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Abstract. We present two new theorems to analyze the indistinguishability of the composi-
tion of cryptographic permutations and the indistinguishability of the XOR of cryptographic
functions. Using the H Coefficients technique of [Pat01], for any two families of permutations
F and G with CCA distinghuishability advantage ≤ αF and ≤ αG, we prove that the set of
permutations f ◦ g, f ∈ F, g ∈ G has CCA distinguishability advantage ≤ αF × αG. This simple
composition result gives a CCA indistinguishability geometric gain when composing blockci-
phers (unlike previously known clasical composition theorems). As an example, we apply this
new theorem to analyze 4r and 6r rounds Feistel schemes with r ≥ 1 and we improve previous
best known bounds for a certain range of queries. Similarly, for any two families of functions F
and G with distinghuishability advantage ≤ αF and ≤ αG, we prove that the set of functions
f ⊕ g, f ∈ F, g ∈ G has distinguishability advantage ≤ αF × αG. As an example, we apply this
new theorem to analyze the XOR of 2r permutations and we improve the previous best known
bounds for certain range of queries.

Keywords: H coefficients, Security proof, Composition, XOR of permutations, Feistel Schemes,
Luby-Rackoff construction.

1 Introduction

The indistinguishability of cryptographic permutations is a well-known problem. Since the
seminal article of Luby and Rackoff [LR85] in 1989, security proofs of Feistel schemes have
been extensively studied ([HR10], [MP03], [NR99], [Mau92], [Vau98], [DP10]). It is particu-
larly interesting and difficult to obtain such proofs beyond the birthday bound and ideally
to the bound of "the information theory". After this bound, we can no longer hope to prove
security against an attacker with an unbounded power of computation. Essentially two tech-
niques have been developed to give beyond the birthday bound proofs. The first one, the
Coupling technique, gives very good results when we study schemes with many rounds (Mau-
rer [MP03], Hoang/Rogaway [HR10]). The second one, the H Coefficients technique, gives
better results when the number of rounds is relatively small (Patarin [Pat04] [Pat08] [Pat10])
but, until recently with the indistinguishability proof of the key-alternating Cipher [CS13],
this technique was not applied to many rounds schemes. We introduce a new theorem: the
"H Coefficients Composition Theorem". This theorem says that one has a geometric gain of
the distinguishability advantage when composing two families of permutations: for any two
families of permutations F and G with distinghuishability advantage αF and αG, we prove
that the set of permutations f ◦ g, f ∈ F, g ∈ G has distinguishability advantage αF ×αG. So
far, the theory of Random Systems of Maurer [Mau02] was the only one to have composition
theorems that yield a geometric gain ([GM09],[MP04],[MPR07]). Unfortunately, none of these
composition theorems yield a geometric gain for CCA Indistinguishability (the queries can
be direct or inverse). Our composition theorem complete this gap. As an example, we apply
this new theorem to analyze 4r and 6r rounds Feistel schemes with r ≥ 1. We obtain the
same kind of geometric gain when xoring two families of functions: for any two families of



functions F and G with distinghuishability advantage ≤ αF and ≤ αG, we prove that the set
of functions f ⊕ g, f ∈ F, g ∈ G has distinguishability advantage ≤ αF × αG. As an example,
we apply this new theorem to analyze the XOR of 2r permutations.

Notations. We denote Fn the set of all functions from {0; 1}n to {0; 1}n and Bn the set of
all permutations of {0; 1}n. For any f ∈ Fn and L,R ∈ {0; 1}n, Ψ(f) denotes the permutation
of B2n defined by: Ψf ([L,R]) = [R,L ⊕ f(R)]. More generally, if f1, ..., fr are r functions of
Fn, Ψ r(f1, ..., fr) denotes the permutation of B2n defined by: Ψ r(f1, ..., fr) = Ψ(fr) ◦ · · · ◦
Ψ(f1). This permutation is called a balanced Feistel scheme with r rounds or, shortly, Ψ r.
When the functions f1, ..., fr are uniformly random, Ψ r is called a "generic" Feistel scheme
with r rounds, or a Luby-Rackoff construction. For any integer q, we denote Jq the set of
(X1, . . . , Xq) ∈

(
{0; 1}2n

)q such that Xi 6= Xj for every i 6= j and we define jq = |Jq| =
22n × (22n − 1)× · · · × (22n − q + 1).

