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Abstract
Today, accessing maps, pictures, status updates, and

other data from online services is de rigueur, but these
accesses may leak private information. Previous work
proposed using a secure coprocessor at the server to hide
all information about user requests via an oblivious RAM
(ORAM) protocol. For this to ever be practical, ORAM
must be adapted to the exigencies of the data center.
We explore the changes needed for such adaptation. We
show, via new techniques for oblivious aggregation, how
to securely use many secure coprocessors acting in paral-
lel to improve request latency. Despite the challenges of
the distributed setting, we protect against fully malicious
servers and coprocessor faults. Our evaluation com-
bines large-scale simulations with an implementation on
a secure coprocessor and suggests that these adaptations
bring ORAM in the data center closer to practicality.

1 Introduction
Requesting data from an online service reveals po-

tentially sensitive information about the request and re-
sponse. Using SSL hides this information from eaves-
droppers, but not from the service itself. Even if the data
is stored encrypted, the pattern of data accesses may re-
veal information. A series of map tile retrievals may re-
veal your commuting habits, retrieving tweets from Twit-
ter may reveal your interests, and retrieving photos from
Facebook may reveal your social graph.

In this work, we investigate techniques to provide
privacy-preserving access to data-center-scale online ser-
vices. These services typically host tens of billions of
records (§4.1); traditional protocols for making the server
oblivious to access patterns simply do not scale to this
much data (§2.1). Instead, we turn to schemes based on
secure hardware [16]. In these schemes, the user creates
a cryptographically-secure channel to a secure, trusted
coprocessor running on the server, and uses this channel
to submit requests and receive replies (see Figure 1). The
coprocessor performs requested reads and writes by us-
ing an efficient oblivious RAM (ORAM) scheme [12];
thus, the server learns nothing. Relative to the cost of
a non-private data access, the user pays only the CPU
and bandwidth overhead of an SSL connection. Only the
server pays the cost, within the data center where band-
width is plentiful and cheap.

However, employing ORAM in a data center raises nu-
merous issues not previously considered in the ORAM
literature (§2). What is different about ORAM in the data
center? First, the size of the data sets (§4.1) and the lim-
ited resources of secure coprocessors (§4.2) make many

schemes impractical. For example, schemes that require
the coprocessor to store O(

√
N) records [28, 32] would

exceed the memory available on modern secure copro-
cessors by three to six orders of magnitude.

Second, modern data centers are designed around par-
allelism, a notion not previously explored in the ORAM
literature. Just as a modern web service uses thousands
of computers in parallel, ORAM schemes for the data
center should be designed to exploit thousands of se-
cure coprocessors working together (§7). Indeed, secure
hardware has become so commoditized that it would be
quite reasonable to outfit most computers in a data cen-
ter with their own secure coprocessors (§4.2). Exploiting
this parallelism naı̈vely can be inefficient and/or insecure
(§3.3). Parallelism also provides an arbitrarily mali-
cious server with more opportunities for mischief, and
standard mechanisms for coping with such mischief (like
integrity protecting the database) make parallel operation
difficult. Nonetheless, we enhance our parallel ORAM
scheme to cope with arbitrarily malicious servers (§5.3),
with little impact on the parallelism of the scheme.

Next, using thousands of processors in a data center
implies regular hardware failures, making fault toler-
ance critical to algorithm design. §5.4 shows how to deal
securely and efficiently with coprocessor failures.

Finally, the vast majority of ORAM schemes analyze
performance in an amortized model [13, 16, 23, 32, 33],
whereas worst-case guarantees matter to online ser-
vices [2, 34]. Since they depend on 24x7 operation to
keep customers happy, they cannot afford long down-
times. However, with most ORAM schemes, the bad per-
formance hidden by the amortized analysis occasionally
stops the entire service for long periods (e.g., 92 hours to
a week – §7.5), during which no requests can be handled.
Recent work has begun to focus on worst-case ORAM
performance [14, 24], and we applaud these efforts as
better suited to data center expectations. To emphasize
this point, we concretely demonstrate the deleterious ef-
fects of amortized analysis in §7.5.

We implement the basic functionality of our scheme
on Infineon SLE 88 smart cards (§6), and use this im-
plementation to evaluate the performance of our proto-
cols (§7). We find that parallelism can bring response
times down to seconds, for many real world data sets,
even when protecting against malicious servers. Data
sets with large records, however, are costly to protect.
Achieving this parallelism requires the purchase of thou-
sands of coprocessors, but at $4 each, a data center
should be able to afford this outlay.
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2 Background and Related Work
We provide a brief overview of work on PIR and

ORAM. For more details see [21] or [23].

2.1 Private Information Retrieval (PIR)

Traditional PIR. In a private information retrieval (PIR)
protocol [9], a user retrieves record i from a database
of N items held by a server, without the server learning
i. Sion et al. [25] argue that in practical settings, exist-
ing PIR schemes will never be more efficient than the
trivial PIR scheme of downloading the entire database.
However, they evaluate number-theoretic solutions; tech-
niques based on other assumptions, e.g., lattice-based
linear algebra schemes [1], can outperform the trivial
PIR scheme [22]. Nonetheless, Olumofin and Gold-
berg’s results [22] indicate that even these schemes re-
quire over 25 minutes to access one record from a 28GB
database over a home network connection, suggesting
single-server PIR is not yet ready for the massive (ter-
abyte or petabyte) data sets and sub-second requirements
of the data center (see §4.1).
Multi-Server PIR. Using multiple non-colluding
servers is another way to improve on the efficiency
of both information theoretic and computational solu-
tions [9, 21, 22]. Nonetheless, these response times are
still far too slow for data center workloads, and more
importantly, the data sets we consider (see §4.1) are
large enough to make duplication prohibitive and are
held by companies that have little incentive to allow
others to duplicate their data.
Trusted Hardware PIR. A more practical approach to
PIR is for the user to trust a secure coprocessor installed
at the server. The user sends an encrypted request to
the coprocessor, which uses an Oblivious RAM (ORAM)
protocol to access the requested record and return it to the
user via the secure channel (see Figure 1). This means
that the user employs essentially the same amount of
bandwidth as it would for a non-private request. It is also
more efficient that performing the ORAM operations be-
tween the user and the server. Finally, it allows many
independent users to utilize the same service.

Iliev and Smith first articulated this elegant connection
between PIR and ORAM [16], though the notion is im-
plicit in the earlier work of Smith and Safford [27] and
Asonov and Freytag [3].

2.2 Oblivious RAM (ORAM)

Classic. Goldreich and Ostrovsky [12, 13] introduced
ORAM, as a mechanism by which a trusted proces-
sor could make use of an untrusted RAM. Most exist-
ing ORAM solutions use the basic memory structure
suggested by Goldreich’s “Hierarchical Scheme” [12].
These schemes include several highly serial steps, mak-
ing it difficult for them to leverage a large number of

distributed secure coprocessors. For example, they must
read from cache i to decide which record to read from
cache i + 1. Furthermore, these schemes require peri-
odic oblivious reshuffling of the data records, which in-
troduces a serialization point.
Modern. A recent surge of interest in ORAM has ex-
plored various optimizations to the classic Hierarchical
Scheme, including the use of Cuckoo hashing [14, 18,
23] and Bloom filters [33]. They improve the constants
but generally remain O(log3(N)) asymptotically.

Traditional ORAM assumes limited – O(1) – proces-
sor storage, but a few efforts have improved response
times by assuming more storage, e.g., O(

√
N), on the

processor [28, 32]. Given the capabilities of modern se-
cure coprocessors and the size of data center data sets
(§4), these schemes are infeasible for our purposes. They
would require gigabytes of coprocessor memory, when
even high-end secure coprocessors have only 32 MB of
memory, and the low-end have far less, e.g., 16 KB.

As we discuss in §1, nearly all existing ORAM
schemes measure performance in an amortized setting
that is inappropriate for data center workloads [2, 34].
Very recent work by Goodrich et al. [14] and Boneh et
al. [7] considers worst-case guarantees, but only at the
cost of excessive (for the data center setting) storage on
the coprocessor: O(n1/τ) and O(

√
N) respectively.

The most promising proposal for our purposes is the
Binary Tree scheme of Shi et al. [24], which we describe
in detail in §5.1. The scheme guarantees O(log3 N)
worst-case access time, and the binary tree structure
lends itself to parallelization. It also uses O(1) storage,
making it suited to our limited secure coprocessors. Al-
though the Binary Tree approach provides weaker se-
curity guarantees than previous schemes, the data cen-
ter environment compensates for this weakness. Specif-
ically, in most ORAM schemes, the adversary’s proba-
bility of success decreases exponentially in the security
parameter for the scheme. In contrast, in the Binary
Tree scheme, the adversary’s probability of success de-
creases only polynomially in the size of the data set. For-
tunately, for the data-center-scale data sets that we con-
template (see §4), the data sets are large enough to make
this security guarantee sufficient–the adversary’s proba-
bility of success against the ORAM will be no better than
his probability of breaking the underlying cryptographic
primitives (e.g., encryption and MAC schemes) directly.
Shi et al.’s scheme also bounds the number of ORAM
operations permitted; we remove this assumption (§B.1).

3 Problem Definition
3.1 Execution Model

Figure 1 provides an overview of our execution model.
At a high level, remote users achieve private data access
by indirecting their requests through secure coprocessors
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Figure 1: Private Data Access Overview. To read and/or
write data items, a user establishes a secure channel to a se-
cure coprocessor running in the service’s data center. Working
with other coprocessors, the secure coprocessor uses an ORAM
algorithm to retrive/update a database record without reveal-
ing to the service which record was accessed. The result is
returned to the user over the secure channel.

running inside the service’s data center. Collectively, us-
ing the servers in the data center as untrusted storage, the
secure coprocessors implement an ORAM algorithm, al-
lowing them to service requests without leaking any in-
formation to the server.

