + 1) internal variables to trivially verify the
last (4 + 2r)− (2k+ 1) equations. As we just proved, the last two equations are
true with probability 1

22n so all needed equations are veri�ed and D` is true. ut

From the previous lemmma, the equation ?? and the inequation ??, we have:

P

(
q⋂
`=1

D`

⋂ q⋂
`=1

C`

)
≥
(
1− 2q

r + 3

(
4q

2n

) r+1
2
)
× 1

22nq
. (7)

Remember that we de�nedH the number of (f1, ..., f4+2r) such that Ψ(f1, ..., f4+2r)(X`) =
Y` for every `. It implies that

P

(
q⋂
`=1

D`

⋂ q⋂
`=1

C`

)
≤ H

|Fn|4+2r
.

This two inequations imply that:

H ≥
(
1− 2q

r + 3

(
4q

2n

) r+1
2
)
× |Fn|

4+2r

22nq
. (8)

Using the Theorem ?? of Patarin, we have:

AdvccaΨ4+2r (q) ≤
2q

r + 3

(
4q

2n

) r+1
2

+
q(q − 1)

2 · 22n
.

2.2 Results

We recall the bound of Hoang-Rogaway and our bound :

Hoang-Rogaway: AdvccaΨ6r−1(q) ≤
2q

r + 1

(
4q

2n

)r
.

Our bound: AdvccaΨ4+2r (q) ≤
2q

r + 3

(
4q

2n

) r+1
2

+
q(q − 1)

2 · 22n
.



In the following table, we give, for various values of n and number of rounds,
the log2 of the number of queries giving an advantage of 1

2 using our bound and
the previous best known bound from [?]. In the last column, we give the ratio of
the number of queries giving an advantage of 1

2 with our bound divided by the
number of queries giving the same advantage with the previous bound.

Table 1. log2 of the number of queries to get an advantage of 1/2

n rounds Our bound HR's bound Ratio

32 18 24.66 23.35 2.5

64 18 50.26 47.67 6.0

128 18 101.46 96.31 35.5

32 48 28.92 28.11 1.8

64 48 58.36 56.62 3.4

128 48 117.24 113.63 12.2

3 Proving Security of Feistel Schemes with a new
Theorem on H Coe�cients

3.1 The H Coe�cients Composition Theorem

We �x q inputs X1, ..., Xq and q outputs Y1, ..., Yq. Let F and G be two subsets
of B2n and we note F ◦G the set {f ◦ g, f ∈ F, g ∈ G}. For any subset F of B2n,
we note HF (X,Y ) the number of functions in F sending Xi to Yi for all i ≤ q.

Theorem 3 (2012). If it exists αF and αG in [0; 1] such that, for all X1, ..., Xq

pairwise distinct and for all Y1, ..., Yq pairwise distinct:

HF (X,Y ) ≥ (1− αF )×
|F |
22nq

and HG(X,Y ) ≥ (1− αG)×
|G|
22nq

,

then, for all X1, ..., Xq pairwise distinct and for all Y1, ..., Yq pairwise distinct:

HF◦G(X,Y ) ≥ (1− αFαG)×
|F | × |G|

22nq
.

For any X1, ..., Xq pairwise distinct and Y1, ..., Yq pairwise distinct. We have

HF◦G(X,Y ) =
∑
T

HG(X,T )×HF (T, Y ), (9)

the sum being taken over the T1, ..., Tq pairwise distinct. We notice that we have:∑
T

1 = Jq ≤ 22nq (10)



∑
T

HF (T, Y ) = |F | (11)

∑
T

HG(X,T ) = |G| (12)

We compute the right part of equality (??) by introducing the values mF =

(1− αF )× |F |
22nq and mG = (1− αG)× |G|

22nq :∑
T

HG(X,T )×HF (T, Y )

=
∑
T

((HG(X,T )−mG) +mG)× ((HF (T, Y )−mF ) +mF )

=
∑
T

(HG(X,T )−mG)× (HF (T, Y )−mF )

+
∑
T

mG × (HF (T, Y )−mF ) +
∑
T

(HG(X,T )−mG)×mF +
∑
T

mGmF .

