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Abstract. In this paper we propose a signature scheme based on two in-
tractable problems, namely the integer factorization problem and the discrete
logarithm problem for elliptic curves. It is suitable for applications requir-
ing long-term security and provides a more e�cient solution than the existing
ones.

1. Introduction

Many applications of the Information Technology, such as encryption of sensitive
medical data or digital signatures for contracts, need long term cryptographic secu-
rity. Unfortunately, today's cryptography provides strong tools only for short term
security [5]. Especially, digital signatures do not guarantee the desired long-term
security. In order to achieve this goal Maseberg [17] suggested the use of more than
one su�ciently independent signature schemes. Thus, if one of them is broken,
then it can be replaced by a new secure one. Afterward the document has to be
re-signed. Again we have more than one valid signatures of our document. Of
course, a drawback of the method is that the document has to be re-signed.

In order to avoid this problem, it may be interesting for applications with long-
term, to base the security of cryptographic primitives on two di�cult problems,
so if any of these problems is broken, the other will still be valid and hence the
signature will be protected. We propose in this paper a signature scheme built
taking into account this constraint. The following signature scheme is based on the
integer factorization problem and the discrete logarithm problem on a supersingular
elliptic curve. Remark that these two problems have similar resistance to attack,
thus they can coexist within the same protocol. The use of a supersingular curve
allows us to easily build a pairing that we use to verify the signature. Note that
our system is the �rst one that combines these two problems.

Signature schemes combining the intractability of the integer factorization prob-
lem and integer discrete logarithm problem were proposed but most of them have
proved to be not as secure as claimed [6, 8, 14, 15, 16, 19, 23].

In section 2 we describe the infrastructure for the implementation of the scheme.
Then we present the key generation, the generation of a signature and the veri�ca-
tion. In section 3 we study the security of the scheme. In section 4 we show how to
build a elliptic curve adapted to the situation and how to de�ne a valuable pairing
on it. In section 5 we address the problem of the map to point function and give
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a practical solution. In section 7 we give a complete example that shows that the
establishment of such a system can be made in practice.

2. The Proposed Signature Scheme

In this section we present our signature scheme.

2.1. Public and private key generation. A userA, who wants to create a public
and a private key selects:

(1) primes p1 and p2 such that the factorization of n = p1p2 is infeasible;
(2) an elliptic curve E over a �nite �eld Fq, a point P ∈ E(Fq) with ord(P ) = n

and an e�ciently computable pairing en such that en(P, P ) is a primitive
n-th root of 1;

(3) three integers g ∈ {1, . . . , n−1} with gcd(g, n) = 1 and a, b ∈ {1, . . . , φ(n)−
1} and computes Q = gaP , r = gb (mod n) and R = ga−abP ;

(4) two hash functions, H : {0, 1}∗ →< P >, where < P > is the subgroup of
E(Fq) generated by P , and h : {0, 1}∗ → {0, . . . , n− 1}.

A publishes the elliptic curve E, the pairing en and the hash functions h and H.
The public key of A is (g, P,Q,R, r, n) and his private key (a, b, p1, p2).

2.2. Signature generation. A wants to sign a message m ∈ {0, 1}∗. Then he
computes

S = gabH(m)

and

s = bh(m) + a− ab mod φ(n).

Let x(S) be the x-coordinate of S. The signature of m is the couple (x(S), s).

2.3. Veri�cation. Suppose that (x, s) is the signature of m. The receiver deter-
mines y such that Σ = (x, y) is a point of E(Fq). He accepts the signature if and
only if

en(±gsΣ, P ) = en(rh(m)H(m), Q)

and

gsP = rh(m)R.

Proof of correctness of veri�cation. Suppose that the signature (x, s) is valid and
Σ = (x, y) is a point of E(Fq). Then Σ = ±S and so, we get

en(±gsΣ, P ) = en(gsS, P ) = en(gbh(m)+a−abgabH(m), P ) = en(rh(m)H(m), Q)

and

gsr−h(m)P = gh(m)b+a−abg−bh(m)P = ga−abP = R.

Suppose now we have a couple (S, s) such that

en(gsS, P ) = en(rh(m)H(m), Q), gsP = rh(m)R.

Since H(m), S ∈< P >, there are u, v ∈ {0, . . . , n − 1} such that S = uP and
H(m) = vP . Then we get

en((gsu− rh(m)vga)P, P ) = 1.