In contrast to having the users execute the ORAM
algorithm directly, this model keeps the bandwidth-
intensive ORAM protocol within the data center net-
work. It also allows the users to share a single ORAM,
rather than creating an ORAM per user or forcing the
users to share a secret key.

In this work, we assume each coprocessor has lim-
ited internal trusted storage that can indefinitely store a
few keys and a small amount of state. The coprocessors
are distinct from the server, which is the untrusted com-
ponent that handles storage and communication. The
server may run on multiple processors and/or machines
to achieve parallelism and fault tolerance.

3.2 Threat Model

We assume the attacker physically controls the ser-
vice’s data center and can run arbitrary code on the
servers. However, we assume he cannot violate the
tamper-responding secure coprocessors. The attacker
can also submit known queries to the service and observe
the service’s internal operations in response.

We do not consider denial-of-service attacks, since the
attacker can always power off the service or sever the
network connection. We also do not consider attacks that
could be launched by a standard network attacker; e.g.,
the attacker is able to observe that a particular IP address
has submitted three requests today. If desired, users can
mitigate this risk via standard techniques [10].

3.3 Strawman Solutions

Used naı̈vely, parallelism can be problematic.
Replication. One natural approach to utilizing a collec-
tion of q secure coprocessors is replicated execution, i.e.,
have each secure coprocessor maintain an independent

copy of the ORAM data structure. Such a scheme would
trivially improve response throughput, but not latency.
Unfortunately, this also increases storage requirements
enormously. For a database of N items, ORAM schemes
require the untrusted server to store between O(N) and
O(N logN) encrypted records. The encryption key is
unique to the ORAM scheme, meaning that each replica
of the ORAM scheme would require its own freshly en-
crypted copy of the original database. While storage is
indeed growing cheaper, existing data sets are already
hundreds or thousands of terabytes (§4.1), so replicating
them tens of thousands of times is impractical. It is also
unclear how this would support writes.
Distributed Caches. A more practical approach would
have all q secure coprocessors share a key and operate
on the same encrypted data set. Unfortunately, this may
leak information about whether two requests are for the
same address. Dealing with writes as well as reads adds
additional complications.

As an example, in many ORAM schemes (e.g., [13,
18, 23]), the secure coprocessor maintains a cache of the
most recently accessed items. With q secure coproces-
sors, one might imagine each secure coprocessor main-
taining its own cache of d items, creating a collective
cache of q ·d items. Suppose these coprocessors operate
independently on incoming requests, and imagine two re-
quests arrive for item v, with each being routed to a dif-
ferent coprocessor. If neither coprocessor has previously
fetched v, then neither one will find it in their cache, and
hence both will request v from the server. From this,
the server will observe that two different requests were
actually for the same record, undermining the ORAM’s
intended obfuscation.

Typical secure coprocessors are I/O bound (§4.2), so
coordinating coprocessors via explicit messages is too
expensive. Instead, we require new protocols to synchro-
nize the coprocessors and keep the ORAM secure.

4 Operating Constraints
To illustrate the formidable challenges of using

ORAM in a data center, we describe the size of real data
sets used by real web services, along with the computa-
tional limitations of current secure hardware.

4.1 Big Data

Modern web services expose vast data sets via pub-
lic interfaces. Even if the data were encrypted, services
could still glean sensitive information from user access
patterns. Even visiting the service via an anonymous
proxy [10] would not obviate this privacy threat.

We describe several representative data sets for which
we have concrete numbers. Figure 2 summarizes them.
Map Tiles. Many location-based services ultimately plot
a user’s location, or her friend’s, on a map. Even if the
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Data Set # of Records Record Size
Map Tiles 235 10 KB
Twitter Tweets 235 0.14 KB
Facebook Images 236 10 KB
Flickr Photos 232 5 MB

Figure 2: Datacenter-Scale Data Sets. Approximate sizes.

exchange of location data is strongly protected [20], re-
trieving map information may leak the location data any-
way. Thus, a privacy-preserving map service must also
ensure the obliviousness of a user’s tile requests.

To characterize a real-world map service, we sampled
Bing Maps tiles on “road” view. This service uses 256×
256-pixel tiles organized by levels of detail (zoom). The
number and size of tiles varies by level, but the majority
(∼ 235) are at level 19 with a maximum size of 10 KB,
so we use this as our representative sample.
Twitter. Although Twitter posts or “tweets” are public,
a user may wish to conceal which accounts she follows
or which tweets she is interested in. Thus, Twitter is a
reasonable candidate for PIR. According to public re-
ports [30], Twitter currently receives one billion tweets
every week. Extrapolating from previously published
metrics [29], we estimate that Twitter has received ap-
proximately 235 tweets throughout its history. Each tweet
is 140 bytes or less.
Facebook Images. Social networks raise many privacy
concerns, but even if they migrate to more decentralized
and privacy-enhancing platforms [4], data retrieval will
still threaten privacy unless it hides access patterns.

An illustrative data set is Facebook’s photo sharing
site, with more than 65 billion photographs consuming
20 petabytes [5]. Each photograph is stored in four im-
age sizes. Extrapolating from published numbers and
images sampled from Facebook, we estimate that these
sizes consume an average of 3 KB, 10 KB, 18 KB, and
71 KB respectively. A site deploying ORAM for these
images would likely use a separate ORAM structure for
each size. Since 84.4% of image requests are for small
images [5], we choose this image size as a representative
for the Facebook images.
Flickr Photos. Flickr is another popular photo sharing
site with over six billion photos as of August 2011 [11].
Like Facebook, it stores versions of each photo in mul-
tiple sizes; unlike Facebook, it also makes the original
image available. Typical consumer-grade cameras can
produce images in the 3–14 MB range, so we somewhat
arbitrarily choose 5 MB as a representative of a data set
with larger records.

4.2 Secure Hardware Performance

Today, there are a wide range of choices available for
secure coprocessors. We selected a representative from
each end of the spectrum and performed microbench-
marks to characterize their performance. These results

Infineon SLE 88 IBM 4764
CPU 66 MHz 266 MHz
Memory 16 KB 32 MB
I/O 14 KB/s 9.85 MB/s
3DES 1 KB 75 KB/s 1.08 MB/s
SHA-1 1 KB 136 KB/s 1.42 MB/s
SHA-1 64 KB 145 KB/s 18.6 MB/s
SHA-1 1 MB 147 KB/s 22.5 MB/s
Cost $4 $8,000

Figure 3: Secure Coprocessor Performance Specs and mea-
sured performance of two representative coprocessors.

are summarized in Figure 3. Both devices provide cryp-
tographic accelerators, internal key storage, active pro-
tection against physical tampering, and the ability to at-
test to the code they run [26].

At the low end, the Infineon SLE 88 [17] is a small
but surprisingly powerful and secure chip often found in
smart cards, pay TV boxes, and various military applica-
tions. For use in a data center, it can be packaged in a
USB dongle. While the SLE 88 is available in a variety
of configurations, we use the CFX4001P cards, which
come with 400 KB of EEPROM, 16 KB of RAM, and a
66 MHz CPU. The chip’s design is EAL5+ certified, and
the physical packaging is certified at FIPS 140-2 level 3,
meaning that it has a high probability of detecting and
responding to physical attacks. It includes sensors to de-
tect voltage and temperature irregularities, and it draws
power across a capacitor to frustrate power analysis. Its
biggest appeal is its price, $4, making it feasible to add
one to every computer in a data center.

In contrast, the IBM 4764 [15] is a high-end secure co-
processor. Each contains a 266 MHz PowerPC 405 CPU,
with 32 MB of RAM and much faster I/O and crypto-
graphic processing. The 4764 is certified at FIPS 140-2
level 4, the highest possible, meaning it includes strong
protections that detect physical tampering and respond
by zeroing its secrets.

5 Scaling Oblivious RAM to Data Centers
In this section, we describe our scheme for achiev-

ing a highly parallel ORAM service. First, §5.1 presents
the Binary Tree algorithm of Shi et al. [24]; the discus-
sion introduces terminology that will aid our descrip-
tion, in §5.2, of how we modify it to add parallelism.
§5.3 describes how to harden our new algorithm against
malicious adversaries. §5.4 describes how to make our
scheme tolerant to the failure of one or more secure co-
processors. §B discusses additional optimizations.

5.1 The Binary Tree Algorithm

In this subsection, we describe the Binary Tree ORAM
algorithm of Shi et al. [24], though we restructure the
computations in a way that is useful for parallelism, fault
tolerance, and dealing with a malicious server. Figure 5
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Symbol Meaning
N # of database records, each of size B
B Block size in bits
M Maximum # of operations on the ORAM
δ Probability of ORAM failure
R # of stages, typically ≈ 4 for our data sets

Figure 4: Notation Summary.

provides a high-level overview, while Figure 16 provides
detailed pseudocode.

5.1.1 Terminology

We assume that the data records stored in the ORAM
have virtual addresses ranging from 1 to N. We further
assume that all records have size B bits. We call any-
thing of size B bits a block; we reserve the block value
0 to mean an invalid record. We assume there will be a
maximum of M operations (in §B.1 we remove this as-
sumption), and that we can tolerate a failure probabil-
ity of δ during that sequence of operations. We assume
M = O(poly(N)) and 1/δ = O(poly(N)). §A discusses
additional parameter settings.

We support two kinds of user-initiated operations:
read and write. Read accepts a virtual address and re-
turns the record with that address. Write accepts a virtual
address and new record, and overwrites the old record at
that address. Either can accept a virtual address of 0,
meaning that the operation is to be treated as a dummy
operation with no change to the effective state. In prac-
tice, our scheme, like other ORAM schemes, treats reads
and writes identically, meaning that the server cannot
distinguish between them and that they have identical
performance characteristics.

