Security of Feistel Schemes with New and Various
Tools
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Abstract: We combine the H Coefficients technique and the Coupling technique
to improve security bounds of balanced Feistel schemes. For ¢ queries and round
functions of n—bits to n—bits, we find that the CCA Security of 4 4+ 2r rounds
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Feistel schemes is upperbounded by
roughly 1.5 the number of needed rounds for a given CCA Security, compared
to the previous results of Hoang and Rogaway [?] who found an advantage of
=L (32)" for 6r — 1 rounds Feistel schemes . Independently of this result, using
a new theorem on H Coefficients, we compose 6 rounds Feistel schemes to up-

perbound the CCA security of 6r rounds Feistel schemes: (5£)" + ‘12(_‘127_2? when
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1 Introduction and Previous Results

1.1 Introduction

Since the seminal article of Luby and Rackoff [?] in 1989, security proofs of
Feistel schemes have been extensively studied ([?], [?], [?], [?], [?], [?], [?])- Tt is
particularly interesting and difficult to obtain such proofs beyond the birthday
bound and ideally to the bound of "the information theory". After this bound,
we can no longer hope to prove security against an attacker with an unbounded
power of computation. Two techniques have been developed to give beyond the
birthday bound proofs. The first one, the Coupling technique, gives very good
results when we study schemes with many rounds (Maurer [?], Hoang/Rogaway
[?]). The second one, the H Coefficients technique, gives better results when
the number of rounds is relatively small (Patarin [?] [?] [?]). Nevertheless, this
technique leads sometimes to complex computations. In this article, we use the
Coupling ideas to improve the H Coefficients technique in two different ways.
First, we use intertwined conditions inspired by the Coupling technique to count
H Coefficients and we find that the CCA Security of 44 2r rounds Feistel schemes

verifies:
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Then, we introduce a new theorem: the "H Coefficients Composition Theorem".
We use this theorem to study the security of 6r rounds Feistel schemes using
previous results of Patarin [?] for 6 rounds Feistel schemes. For ¢ < Z- the
CCA Security of 6r rounds Feistel schemes verifies
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These methods can also be applied to many other schemes such as unbalanced
Feistel schemes ([?]), alternating Feistel schemes ([?], [?]), type — 1,type — 2
and type — 3 Feistel schemes ([?]), Benes schemes ([?]), MISTY’s schemes ([?]),
Feistel’s with bijective round functions or format-preserving encryption ([?],[?])
which are beyond the scope of this work.

In a first section, we will present the H Coefficients technique (including proofs).
We will use this technique in Section 2 and 3. In Section 2, we introduce our
new technique, using intertwined conditions. This technique is inspired by the
Coupling technique and the work of Hoang-Rogaway [?]. This way, we prove that
we get the same CCA security than the previous best known bound of [?] using
roughly 1.5 times fewer rounds. In Section 3, we introduce a new theorem on
H Coefficients and apply it to prove CCA security of 6r rounds Feistel schemes
when the number of queries is not too big.

1.2 Notations

Let n be an integer, F,, be the set of all functions from {0;1}" to {0;1}" and B,
the set of all permutations from {0;1}". Let f; be a function of F,,. Let L, R be
two n—bit strings in {0;1}". Let ¥(f;) denotes the permutation of Bs,, defined
by:

Uy ([L, R]) = [R, L @ f(R)].

More generally, if fi,..., f, are r functions of F,, let ¥"(f1,..., f») denotes the
permutation of By, defined by:

T (frrefy) = D(f) 00 U( ).

This permutation is called a balanced Feistel scheme with r rounds or, in short,
¥". When the functions fi,..., fr are randomly chosen in F,¥" is called a
"generic" Feistel scheme with r rounds, or a Luby-Rackoff construction.

Let ¢ be the number of queries. For a given ¥", let X1, ..., X, denote the ¢ inputs
and Y7, ..., Y, the ¢ outputs. For all i € [1,q] and k € [0;7], let X} denote the
first n bits of the outputs of X; after k£ rounds and X[H the last n bits of Y;.
This means, for example, that X; = [X?, X}] and Y; = [X7, X[ ']

To simplify computations, we will note J, = 22" x (22" — 1) x -+ - x (22" — g+ 1).