2 The H coefficients technique

Indistinguishability Let F be a set of permuations, O an oracle which acts either like a
random permutation or like a random permutation in F . Let A be an attacker which can send
direct and inverse queries to O. After sending q queries (receiving each time an answer from
the oracle), the attacker outputs a bit b. The advantage of A to distinguish F from a random
permutations is defined as∣∣∣∣Pr[b = 1|O acts like a random f ∈ F ]− Pr[b = 1|O acts like a random permutation]

∣∣∣∣ .
We denote AdvPRP

F (q) the maximum advantage over any attacker to distinguish F from ran-
dom permutations and AdvPRF

F (q) the maximum advantage over any attacker (only making
direct queries) to distinguish F from random functions. In this article, we will prove secu-
rity bounds using the general framework given by the "H Coefficients technique" of Patarin
[Pat08].

Theorem 1 (H Coefficients Theorem, 1991). Let F be a subset of B2n indexed by a
set of keys K: F = {fk, k ∈ K}. If there exists a real number α > 0 such that, for any
(Y1, ..., Yq) ∈ Jq and any (X1, ..., Xq) ∈ Jq, the number H(X,Y ) of keys k, such that, for all
i, fk sends Xi to Yi, verifies:

H(X,Y ) ≥ (1− α) |K|22nq ,

Then the advantage to distinguish between permutations fk of F , with k ∈R K, and random
permutations verifies:

AdvPRP
F (q) ≤ α+ q(q − 1)

2 · 22n .

Proof. The proof is in [Pat08] and in Appendix A.

There are many variants of this H Coefficients Theorem (cf [Pat08]). For example:



Theorem 2 (1991). Let F be a subset of B2n indexed by a set of keys K: F = {fk, k ∈ K}. If
there exists a real number α > 0 such that, for any (Y1, ..., Yq) ∈ Jq and any (X1, ..., Xq) ∈ Jq,
the number H(X,Y ) of keys k, such that, for all i, fk sends Xi to Yi, verifies:

H(X,Y ) ≥ (1− α) |K|
jq
,

Then the advantage of any CCA attacker to distinguish between permutations fk of F , with
k ∈R K, and random permutations verifies:

AdvPRP
F (q) ≤ α .

Proof. See Appendix B

Theorem 3 (1991). Let F be a subset of F2n indexed by a set of keys K: F = {fk, k ∈
K}. If there exists a real number α > 0 such that, for any (Y1, ..., Yq) ∈ ({0, 1}n)q and any
(X1, ..., Xq) ∈ Jq, the number H(X,Y ) of keys k, such that, for all i, fk sends Xi to Yi,
verifies:

H(X,Y ) ≥ (1− α) |K|22nq ,

Then the advantage of any CCA attacker to distinguish between functions fk of F , with
k ∈R K, and random functions verifies:

AdvPRF
F (q) ≤ α .

Proof. See [Pat08].

3 The composition theorem (composition with ◦)

Let F and G be two subsets of B2n and we denote F ◦ G the set {f ◦ g, f ∈ F, g ∈ G}. For
any subset F of B2n, we denote HF (X,Y ) the number of functions in F sending Xi to Yi for
all i ≤ q.

Theorem 4. If it exists αF and αG in [0; 1] such that, for any (X1, ..., Xq) ∈ Jq and any
(Y1, ..., Yq) ∈ Jq:

HF (X,Y ) ≥ (1− αF )× |F |22nq and HG(X,Y ) ≥ (1− αG)× |G|22nq ,

then, for any (X1, ..., Xq) ∈ Jq and any (Y1, ..., Yq) ∈ Jq:

HF◦G(X,Y ) ≥ (1− αFαG)× |F | × |G|22nq .