5.1.2 Overview

The ORAM construction of Shi et al. [24], uses a bi-
nary tree with N nodes called buckets (Figure 5). Each
bucket contains O(logN) entries, each of which contains
an address and record. Each bucket is treated as a “triv-
ial ORAM”; it is accessed by examining all entries and
reading or updating the one with the desired address.

To track an entry’s location in the tree, the coprocessor
maintains a mapping from addresses to designators. A
record will always be in an entry of a bucket on the path
from the root to the leaf indicated by the designator.

When a data entry is written to the ORAM, it is in-
serted into the root bucket of the binary tree. To prevent
this bucket from overflowing, on each request, the copro-
cessor randomly selects two buckets from each level of
the tree, for a total of O(logN) buckets, to evict from.
When a bucket is selected, one of its valid entries is ran-
domly removed and added to the child on the path down
to the designator’s leaf bucket.

When a user requests a read or write at an address, the
coprocessor looks in its mapping for the address’s desig-

nator. It then reads all of the buckets in the tree along the
path between the root and this designator. When it finds
the entry with the desired address, it removes that entry
from its current bucket and eventually rewrites it at the
top of the tree using a new designator. Thus, repeated
reads for the same entry will produce different lookup
paths through the tree.

The table mapping addresses to designators must it-
self be accessed obliviously. However, it contains O(N)
mappings, making it far too large for the coprocessor to
store. Fortunately, each mapping is tiny (e.g., 6 bytes),
so many mapping entries fit in a single block. Thus, we
can recursively apply the same ORAM scheme to this
smaller collection of blocks. Each ORAM, or stage, will
be progressively smaller, until we arrive at an ORAM
that fits into a single block. As a result, each access per-
forms R− 1 lookups on increasingly larger ORAMs to
determine the designator for the requested entry. The en-
try is then retrieved from, or written to, the main binary
tree – stage R. R is generally quite small; indeed, for the
data sets from §4.1, R≈ 4.

5.1.3 Storage

The server provides storage to support the ORAM ser-
vice. Since the server is distrusted, coprocessors encrypt
all sensitive data using SymmetricKey with an IND-
CPA secure encryption scheme before storing it with the
server. The IND-CPA property ensures that the server
cannot learn anything about the underlying plaintext, not
even whether it has been modified by the coprocessor.
The encrypted items are assigned a public identifier, so
that the coprocessors can instruct the server which item
to retrieve. These identifiers are chosen so that they re-
veal no information to the server.

5.2 Adding Parallelism

We discuss how to parallelize the Binary Tree scheme.

5.2.1 Initialization

To parallelize the algorithm, we need to run parts of it
simultaneously on multiple coprocessors. Thus, we need
a way to induct several coprocessors. We do this by let-
ting any participating coprocessor C vet and induct any
other coprocessor Cnew that wishes to join the service.

To initiate the service, the server connects to a co-
processor and asks it to create a new ORAM of size
N and block size B. The coprocessor generates a fresh
symmetric key SymmetricKey, an asymmetric key pair
〈PublicKey,PrivateKey〉, a key for a secure pseudoran-
dom function PRF, and a seed UHFSeed for a universal
hash function. It reveals N, B, UHFSeed, and PublicKey
to the server, the user, and any future user who asks.

To join the service, Cnew asks the server for
PublicKey. Next, C attests to Cnew that it is running
the correct code in a secure environment [26], as well as
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Figure 5: Overview of the Binary Tree Algorithm. Each of the N buckets in the binary tree consists of O(logN) entries. To find
the entry for a given address, we look up the address’s designator, and follow the path through the tree dictated by that designator.
For each bucket on the path, we read all of the entries in that bucket. This continues along the entire path, even if we find the
address we’re looking for, to hide the entry’s actual location from the server. After reading or writing the entry, it is removed from
wherever it was found, reinserted into the top-level bucket, and assigned a new designator. Since the address-to-designator table is
large, it is itself stored in a recursive version of the ORAM structure. Each stage is smaller than the one it stores designators for, so
stage 1 fits within a single block.

to the validity of PublicKey. Cnew then uses PublicKey
to create a secure channel to C. Over this channel, Cnew
generates a similar attestation to convince C that it is a
secure platform running the same code as C. Once sat-
isfied, C provides Cnew with the information needed to
participate in the service, namely N, B, SymmetricKey,
PrivateKey, UHFSeed, and PRF. Once Cnew learns this
information, it has joined the service.

5.2.2 User Requests

A user initiates secure communication with the
ORAM service by requesting a standard attestation from
one of the secure coprocessors [26]. The attestation certi-
fies that PublicKey is held only by true secure coproces-
sors running the ORAM code. Using PublicKey, the user
creates a secure channel to a coprocessor. The user may
then use this channel to convey the operation she wishes
to perform without revealing it to the server. The copro-
cessor coordinates with the other secure coprocessors in
the data center to perform the Binary Tree algorithm in
parallel, as described below. At the algorithm’s termina-
tion, the coprocessor returns the result to the user over
the secure channel.

5.2.3 Parallelism Goals

Our primary aim is to minimize the number of copro-
cessor reads and writes of large blocks on the critical
path. We also use parallelism to mitigate computation-
ally taxing steps. We only worry about expensive com-
putations, such as hashing and encryption. Thus, we treat
as O(1) any operation that is technically O(logN) but ac-
tually fast, like an XOR of two log2(N)-bit numbers. To
distinguish expensive coprocessor operations from rela-
tively cheap server operations, we use OC(·) to summa-
rize coprocessor bandwidth and CPU costs, and OS(·) for
server overhead.

The main limit to our ability to parallelize is the itera-
tion of lookups through the R = O(logc N) stages. Each
iteration produces the designator for the next, so we can-

not perform them in parallel. Fortunately, since c is large,
R is typically small. For our data sets, it is four or less.

The primary bottleneck of the algorithm is the R en-
try lookups (i.e., invocations of LookUpAndRemove
in Figure 16), each of which reads B-size entries from
the server in two nested loops – one over the Ds + 1
buckets in the path and one over the Es entries in each
bucket. Since Ds and Es are both O(logN), the overhead
is OC(RB log2 N). This is substantial given how slowly
coprocessors can receive, transmit, and process data.

Below, we show how to employ the parallelism of
O(log2 N) coprocessors to reduce the time, including
bandwidth use, to OC(RB). We find that, for the data
sets we consider and expect to see in practice, this allows
us to achieve reasonable latency (§7).

5.2.4 Parallelizing Bucket Accesses

We describe how to access entries in a bucket (essen-
tially the helper functions in Figure 17) in OC(B) time.

Parallelizing entry updates (Obliviously-
UpdateEntry) is straightforward since there is no
dependency between entries in a bucket. By assigning
one coprocessor to each of the O(logN) entry indices,
we can complete all iterations in the time it takes to
do one. The dominant cost for this is that of reading,
decrypting, encrypting, and writing an entry: OC(B).

It is more difficult to parallelize entry reads
(ObliviouslyReadEntry). If we assign one copro-
cessor to each entry index examined, they must all coop-
erate to collectively produce the output. Fortunately, we
know that exactly one of the coprocessors has something
to contribute to this computation, since each is assigned a
different index but only the one assigned index i has any-
thing to contribute to the computation. Thus, the output
can be computed by XOR’ing the coprocessors’ respec-
tive outputs. In §5.2.7, we present an algorithm called
oblivious aggregation for efficiently (in OC(B) time) and
securely computing such a collective XOR.
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Finding a valid or invalid entry index in a bucket uses
a lot of coprocessor bandwidth, since it requires reading
all of the bucket’s entries. Thus, we propose separating
this small, frequently-accessed validity information from
the large O(B)-size entries containing them. Specifically,
we use a validity vector: a vector of bits, one per entry,
indicating if that entry is valid. Naturally, we must also
keep this vector current whenever we change a bucket.

5.2.5 Parallelizing Lookups

To look for an entry (LookUpAndRemove), we must
look at all Es = O(logN) entries in all Ds+1 = O(logN)
buckets on the path indicated by the designator. Exe-
cuted serially, this results in OC(RB log2(N)) overhead.
If instead we access all entries in parallel on DsEs =
OC(log2(N)) coprocessors, we only use OC(B) band-
width R− 1 times. The challenge is that these copro-
cessors must cooperate to compute the lookup result.

Fortunately, for each of these computations, at most
one of the coprocessors will have something to contribute
to it. This is because an invariant of the algorithm is that
the same virtual address appears in at most one bucket
of the tree [24]. This is ensured by preceding any write
to address v with a removal of the entry with address v
from the tree. Thus, the output (Result) can be computed
by XOR’ing the coprocessors’ respective contributions,
at most one of which is nonzero. This means we can use
oblivious aggregation (§5.2.7) to effect this computation.

A minor wrinkle is that, as we will see, oblivious ag-
gregation requires the server to XOR together O(log2 N)
values. Fortunately, the commutativity of XOR makes
it straightforward to parallelize using a modest number
of untrusted server processors. Each of O(logN) server
processors can XOR O(logN) values in parallel, then
one processor can XOR those processors’ results; this
all takes OS(RB logN) time. If increased speed is de-
sired, each of O(log2 N) server processors can do it in
OS(RB log logN) time. Since these XORs take place on
fast server processors at GB/s, orders of magnitude faster
than coprocessor writes, the time spent on this is trivial.

5.2.6 Parallelizing Eviction

Finally, we consider entry eviction (EvictStage).
Naively, this requires iterating serially through the tree.
For each bucket selected for eviction, we find a valid en-
try, remove it, find an empty space in its child, and update
both children so the server cannot tell which child re-
ceives the entry. Since we evict from 2Ds−1 = O(logN)
buckets and to twice that many, this takes OC(logN)
time.

Fortunately, we can parallelize an entire stage of evic-
tion by assigning one coprocessor to each of the∼ 6DsEs
entries involved. We have already seen how to parallelize
access to a bucket across one entry per coprocessor. Fur-

thermore, eviction operations for buckets are indepen-
dent of each other, as long as first decide what will be
evicted from all buckets, then update all involved buck-
ets. As a consequence, eviction takes OC(B) time with
O(log2 N) coprocessors.