1.3 The coefficients H technique

In this article, we will prove security bounds using the general framework given
by the "H Coefficients technique" of Patarin [?][?].

Theorem 1 (H Coefficients Theorem, 1991). Let F' be a subset of Ba,
indezed by a set of keys K: F = {fy, k € K}. If there exists a real number o > 0
such that, for all Y1, ...,Y, € {0;1}?" pairwise distinct and for all X1,...,X, €
{0;1}?" pairwise distinct, the number H(X,Y) of keys k, such that, for all i, fy
sends X; to'Y;, verifies:
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Then the advantage of any CCA attacker to distinguish between permutations fi
of F, with k € K, and random permutations verifies:

q(qg—1)
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Proof: See Appendix 77

There are many variants of this H Coeflicients Theorem (cf [?][?]). For example
we have:

Theorem 2 (H Coefficients Theorem, 1991). Let F' be a subset of Bay,
indexed by a set of keys K: F = {fi,k € K}. If there ezists a real number o > 0
such that, for all Yy, ...,Y, € {0;1}?" pairwise distinct and for all X1,...,X, €

{0; 1} pairwise distinct, the number H(X,Y) of keys k, such that, for all i, fy
sends X; to'Y;, verifies:

HX,)Y)>(1 ,Q)Eﬁ’

Then the advantage of any CCA attacker to distinguish between permutations fi
of F, with k € K, and random permutations verifies:

Advi?(q) < a.

Proof: See Appendix 77

In Section 7?7, we will prove a new theorem on these H coefficients.




2 Proving Security of 4 4+ 2r rounds Feistel Schemes with
intertwine conditions

2.1 The CCA Security of w4t+2r

We will use the theorem of Patarin we just introduced in the previous Section 77
to find the CCA security of ¥4+2" for any positive integer r. We fix ¢ inputs X,
and g outputs Yy and our goal is to count the number of (fi, fa, ..., fayo,) € Fit2"
such that Lp(fl, fg, ceny f4+2T)(Xg) = }/g for all ¢ < q.

It means that we have to find the (fi, ..., fat2,) such that, for all £ < ¢, it exists
Xez, . Xf”r verifying the 4 + 2r equations:

X7 =X} o h(X))
X} =X; @ f2(X7)

XP S X XD

X;Jr?r — Xl§+2r ® f4+2r(X21+2r)

For every £ < q and any fi,..., f4ro-, we define ?2, ...,?j“r by induction :
X0 = X0 X! =X} and Vi € {2,...,5+ 2r}:

X=X X,

More intuitively, we compute Y; "from the top": Y? and Y% are already defined,

then f; will define )_g%, fo will define )7? and so on to ?}, We defined Yj{ such
that the first ¢ — 1 equations are trivially verified.

In a symmetric way, we define ?2""%, ey ?2 by induction : ?2*'% = XL,5+2T, §21+2r =
X} and Vi € {0,...,3 + 2r}:

K= X2 @ f (X,

For any k € {1,...,r+1}, considering internal variables ?2, s ??k, y?kﬂ, s y?"'%,
we see that, by construction, the first 2k — 1 equations are verified and the last
(4 + 2r) — (2k + 1) equations are verified.

We have:

?
)_g} — s — Xkﬁk<—>§§k“ — e — ?2}*’”
f1 far—1 far+2 fator



For any fi, ..., fayor, any £ and any k € {1, ...,7+1}, we defined internal variables
such that the first 2k — 1 equations are verified and the last (4 + 2r) — (2k + 1)
equations are verified. We only need to verify two more equations:

Fan(R2k) = 281 g 2wt
f2k+1(y?k+1) = Y%k @ yzkﬂ

So far, we made no restrictions on the round functions f;. Now, we need for, and
for+1 to verify this two equations. We could just take the (fi,..., f112,) such

that the two equations are verified for the ¢-th query. The problem is that, if

%k collides with a previous query (ie Y?k = )_(?k for some ¢ < £), the functions

for would already be defined in ?fk and we are not sure we can always choose
functions for, verifying the first equation. We have the same problem for for11.

This is why we need to choose the functions fi, ..., fok—1, fok+2, ..., fa+2r such
that Y%k and ??kﬂ don’t collide. We will make this selection for every query.