By hypothesis, the �rst term is positive. We now compute the second term:∑
T

mG × (HF (T, Y )−mF )

= (1− αG)×
|G|
22nq

(∑
T

HF (T, Y )−
∑
T

(1− αF )×
|F |
22nq

)

≥ (1− αG)×
|G|
22nq

(
|F | − (1− αF )|F |

(∑
T

1

22nq

))
from (??)

≥ |G| × |F |
22nq

(
(1− αG)− (1− αG)(1− αF )

(∑
T

1

22nq

))

The third term is computed the same way. The fourth term gives:

∑
T

mGmF =
|G||F |
22nq

(
(1− αG)(1− αF )

(∑
T

1

22nq

))
.

Summing the four terms, we have:

∑
T

HG(X,T )×HF (T, Y ) ≥ |G||F |
22nq

(
(1−αG)+(1−αF )−(1−αG)(1−αF )

(∑
T

1

22nq

))
.

There is at most 22nq choices for T (cf (??)) so

(1−αG)+(1−αF )−(1−αG)(1−αF )
(∑

T

1

22nq

)
≥ (1−αG)+(1−αF )−(1−αG)(1−αF ) = 1−αGαF ,

which ends the proof. ut



We will use this theorem in the next section to study 6r rounds Feistel scheme.

The next theorem is a variant of the previous theorem. This variant is interesting
to understand the geometric gain we obtain by composing Feistel schemes.

We recall that Jq = 22n × (22n − 1)× · · · × (22n − q + 1).

Theorem 4 (2012). If it exists αF and αG in [0; 1] such that, for all X1, ..., Xq

pairwise distinct and for all Y1, ..., Yq pairwise distinct:

HF (X,Y ) ≥ (1− αF )×
|F |
Jq

and HG(X,Y ) ≥ (1− αG)×
|G|
Jq
,

then, for all X1, ..., Xq pairwise distinct and for all Y1, ..., Yq pairwise distinct:

HF◦G(X,Y ) ≥ (1− αFαG)×
|F | × |G|

Jq
.

Proof: See Appendix ??

From this Theorem ?? and Theorem ??, we see that the advantage to distinguish
functions f ◦ g is less or equal to αFαG when the advantage to distinguish
functions f is αF and the advantage to distinguish functions g is αG. We obtain
a geometric gain when we compose functions.

3.2 Proving Security with mirror theory and the Global H theorem

In [?] p.8, J. Patarin proved this theorem:

Theorem 5 (2010). For Ψ6, for all X1, ..., Xq ∈ {0; 1}2n pairwise distinct and

for all Y1, ..., Yq ∈ {0; 1}2n pairwise distinct:

H(X,Y ) ≥
(
1− 8q

2n

)
× |Fn|

6

22nq
if q ≤ 2n

67n
.

Therefore, combining this theorem and using our new "Global H Theorem" of
Section ??, we obtain:

Theorem 6 (2012). For any r ≥ 1 and any q ≤ 2n

67n :

AdvccaΨ6r (q) ≤
(
8q

2n

)r
+
q(q − 1)

2 · 22n
.

This Theorem ?? is, so far, the best security bound known for Feistel schemes
when q ≤ 2n

67n . However, Patarin's proof of Theorem ?? is di�cult (cf [?], [?]).
Nevertheless, some variants of Theorem ?? are much easier to prove: for example,



instead of α = 8q
2n we can use α = q3

22n , α = q4

23n or α = q5

24n (see [?], [?] for
more details). Then, from each of these variants, our Global H Theorem will
immediately give a geometrical improvement on the advantage when we multiply
the number of rounds.

4 Results

This new bound is very good when we can use it (we need q ≤ 2n

67n ). In the

following table, we give the log2 of the advantage for q = 2n

67n with our bound
and with the previous best known bound of [?].