Proof. For any pairwise distinct X1, ..., Xq and pairwise distinct Y1, ..., Yq. One has

HF◦G(X,Y ) =
∑
T

HG(X,T )×HF (T, Y ), (1)



the sum being taken over the pairwise distinct T1, ..., Tq. We notice that one has:∑
T

1 = jq ≤ 22nq (2)

∑
T

HF (T, Y ) = |F | (3)

∑
T

HG(X,T ) = |G| (4)

We compute the right part of equality (1) by introducing the values mF = (1 − αF ) × |F |
22nq

and mG = (1− αG)× |G|
22nq : ∑

T

HG(X,T )×HF (T, Y )

=
∑
T

((HG(X,T )−mG) +mG)× ((HF (T, Y )−mF ) +mF )

=
∑
T

(HG(X,T )−mG)× (HF (T, Y )−mF )

+
∑
T

mG × (HF (T, Y )−mF ) +
∑
T

(HG(X,T )−mG)×mF +
∑
T

mGmF .

By hypothesis, the first term is positive. We now compute the second term:∑
T

mG × (HF (T, Y )−mF )

= (1− αG)× |G|22nq

(∑
T

HF (T, Y )−
∑
T

(1− αF )× |F |22nq

)

≥ (1− αG)× |G|22nq

(
|F | − (1− αF )|F |

(∑
T

1
22nq

))
from (3)

≥ |G| × |F |
22nq

(
(1− αG)− (1− αG)(1− αF )

(∑
T

1
22nq

))

The third term is computed in the same way. The fourth term gives:

∑
T

mGmF = |G||F |22nq

(
(1− αG)(1− αF )

(∑
T

1
22nq

))
.

Summing the four terms, one has:

∑
T

HG(X,T )×HF (T, Y ) ≥ |G||F |22nq

(
(1− αG) + (1− αF )− (1− αG)(1− αF )

(∑
T

1
22nq

))
.

There is at most 22nq choices for T (cf (2)) so

(1− αG) + (1− αF )− (1− αG)(1− αF )
(∑

T

1
22nq

)
≥ (1− αG) + (1− αF )− (1− αG)(1− αF )

= 1− αGαF .



The next theorem is a variant of the previous theorem. This variant is interesting to understand
the geometric gain we obtain by composing Feistel schemes. One remind that jq = 22n×(22n−
1)× · · · × (22n − q + 1).

Theorem 5. If it exists αF and αG in [0; 1] such that, for all pairwise distinct X1, ..., Xq and
for all pairwise distinct Y1, ..., Yq:

HF (X,Y ) ≥ (1− αF )× |F |
jq

and HG(X,Y ) ≥ (1− αG)× |G|
jq
,

then, for all pairwise distinct X1, ..., Xq and for all pairwise distinct Y1, ..., Yq:

HF◦G(X,Y ) ≥ (1− αFαG)× |F | × |G|
jq

.

Proof. See Appendix C

The Theorem 5 and Theorem 2 imply that the advantage to distinguish functions f ◦ g is less
or equal to αFαG when the advantage to distinguish functions f is αF and the advantage to
distinguish functions g is αG. We obtain a geometric gain when we compose functions.

Comparison with Maurer’s composition theorems In [MPR07], Maurer Renner and
Pietrzak proved that composing two family of permutations NCPA-secure (indistinguishable
against non-adaptive chosen plaintext attack) yield a family of permutation CCA-secure (in-
distinguishable against adaptative chosen plaintext and ciphertext attack). While this theorem
is very useful to obtain CCA-proofs from NCPA-proofs of security ([HR10], [LPS12]), the gain
is not geometric. The CCA advantage of the composed permutations is upperbounded by the
sum of the NCPA advantage of the two family of permutations. In this paper, we upper-
bound the composed permutations by the product of the CCA advantage of the two family
of permutations.

4 The XOR Theorem (composition with ⊕)

Let F and G be two subsets of Fn and we denote F ⊕ G the set {f ⊕ g, f ∈ F, g ∈ G}. For
any subset F of Fn, we denote HF (X,Y ) the number of functions in F sending Xi to Yi for
all i ≤ q.

Theorem 6. If it exists αF and αG in [0; 1] such that, for all pairwise distinct X1, ..., Xq and
for all Y1, ..., Yq:

HF (X,Y ) ≥ (1− αF )× |F |2nq and HG(X,Y ) ≥ (1− αG)× |G|2nq ,

then, for all pairwise distinct X1, ..., Xq and for all Y1, ..., Yq:

HF⊕G(X,Y ) ≥ (1− αFαG)× |F | × |G|2nq .