After that, we will connect Y%k to y%’““ for each query. Note that k depends
of ¢, we will not always connect in the same place.

We explained our strategy, we now turn to details.

For any ¢ and any k € {1,...,7 + 1}, we note :
- Col?* the event "X 2% = X 2* for some i < (".
- Col?lCle the event " ?kﬂ = yfkﬂ for some i < £".

We want to select fi,..., faro- such that, for each query, it is possible to find &
such that Col?* and Col2*** are both wrong. We note:

r4+1

Cy= U (—Colfk N ﬁCol?kH),

k=1

this is the event that the query ¢ is "connectable" : we can find k£ such that

??k and ??k“ don’t collide so we can select for and fory1 to verify the two

"connection" equations.

We want all the queries connectable so we want to compute the probability of

q
N Ce
=1



We have:
P(ﬂﬁ_l Cf) =1- P(UZ_1 ﬁCZ)
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=1
Lemma 1. For every £ € {1,...,q}, we have:
r+1
_ 2
p<ﬁcg) < (4“ ”) .
2’",
Proof: Let £ € {1, ...,q}, we have:
r4+1
~Ce =) <cozg’€ U C’ol?k'H)
k=1
(2)
r+1
_ U ﬂ Col§k+a(k)
ac{0;1}r+1 k=1
We noted a(k) the k—th bit of . This equality implies that:
r4+1
P(-C)< Y P( N coz(%“a(’“))
ac{0;1}r+! k=1
(3)

< > min<P< N Ooz§k>,p( N Col?k-&-l))

ac{0;1}r+1 a(k)=0 a(k)=1

It is easy to see that, for any k, the event Col%’C depends of the functions

f1, .-, far—1. For any fixed f1, ..., fop_o, the values of ka*2 and X?kfl are fixed
SO P(Col?k) is the probability that it exists ¢ < £ such that for_;1 verifies :

for—1 (XN @ fara (X7FY) = XPF 2 0 X2

We now use the reasoning of lemma 3 of [?]. We see that if X?*~1 = X%~ then it
is impossible to have fgk,l(kafl) @fgk,l(kafl) = Xf]“z @kad because it
would imply that X fk_z = X?k_z which is impossible since the queries have been
chosen pairwise distinct. If Xi%_1 + X?k_l then the equation fgk_l(XiQk_l) ®
fgk,l(Xg%fl) = Xf’“z &) Xe%*2 occurs with probability 2™ because for_1 is
uniformly random. We see that, for fixed fi,..., fox—2, the event Col?k occurs

with probability less or equal to 5:t. This implies that

7 1\ | {Ea(k)=0}]
P( ﬂ col§k> §< o ) .

a(k)=0




We use the same reasoning for C’ol?’“rl and, using 77?7, we have :
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rears & ()7 ()"

ae{0;1}r+1

r+1

< > (%) (@)

ae{0;1}r+1

A(¢ +
— 2
_ (-1
< on
Using the inequation ?? and the previous Lemma, we have:
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Now that we compute the probability of making all queries connectable, we need

to actually connect them. For every ¢, let note D, the event "¥(f1,..., fator)
sends X, to Y,". We have:

AQenQe) (o) (Qmne)

= i<t

Lemma 2. For every ¢ € {1, ...,q}, we have:

q
P(DA ﬂ Cgﬂﬂm) > 2%
(=1

i<t



Proof: If Cy is true, it exists k € {1,...,r + 1} such that }fk and ??’”1 don’t
collide. Since the round functions are independent and uniformly random, the
following equations happen with probability 22%:

far(X3) = X310 X1
f2k+1(§?k+1) _ ??k o §§k+2

With probability ﬁ, we have connected Xy to Y. Indeed, we have choosen the
first 2k — 1 internal variables to trivially verify the first 2k — 1 equations. We
then choose the last (4 + 2r) — (2k + 1) internal variables to trivially verify the
last (44 2r) — (2k + 1) equations. As we just proved, the last two equations are
true with probability 2% so all needed equations are verified and Dy is true. O

From the previous lemmma, the equation 7?7 and the inequation ??, we have:

P ﬁDﬂﬁC’ > (124 (4 - X (7)
! ¢ ! = r+3\2n 22nq”

