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Abstract

Cryptographic assumptions regarding tamper proof hardware tokens have gained increasing
attention. Even if the tamper-proof hardware is issued by one of the parties, and hence not
necessarily trusted by the other, many tasks become possible: Tamper proof hardware is suf-
ficient for universally composable protocols, for information-theoretically secure protocols, and
even allows to create software that can only be used once (one-time programs).

However, all known protocols employing tamper-proof hardware are either indirect, i.e. addi-
tional computational assumptions must be used to obtain general two party computations, or a
large number of devices must be used. Unfortunately, issuing multiple independent tamper-proof
devices requires much stronger isolation assumptions.

This work is the extended version of a recent result of the same authors, where for the first
time a protocol was presented that realizes universally composable two party computations (and
even one-time programs) with information-theoretic security using only a single tamper-proof
device issued by one of the mutually distrusting parties. Now, we present the first protocols
for multiple OTMs, multiple string-commitments and multiple string-OT in this setting that
have only linear communication complexity and are thus asymptotically optimal. Moreover, the
computational complexity of our protocols for k-bit OTMs/commitments/OT is dominated by
O(1) finite field multiplications with field size 2k, what is way more efficient than any other
known construction based on untrusted tamper-proof hardware.

Keywords: non-interactive secure computation, universal composability, tamper-proof hard-
ware, information-theoretic security, oblivious transfer
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1 Introduction

Recently, tamper-proof hardware tokens have received increasing attention. Tamper-proof hardware
tokens allow information-theoretically secure protocols that are universally composable [Can01],
they can be employed for protocols in the globalized UC framework [HMQU05, CDPW07], and they
even allow for one-time programs, i.e. circuits that can be evaluated only once [GKR08]. However,
almost all known protocols employing tamper-proof hardware are either indirect, i.e. the secure
hardware is used to implement commitments or zero-knowledge proofs and additional computational
assumptions must be used to obtain general two party computations [DNW07, Kat07, CGS08,
DNW08, MS08], or a large number of devices must be used [GKR08, GIS+10]. However, issuing
multiple independent tamper-proof devices requires much stronger isolation assumptions. Not only
the communication between the devices and the issuer must be prevented, but also the many
devices must be mutually isolated. This is especially difficult as the devices are not necessarily
trusted—e.g., see [BKMN09] for the difficulty of isolating two devices in one location.

In this work we extend a recent result of ours, where we presented a protocol that realizes univer-
sally composable two-party computations (and even one-time programs) with information-theoretic
security using only a single (untrusted) tamper-proof device [DKMQ11]. The main challenge, when
using only a single piece of tamper-proof hardware, is to prevent a corrupted token from encoding
previous inputs in subsequent outputs.

1.1 Related work

The idea of secure computation based on separation assumptions was introduced in [BOGKW88]
to construct multi-prover interactive proof systems. In particular, [BOGKW88] proposes an un-
conditionally secure protocol for Rabin-OT [Rab81] between two provers and a verifier. Even
though this result is not explicitly stated in the context of tamper-proof hardware1 and is proven
secure in a standalone, synchronous model, we suppose that an amplified variant of the protocol of
[BOGKW88] can be proven UC-secure.

The idea of explicitly using tamper-proof hardware for cryptographic purposes was introduced
by [GO96], where it was shown that tamper-proof hardware can be used for the purpose of software-
protection. The interest in secure hardware and separation assumptions was renewed, when it was
realized that universally secure multi-party computation can be based on the setup assumption of
tamper-proof hardware tokens. The tamper-proof hardware must suffice strong separation condi-
tions, even though a more recent result showed that the assumptions about the physical separation
can be relaxed to some extent [DNW07, DNW08].

Generally, the work on secure multi-party computation with tamper-proof hardware assump-
tions can be divided in works dealing with either stateful or stateless hardware-tokens. In [Kat07]
a scenario is considered where all parties can create and issue stateful tamper-proof hardware
tokens. Using additional number theoretic assumptions, [Kat07] implements a multiple commit-
ment functionality in this scenario. Subsequently, [MS08] improved upon [Kat07] by constructing
information-theoretically secure commitments in an asymmetric scenario, where only one out of two
parties is able to issue stateful tamper-proof hardware tokens. Another improvement upon [Kat07]
was by [CGS08] with stateless tokens, but still bidirectional token exchange and use of enhanced
trapdoor permutations (eTDP). [HMQU05] use (stateless) signature cards, issued by a trusted au-

1The authors of [BOGKW88] mention that the provers in their protocol might be implemented as bank-cards.
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thority, to achieve universal composability with respect to global setup assumptions [CDPW07].
In [FPS+11] it is shown how set intersection can be computed securely using a single untrusted
tamper-proof hardware token and additional computational assumptions.