Proof. For any pairwise distinct X1, ..., Xq and any Y1, ..., Yq. One has

HF⊕G(X,Y ) =
∑
T

HG(X,T )×HF (X,Y ⊕ T ), (5)

the sum being taken over all T1, ..., Tq and Y ⊕ T denoting the vector (Yi ⊕ Ti)i. We notice
that one has: ∑

T

1 = 2nq (6)

∑
T

HF (T, Y ) = |F | (7)

∑
T

HG(X,T ) = |G| (8)

We compute the right part of equality (5) by introducing the values mF = (1−αF )× |F |2nq and
mG = (1− αG)× |G|2nq : ∑

T

HG(X,T )×HF (X,Y ⊕ T )

=
∑
T

((HG(X,T )−mG) +mG)× ((HF (X,Y ⊕ T )−mF ) +mF )

=
∑
T

(HG(X,T )−mG)× (HF (X,Y ⊕ T )−mF )

+
∑
T

mG × (HF (X,Y ⊕ T )−mF ) +
∑
T

(HG(X,T )−mG)×mF +
∑
T

mGmF .

By hypothesis, the first term is positive. We now compute the second term:∑
T

mG × (HF (X,Y ⊕ T )−mF )

= (1− αG)× |G|2nq

(∑
T

HF (X,Y ⊕ T )−
∑
T

(1− αF )× |F |2nq

)

≥ (1− αG)× |G|2nq

(
|F | − (1− αF )|F |

(∑
T

1
2nq

))
from (7)

≥ |G| × |F |
2nq

(
(1− αG)− (1− αG)(1− αF )

)
from (6)

The third term is computed in the same way. The fourth term gives:
∑
T

mGmF = |G||F |2nq

(
(1− αG)(1− αF )

)
.

Summing the four terms, one has:
∑
T

HG(X,T )×HF (X,Y ⊕ T ) ≥ |G||F |2nq

(
(1− αG) + (1− αF )− (1− αG)(1− αF )

)

≥ |G||F |2nq
(
1− αFαG

)
.

Remark: This theorem is generalizable to any group law ?.



Comparison with Maurer’s composition theorems In [MPR07], Maurer Renner and
Pietrzak proved that xoring two family of functions CPA-secure (indistinguishable against
adaptive chosen plaintext attack) yield a family of function CPA-secure with a geometric
gain. In this paper, we prove the very same thing but in the framework of the H Coefficients
Technique. We notice that our two composition theorems are extremely similar.
In Appendix D, we prove an other composition theorem. This theorem follows the strategy of
the coupling technique in which we make security proofs analyzing queries after queries in a
local way.

5 Applications

5.1 Security of Ψ4r

In [Pat98], J. Patarin proved the following:

Theorem 7 (1991). For Ψ4, for all pairwise distinct X1, ..., Xq ∈ {0; 1}2n and for all pair-
wise distinct Y1, ..., Yq ∈ {0; 1}2n:

H(X,Y ) ≥
(

1− q2

2n
)
× |Fn|

4

22nq .

Combining this theorem and using our new composition theorem of Section 3 yield:

Theorem 8. For any integer r ≥ 1:

AdvPRP
Ψ4r (q) ≤

(
q2

2n

)r
+ q(q − 1)

2 · 22n .

5.2 Security of Ψ5r

In [Pat98], J. Patarin proved the following:

Theorem 9 (1991). For Ψ5, for all pairwise distinct X1, ..., Xq ∈ {0; 1}2n and for all pair-
wise distinct Y1, ..., Yq ∈ {0; 1}2n:

H(X,Y ) ≥
(

1− q3

22n

)
× |Fn|

5

22nq .

Combining this theorem and using our new composition theorem of Section 3 yield:

Theorem 10. For any integer r ≥ 1:

AdvPRP
Ψ5r (q) ≤

(
q3

22n

)r
+ q(q − 1)

2 · 22n .



5.3 Security of Ψ6r

We can apply the same reasoning on Ψ6r using the result of [Pat98]:

Theorem 11 (1998). For Ψ6, for all q ≤ 2n, for all X1, ..., Xq ∈ Jq and for all Y1, ..., Yq ∈ Jq:

H(X,Y ) ≥
(

1− 47q4

23n −
16q2

22n

)
× |Fn|

6

22nq .