The element en(P, P ) is a primitive n-th root of 1 and so, we obtain

gsu ≡ rh(m)gav (mod n)
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whence
uv−1 ≡ rh(m)g−sga ≡ g−s+bh(m)+a (mod n).

On the other hand, the equality

gsP = rh(m)R

implies

gs−bh(m) ≡ ga−ab (mod n)

and so, we get
uv−1 ≡ gab (mod n).

Hence, we obtain

s = bh(m) + a− ab mod φ(n), S = gabH(m),

whence we have that (x(S), s) is a signature for m.

3. Security

We remark that if an attacker wants to compute a and b from the public key, he
has to compute either the discrete logarithm of Q and R to the base P and next to
calculate a discrete logarithm modulo n or to compute the discrete logarithm of r
to the base g, the discrete logarithm of one of Q and R to the base P , and next a
discrete logarithm modulo n. Thus, he has to compute at least a discrete logarithm
in the group < P > and two logarithms modulo n. Note that an algorithm which
computes the discrete logarithm modulo n implies an algorithm which breaks the
Composite Di�e-Hellman key distribution scheme for n and any algorithm which
break his scheme for a non negligible proportion of the possible inputs can be used
to factorize n [18, 2].

Let p(d, a) be the smallest prime of the arithmetic progression {a+ kd/k ≥ 0}.
Put

p(d) = max{p(d, a)/ 1 ≤ a < d, gcd(a, d) = 1}.
In 1978, Heath-Brown [9] conjectured that p(d) < Cd(log d)2. We shall use this
conjecture in order to show that we can construct a supersingular elliptic curve
having a subgroup of order n in polynomial time.

We consider the arithmetic progression 4nj + 4n − 1 (j = 0, 1, 2, . . .). The
above conjecture implies that there exists a prime q < C4n(log 4n)2 such that
q ≡ 4n − 1 (mod 4n). Hence there is j < C(log 4n)2 such that q = 4nj + 4n − 1,
whence q+ 1 = 4n(j+ 1). Thus, we can �nd the prime q in polynomial time, using
a primality test O((log n)2) times. Moreover, since q ≡ 3 (mod 4), the elliptic curve
y2 = x3 + x on Fq is supersingular.

Suppose now there is an oracle O such that given a public key and a message m
provides a signature for m.

Let n be an integer which is the product of two (unknown) primes. We shall
use the oracle O in order to factorize n. Let E be an elliptic curve as above and a
point P ∈ E(Fq) of order n. Furthermore, we consider g, a, b ∈ {1, . . . , n − 1} and
we compute r = gb mod n, Q = gaP and R = ga−abP . So, we have the public key
(g, P,Q,R, r, n) for our system. Then O gives signatures (Si, si) for the messages
mi (i = 1, . . . , k) and so, we have si = bh(mi) + a − ab mod φ(n). It follows
that φ(n) divides the gcd d of the number si − bh(mi)− a + ab (i = 1, . . . , k) and
hence φ(n) is among the divisors of d. Note however that, assuming the numbers
si − bh(mi)− a+ ab follow the uniform distribution, the probability that two such
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numbers has gcd > φ(n) is quite small. Thus, φ(n) can be easily computed and so
the factorization of n.

Let G1 and G2 be two (multiplicative) cyclic groups of prime order p; g1 is a
�xed generator of G1 and g2 is a �xed generator of G2; ψ is an isomorphism from
G2 to G1, with ψ(g2) = g1. We recall the following problem [3].

Computational co-Di�e - Hellman on (G1, G2). Given γ2, γ
α
2 ∈ G2 and

h ∈ G1 as input, compute hα ∈ G1.

The best known algorithm for solving the above problem is to compute discrete
logarithm in G1.

Assuming that p1 and p2 are known, we consider Pi ∈ E(Fq) with order pi.
We take gi ∈ {1, . . . , pi − 1} and a, b ∈ {1, . . . , φ(n)} and we compute Qi = gai Pi,

Ri = ga−abi Pi and ri = gbi mod pi (i = 1, 2).
Let g, r ∈ {1, . . . , n − 1} such that g ≡ gi (mod pi), r ≡ ri (mod pi), (i = 1, 2).

We set P = P1 + P2, Q = Q1 +Q2 and R = R1 +R2. Thus

Q = Q1 +Q2 = ga1P1 + ga2P2 = gaP

and
R = R1 +R2 = ga−ab1 P1 + ga−ab2 P2 = ga−abP.