[GKR08] show that using a minimalistic stateful tamper-proof hardware assumption called
one-time memory (OTM), a new cryptographic primitive called one-time program (OTP) can be
implemented, i.e. programs that can be evaluated exactly once. An OTM can be seen as a non-
interactive version of the well-known

(
2
1

)
-string-OT functionality: The OTM sender stores two k-bit

strings on the token and sends it to the receiver party, who can arbitrarily later choose to learn
one (and only one) out of the two stored values (q.v. Figure 1).

Functionality FOTM

Parametrized by a string length l. The variable state is initialized by state ← waiting.

Creation:

• Upon receiving input (s0, s1) from Goliath, verify that state = waiting and s0, s1 ∈ {0, 1}l; else
ignore that input. Next, update state ← sent, record (s0, s1) and send (sent) to the adversary.

• Upon receiving a message (Delivery) from the adversary, verify that state = sent; else ignore that
input. Next, update state ← delivered and send (ready) to David.

Query:

• Upon receiving input (x) from David, verify that state = delivered and x ∈ {0, 1}; else ignore that
input. Next, update state ← queried and output (sx) to David.

When a party is corrupted, the adversary is granted unrestricted access to the channel between FOTM and
the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 1: The ideal/hybrid functionality modeling a single one-time memory (OTM).

Recently, [Kol10] implemented string-OT with stateless tamper-proof hardware tokens, but
achieved only covert security. A unified treatment of tamper-proof hardware assumptions is pro-
posed by [GIS+10]. Important in the context of our work, they show that in a mutually mistrusting
setting, trusted OTPs can be implemented statistically secure from a polynomial number of OTMs.
In [GIMS10] statistically secure commitments and statistical zero-knowledge are implemented on
top of a single stateless tamper-proof token. Furthermore, if tokens can be encapsulated into other
tokens, general statistically secure composable multi-party computation is possible in this setting.
[GIMS10] also show that unconditionally secure OT cannot be realized from stateless tamper-proof
hardware alone. Finally, the latest result in this research field is by [CKS+11], that combine tech-
niques of [GIS+10] and a previous version of our work [DKMQ11], resulting in a computationally
secure, constant-round protocol for OT with unlimited token reusability. They only need stateless
tokens and show black-box simulatability. However, this comes at the cost of bidirectional token
exchange and the assumption that collision resistant hashfunctions (CRHF) exist.

Except for [BOGKW88], all of the above schemes based on untrusted tamper-proof hardware
either use additional complexity assumptions to achieve secure two-party computations [HMQU05,
Kat07, MS08, GKR08, DNW07, DNW08, Kol10, CKS+11] or a large number of hardware tokens
must be issued [GKR08, GIS+10].
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1.2 Our contribution

In this paper we show that general, information-theoretically secure, composable two-party com-
putations are possible in a setting where a single untrusted stateful tamper-proof hardware token
is issued by one party. Previous solutions supposed that either the creator of the tamper-proof
hardware is honest, that additional complexity assumptions are used, or that a large number of
independent tamper-proof hardware tokens is issued. Our approach uses only a single tamper-
proof token and apart from that solely relies on some linear algebra and combinatorics, what may
be of independent interest. As a drawback our protocols allow only for limited token reusability.
However, they can be transformed straightforwardly into computationally secure solutions with
unlimited token reusability. For this transformation only a very weak complexity assumption is
needed, namely the existence of a pseudorandom number generator (PRNG).