Then, using the composition theorem, this imply:

Theorem 12. For any integer r ≥ 1 and any q ≤ 2n:

AdvPRP
Ψ6r (q) ≤

(
47q4

23n + 16q2

22n

)r
+ q(q − 1)

2 · 22n .

In [Pat10] p.8, J. Patarin proved this theorem:

Theorem 13 (2010). For Ψ6 and q ≤ 2n

67n , for all X1, ..., Xq ∈ Jq and for all Y1, ..., Yq ∈ Jq:

H(X,Y ) ≥
(

1− 8q
2n
)
× |Fn|

6

22nq .

Again, combining this theorem and using our new composition theorem of Section 3 yield:

Theorem 14. For any integer r ≥ 1 and any q ≤ 2n

67n :

AdvPRP
Ψ6r (q) ≤

(8q
2n
)r

+ q(q − 1)
2 · 22n .

This Theorem 14 is, so far, the best security bound known for Feistel schemes when q ≤ 2n

67n .

Results This new bound is the best one when we can use it (we need q ≤ 2n

67n). In the
following table, we give the advantage for q = 2n

67n with our bound and with the previous best
known bound of [HR10].

Table 1. The advantage for q = 2n

67n
with our bound and with the previous best known bound of [HR10].

n rounds log2(q) Our advantage HR’s advantage
32 18 20.9 2−24.2 2−8.8

64 18 51.9 2−27.2 1
128 18 114.9 2−30.2 1
32 48 20.9 2−64.5 2−55.3

64 48 51.9 2−72.5 2−32.5

128 48 114.9 2−80.5 1

For the values of this array, we notice that our results are much better than previous best
known bounds. Especially for cases 2, 3 and 6, we prove that the advantage is small.



5.4 Security of the XOR of 2r permutations

In this section, we consider the indistinguishability of the XOR of 2r random permutations
from a random permutation. We use the following result for the XOR of 2 random permuta-
tions.

Theorem 15. For all pairwise distinct X1, . . . , Xq ∈ {0, 1}n and all Y1, . . . , Yq ∈ {0, 1}n, the
number H of (f, g) ∈ (Bn)2 such that f(Xi)⊕ g(Xi) = Yi satisfy:

H(X,Y ) ≥
(

1− q3

22n − 2q · 2n + q2

)
|Bn|2

2nq .

Proof. Let X1, ..., Xq ∈ {0, 1}n be pairwise distinct and Y1, ..., Yq ∈ {0, 1}n. For the first
equation f(X1)⊕ g(X1) = Y1, there is 2n choices for f(X1) and one for g(X1). For the second
equation, f(X2) can take 2n − 1 values (since f is a permutation) and it has to be such that
g(X2) = f(X2)⊕ Y2 is different of g(X1) so it can take at least 2n− 2 values and g(X2) takes
one value. For the third equation, applying the same reasoning, we see that f(X3) can take
at least 2n − 4 values. Applying the same reasoning for all equations, one has:

H(X,Y ) ≥
q−1∏
i=0

(2n − 2i) .

The proof ends after some computations:

q−1∏
i=0

(2n − 2i)× 2nq

|Bn|2
=

q−1∏
i=0

(2n − 2i)2n

(2n − i)2

=
q−1∏
i=0

(
1− i2

22n − 2i · 2n + i2

)

≥
q−1∏
i=0

(
1− q2

22n − 2q · 2n + q2

)

≥ 1− q3

22n − 2q · 2n + q2

Using theorem 6 and 3 yield:

Theorem 16. For any integer r ≥ 1, the advantage to distinguish between the XOR of 2r
random permutations and a random function satisfy:

AdvPRF
f1⊕···⊕f2r

(q) ≤
(

q3

22n − 2q · 2n + q2

)r
.

If one improve Theorem 15, this induce an improvement for Theorem 16. This is what we do,
using [NP13], which yield a better bound but the proof is a lot more complicated.