Remember that we defined H the number of (f1, ..., fat2,) such that ¥(f1, ..., fat2,)(Xe) =

Y, for every /. It implies that

r(AoNAe) < el

This two inequations imply that:

r+1
2q 4q 3 ‘Fn|4+2r

Using the Theorem 7?7 of Patarin, we have:

r+1
2 [(4g\ _1
AdvEE,, (q) < —2 <QZ> LD

r+3 2.22n

2.2 Results

We recall the bound of Hoang-Rogaway and our bound :

2 (4q\"
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In the following table, we give, for various values of n and number of rounds,
the log, of the number of queries giving an advantage of % using our bound and
the previous best known bound from [?]. In the last column, we give the ratio of
the number of queries giving an advantage of % with our bound divided by the
number of queries giving the same advantage with the previous bound.

Table 1. log, of the number of queries to get an advantage of 1/2

n |rounds|Our bound|HR’s bound|Ratio
32| 18 24.66 23.35 2.5
64| 18 50.26 47.67 6.0
128| 18 101.46 96.31 35.5
32| 48 28.92 28.11 1.8
64| 48 58.36 56.62 3.4
128| 48 117.24 113.63 12.2

3 Proving Security of Feistel Schemes with a new
Theorem on H Coefficients

3.1 The H Coefficients Composition Theorem

We fix ¢ inputs X1, ..., X, and ¢ outputs Yi,...,Y,. Let F' and G be two subsets
of Ba, and we note F'oG theset {fog, f € F,g € G}. For any subset F' of Ba,,
we note H¥'(X,Y) the number of functions in F sending X; to Y; for all i < gq.

Theorem 3 (2012). If it exists ap and ag in [0;1] such that, for all X4, ..., X,
pairwise distinct and for all Y1, ..., Y, pairwise distinct:
|F|

HY(X,)Y)> (1 —ap) x 93mq and HE(X,Y) > (1-ag) x

G|

22nq ’

then, for all X, ..., X, pairwise distinct and for all Y1, ..., Y, pairwise distinct:

[F| x |G|

HFY(X,Y)> (1 - apag) X 92

For any X, ..., X, pairwise distinct and Y7, ..., Y, pairwise distinct. We have

HC(X,Y) =Y HEX,T)x H"(T,Y), (9)
T

the sum being taken over the T7, ..., T, pairwise distinct. We notice that we have:

Y 1=, <27 (10)
T



> HF(T,Y)=|F| (11)

T

S HO(X,T) = |G (12)
T

We compute the right part of equality (??) by introducing the values mp =

(1—ap) x 2'5‘7 and mg = (1 — ag) % 2‘2%

Y HY(X,T)x H'(T.Y)
T

= Y ((HYX,T) = ma) +ma) x (H'(T,Y) = mp) +mp)

T
= > (HE(X,T) - mg) x (H*(T,Y) — mp)
T
+> me x (HY(T,Y) = mp)+ Y _(HYX,T) = mg) x mp + Y _ mgmp.

By hypothesis, the first term is positive. We now compute the second term:
> me x (H(T,Y) = mp)
T
G| F |F|
ong ET:H (T,Y) — ;(1 —ar) X oo,
G| 1
(1-ag) X gomg | 1FI = (1 - ozp)|F|(2T: 2an) from (77)
G| x |F| 1
> |‘QT ((1 —ag) — (1—ag)(1 - aF)(ZTj 22nq)>

The third term is computed the same way. The fourth term gives:

;meF = |§2|L§| <(1 —ag)(1 - ap)(; 221(}))

Summing the four terms, we have:

= (l—ag)x

Y

Y HYX,T)xH"(T,Y) > |§2|,|5| ((1—ac)+(1—o<F)—(1—ac)(1—aF)(Z 221nq)>~
T

There is at most 2274 choices for T' (cf (?7)) so

1
22nq

(1_aG)+(1_aF)_(1_aG)(1_aF)(Z —) > (1—ag)+(1—ap)—(1—ag)(1—ar) = l—agap,
T

which ends the proof. ad



We will use this theorem in the next section to study 6r rounds Feistel scheme.