Therefore, (g, P,Q,R, r, n) is a public key for our signature scheme.
We apply O on (g, P,Q,R, r, n) and m ∈ {0, 1}∗, and we get the signature (S, s)

for m. Thus, we have S = gabH(m), whence it follows gsr−h(m)S = gaH(m). Set
S = S1 + S2 and H(m) = H1 + H2, where Si, Hi ∈< Pi > (i = 1, 2). Then, we

have gsi r
−h(m)
i Si = gaiHi, and so, gsi r

−h(m)
i Si is the solution of the computational

problem co-Di�e-Hellman with γ2 = Pi, α = gai and h = Hi (i = 1, 2).

4. The elliptic curve and the pairing

In this section we show how we can construct an elliptic with the desired prop-
erties in order to implement our signature scheme. This task is achieved by the
following algorithm:

(1) select two large prime numbers p1 and p2 such that the factorization of
p1−1, p2−1 are known and the computation of the factorization of n = p1p2
is infeasible;

(2) select a random prime number p and compute m = ordn(p);
(3) �nd, using the algorithm of [4], a supersingular elliptic curve E over Fp2m

with trace t = 2pm;
(4) return Fp2m and E.

Since the trace of E is t = 2pm, we get |E(Fp2m)| = (pm − 1)2. On the other
hand, we have m = ordn(p), whence n|pm − 1, and so n is a divisor of |E(Fp2m)|.
Therefore E(Fp2m) contains a subgroup of order n.

By [4, Theorem 1.1], we obtain, under the assumption that the Generalized

Riemman Hypothesis is true, that the time complexity of Step 3 is Õ((log p2m)3).
Furthermore, since the factorization of φ(n) = (p1 − 1)(p2 − 1) is known, the time
needed for the computation of m is O((log n)2/ log log n) [13, Section 4.4].

For the implementation of our signature scheme we also need a point P with
order n and an e�ciently computable pairing en such that en(P, P ) is a primitive
n-th root of 1. The Weil pairing does not ful�ll this requirement and also, in many
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instances, the Tate pairing; the same happens for the eta, ate or omega pairings
[1, 10, 22]. Let εn be one of the previous pairings on E[n]. Following the method
introduced by E. Verheul [20], we use a distortion map φ such that the points P and
φ(P ) is a generating set for E[n] and we consider the pairing en(P,Q) = εn(P, φ(Q)).
The algorithm of [7, Section 6] provides us a method for the determination of P
and φ.

Another method for the construction of the elliptic curve E which is quite e�cient
in practice is given by the following algorithm:

(1) draw at random a prime number p1 of a given size l (for example l is 1024
bits);

(2) draw at random a number p2 of size l;
(3) repeat p2 = NextPrime(p2) until 4p1p2 − 1 is prime;
(4) return p = 4p1p2 − 1.

It is not proved that this algorithm will stop with a large probability. This is
an open problem which is for p1 = 2 the Sophie Germain number problem. But in
practice we obtain a result p which is a prime of length 2l.

Since p ≡ 3 mod 4, the elliptic curve de�ned over Fp by the equation

y2 = x3 + ax,

where −a is not a square in Fp, is supersingular with p + 1 = 4p1p2 points. By
[21, Theoreme 2.1], the group E(Fp) is either cyclic or E(Fp) ' Z/2p1p2Z× Z/2Z.
In each case the group E(Fp) has only one subgroup of order n = p1p2, and this
subgroup is cyclic.

If εn is one of the previous pairings on E[n], then we use the distorsion map
φ(Q) = φ(x, y) = (−x, iy) with i2 = −1 (cf. [11]) and so, we obtain the following
pairing: en(P,Q) = εn(P, φ(Q)).

5. The map to point function

Let G be the subgroup of order n = p1p2 of E(Fq) introduced in the previous
section. In order to sign using the discrete logarithm problem on this group, we have
to de�ne a hash function into the group G, namely a map to point function. This
problem was studied by various authors giving their own method, for example in
[3] or [12]. We give here the following solution. Let us denote by |n| = blog2(n)c+1
the size of n. Let h be a key derivation function, possibly built using a standard
hash function. We recall that h maps a message M and a bitlength l to a bit string
h(M, l) of length l. Moreover we will suppose that h acts as a good pseudo-random
generator. Let Q be a generator of the group G. Let us denote by (Ti)i≥0 the
sequence of bit strings de�ned by T0 = 0 and for i ≥ 1

Ti = au · · · a0,

where i =
∑u
j=0 aj2

j and au = 1.