Theorem 17. For all pairwise distinct X1, . . . , Xq ∈ {0, 1}n and all Y1, . . . , Yq ∈ {0, 1}n, the
number H of (f, g) ∈ (Bn)2 such that f(Xi)⊕ g(Xi) = Yi satisfy:

H(X,Y ) ≥
(

1− q2

(2n − q)2 −
4q4

2n(2n − q)2

)
|Bn|2

2nq .

This theorem, as always, yield an upperbound on the advantage to distinguish the XOR of
2r random functions:

Theorem 18. For any integer r ≥ 1, the advantage to distinguish between the XOR of 2r
random permutations and a random function satisfy:

AdvPRF
f1⊕···⊕f2r

(q) ≤
(

q2

(2n − q)2 + 4q4

2n(2n − q)2

)r
.

So far, the best known bound is proven by Lucks [Luc00]:

Theorem 19. For any integer r ≥ 1, the advantage to distinguish between the XOR of 2r
random permutations and a random function satisfy:

AdvPRF
f1⊕···⊕f2r

(q) ≤ q2r+1

22rn .

Comparison between the best known bound of Lucks and our bound We see that
the bound of Lucks is small when q << 2

2r
2r+1n while our bound is small when q << 2

3
4n. This

means that the bound of Lucks is better when the number of queries is not negligible from
2

3
4n. However, our bound is better when q << 2

1
2n. Indeed, in that case, the term 4q4

2n(2n−q)2

is negligible compared to q2

(2n−q)2 which imply that our bound is close to
(

q2

(2n−q)2

)r
which is

about q times smaller than Lucks’s bound.
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Appendices

A Proof of Theorem 1

Consider an attacker A who can query q times an oracle O. The oracle O acts all the time
like a random f ∈ F or like a random permutation. The attacker can make direct queries or
inverse queries. After q queries, the attacker outputs 1 or 0. We denote P1 the probability
that A outputs 1 if O is f ∈ F and P ∗1 the probability that A outputs 1 if O is a random
permutation. Our goal is to upperbound |P1 − P ∗1 |. We denote γ1, ..., γq the q queries and
δ1, ..., δq the q answers. If the ith query is direct then δi = O(γi) and if the ith query is
inverse then δi = O−1(γi). If you know δ1, ..., δq, you have uniquely defined the q inputs
X1, ..., Xq and the q outputs Y1, ..., Yq. For all δ = (δ1, ..., δq), we denote X(δ) = (X1, ..., Xq)
and Y (δ) = (Y1, ..., Yq). We denote Σ = {δ such that A outputs 1}. For a fixed δ, a random
permutation send γ on δ with probability

1
22nq(1− q(q−1)

2·22n )
.

Indeed, there is q outputs of 2n bits so there is 22nq different outputs. We need them to be
pairwise distinct and the probability that it exists i < j such that Yi = Yj is q(q−1)

2·22n because
there is q(q−1)

2 possibilities for the choices of i and j and a probability 1
22n that these two

queries are equal. Then:
P ∗1 = |Σ|

22nq(1− q(q−1)
2·22n )

.

We define C the set of f ∈ F such that A outsputs 1 if O = f. Then P1 = |C|
|F | . For all δ ∈ Σ,

we denote Cδ the set of functions f such that f sends X(δ) on Y (δ). Then

P1 =
∑
δ∈Σ

|Cδ|
|F |

=
∑
δ∈Σ

H(X(δ), Y (δ))
|F |

.

Now, remember the hypothesis : H(X(δ),Y (δ))
|F | ≥ (1 − α) × 1

22nq . So P1 ≥ |Σ|(1−α)
22nq and P1 ≥

P ∗1 (1− α)(1− q(q−1)
2·22n ) which imply

P1 − P ∗1 ≥ −α−
q(q − 1)
2 · 22n .

Doing all the same reasoning for the 0 output:

(1− P1)− (1− P ∗1 ) ≥ −α− q(q − 1)
2 · 22n

which is equivalent to
P1 − P ∗1 ≤ α+ q(q − 1)

2 · 22n .

This proves
|P1 − P ∗1 | ≤ α+ q(q − 1)

2 · 22n .