The next theorem is a variant of the previous theorem. This variant is interesting
to understand the geometric gain we obtain by composing Feistel schemes.

We recall that J, = 22" x (22" — 1) x --- x (22" — g+ 1).

Theorem 4 (2012). If it exists ap and ag in [0;1] such that, for all X4, ..., X,
pairwise distinct and for all Y1, ..., Y, pairwise distinct:

F
HY(X,Y)>(1—ar) x Ll HE(X,Y) > (1-ag) x @,
Jq Jq
then, for all X1, ..., X, pairwise distinct and for all Y1, ..., Y, pairwise distinct:

|E[ < |G|

HFY(X,Y) > (1 - apag) x i
q

Proof: See Appendix 77

From this Theorem ?? and Theorem ?7?, we see that the advantage to distinguish
functions f o g is less or equal to apag when the advantage to distinguish
functions f is ar and the advantage to distinguish functions g is ag. We obtain
a geometric gain when we compose functions.

3.2 Proving Security with mirror theory and the Global H theorem

In [?] p.8, J. Patarin proved this theorem:

Theorem 5 (2010). For ¥, for all X1, ..., X, € {0;1}*" pairwise distinct and
for all Y1, ..., Y, € {0;1}*" pairwise distinct:

‘F|6 on
H(X,Y) > 17— fg< —.
(’)—( >X22nq‘q—67n

Therefore, combining this theorem and using our new "Global H Theorem" of
Section 7?7, we obtain:

Theorem 6 (2012). For any r > 1 and any ¢ < Z-:

8¢\ |, alg—1)
Adve? () < [ 2 AN S A
Ve ( ) (2”) + 9.92n

This Theorem ?7 is, so far, the best security bound known for Feistel schemes
when ¢ < Z-. However, Patarin’s proof of Theorem ?? is difficult (cf [?], [?]).
Nevertheless, some variants of Theorem 7?7 are much easier to prove: for example,



: _ 8 _ _ 4 _ 9 21 2
instead of a = 5% we can use o = b7, = g or a = 4 (see [?], [?] for

more details). Then, from each of these variants, our Global H Theorem will
immediately give a geometrical improvement on the advantage when we multiply
the number of rounds.

4 Results

This new bound is very good when we can use it (we need ¢ < &-). In the

following table, we give the log, of the advantage for ¢ = 627—7; with our bound
and with the previous best known bound of [?].

Table 2. log, of the advantage for ¢ = % with our bound and with the previous best
known bound of [?].

n |rounds|log,(q)|Our advantage HR’s advantage
32| 18 20.9 —24.2 —8.8

64| 18 51.9 —27.2 0

128| 18 114.9 —30.2 0

32| 48 20.9 —64.5 —55.3

64| 48 51.9 —72.5 —32.5

128| 48 114.9 —80.5 0

5 Conclusion

In this paper, we combine ideas from two different proof techniques: the Cou-
pling technique and the H Coefficients technique. We introduce a new Theorem:
the "H Coefficients Composition Theorem". From this new theorem, we are able
to obtain security proofs that combine the efficiency of the H Coefficients for
small rounds Feistel schemes and the geometric gain of the Coupling technique.
We apply these results only on the classical balanced generic Feistel schemes
but the technique can also be applied to many different schemes like unbalanced
Feistel schemes or MISTY schemes for example. Independently of that, we have
also combined ideas of the Coupling technique and the H Coefficients technique
to study intertwined conditions. This new approach lead to significant improve-
ments, we divide by roughly 1.5 the number of needed rounds to obtain a given
CCA security.



Appendices

A Proof of the Coeflicients H Theorem first variant ([?],
1991, p.38)

Consider an attacker A who can query ¢ times an oracle O. The oracle O acts
all the time like a Feistel scheme ¥" or like a random permutation. The attacker
can make direct queries or inverse queries. After ¢ queries, the attacker outputs
1or 0.

We note
P; = Probability that A outputs 1 if O is ¥"

and

P;" = Probability that A outputs 1 if O is a random permutation.

Our goal is to upperbound |P; — Pf|.

We note 71, ..., 74 the ¢ queries and 41, ..., d, the ¢ answers. If the ith query is
direct, we have §; = O(v;), if the ith query is inverse, we have §; = O~!(v;).