In addition to the parallelism within eviction, we ob-
serve that eviction and lookup can themselves be per-
formed in parallel, given enough coprocessors. This can
be done safely since evict only moves each entry along
the path specified by its designator, while lookup ex-
amines all buckets on that path. Thus, eviction cannot
change whether a lookup will succeed.

5.2.7 Oblivious Aggregation

Sometimes our algorithm requires q secure coproces-
sors to aggregate their individual values, without reveal-
ing these values to the untrusted server. More concretely,
each secure coprocessor m knows some private value
vm ∈ V , and they collectively need to output the com-
bined values S←

⊕q
m=1 vm without revealing any partic-

ular vm. We could accomplish this by having each secure
coprocessor encrypt and output its value, and then have
one secure coprocessor read in, decrypt, and XOR all of
the values together, but this would take OC(q) I/O opera-
tions, which are quite expensive for the secure coproces-
sors (§4.2). If we use the protocol below, we only need a
single I/O operation from each secure coprocessor. The
server still does OS(q) computation, but the constants are
so small that this is essentially negligible.

In our protocol, we assume that the secure coproces-
sors are given a fresh nonce j and that each secure co-
processor knows its distinct index 1 through q. We also
assume the secure coprocessors share a key for a crypto-
graphically secure pseudorandom function PRF.

Protocol 1 (Oblivious Aggregation) Given its secret
value vm ∈V , shared key K, fresh nonce j, and the num-
ber of secure coprocessors q, each secure coprocessor m
computes

xm = PRFK( j ‖ m)⊕PRFK( j ‖ (m+1 mod q)) (1)

It then outputs zm = xm⊕ vm.
The untrusted server outputs Z =

⊕q
m=1 zm.

§C contains proofs of correctness and security.

5.3 Dealing with Malicious Servers

Thus far, we have assumed an honest-but-curious
server, but in the real world, if we distrust the server
enough to use ORAM to hide our data access patterns,
then it seems sensible to treat the server as fully mali-
cious. Since the server acts as a relay between copro-
cessors, there are four broad classes of attack available
to a malicious server: attacks on data secrecy, integrity,
freshness, and availability.
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Attacks on data secrecy, are, at a high-level, handled
by the ORAM protocol itself, and, at a low-level, pre-
vented by encrypting all secret values with an IND-CPA
secure scheme. Combined with a MAC, this protects
data secrecy against a malicious server [8]. Data in-
tegrity can largely be addressed by having the coproces-
sors MAC their outputs and verify the MACs on their
inputs. The oblivious aggregation protocol complicates
this, however, since the server combines the coproces-
sors’ output, but cannot produce a MAC on the result
(see §5.3.1). Data freshness is generally complicated in
ORAM schemes, since for efficiency reasons, each re-
quest touches only a portion of the data structure; main-
taining freshness in a distributed setting (§5.3.2) is even
more challenging. Finally, we ignore data-availability
or denial-of-service attacks, since they are impossible to
prevent; the coprocessors are entirely dependent on the
server for communication.

Overall, we defend against malicious servers using
only OC(RB + R logN) time per request, compared to
OC(RB) for honest-but-curious servers. We require no
more coprocessors to perform the necessary validations
than are needed to parallelize the basic algorithm.

5.3.1 Ensuring Data Integrity

As mentioned above, most integrity attacks can be pre-
vented by having each coprocessor MAC its outputs and
check the MAC on its inputs. Coprocessors also check
data from the server, e.g., to check that a given bucket
is indeed scheduled for eviction based on the current re-
quest number.

The use of oblivious aggregation complicates integrity
checks, since the server computes the final output Z and
clearly cannot produce a corresponding MAC. Thus, we
make sure that Z is always self-attesting. That is, it con-
sists of a statement concatenated with a MAC of that
statement’s hash.

5.3.2 Ensuring Data Freshness

Attacks on freshness take two forms: (1) giving a co-
processor the same state with the same input, twice, and
(2) giving a coprocessor the same state twice with differ-
ent inputs. Equivalently, the server can give two copro-
cessors the same state and either same or different inputs.
Both attacks can violate obliviousness.

We prevent attacks in the first class by making co-
processors stateless and deterministic; this ensures that
given the same state with the same input, a coproces-
sor will always produce the same output. We prevent
attacks in the second class by uniquely numbering each
request and associating each state with a single request;
this ensures that given the same state with two different
requests, a coprocessor will only act on the request asso-
ciated with that state.

DETERMINISTIC COPROCESSORS. The server may give
a coprocessor the same state with the same input, twice,
hoping that the coprocessor will behave differently, and
hence reveal information. To prevent this attack, we de-
sign all coprocessor operations to be stateless and deter-
ministic; thus, making a coprocessor process the same
input twice will result in the same output both times, so
the server learns nothing.

In more detail, coprocessors keep no long-term state
beyond their keys. Their operations are designed to be
deterministic given the inputs and the scheme’s parame-
ters (e.g., N and B). When random choices are needed,
we use pseudorandomly generated by applying a PRF to
the inputs and the current request number. The only true
randomness a coprocessor uses is for encrypting its out-
put. Since our encryption scheme is IND-CPA secure,
the server gains no information by making us encrypt the
same content repeatedly with different randomness.

UNIQUELY NUMBERING REQUESTS. To ensure each
request receives a unique number, we use a master copro-
cessor. §5.4 shows how to replicate the master for fault
tolerance, but for simplicity here we treat it as a single
coprocessor. When the user initially submits a request to
a coprocessor, the coprocessor encrypts it and provides
it to the server, which gives it to the master. The mas-
ter keeps an internal counter of how many requests have
occurred thus far. When a new request arrives, it assigns
it the next request number and increments the counter.
The master binds the request to the assigned number by
outputting a MAC of the two values.

BINDING STATES TO REQUESTS. We use an authenti-
cated data structure to bind each state of the ORAM data
structure to the request that produced it. Thus, coproces-
sors will only act on data for request r+ 1 if the data is
bound to request r. Giving a coprocessor state r with any
other request will produce an error.

Binding the entire ORAM structure to a request num-
ber is difficult since it is has enormous size, O(BN logN),
and each request entails many modifications happening
in parallel.

To cope with this scale, we use a collection of Merkle
trees [19]. A Merkle tree is a tree of hashes such that
each leaf is the hash of a component of a data structure,
and each parent is the hash of the concatenation of its
children. A MAC using the root hash is equivalent to a
MAC using a hash of all data structure components.

As an additional optimization, rather than validate the
Merkle values for each entry for every operation a re-
quest entails, we validate the entry once when a request
first arrives and generate a freshness attestation (a MAC)
directly linking the entry to the current request number.
After a request completes, we update the Merkle values
for all of the entries affected by the request.
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Figure 6: Accessed Buckets. In each half of each level of the
bucket tree, at most four buckets are accessed during a request:
one evictor, two evictees that are children of evictors, and one
that is accessed by the lookup for the specified address. Some-
times these overlap, particularly at the low depths depicted in
this figure; e.g., in the left half of depth 3 (shaded), one bucket
is an evictor and evictee, so only three buckets are accessed.

Merkle Tree Structure. We use one Merkle tree for
each combination of stage, tree half (left or right), and
depth. We have a separate Merkle tree for each combina-
tion of half and depth because, as we will see, it makes
it easy to quickly evaluate whether an entire subtree is
unchanged by an operation. This makes it tractable to
generate a new root hash after each operation, since large
swaths of the Merkle tree that are unchanged do not have
to be touched.

Each Merkle-tree leaf is the hash of a bucket’s entry,
with a bucket’s validity vector treated as the zeroth entry.
Intermediate hashes above the leaves represent contin-
uous ranges of entries within the same bucket, and the
topmost of these represent entire buckets. Above that,
Merkle hashes represent continuous ranges of bucket in-
dices within the same depth. The root hash represents all
entries in all buckets, but only in one half of the tree, at a
given depth, and in a given stage.

Because of this structure, it is possible for a copro-
cessor to quickly evaluate whether a Merkle hash is un-
changed by an operation. Each hash corresponds to only
a single side and depth, and a certain bucket index range
within that depth. A coprocessor can be told, using only
O(1) bandwidth, what bucket index was looked up at
that depth, and it can infer, using only 2 UHF invoca-
tions, which bucket was evicted at that depth and at its
parent’s depth. Thus, it can quickly determine whether
anything could have changed in the subtree summarized
by the Merkle hash. If not, it can treat an attestation of
the hash’s value after request r as an attestation of the
hash’s value after request r+1.
Creating Freshness Attestations. Before operating on
an entry, a coprocessor must be sure it is fresh, i.e., that
it corresponds to the state after the previous request. It
can do so by getting an attested root hash of the corre-
sponding Merkle tree, along with all the hashes along the
Merkle tree path from the root hash to the entry’s hash,
and all the hashes of their siblings.

In practice, it is wasteful to do this separately for ev-
ery entry, since there is a lot of overlap in the Merkle
tree. Instead we assign one coprocessor to every Merkle
root hash and have them generate attestations of needed
Merkle-depth-1 hashes. Then, we assign one coproces-
sor to each Merkle-depth-1 hash for which we need at-
testations of their Merkle children. After O(logN) such
steps, we have validated all entries we will need subse-
quently, either for lookup or eviction. Each coprocessor
completes its work in OC(1) time, but unfortunately we
cannot overlap this process for different stages since each
is dependent on the last for determining the lookup path.
Thus, the total time taken is OC(R logN).

As a side effect of this process, we also generate attes-
tations linking the previous request number to all siblings
of all Merkle ancestors of nodes to be modified during
this request. We use these below.