B Proof of Theorem 2

Consider an attacker A who can query q times an oracle O. The oracle O acts all the time
like a random f ∈ F or like a random permutation. The attacker can make direct queries or
inverse queries. After q queries, the attacker outputs 1 or 0.
we denote

P1 = Probability that A outputs 1 if O is f ∈ F

and
P ∗1 = Probability that A outputs 1 if O is a random permutation .

Our goal is to upperbound |P1 − P ∗1 |.
we denote γ1, ..., γq the q queries and δ1, ..., δq the q answers. If the ith query is direct, one
has δi = O(γi), if the ith query is inverse, one has δi = O−1(γi).
If you know δ1, ..., δq, you have uniquely defined the q inputs X1, ..., Xq and the q outputs
Y1, ..., Yq.
For all δ = (δ1, ..., δq), we denote X(δ) = (X1, ..., Xq) and
Y (δ) = (Y1, ..., Yq).
we denote Σ = {δ such that A outputs 1}. For a fixed δ, a random permutation send γ on δ
with probability

1
22n(22n − 1)× · · · × (22n − q + 1)

so
P ∗1 = |Σ|

22n(22n − 1)× · · · × (22n − q + 1) .

we denote C = {f ∈ F such that A outsputs 1 if O = f}. One has

P1 = |C|
|F |

.

If we denote, for all δ ∈ Σ, Cδ the set of functions f such that f sends X(δ) on Y (δ) then

P1 =
∑
δ∈Σ

|Cδ|
|F |

=
∑
δ∈Σ

H(X(δ), Y (δ))
|F |

.

Now, remember the hypothesis :

H(X(δ), Y (δ))
|F |

≥ (1− α)× 1
22n(22n − 1)× · · · × (22n − q + 1) .

So
P1 ≥

|Σ|(1− α)
22n(22n − 1)× · · · × (22n − q + 1) .

So
P1 ≥ P ∗1 (1− α)

⇒ P1 − P ∗1 ≥ −α .

Doing all the same reasoning for the 0 output, one has

(1− P1)− (1− P ∗1 ) ≥ −α



which is equivalent to
P1 − P ∗1 ≤ α .

This proves
|P1 − P ∗1 | ≤ α .

C Proof of Theorem 5

We fix X1, ..., Xq pairwise distinct and Y1, ..., Yq pairwise distinct. One has

HF◦G(X,Y ) =
∑
T

HG(X,T )×HF (T, Y ), (9)

the sum being taken over the T1, ..., Tq pairwise distinct. We notice that one has:∑
T

1 = jq (10)

∑
T

HF (T, Y ) = |F | (11)

∑
T

HG(X,T ) = |G| (12)

We compute the right part of equality (9) by introducing the values mF = (1−αF )× |F |jq and
mG = (1− αG)× |G|jq : ∑

T

HG(X,T )×HF (T, Y )

=
∑
T

((HG(X,T )−mG) +mG)× ((HF (T, Y )−mF ) +mF )

=
∑
T

(HG(X,T )−mG)× (HF (T, Y )−mF )

+
∑
T

mG × (HF (T, Y )−mF ) +
∑
T

(HG(X,T )−mG)×mF +
∑
T

mGmF .

By hypothesis, the first term is positive. We now compute the second term:∑
T

mG × (HF (T, Y )−mF )

= (1− αG)× |G|
jq

(∑
T

HF (T, Y )−
∑
T

(1− αF )× |F |
jq

)

≥ (1− αG)× |G|
jq

(
|F | − (1− αF )|F |

(∑
T

1
jq

))
from (11)

≥ |G| × |F |
jq

× (1− αG)αF from (10)

The third term is computed the same way. The fourth term gives:∑
T

mGmF = |G||F |
jq

× (1− αG)(1− αF ) .



Summing the four terms, one has:

∑
T

HG(X,T )×HF (T, Y ) ≥ |G||F |
jq

× (1− αFαG) .

D Proof of the H Coefficients Local Composition Theorem

For any family of permutations F of Bn, any ` ≤ q ≤ 2n, any pairwise distinct X1, . . . , Xq ∈
{0, 1}n and any pairwise distinct Y1, . . . , Yq ∈ {0, 1}n, we denote HF

` the number of permuta-
tions f ∈ F sending Xi to Yi for all i from 1 to `.