If you know 4y, ..., 04, you have uniquely defined the ¢ inputs X3, ..., X, and the
g outputs Yi,...,Y,.

For all 6 = (61, ...,04), we note X (8) = (X1, ..., X,) and
Y (0) = (Y1,....Yy).

We note X' = {4 such that A outputs 1}. For a fixed 4, a random permutation
send v on § with probability

1

22nq(1 _ qg(%;i))

Indeed, there is g outputs of 2n bits so there is 2279 different outputs. We need
them to be pairwise distinct and the probability that it exists ¢ < j such that
Y; =Y, is q2(f12—2711) because there is % possibilities for the choices of i and j
and a probability 22% that these two queries are equal.

SO
._ 1~

1= o qlg—1)\
22na(1 - 4520)




We note C' = {(f1, ..., fr) such that A outsputs 1if O = ¥(fy,..

ol
[l

Py

If we note, for all § € X, Cys the set of round functions fi,
U(f1,..., fr) sends X(d) on Y (6) then

oy [0l 5 HXO.YE),

s [l N sex [l
Now, remember the hypothesis :
H(X(0),Y(9))
T > (1 — O[) X %
> 1201~ a)
-«
Pl 2 W.
So ( 0
* q\q —
P> Pf(l—a)(l- 2.2%)
P - P> —a-— .
= I 1 = —«Q 9. 920
Doing all the same reasoning for the 0 output, we have
. q(g—1)
1-P)—(1-P)>—-a-— 5 92n
which is equivalent to
. alg —1)
Pl—P1§a+ 222n
This proves
. q(g —1)
P — P < .
[P =Pl <o+ 5. 9om

. fr)}. We have

...y fr such that

B Proof of the Coefficients H Theorem second variant

([2], 1991, p.38)

Consider an attacker A who can query ¢ times an oracle O. The oracle O acts
all the time like a Feistel scheme ¥" or like a random permutation. The attacker
can make direct queries or inverse queries. After ¢ queries, the attacker outputs

1orO.



We note
P, = Probability that A outputs 1 if O is ¥"

and

P = Probability that A outputs 1 if O is a random permutation.

Our goal is to upperbound |P; — Pf|.

We note 71, ..., 74 the ¢ queries and 4y, ..., d, the ¢ answers. If the ith query is
direct, we have §; = O(v;), if the ith query is inverse, we have §; = O~ ().

If you know 4y, ..., 64, you have uniquely defined the ¢ inputs X3, ..., X, and the
g outputs Yi,...,Y,.

For all 6 = (61, ...,04), we note X (6) = (X1, ..., X,) and
Y(6) =(Y1,....Y,).

We note X' = {6 such that A outputs 1}. For a fixed , a random permutation
send v on § with probability

1
227220 — 1) X -+ x (227 — g+ 1)

SO
]

T2 ) x - x (27— g+ 1)

Py

We note C' = {(f1, ..., fr) such that A outsputs 1 if O = ¥(fy,..., f)}. We have

€]

P = .
[Enl”

If we note, for all § € X, Cs the set of round functions fi, ..., f, such that
U(f1,..., fr) sends X(J) on Y () then

p=Y |Cs| _ZH(X@)’Y((S)).

[Ful” [ Fnl”

ey fex

Now, remember the hypothesis :

H(X(5),Y(9)) 1

>(1-— .
|, | > ( O‘)X22n(22n71)x,,,x(22n,q+1)
So 5
. 21— a) |
22n(22n — 1) X -+ X (22" — g+ 1)
So

P> Pi(1-a)



= P — Pl* > —a.
Doing all the same reasoning for the 0 output, we have
(1-P)—(1—-P)=—a

which is equivalent to
P1 - Pl* S Q.

This proves
|P1 — P1*| S Q.