Table 2. log2 of the advantage for q = 2n

67n
with our bound and with the previous best

known bound of [?].

n rounds log2(q) Our advantage HR's advantage

32 18 20.9 −24.2 −8.8

64 18 51.9 −27.2 0

128 18 114.9 −30.2 0

32 48 20.9 −64.5 −55.3

64 48 51.9 −72.5 −32.5

128 48 114.9 −80.5 0

5 Conclusion

In this paper, we combine ideas from two di�erent proof techniques: the Cou-
pling technique and the H Coe�cients technique. We introduce a new Theorem:
the "H Coe�cients Composition Theorem". From this new theorem, we are able
to obtain security proofs that combine the e�ciency of the H Coe�cients for
small rounds Feistel schemes and the geometric gain of the Coupling technique.
We apply these results only on the classical balanced generic Feistel schemes
but the technique can also be applied to many di�erent schemes like unbalanced
Feistel schemes or MISTY schemes for example. Independently of that, we have
also combined ideas of the Coupling technique and the H Coe�cients technique
to study intertwined conditions. This new approach lead to signi�cant improve-
ments, we divide by roughly 1.5 the number of needed rounds to obtain a given
CCA security.



Appendices

A Proof of the Coe�cients H Theorem �rst variant ([?],
1991, p.38)

Consider an attacker A who can query q times an oracle O. The oracle O acts
all the time like a Feistel scheme Ψr or like a random permutation. The attacker
can make direct queries or inverse queries. After q queries, the attacker outputs
1 or 0.

We note

P1 = Probability that A outputs 1 if O is Ψr

and

P ∗1 = Probability that A outputs 1 if O is a random permutation.

Our goal is to upperbound |P1 − P ∗1 |.

We note γ1, ..., γq the q queries and δ1, ..., δq the q answers. If the ith query is
direct, we have δi = O(γi), if the ith query is inverse, we have δi = O−1(γi).

If you know δ1, ..., δq, you have uniquely de�ned the q inputs X1, ..., Xq and the
q outputs Y1, ..., Yq.

For all δ = (δ1, ..., δq), we note X(δ) = (X1, ..., Xq) and
Y (δ) = (Y1, ..., Yq).

We note Σ = {δ such that A outputs 1}. For a �xed δ, a random permutation
send γ on δ with probability

1

22nq(1− q(q−1)
2·22n )

.

Indeed, there is q outputs of 2n bits so there is 22nq di�erent outputs. We need
them to be pairwise distinct and the probability that it exists i < j such that

Yi = Yj is
q(q−1)
2·22n because there is q(q−1)

2 possibilities for the choices of i and j
and a probability 1

22n that these two queries are equal.

so

P ∗1 =
|Σ|

22nq(1− q(q−1)
2·22n )

.



We note C = {(f1, ..., fr) such that A outsputs 1 if O = Ψ(f1, ..., fr)}. We have

P1 =
|C|
|Fn|r

.

If we note, for all δ ∈ Σ, Cδ the set of round functions f1, ..., fr such that
Ψ(f1, ..., fr) sends X(δ) on Y (δ) then

P1 =
∑
δ∈Σ

|Cδ|
|Fn|r

=
∑
δ∈Σ

H(X(δ), Y (δ))

|Fn|r
.

Now, remember the hypothesis :

H(X(δ), Y (δ))

|Fn|r
≥ (1− α)× 1

22nq
.

So

P1 ≥
|Σ|(1− α)

22nq
.

So

P1 ≥ P ∗1 (1− α)(1−
q(q − 1)

2 · 22n
)

⇒ P1 − P ∗1 ≥ −α−
q(q − 1)

2 · 22n
.

Doing all the same reasoning for the 0 output, we have

(1− P1)− (1− P ∗1 ) ≥ −α−
q(q − 1)

2 · 22n

which is equivalent to

P1 − P ∗1 ≤ α+
q(q − 1)

2 · 22n
.