The number of coprocessors needed for the Merkle
leaves is no more than that needed to process the en-
tries, since a leaf represents an entry. The higher Merkle
depths require far fewer coprocessors. In particular, at
the Merkle depth at which Merkle hashes represent entire
buckets, each Merkle tree contains at most four hashes
that can change. This is because a Merkle tree represents
buckets of only one depth and half, and at each bucket
depth and half there is at most one evictor, two evictees,
and one bucket used for lookup (Figure 6).
Handling a Request. When operating on an entry, a co-
processor expects a freshness attestation linking it to the
current request. If the attestation validates, it performs
the operation and outputs an updated attestation.

Since eviction and lookup can take place in parallel
(see §5.2.6), we could potentially end up with two con-
flicting attestations for an entry touched by both oper-
ations (e.g., the nodes with both a dot and hatching in
Figure 6). To avoid this, when an entry is touched by
both operations, we make the coprocessor that performs
the eviction operation on an entry authoritative, i.e., the
one that outputs an updated freshness attestation that re-
flects both the eviction and the lookup. It is easy for the
evicting coprocessor to do both, since an entry is only
changed by a lookup if its address matches the address
the user requested. Meanwhile, a coprocessor perform-
ing a lookup quickly determines, with two UHF evalu-
ations, whether its block is subject to eviction. If so, it
simply does not produce a new entry attestation.
Updating the Merkle Trees. After completing the pro-
cessing of each request, the coprocessors must collec-
tively compute new Merkle tree root values and attest to
them being the result of that numbered request. This pro-
cess is highly parallelizable. We can generate attestations
for all Merkle tree leaves in parallel, then for all Merkle
tree nodes at the next-higher depth in parallel, etc., until
we have completed the roots.
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A coprocessor assigned to generate a Merkle node at-
testation takes as input attestations for each of its Merkle
children. For children that were changed during this re-
quest, that attestation binds to the current request num-
ber; for children that were unchanged, it binds to the pre-
vious request number. In this latter case, the coprocessor
rapidly validates that this purportedly-unchanged child
should not have been changed by the current request. If
everything is valid, it computes the Merkle value for its
assigned node and outputs an attestation linking it to the
current request number.

To analyze the time to update the Merkle trees, we
make the following observations. Each Merkle tree has
Merkle depth O(logN). For any i, all Merkle nodes at
Merkle depth i can be handled in parallel, even nodes
from different Merkle trees and even different stages.
And, finally, each coprocessor can handle a node in
OC(1) time. Thus, the total time to update all the Merkle
trees is OC(logN) with O(R log2 N) coprocessors. With
O(log2 N) coprocessors, it is OC(R logN).
Summary. By doing all the work of validating hashes
and updating the Merkle root in parallel, we make the
total time to do so OC(R logN) with O(log2 N) copro-
cessors. This also allows coprocessors to read and up-
date entries quickly, by verifying or generating only one
MAC.

5.4 Fault Tolerance

We now consider mechanisms for making the service
tolerate component failures. Since it is fairly well under-
stood how to make untrusted components fault-tolerant
through replication, we discuss only how to tolerate co-
processor failures.

As discussed in §5.3.2, our system is designed so all of
the coprocessors, except the master coprocessor, keep no
long-term state beyond N, B, UHFSeed, and keys. Thus,
if a non-master fails, its functionality can be duplicated
by having a new coprocessor install the ORAM code and
join the ORAM service. Coprocessors do keep short-
term state while they are in the process of performing a
step of the algorithm, but if one fails during such a step,
the server can perform it on another coprocessor.

To deal with the failure of the master coprocessor,
the master should actually consist of 2 f +1 cooperating
master instances. Here, f is the number of coprocessor
faults we want to tolerate. Each master instance inde-
pendently keeps track, in its internal nonvolatile storage,
of the last request number it has assigned. It will assign
any higher number to any request, if asked by the server;
it indicates this assignment by outputting an attestation
linking the request’s hash to the number. A request is
considered definitively assigned a number when has been
assigned the same number by a quorum of the instances,
i.e., at least f +1 of them.

To prove that a request has been assigned the same
number by a quorum of instances, a server needs not only
the quorum of attestations but also an attestation to the
list of instances in the master set. To get this, it supplies
a list of master instance identifiers to the coprocessor that
initially creates the ORAM service.

A coprocessor becomes a master instance by randomly
choosing a fresh, globally-unique instance identifier and
storing this in nonvolatile storage, alongside a counter
set to zero. The counter’s value indicates the highest re-
quest number the instance has assigned using this iden-
tifier. The global uniqueness ensures that if the copro-
cessor loses its state and creates a new instance, the new
instance will not be confused with the old one. Thus, the
counter associated with an instance will never roll back.

Over the lifetime of the ORAM service, it is likely that
f + 1 coprocessors will fail. Therefore, it is useful to
change, perhaps every one-hour period, the set of master
instances to replace failed ones. In this way, we can cope
with the loss of up to f coprocessors every period. We
change the set of master instances via delegation.

To begin delegation, the server selects a new set of
master instances. Then, it asks each of the existing mas-
ters to delegate its authority to the new set starting with
the next request number r. A coprocessor performs this
delegation if its highest number assigned so far is less
than r. It delegates its authority by deleting its master
instance and outputting an attestation of its delegation.
This attestation includes r and the new set of master in-
stances. Once the server collects such attestations from
a quorum of the old master instances, it presents them as
proof that the new master instances are responsible for
requests r and beyond. §D proves that delegation can
never cause two requests to be assigned the same request
number.

6 Implementation
To evaluate the performance of our parallel scheme,

we implemented the base scheme described in Sec-
tion 5.2 on Infineon SLE 88 cards. This includes parallel
versions of all algorithms shown in Figures 16 and 17,
as well as code to interact with remote users; it does not
yet implement integrity or freshness checks. It is 1,927
lines of C, as measured by SLOCCount [31]. An addi-
tional 849 lines are used on the server side to communi-
cate with the cards. Our code uses 3DES for encryption,
since the smart card supports it with hardware acceler-
ation. It uses SHA-1 as its hash function, HMAC for a
MAC, and the NH function from UMAC [6] as the UHF.

To evaluate our system at scale, we built a simulator.
It uses the measurements from our implementation to ex-
trapolate the performance on thousands of machines, and
also simulates server functionality. The simulator is 781
lines of Python, as measured by SLOCCount [31].
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Figure 7: SLE 88 Performance. The effect of block size on the time to perform the most performance-impacting operations in
our ORAM algorithm. The left side shows actual measured performance, and the right side shows our simulator’s predictions.
“Look up entry” is not shown because it overlaps closely with “Look up designator”. Integrity checks are not included. Error bars,
generally too small to see, indicate 95% confidence intervals about the mean of 50 trials.
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Figure 8: Time to Perform Miscellaneous Algorithm Steps
on the SLE 88. Times shown are for 1 KB block sizes. Integrity
checks are not included. Error bars, generally too small to see,
indicate 95% confidence intervals about the mean of 50 trials.

Our simulator can report the effect on latency of the
optimizations that shorten the critical path and remove
eviction from the critical path. However, it cannot deter-
mine the minimum number of coprocessors required for
these two optimizations, because we have not yet built a
scheduler that optimally assigns coprocessors to different
types of tasks; this is future work.

7 Evaluation
In all experiments, unless stated otherwise, we use

the following parameters: 235 addresses; 10-KB records;
10,000 coprocessors; desired lifetime failure probability
2−80; and ORAM lifetime 250 requests. These are mod-
eled after the map tiles workload.

7.1 Microbenchmarks

We evaluate how long different steps of our ORAM
algorithm take on a real coprocessor, the Infineon SLE.
We focus on the five operations that consume significant
amounts of time and must be repeated more than once,
since these are the primary drivers of performance and
opportunities for use of parallelism. These are: First-
stage lookup, Look up designator (for intermediate
stages), Look up entry (for the final stage), Get evicted
entry, and Post-eviction update.

The left graph of Figure 7 shows the results of 50 tri-
als for each step at each of four block sizes. Results for
“look up entry” are not presented because they are close
enough to “look up designator” that they would be hard
to see. Also, the effect of integrity checks is not included,
as our coprocessor implementation does not yet support
them. We observe that, as expected, the dominant cost

in all steps is proportional to record size; each of these
steps takes ≈180–300 ms per KB.

The right graph of Figure 7 shows the predictions
made by our simulator for these times. We see that they
are in close agreement, and never off by more than 7%.
Because our implementation does not yet support larger
block sizes than 2 KB, or integrity checks, the rest of the
evaluation uses our validated simulator to measure per-
formance under various conditions.

For completeness, in Figure 8 we show the time taken
by other algorithm steps implemented on the SLE 88.

7.2 Benefits of Parallelism

To evaluate parallelism, we vary the number of copro-
cessors used for ORAM and measure the time to per-
form a request. Recall that the algorithm treats reads and
writes identically, so it does not matter which we do.

Figure 9 shows the effect of varying the number of
coprocessors for various workloads using SLE cards.
We see that parallelism is quite effective, reducing the
time by over three orders of magnitude. For the Twit-
ter tweets workload, it reduces the time from 9,000 sec
to 4.7 sec, and for the map tiles workload, it reduces it
from 140,000 sec to 31 sec. For the Flickr photos work-
load, it also reduces it substantially, from 14,000 hours
to 2.9 hours, but this is still an unreasonably long pe-
riod of time. This is due to the large block size, 5 MB;
recall that our ideal performance is O(RB) even with-
out defense against malice. With enough coprocessors,
we could obtain better performance by splitting each im-
age into smaller chunks and creating an ORAM over the
first chunk from each image, an ORAM over the second
chunk, etc., and look up all chunks in parallel.