To map the message m to a point H(m) we run the following algorithm:

i := 0;
Repeat
k := h(m||Ti, |n|);
i := i+ 1;

Until k < n;
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Output H(M) = k.Q;

This Las Vegas algorithm has a probability zero to never stop. In pratice this
algorithm stops quickly, namely as 2|n|−1 < n < 2|n| then the expected value of the
number of iterations is < 2. If one can �nd a collision for H it is easy to �nd a
collision for h.

6. Performance Analysis

In this section we analyze the performance of our scheme. The computation of
s requires the computation of the hash value h(m), two modular multiplications
bh(m), ab (mod φ(n)), and �nally a modular subtraction. The computation of S
needs a modular exponentiation gab (mod n) and the computations of H(m) and
gabH(m). Note that the computations of a−ab (mod φ(n)) and gab (mod n) can be
done o�-line. Thus, the signature generation requires only the computation of the
hash values h(m), H(m), a modular multiplication, a modular addition and a point
multiplication on the elliptic curve. Hence, we see that the signature generation
algorithm for our scheme is quite fast.

The signature veri�cation needs two modular multiplications, four points mul-
tiplications on the elliptic curves, two pairing computations and the computations
of the hash values.

7. Example

In this section we give an example of our scheme. We consider the 256-bits
primes

p1 = 664810154161090130922129022943767028

35774195899207559806860541669578637494231

and
p2 = 115738576089152909314582339834842248600

964273864643984203082855344579907038313.

Thus, we have

n = 7694418061221480574591795362863949897453901238591237288218960

73489112031191771739492678882017122636619912324577778582190244785

4995757079440397354833472303.

The number

q = 4p1p2 − 1 = 3077767224488592229836718145145579958981560

49543649491528758429395644812476708695797071552806849054

64796492983111143287609791419983028317761589419333889211

is a prime. Since q ≡ 3 (mod 4), the elliptic curve E de�ned by the equation
y2 = x3 + x over Fq is superesingular. The point P = (x(P ), y(P )), where

x(P ) = 24923438302879103041550933768873817553815859007663697223031249

1954089508938594293101431086136135995118826706761382555145184472

19689120752272772341649471097

and

y(P ) = 737996997348676496665860701704072193490435615382792210827517600



A SIGNATURE SCHEME 7

53853975535811642226331502606869434233624734779779132109106217320

98503146107614456038383100

has order n = p1p2.
We take g = 2,

a = 2256 + 29 + 1 = 1157920892373161954235709850086879078532

69984665640564039457584007913129640449

and

b = 2128 + 2100 + 1 = 340282368188589063691604008928471416833.

We have

r = 2b mod n = 6060473831180419028002527544274466669204983610931948163

0443372486036335615842187469452441526711228464764659030012702057391799

47005024449868606694311195640,

2a mod n = 30170327810598461233195990938464557925983833005888756028098

11232191097667270756706255964182155241639553199078545733822454265640

948748520452895571215190867

and

2a(1−b) mod n = 690123530133273230626309389424846277148918273893781109989

3935523975261846628680897065414699668317030484535099301214764389216498

622653557732787251147641864.

We consider the points Q = 2aP = (x(Q), y(Q)), where

x(Q) = 72602489437435104105970705804391866233125909936984972829

8940696371605185217447754783574707404696665922982911135520666

7689244366615968601129874346167442208,

y(Q) = 180478952381617534858771173117408315328111949924113880

2179335269409050631413675108169733886226831548047728894457761

5443538174923719718185915981630635761798

and R = 2a−abP = (x(R), y(R)), where

x(R) = 1015118668943965456705851882396491515571796697273863218

55694497591433958158555098408768620625614580819753284158039188

66764912971271957844142196652521538840,

y(R) = 11830609568816187455064602957532997672345403803742470622

163211050426407526147503476874128489377669604873066020056701553

914845581133039809142240526482663137.

Therefore (2, P,Q,R, r, n) and (a, b, p1, p2) are a public key and the corresponding
private key for our signature scheme. Moreover, we can use the Tate pairing with
the distorsion map φ(x, y) = (−x, iy) with i2 = −1.
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8. Conclusion

In this paper we de�ned a signature system based on two di�cult arithmetic
problems. In the framework chosen, these problems have similar resistance to known
attacks. We explained how to implement in practice all the basic functions we need
for the establishment and operation of this system. This strategy has an interest in
any application that includes a signature to be valid for long. Indeed, it is hoped
that if any of the underlying problems is broken, the other will still be valid. In this
case, the signature should be regenerated with a new system, without the chain of
valid signatures being broken.
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