This proves

|P1 − P ∗1 | ≤ α+
q(q − 1)

2 · 22n
.

ut

B Proof of the Coe�cients H Theorem second variant
([?], 1991, p.38)

Consider an attacker A who can query q times an oracle O. The oracle O acts
all the time like a Feistel scheme Ψr or like a random permutation. The attacker
can make direct queries or inverse queries. After q queries, the attacker outputs
1 or 0.



We note
P1 = Probability that A outputs 1 if O is Ψr

and

P ∗1 = Probability that A outputs 1 if O is a random permutation.

Our goal is to upperbound |P1 − P ∗1 |.

We note γ1, ..., γq the q queries and δ1, ..., δq the q answers. If the ith query is
direct, we have δi = O(γi), if the ith query is inverse, we have δi = O−1(γi).

If you know δ1, ..., δq, you have uniquely de�ned the q inputs X1, ..., Xq and the
q outputs Y1, ..., Yq.

For all δ = (δ1, ..., δq), we note X(δ) = (X1, ..., Xq) and
Y (δ) = (Y1, ..., Yq).

We note Σ = {δ such that A outputs 1}. For a �xed δ, a random permutation
send γ on δ with probability

1

22n(22n − 1)× · · · × (22n − q + 1)

so

P ∗1 =
|Σ|

22n(22n − 1)× · · · × (22n − q + 1)
.

We note C = {(f1, ..., fr) such that A outsputs 1 if O = Ψ(f1, ..., fr)}. We have

P1 =
|C|
|Fn|r

.

If we note, for all δ ∈ Σ, Cδ the set of round functions f1, ..., fr such that
Ψ(f1, ..., fr) sends X(δ) on Y (δ) then

P1 =
∑
δ∈Σ

|Cδ|
|Fn|r

=
∑
δ∈Σ

H(X(δ), Y (δ))

|Fn|r
.

Now, remember the hypothesis :

H(X(δ), Y (δ))

|Fn|r
≥ (1− α)× 1

22n(22n − 1)× · · · × (22n − q + 1)
.

So

P1 ≥
|Σ|(1− α)

22n(22n − 1)× · · · × (22n − q + 1)
.

So
P1 ≥ P ∗1 (1− α)



⇒ P1 − P ∗1 ≥ −α.

Doing all the same reasoning for the 0 output, we have

(1− P1)− (1− P ∗1 ) ≥ −α

which is equivalent to

P1 − P ∗1 ≤ α.

This proves

|P1 − P ∗1 | ≤ α.

ut

C Proof of the variant of the H Coe�cients Composition
Theorem (2012)

We �x X1, ..., Xq pairwise distinct and Y1, ..., Yq pairwise distinct. We have

HF◦G(X,Y ) =
∑
T

HG(X,T )×HF (T, Y ), (13)

the sum being taken over the T1, ..., Tq pairwise distinct. We notice that we have:∑
T

1 = Jq (14)

∑
T

HF (T, Y ) = |F | (15)

∑
T

HG(X,T ) = |G| (16)

We compute the right part of equality (??) by introducing the values mF =

(1− αF )× |F |Jq and mG = (1− αG)× |G|Jq :∑
T

HG(X,T )×HF (T, Y )

=
∑
T

((HG(X,T )−mG) +mG)× ((HF (T, Y )−mF ) +mF )

=
∑
T

(HG(X,T )−mG)× (HF (T, Y )−mF )

+
∑
T

mG × (HF (T, Y )−mF ) +
∑
T

(HG(X,T )−mG)×mF +
∑
T

mGmF .



By hypothesis, the �rst term is positive. We now compute the second term:∑
T

mG × (HF (T, Y )−mF )

= (1− αG)×
|G|
Jq

(∑
T

HF (T, Y )−
∑
T

(1− αF )×
|F |
Jq

)

≥ (1− αG)×
|G|
Jq

(
|F | − (1− αF )|F |

(∑
T

1

Jq

))
from (??)

≥ |G| × |F |
Jq

× (1− αG)αF from (??)

The third term is computed the same way. The fourth term gives:∑
T

mGmF =
|G||F |
Jq

× (1− αG)(1− αF ).