C Proof of the variant of the H Coeflicients Composition
Theorem (2012)

We fix X1, ..., X, pairwise distinct and Y7, ..., Y, pairwise distinct. We have

HPC(X,Y) =Y HYX,T)x H"(T,Y), (13)
T

the sum being taken over the T7, ..., T, pairwise distinct. We notice that we have:

=1, (14)
T
> HY(T,Y)=|F| (15)
> HYX,T) = (16)
T

We compute the right part of equality (??) by introducing the values mp =
(1—ap)x % and mg = (1 — ag) % %:
> HYX,T)x H'(T,Y)
= > (HE(X,T) —TmG)+mG) x (HE(T,Y) —mp) + mp)
= ' > (HE(X,T) = mg) x (H*(T,Y) - mp)
+Y mg x (HF(?, Y)—mp)+ Y (HY(X,T) —mg) x mp + > _memp.
T T T



By hypothesis, the first term is positive. We now compute the second term:

ch;x F(T,Y) - mp)
= (1-ag)x E(XT:HF(T,Y)—ZQ—@F) X |JF|>

T q
> (1 - ag) % ? <|F| (- ap)|F|(Z })) from (77)
q T Ja
> IGIx1F] x (1 — ag)ap from (77)

Jq

The third term is computed the same way. The fourth term gives:

Zm mp |GJ|qF| (1—ag)(l—ap).

Summing the four terms, we have:

|GIIF|
Jq

Y HYX,T)x H'(T,Y) > x (1 —arag).

Theorem:
If it exists ap and ag in [0;1] such that, for all X7, ..., Xy pairwise distinct
and for all Y7, ..., Yyy1 pairwise distinct:

HF(X,Y)
22n ¢

HE(X,Y)

Hf 1 (X,Y) > (1 —aF) x I g

and H{ 1 (X,Y) > (1 - ag) x

then, for all X1, ..., X¢41 pairwise distinct and for all Y7, ..., Y41 pairwise distinct:

Hf°%(X,Y)
22 — ¢

HEP(X,Y) > (1 - arag) x

Proof: We fix X1, ..., X¢41 pairwise distinct and Y7, ..., Y41 pairwise distinct. We
have
HZIT:IG(X7 Y) = Z Hg&-l(Xv T) X H;jl—l(Ta Y)
T1,...., T3, Teq1

and
HC(X,Y)= > HF(X,T)x H(T,Y)
T1,..., T}
with 71, ..., Tp4+1 pairwise distinct. so we prove the theorem if we prove that, for
every 11, ...,T; pairwise distinct, we have
HS (X, T)x HF (T.Y
Z HEH(X’T) X HZ}jrl(Tvy) 2 (1 - aFaG) ‘ ( : 22)n ,gg ( : )

Tet1




with the sum taken over the choices of Ty such that 77, ...,Tp4+1 are pairwise
distinct.

We compute the left part of this inequality by introducing the values mp =

(1—ap)x H;ZE{Z/) and mg = (1 — ag) X H;Eff?;
> HEL(X.T) x HE\(T,Y)
Toq1
= D (HEL(X,T) = ma) +ma) x (HE(T,Y) = mp) +mp)
Tot1
= Z(Hgkl(XaT) _mG) X (HEF:kl(TaY) _mF)
Tet1
+ Y me x (HEL(TY) —mp) + Y (HEL (X, T) —mg) x mp + Y mamp.
Tot1 Toq1 Tey1

By hypothesis, the first term is positive. We now compute the second term:

Z me x (HE 1 (T,Y) —mp)

Toyr
HE X, T HF (X, T
= a0 D (St ) X o < D)
Tot1 Ty
HEX,T) (or ¥ !
> (170[@) X W Hé (T,Y) - (I*OZF)He (Tvy)(Tz: m)
241

> BEXDHEY) ((1 ~ae) - (1-ag)1 - ar)( X 21_6)>

Tyt

The third term is computed the same way. The fourth term gives:

G P
3" mamy = 2L DHLTY) ((1 —ae)1-ar) (X 221_6)>

Tova Tota

Summing the four terms, we have:

Z H{ (X, T)xHfy((T,Y) >

Toq1

HE(X,T)H} (T,Y)
2 ¢

(1—a(;)+(1—ap)—(1—04G)(1—04F)( Z anl_g>>

Tot1

There is at most 22" —¢ choices for Ty4+1 because 11, ..., Tp+1 are pairwise distinct.
So

(1—ac)+(1—aF)—(1—ac)(1—aF)( > 22%

ﬂ) > (1—ag)+(1—ap)—(1—ag)(1—ar) = 1—agar,

Toyr

which ends the proof. ad