Latency reduction is essentially linear in the number
of coprocessors, since thanks to our restructuring, most
of the expensive operations are highly parallelizable. A
notable exception is the transition from one to two copro-
cessors, which reduces cost by much less than a factor of
two because of the additional requirements for commu-
nication between the coprocessors. Also, effectiveness
of parallelism stops after a certain number of coproces-
sors as we can no longer have enough tasks to distribute
among them. This occurs when we have about 28,000
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coprocessors, enough to handle all 6 log2(N) buckets in-
volved in eviction in the final stage. Beyond this many
coprocessors, we can use a few more to update all Merkle
hashes at the lowest Merkle depth in all stages at once,
but the benefits of this are slight since it does not involve
movement of large data.

Figure 10 shows the same experiment conducted with
simulated IBM 4764 coprocessors. We see the same
trend of highly effective parallelism, albeit with much
lower latencies. However, since these cost $8,000 each,
the low latencies shown are not practically attainable, at
least until technology trends make HSMs with this band-
width more affordable.

To fairly compare these two coprocessors, we conduct
another experiment where we hold total coprocessor cost
budget fixed and see how fast ORAM is with each copro-
cessor type. Figure 11 shows the results. We see that for
low budgets, the inexpensive Infineon SLE cards offer
better performance per unit cost, since they are signif-
icantly cheaper. Only with more than about $500,000,
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Figure 13: Variable Record Size. Effect on parallel ORAM
latency of varying record size. Simulation assumes 235 records
and 10,000 coprocessors. X-axis and Y-axis are log-scale.

when one can afford many more than 28,000 SLE cards
and thus can get little benefit from buying more, do the
IBM 4764 coprocessors become suitable for use in our
parallel ORAM.

To understand which steps of the algorithm are most
amenable to parallelism, Figure 12 shows, for each par-
allelizable step, how many coprocessors it can make use
of. We see that later stages can make use of more co-
processors, as they have larger ORAMs and thus more
buckets. The step that can make most use of extra co-
processors is post-eviction update, which updates all the
entries of all evictor and evictee buckets, which is about
6 log2(N) entries. In contrast, getting evicted entries only
reads entries of evictor buckets, of which there are about
2 log2(N). The step that can make the least use of them
is lookup, which only updates all the entries of buckets
along the designator path, which is about log2(N) entries.

7.3 Effect of Record Size and Count

In our next experiments, we look at the effect of vary-
ing workload characteristics on parallel ORAM perfor-
mance. Specifically, we look at the effect of varying the
size of records stored and the number of such records.

Figure 13 shows the effect of varying record size on
ORAM performance, with all other parameters set to
defaults including coprocessor count 10,000. Overall,
we see that below about 1 KB, the time taken is under
10 sec, and below about 16 KB, the time taken is under
one minute. Thus, while ORAM is conceivably feasible
for workloads like Twitter tweets, Facebook images, and
map tiles, it is unreasonable for the Flickr workload’s 5-
MB record size.
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Another thing to observe is that at low block sizes,
below about 1 KB, the effect of constant overheads dom-
inate, and block size does not have much effect. After
about 1 KB, each additional KB adds about 4.9 sec; af-
ter about 10 KB, each additional KB adds about 3.6 sec;
and, after about 600 KB, each additional KB adds about
2.8 sec. The overhead drops at these points because
larger block sizes allow more designators to be packed
into a block, eventually reaching a tipping point where
the number of stages R drops. Recall that our algorithm
is O(RB+R logN).

Figure 14 shows the effect of varying number of ad-
dresses N on ORAM performance. We see that, un-
like record size, record count has a less dramatic ef-
fect on request latency: in most cases, doubling the ad-
dress count has no effect on performance. For some
doublings, there is a large jump, due to the number of
stages R = O(logc(N)) increasing by one; for other dou-
blings, there is a small increase as the number of copro-
cessors required for a step goes above the next multiple
of 10,000. For the range of record counts seen in our data
sets, 232 to 236, request latency is between 39 and 51 sec,
but even data sets containing substantially more records
than this would have comparable latency.

7.4 Cost of Defense Against Malice

Next, we evaluate the cost of defending against ma-
licious servers in the Binary Tree algorithm. Recall that
we must use variable and entry attestations to ensure data
integrity, and ensure freshness by including request num-
bers. Because we cannot afford to re-attest the whole
state on every request, we use Merkle trees as an opti-
mization to enable freshness assurance. To evaluate the
cost, we run experiments in which we turn off integrity
and freshness checks.

Figure 15 shows the results. We observe that the cost
of these defenses is noticeable, demonstrating the impor-
tance of making their performance reasonable via paral-
lelism and Merkle trees. For the Twitter tweets workload,
the small record size means that the cost of communica-
tion dominates, and thus integrity and freshness checks
are significant. Time increases by 35% for integrity, due
to the need to compute and transmit MACs; adding fresh-
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ness increases it by a further 223%, primarily due to
Merkle tree maintenance. For the other workloads, in-
tegrity checks increase latency by about 11% and fresh-
ness by an additional 5–6%. The more modest overhead
is because the hashes involved are small compared to the
10-KB blocks that coprocessors must access.

7.5 Comparison to Hierarchical Scheme

To emphasize the importance of amortized analysis,
we simulate the traditional hierarchical algorithm of Gol-
dreich and Ostrovsky [13], which has O(log3 N) amor-
tized latency, but Ω(N) worst-case performance. Since
the scheme is not parallelizable, for fairness we consider
it to run on the fast coprocessor, the IBM 4764. With
235 records of 10 KB each, the average response time is
127 seconds, but much more troubling are the slow re-
sponses. Every 10,000 requests, a request takes almost
92 minutes to complete, and every 10,000,000 requests,
a request takes a week to complete! Since the entire ser-
vice must wait for these requests to complete before serv-
ing the next request, this scheme is clearly unsuited to the
data center.

8 Conclusion and Open Questions
Using secure hardware to implement ORAM in the

data center is one of the most practical approaches to pri-
vate information retrieval. Nonetheless, existing ORAM
schemes are not generally designed with data-center con-
straints in mind. We demonstrate that deploying ORAM
in the data center creates new challenges and opportu-
nities, including issues of scale, parallelism, through-
put, maliciousness, fault tolerance, and worst-case per-
formance. We show how to design an ORAM scheme to
address all of these issues, and our evaluation suggests
that these optimizations are needed to have any hope of
scaling ORAM to data-center-scale workloads.

In keeping with the existing ORAM literature, we fo-
cus on improving request latency. However, data cen-
ters also care tremendously about throughput. While our
scheme allows a few opportunities for improved through-
put, e.g., via pipelined stage lookups or limited request
batching, the existing ORAM paradigm seems inherently
resistant to handling large numbers of requests simulta-
neously. Since replication is not feasible at this scale,
new approaches or definitions are needed.
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A Detailed Pseudocode
In Figure 16, we provide detailed pseudocode for the

Binary Tree algorithm; the code makes use of the helper
functions shown in Figure 17. To illustrate its use, sup-
pose an ORAM has 1,000 addresses and each block holds
10 designators, so the number of stages is R = 4. If the
user asks for address 789, we first fetch the sole block of
the stage-1 ORAM and extract the designator at offset 7.
This is needed to find a block in the stage-2 ORAM. This
stage-2 block contains, at offset 8, the designator needed
to find a block in the stage-3 ORAM. Finally, this stage-3
block contains, at offset 9, the designator needed to find
the user’s requested block in stage 4.

Given a designator, we use LookUpAndRemove to
look up the block. It looks through all of the entries in
all of the buckets along the path from the root to the des-
ignated leaf. It also removes the block from the entry
where it was found, so that a later access to the same
address will not necessarily follow the same path. To re-
move the block without telling the server which entry is
being invalidated, it updates all the entries it examines.
This involves re-encrypting even the unchanged entries.

After looking up a block in stage s, we update it as
necessary and insert it in the root bucket of stage s, this
time with a new descriptor.

We must also run EvictStage on each stage, to
evict one bucket from each side of each level of its tree.
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GetNewDesignator (request # r, stage s):
d← PRF(SymmetricKey ‖ “NewDes” ‖ r ‖ s) (mod 2size)
Return d

SetToDummyIfInvalid (designator d, request # r, stage s):
d′← PRF(SymmetricKey ‖ “DumDes” ‖ r ‖ s) (mod 2size)
If d is invalid, set d← d′

Return d // at this point, it is no longer secret

FindValidIndex(stage s, bucket b):
Read from storage the validity vector for stage s, bucket b
Return index of first 1-bit in the vector, or 1 if none exist

FindInvalidIndex(stage s, bucket b):
Read from storage the validity vector for stage s, bucket b
Return index of first 0-bit in the vector

ObliviouslyReadEntry(stage s, bucket b, index i):
Result← 〈0,0,0〉
For each index j from 1 to number of entries in b:

Read entry E from storage for stage s, bucket b, index j
If j = i, then Result← E

Return Result

ObliviouslyUpdateEntry(stage s, bucket b, index i,
new entry E ′):

For each index j from 1 to number of entries in b:
Read entry E from storage for stage s, bucket b, index j
If j = i, then E← E ′

Write E to storage for stage s, bucket b, index j

Figure 17: Pseudocode for helper functions. Overlined
values must be hidden from the server.

For each evictor bucket, we find a valid entry index, i.e.,
one corresponding to a non-dummy item, to evict. We
then read the entry there to find what to evict. For each
evictee bucket, we find the index of an invalid entry so
we can store the entry its parent evicted; if the evictee is
also an evictor, we use the same index for evicting and
receiving. We then update all entries of all evictors and
evictees, so the server cannot tell which few entries actu-
ally changed.
Additional Details. We denote by Ns the number of ad-
dresses served by the stage-s ORAM, so NR = N. Each
designator takes ≤ dlog2 Ne+1 bits, so a block can hold
at least c pointers, where c =

⌊
B

dlog2 Ne+1

⌋
. Thus, we use

Ns = dNs+1/ce. R = O(logc N), but is generally quite
small because c is large; indeed, for the data sets from
§4.1, R≈ 4.