Summing the four terms, we have:∑
T

HG(X,T )×HF (T, Y ) ≥ |G||F |
Jq

× (1− αFαG).

ut

Theorem:
If it exists αF and αG in [0; 1] such that, for all X1, ..., X`+1 pairwise distinct
and for all Y1, ..., Y`+1 pairwise distinct:

HF
`+1(X,Y ) ≥ (1− αF )×

HF
` (X,Y )

22n − `
and HG

`+1(X,Y ) ≥ (1− αG)×
HG
` (X,Y )

22n − `
,

then, for allX1, ..., X`+1 pairwise distinct and for all Y1, ..., Y`+1 pairwise distinct:

HF◦G
`+1 (X,Y ) ≥ (1− αFαG)×

HF◦G
` (X,Y )

22n − `
.

Proof: We �x X1, ..., X`+1 pairwise distinct and Y1, ..., Y`+1 pairwise distinct. We
have

HF◦G
`+1 (X,Y ) =

∑
T1,...,Tl,T`+1

HG
`+1(X,T )×HF

`+1(T, Y )

and
HF◦G
l (X,Y ) =

∑
T1,...,Tl

HG
l (X,T )×HF

l (T, Y )

with T1, ..., T`+1 pairwise distinct. so we prove the theorem if we prove that, for
every T1, ..., Tl pairwise distinct, we have∑

T`+1

HG
`+1(X,T )×HF

`+1(T, Y ) ≥ (1− αFαG)
HG
` (X,T )×HF

` (T, Y )

22n − `



with the sum taken over the choices of T`+1 such that T1, ..., T`+1 are pairwise
distinct.

We compute the left part of this inequality by introducing the values mF =

(1− αF )× HF
` (T,Y )
22n−` and mG = (1− αG)× HG

` (X,T )
22n−` :∑

T`+1

HG
`+1(X,T )×HF

`+1(T, Y )

=
∑
T`+1

((HG
`+1(X,T )−mG) +mG)× ((HF

`+1(T, Y )−mF ) +mF )

=
∑
T`+1

(HG
`+1(X,T )−mG)× (HF

`+1(T, Y )−mF )

+
∑
T`+1

mG × (HF
`+1(T, Y )−mF ) +

∑
T`+1

(HG
`+1(X,T )−mG)×mF +

∑
T`+1

mGmF .

By hypothesis, the �rst term is positive. We now compute the second term:∑
T`+1

mG × (HF
`+1(T, Y )−mF )

= (1− αG)×
HG
` (X,T )

22n − `

(∑
T`+1

HF
`+1(T, Y )−

∑
T`+1

(1− αF )×
HF
` (X,T )

22n − `

)

≥ (1− αG)×
HG
` (X,T )

22n − `

(
HF
` (T, Y )− (1− αF )HF

` (T, Y )
(∑
T`+1

1

22n − `

))

≥ HG
` (X,T )H

F
` (T, Y )

22n − `

(
(1− αG)− (1− αG)(1− αF )

(∑
T`+1

1

22n − `

))

The third term is computed the same way. The fourth term gives:

∑
T`+1

mGmF =
HG
` (X,T )H

F
` (T, Y )

22n − `

(
(1− αG)(1− αF )

(∑
T`+1

1

22n − `

))
.

Summing the four terms, we have:

∑
T`+1

HG
`+1(X,T )×HF

`+1(T, Y ) ≥ HG
` (X,T )H

F
` (T, Y )

22n − `

(
(1−αG)+(1−αF )−(1−αG)(1−αF )

(∑
T`+1

1

22n − `

))
.

There is at most 22n−` choices for T`+1 because T1, ..., T`+1 are pairwise distinct.
So

(1−αG)+(1−αF )−(1−αG)(1−αF )
(∑
T`+1

1

22n − `

)
≥ (1−αG)+(1−αF )−(1−αG)(1−αF ) = 1−αGαF ,

which ends the proof. ut