Theorem 20. If it exists αF and αG in [0; 1] such that, for all X1, ..., X`+1 pairwise distinct
and for all Y1, ..., Y`+1 pairwise distinct:

HF
`+1(X,Y ) ≥ (1− αF )× HF

` (X,Y )
2n − ` and HG

`+1(X,Y ) ≥ (1− αG)× HG
` (X,Y )
2n − ` ,

then, for all X1, ..., X`+1 pairwise distinct and for all Y1, ..., Y`+1 pairwise distinct:

HF◦G
`+1 (X,Y ) ≥ (1− αFαG)× HF◦G

` (X,Y )
2n − ` .

Proof. We fix X1, ..., X`+1 pairwise distinct and Y1, ..., Y`+1 pairwise distinct. One has

HF◦G
`+1 (X,Y ) =

∑
T1,...,Tl,T`+1

HG
`+1(X,T )×HF

`+1(T, Y )

and
HF◦G
l (X,Y ) =

∑
T1,...,Tl

HG
l (X,T )×HF

l (T, Y )

with T1, ..., T`+1 pairwise distinct. so we prove the theorem if we prove that, for every T1, ..., Tl
pairwise distinct, one has

∑
T`+1

HG
`+1(X,T )×HF

`+1(T, Y ) ≥ (1− αFαG)H
G
` (X,T )×HF

` (T, Y )
2n − `

with the sum taken over the choices of T`+1 such that T1, ..., T`+1 are pairwise distinct.
We compute the left part of this inequality by introducing the values mF = (1−αF )× HF

` (T,Y )
2n−`

and mG = (1− αG)× HG
` (X,T )
2n−` : ∑

T`+1

HG
`+1(X,T )×HF

`+1(T, Y )

=
∑
T`+1

((HG
`+1(X,T )−mG) +mG)× ((HF

`+1(T, Y )−mF ) +mF )

=
∑
T`+1

(HG
`+1(X,T )−mG)× (HF

`+1(T, Y )−mF )

+
∑
T`+1

mG × (HF
`+1(T, Y )−mF ) +

∑
T`+1

(HG
`+1(X,T )−mG)×mF +

∑
T`+1

mGmF .



By hypothesis, the first term is positive. We now compute the second term:∑
T`+1

mG × (HF
`+1(T, Y )−mF )

= (1− αG)× HG
` (X,T )
2n − `

( ∑
T`+1

HF
`+1(T, Y )−

∑
T`+1

(1− αF )× HF
` (X,T )
2n − `

)

≥ (1− αG)× HG
` (X,T )
2n − `

(
HF
` (T, Y )− (1− αF )HF

` (T, Y )
( ∑
T`+1

1
2n − `

))

≥ HG
` (X,T )HF

` (T, Y )
2n − `

(
(1− αG)− (1− αG)(1− αF )

( ∑
T`+1

1
2n − `

))

The third term is computed the same way. The fourth term gives:

∑
T`+1

mGmF = HG
` (X,T )HF

` (T, Y )
2n − `

(
(1− αG)(1− αF )

( ∑
T`+1

1
2n − `

))
.

Summing the four terms, one has:

∑
T`+1

HG
`+1(X,T )×HF

`+1(T, Y ) ≥ HG
` (X,T )HF

` (T, Y )
2n − `

(
(1−αG)+(1−αF )−(1−αG)(1−αF )

( ∑
T`+1

1
2n − `

))
.

There is at most 2n − ` choices for T`+1 because T1, ..., T`+1 are pairwise distinct. So

(1−αG)+(1−αF )−(1−αG)(1−αF )
( ∑
T`+1

1
2n − `

)
≥ (1−αG)+(1−αF )−(1−αG)(1−αF ) = 1−αGαF ,

which ends the proof.

Our two main theorems (Theorems 4 and 6) are called global because it compares the number
H of permutations (or functions) sending all inputs to all outputs to a constant number. In
theorem 20 however, we call it local because we compare the number H for the first ` + 1
queries to number H for the first ` queries. Intuitively, the idea is to analyze the probability
to connect the ` + 1 query when you have already connected the first ` queries. This is the
strategy used in many security proofs using the Coupling technique (for example [HR10] and
[LPS12]).