The storage for ORAM stage s consists logically of a
binary tree with depth Ds = dlog2(Ns)e. Each node in
this tree is a bucket with Es entries. To keep the proba-
bility of overflow bounded by δ, Shi et al. demonstrate
Es = O(log2(MN/δ)) is sufficient [24]. Our analysis in-
dicates we need Es = log2(MNs(R−1)/δ), and in §B we
show how non-leaf buckets can use even fewer. The root
and depth-1 buckets need only one entry each since they
are evicted on every operation.

B Recommended Optimizations
B.1 Design

Extending Service Lifetime. If M might be an underes-
timate of the number of operations the ORAM will have
to perform, it is possible to plan for this eventuality, as
follows. At the beginning, we use one additional entry
per bucket. After each operation numbered (2i− 1)M,
where i is a positive integer, we add an additional two
entries per bucket. This allows indefinite operation, at
the cost of a slight increase in the number of entries per
bucket: If we underestimate M by a multiplicative fac-
tor of u, we use log2(u+1) more entries than necessary.
The additional entry at the start ensures that the probabil-
ity of overflow in the first M operations is δ/2 instead of
δ. Every time we add two entries, we divide the subse-
quent overflow probability by four, allowing the ORAM
to perform twice as many operations with half the proba-
bility of overflow. Thus, the probability of overflow ever
happening is ≤ (1/2)δ+(1/4)δ+(1/8)δ+ · · ·= δ.
Shortening the Critical Path. A critical bottleneck is
the need to iterate through all the stages, since each stage
must look up a designator before the next stage can pro-
ceed. However, we can arrange for stage s to output the
designator needed by stage s− 1 as soon as possible,
thereby overlapping the rest of stage s with subsequent
stages. A simple way to do this is to break LookUp-
AndRemove into a lookup phase and a remove phase,
and start the next stage after the lookup phase completes.

We can reduce the critical path even further by having
the lookup phase first output just the part of the block
needed by the next phase. By encrypting blocks with
counter mode, a coprocessor can quickly decrypt and
output just the part that contains the designator needed
by the next phase. It will later have to decrypt the entire
block, but this can be overlapped with subsequent stages.
Removing Eviction From the Critical Path. A stage
can do eviction before its lookup designator is known.
All that is needed is the block address, so that the
eviction-based update can invalidate any entry it finds
with that address; unlike the designators, this ad-
dress is known at the beginning of SatisfyUser-
ObliviousRequest. Thus, any extra coprocessors
not needed by the critical path can be assigned to per-
form steps of EvictStage for any or all stages, even
stages that have not yet begun LookUpAndRemove.
Smaller Non-leaf Buckets. By improving on the over-
flow analysis of Shi et al. [24], we can use fewer en-
tries for non-leaf buckets than are necessary in leaf buck-
ets: log2(M(Ds−2)(R−1)/δ) instead of log2(MNs(R−
1)/δ). This reduces the number of entries per non-leaf
bucket by almost log2 Ns, and half of all buckets are non-
leaves. The reason we can use fewer entries in non-leaves
is that overflows of non-leaf buckets can only happen as a
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Figure 18: Effect of Default Optimizations. Increase in
ORAM latency when various optimizations we devised are re-
moved. Simulation assumes 10,000 coprocessors.

consequence of eviction, and only 2M(Ds−2) evictions
ever happen; for a full proof, see §E.

In practical terms, workloads we consider require
about 19% fewer entries per non-leaf due to this opti-
mization. Although non-leaves only account for half of
all buckets, they account for nearly all of the buckets ac-
cessed in any ORAM operation. Thus, the effect on la-
tency is significant, as we will see in §B.2.
Packing Designators. Designators are Ds +1 bits long.
For a stage s < R, Ds = dlog2(Ns)e< dlog2(N)e, so des-
ignators take fewer than dlog2 Ne+ 1 bits. This means
a block can hold much more than c such designators; it
can hold Cs = b B

Ds+1c of them. Thus, we actually only
need Ns = dNs+1/Cse blocks in stage s. If we pack des-
ignators into blocks in this more efficient manner, all the
Ns values for s < R−1 get smaller, thereby saving time.
In some cases it may even reduce R by one, which would
save even more time.
Efficient Eviction Selection. It is not necessary that the
set of buckets to evict from be chosen with secure ran-
domness, since there is no harm in revealing it to the
server, even in advance. Therefore, an efficient way to
choose this set is with a universal hash function (UHF),
as follows. The ORAM service creator chooses and at-
tests to a random seed UHFSeed. Then, any coproces-
sor or server can compute the indices of the depth-d
buckets to evict during request r, using UHF(UHFSeed ‖
d ‖ r ‖ 0) (mod 2d−1) and UHF(UHFSeed ‖ d ‖ r ‖ 1)
(mod 2d−1)+2d−1.

Note that this always selects one bucket from the left
half of the tree and one bucket from the half. This does
not impact the overflow analysis since it maintains the
same probability of eviction for each bucket. We do
this so a coprocessor working on a bucket can verify
whether it is scheduled for eviction quickly, using one
UHF evaluation; it can also verify if its parent is sched-
uled for eviction with another UHF evaluation. This is
useful since we cannot trust the server to accurately re-
port which buckets are scheduled for eviction.

B.2 Effectiveness of Optimizations

We use our simulator to measure how effective certain
optimizations are. We start with the standard optimiza-
tions we always apply: attesting all next stages at once,
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Decrease in ORAM latency when various additional optimiza-
tions we devised, which involve partially overlapping several
stages, are added. Simulation assumes unlimited coprocessors.

packing designators, and using smaller non-leaf buckets.
Figure 18 shows the results. We see that each optimiza-
tion always helps, but their effect depends on the work-
load. Attesting all next stages at once is highly useful
for the Twitter tweets workload, reducing its latency by
24%. This is because this workload has a small record
size, so attestation is a sizeable fraction of total run time;
for the other workloads, the effect is small. Packing des-
ignators is highly useful for the map tiles workload, re-
ducing its latency by 17%. The large effect is because
it causes the number of stages R to drop from five to
four; recall that our algorithm’s performance is O(RB).
Smaller non-leaf buckets have a large effect on the map
tiles and Facebook images, reducing latency by 21% and
13% respectively; although non-leaf buckets account for
only half the buckets, they account for nearly all of the
buckets accessed during the algorithm.

We also described optimizations that involve leverag-
ing many extra coprocessors to overlap steps of several
stages at once. One is to reduce the critical path by out-
putting designators early in the lookup process, and the
other is to overlap eviction with lookup. To evaluate the
effectiveness of these optimizations, we performed sim-
ulations with an unlimited number of coprocessors.

The results are in Figure 19. We see that the effective-
ness of these optimizations is substantial for the work-
loads with large record sizes, and also significant for the
small-record Twitter tweets. For Twitter tweets, reduc-
ing the critical path reduces latency by 6%; overlapping
eviction with lookup decreases it by 15%; and doing both
reduces it by 17%. For the others, reducing the critical
path reduces latency by 15–17%; overlapping eviction
with lookup decreases it by 49–51%; and doing both re-
duces it by 63–69%.

These large effects indicate it pays off substantially
to use these optimizations when many coprocessors are
available. Recall that Figure 12 discussed how many co-
processors would be necessary to overlap all stages at
once, as these optimizations demand. However, even
without that many coprocessors, it may be possible with
intelligent scheduling to make partial use of the opti-
mizations during periods when not all coprocessors are
in use. Devising such schedules is future work.
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C Proof of Correctness and Security of
Oblivious Aggregation

Correctness. Protocol 1 produces the correct output
(namely

⊕q
m=1 vm ) by the following reasoning.

Z =
q⊕

m=1

zm =
q⊕

m=1

xm⊕ vm =
q⊕

m=1

xm⊕
q⊕

m=1

vm

The xm are computed such that
⊕q

m=1 xm = 0, so Z =⊕q
m=1 vm.

Security. We prove Theorem 1, showing that Protocol 1
leaks nothing about the individual values vm to the server.
Such a leak would allow us to break the PRF.

Theorem 1 Let PRF be a pseudorandom function. Let
π be the functionality where each of q parties (copro-
cessors) has input vm for 1 ≤ m ≤ q, and another party
(server) receives as output S =

⊕q
m=1 vm. Then Proto-

col 1 is a multiparty computation protocol for π, which
provides security in the presence of a semi-honest server.

Proof of Theorem 1: Our proof will be in the real/ideal
world model. We define the following ideal function-
ality. It receives from each secure coprocessor a value
vm and outputs the sum S←

⊕q
m=1 vm. The simulator

needs to simulate the interaction between the secure co-
processors and the untrusted server. To do so, the simu-
lator obtains the sum S from the ideal functionality, com-
putes q additive shares of S, and sends the shares to the
server. The random shares {ym}q

m=1 are computed as fol-

lows ym
R← V if m < q, and yq = S⊕

⊕q−1
m=1 ym.

Now we need to show that an adversary controlling the
server cannot distinguish whether he is given {ym}q

m=1
from the simulator or {zm}q

m=1 from the secure copro-
cessors in the real execution. As an intermediate step,
we consider the distribution {wm← vm⊕ rm}q

m=1, where
each rm for m < q is chosen uniformly at random and
rq =

⊕q−1
i=1 ri. We now prove indistinguishability in two

steps: first, we show that {ym}q
m=1 is indistinguishable

from {wm}q
m=1, and then that {wm}q

m=1 is indistinguish-
able from the distribution {zm}q

m=1 in the real execution.
The first point follows from the fact that rm for m < q are
chosen uniformly at random and hence the same is true
for wm = vm⊕ rm when m < q, and wq = S⊕

⊕q−1
m=1 wm.

Therefore the values {wm}q
m=1 have the same distribution

as {ym}q
m=1.

We now reduce the indistinguishability of {wm}q
m=1

and {zm}q
m=1 to the indistinguishability of the output of

a PRF from a truly random function. Assume there ex-
ists an adversary A who distinguishes these two distribu-
tions with non-negligible probability; we use this adver-
sary to construct an adversary APRF who distinguishes
the output of the PRF from random. The adversary APRF
is given access to an oracle OF(·), and his goal is to guess

whether this oracle implements a PRF FK or a truly ran-
dom function F . We construct APRF as follows:

1. APRF picks q values at random: vm
R← V .

2. APRF queries his oracle OF(·) in order to compute
the values xm as follows: xm =OF( j||i)⊕OF( j||(i+
1 mod q)) for 1≤ m≤ q.

3. APRF sends {vm⊕ xm}q
m=1 to A .

4. If A guesses that he was given {wm}q
m=1, then APRF

guesses that he was interacting with a random func-
tion. Otherwise, APRF guesses that he was interact-
ing with a pseudorandom function.

We observe that if OF(·) is implemented with a PRF,
then the input provided to A is of the same form as
{zm}q

m=1. On the other hand, if OF(·) returns answers
from a truly random function, then the values that A
receives are of the same form as {wm}q

m=1. Therefore,
APRF guesses correctly and distinguishes the output of
the PRF from random with non-negligible, contradicting
the security of the PRF.

D Proof of Correctness of Delegation
In §5.4, we described a protocol for delegating author-

ity for request number assignment to a new set of master
instances. Here, we prove that this is safe, i.e, that it can-
not cause two different requests to be assigned the same
request number.

Theorem 2 No two distinct requests are assigned the
same request number.

Proof of Theorem 2: Before beginning, we make the
following observation. A master set can be attested in
only two ways: it can be the unique master set attested
at service creation time, or it can be attested via delega-
tion. A master set attested via delegation is derived from
an earlier master set attestation, along with a quorum of
delegation attestations. Thus, each master set attestation
must be the final link of a chain of attestations, starting
with the unique original master set attestation and con-
tinuing via a sequence of delegations.

Now, suppose the protocol is not safe, and two re-
quests R and R′ are assigned the same number r. For
this, the server must have gotten one master set quorum
to assign r to R and another to assign r to R′. Since no
single master instance can ever assign the same request
number twice, the quorums must not overlap. Since quo-
rums of the same master set overlap, the quorums must
be from two different master sets. Thus, there exist two
different master sets S1 and S2, both having assigned the
same request number r.

Consider the chains for S1 and S2. They share at least
one common element, since they both start at the same
original attestation. Thus, they have a last common el-
ement, which we’ll call the latest common predecessor.
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There are two cases to consider: (1) this common prede-
cessor is one of S1 and S2, or (2) the common predecessor
is a different master set S ′.

Consider case 1, and without loss of generality assume
the common predecessor is S1. We thus know that S1 del-
egated responsibility, starting with some request number
x, to a subsequent master set, and this was the beginning
of a chain of delegations ending in S2. Since we know
S1 assigned request number r, and it cannot delegate a
request number it has already assigned, we know x > r.
However, this means that S2 was never delegated respon-
sibility for requests < x, and in particular was never del-
egated responsibility for r. This contradicts the assump-
tion that it assigned a request to r.

Now, consider case 2. In this case, we have a master
set S ′ that is a latest common predecessor of two dis-
tinct master sets S1 and S2. Thus, it must have delegated
responsibility to two distinct master sets, its successor in
the chain leading to S1 and its successor in the chain lead-
ing to S2. However, a master set cannot delegate to an-
other without a quorum of its members delegating. Quo-
rums overlap, so there must be at least one member of
S ′ that delegated to both successors. This is impossible,
since a master instance destroys itself upon delegation,
and therefore cannot delegate a second time.

We have covered all cases and shown them to be im-
possible, so the original supposition must be false and
the delegation protocol is safe.

E Proof of Safety for Reduced Entry Count
In §B, we gave a brief explanation of why non-leaf

buckets require fewer entries than non-leaves. We now
present a full proof.

Theorem 3 With only log2(M(D−2)(R−1)/δ) entries
per non-leaf bucket, where D is the depth of the tree the
bucket is in, the probability of overflow, in the course of
M operations, is ≤ δ.

Proof of Theorem 3: Let Ov(E) be the event that,
within the first M ORAM operations, at least one non-
leaf bucket in the tree exceeds size E. Let Ov′(E) be
the event that, within the first M ORAM operations, at
least one non-leaf bucket goes from size E to E + 1
as a result of its parent performing an eviction. It is
clear that Ov′(E) ⇒ Ov(E), since if at least one non-
leaf bucket exceeds size E after its parent performs an
eviction, then it exceeds size E. We can also show that
Ov(E)⇒ Ov′(E), as follows. If a non-leaf bucket ex-
ceeds size E within the first M ORAM operations, then
there must be a first time that it exceeds size E during
those ORAM operations. This must happen right after
its parent performs an eviction, since there is no other
way for it to go from not exceeding E to exceeding E. At
this point, it goes from size E to E +1.

Since Ov′(E)⇒Ov(E) and Ov(E)⇒Ov′(E), we can
conclude P(Ov(E)) = P(Ov′(E)).

The root and depth-1 buckets can never overflow be-
cause they are evicted after every operation. Thus, there
are only D− 2 levels containing non-leaf buckets that
can overflow. Every operation, four buckets from each of
these levels has a parent that may perform an eviction to
it. Thus, after every operation, there are at most 4(D−2)
non-leaf buckets that may go from size E to E + 1 as a
result of an eviction from its parent. Altogether, then,
there are 4M(D− 2) opportunities for a non-leaf bucket
to do this.

For any 1 ≤ i ≤ 4M(D−2), let Ov′(i,E) be the event
that, during the ith opportunity for a non-leaf bucket to
overflow due to an eviction from its parent, it actually
does so. Consider one of these opportunities, in which
a bucket b has a parent selected for eviction. The prob-
ability of b actually going from size E to E + 1 in this
way can be bounded as follows. For this to happen, b’s
parent must have positive load, the entry evicted from
b’s parent must have a designator that points toward b,
and the load of b must be exactly E. These are all inde-
pendent events, so their probabilities can be multiplied.
The probability that b’s parent has positive load is≤ 1/2.
The probability that the entry b’s parent evicts has a des-
ignator that points toward b is 1/2. The probability that
b’s load is E is ≤ the probability that b’s load is at least
E, which is ≤ 1/2E . Altogether, we have the probabil-
ity that b goes from E to E + 1 is ≤ 1/2(E+2). In other
words, P(Ov′(i,E))≤ 1/2(E+2).

Since these are the only opportunities for there
to be overflow in this way, we know Ov′(E) =⋃4M(D−2)

i=1 Ov′(i,E). By the union bound, we thus have
P(Ov′(E))≤∑

4M(D−2)
i=1 P(Ov′(i,E)). Since we’ve shown

that P(Ov′(i,E)) ≤ 1/2(E+2), we can conclude that
P(Ov′(E)) ≤ 4M(D−2)

2(E+2) = M(D−2)
2E . Since we showed that

P(Ov(E)) = P(Ov′(E)), we have P(Ov(E))≤ M(D−2)
2E .

To ensure that the probability of overflow is at most δ,
we want to make the probability of overflow in any tree
be at most δ/(R− 1), since there are R− 1 trees with
buckets that can overflow. Thus, we use a number E
of entries per bucket such that P(Ov(E)) ≤ δ/(R− 1).
This holds if M(D−2)

2E ≤ δ/(R− 1), which holds if E ≥
log2[M(D−2)(R−1)/δ].
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SatisfyUserObliviousRequest (request # r, boolean IsWrite, address Address, block BlockToWrite):
For each stage s from 1 to R:

If s = 1:
CurrentBlock← the sole stage-1 block

Else:
EvictStage(stage s)
CurrentBlock← LookUpAndRemove(address Address, stage s, designator DesignatorToLookUp[s])

If s = R:
If IsWrite, set CurrentBlock← BlockToWrite

Else:
CurrentDesignator[s+1]← designator at offset dAddress/cR−se mod c in CurrentBlock
DesignatorToLookUp[s+1]← SetToDummyIfInvalid(designator CurrentDesignator[s+1], request # r, stage s+1)
Set designator at offset dAddress/cR−se mod c in CurrentBlock to GetNewDesignator(request # r, stage s+1)

Write 〈dAddress/cR−se,CurrentBlock,GetNewDesignator(request # r, stage s)〉 as the new stage-s root bucket’s entry
Return CurrentBlock

LookUpAndRemove(address Address, stage s, designator d):
Result← 0
For each bucket b along the tree path indicated by d:

For each index i from 1 to number of entries in b:
Read entry E from storage for ORAM stage s, bucket b, index i
If E’s address field is dAddress/cR−se:
Result← E’s contents field
E← 〈0,0,0〉

Write E to storage for ORAM stage s, bucket b, index i
Return Result

EvictStage(stage s)
Use a universal hash function to compute the set of buckets to evict BucketsToEvict
For each bucket b in BucketsToEvict∪Children(BucketsToEvict):

If b ∈ BucketsToEvict:
SelectedIndex[b]← FindValidIndex(stage s, bucket b)

Else:
SelectedIndex[b]← FindInvalidIndex(stage s, bucket b)

For each bucket b in BucketsToEvict:
EvictedEntry[b]← ObliviouslyReadEntry(stage s, bucket b, index SelectedIndex[b])

For each bucket b in BucketsToEvict∪Children(BucketsToEvict):
ReplacementEntry← 0
If b ∈ Children(BucketsToEvict) and EvictedEntry[Parent(b)]’s designator passes through b:

ReplacementEntry← EvictedEntry[Parent(b)]
ObliviouslyUpdateEntry(stage s, bucket b, index SelectedIndex[b], ReplacementEntry)

Figure 16: Pseudocode for ORAM operations. R and c are public constants, as described in Figure 4. Overlined values
must be hidden from the server. Some helper functions invoked here are described in Figure 17.
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