As a reasonable abstraction for the primitives that can be implemented in our setting, we
introduce a new primitive, which we call sequential one-time OAFE (q.v. Section 2.4). We show that
OT can be realized straightforwardly using this primitive; thus our results for statistically secure,
composable two-party computations follow immediately by the completeness of OT [Kil88, IPS08].
At the same time, we improve upon the results of [DKMQ11] in several ways. Firstly, assuming a
computationally bounded token receiver our construction allows for unlimited reuse of the tamper-
proof hardware, whereas in [DKMQ11] the number of token queries always was a priori bounded.
Furthermore, we can still straightforwardly adapt the results of [GIS+10] to implement trusted
OTPs at the cost of one tamper-proof hardware token per OTP (cf. Section 2.4). Last but not
least, we achieve a better complexity than in [DKMQ11] (cf. Section 3.2.1 and Section 3.2.3). In
particular, by our approach one can implement several widely-used building blocks for secure multi-
party computation and these constructions have some remarkable optimality features, so that all
respective hardware based constructions in the literature are outperformed.

Sequentially queriable OTMs: We propose an information-theoretically secure construction by
that one can implement an arbitrary polynomial number of OTMs from a single tamper-proof
token. The number of OTMs must be chosen when the token is issued and cannot be increased
later, unless the token contains a PRNG (i.e. we give up information-theoretic security). The
implemented OTM instances are only queriable in a predefined order, but this can definitely
be considered an advantage, since it trivially rules out the out-of-order attacks dealt with in
[GIS+10]. Our construction is not truly non-interactive; it needs some interaction during an
initialization phase. However, after the initialization phase no further interaction between
the token receiver and the token issuer is necessary. Therefore we say that our construction
is “semi-interactive”. What is more, we need only two rounds of interaction, not counting for
the token transmission. This is optimal for a single-token solution. Besides, our construction
can be straightforwardly transformed into a truly non-interactive solution with two mutually
isolated tokens. Last but not least, we achieve an asymptotically optimal communication
complexity in the sense that the number of transferred bits is linear in the number and string
length of the implemented OTM instances.

Admittedly, for information-theoretically secure implementation of a large number of OTMs
we need that our token stores a lot (though still linear amount) of data. Now, if these OTMs
are used to implement a one-time program, one may ask why we do not just implement the
one-time program directly on the token. There are at least three good reasons to implement
an OTP via OTMs. Firstly, the token can be transferred a long time before the sender chooses
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which OTP to send. Secondly, via OTMs one can implement trusted OTPs, i.e. sender and
receiver agree on a circuit to be evaluated and only the inputs for this circuit are kept secret.
The crucial security feature of a trusted OTP is that even a corrupted sender cannot change
the circuit. Thirdly, since our token only needs to store random values, we can dramatically
compress its size at the cost of only a very weak computational assumptions, namely the
existence of a PRNG.

To sum things up, our construction has the following features:

• many OTMs (arbitrary polynomial) by a single token; upper bound fixed at initialization
• implemented OTM instances only queriable in predefined order
• optimal round complexity: two rounds using one token or one round using two tokens
• optimal communication complexity (linear in number and size of implemented OTMs)
• information-theoretic security (but large token; compression possible by PRNG)

Commitments in both directions: We also propose a constant-round construction for a bidi-
rectional and reusable string-commitment functionality from a single tamper-proof token.
We offer several protocol variants, so that one can choose between limited reusability and
information-theoretic security on the one side, and unlimited reusability at the cost of com-
putational assumptions on the other side. Anyway, for unlimited reusability we only need a
PRNG. What is more, our construction allows to implement an arbitrary polynomial number
of commitments in parallel with O(1) rounds of communication. Besides, our construction can
be straightforwardly transformed into a non-interactive solution with two mutually isolated
tokens, so that the whole communication of each commit and unveil phase only consists of
a single message sent by the committing/unveiling party respectively. Last but not least, we
achieve an asymptotically optimal communication complexity in the sense that the number of
transferred bits is linear in the number and string length of the implemented commitments.
To the best of our knowledge, except for [MS08] all other constructions based on tamper-
proof hardware have higher communication complexity and either use stronger complexity
assumptions or have ω(1) rounds. However, the construction of [MS08] is only unidirectional
(from the token issuer to the token receiver).

To sum things up, our construction has the following features:

• bidirectional and reusable string-commitment functionality from a single token
• unlimited reusability at the cost of a minimal complexity assumption (PRNG)
• multiple commitments with O(1) rounds by one token or non-interactively by two tokens
• optimal communication complexity (linear in number and size of commitments)

String-OT: Our OT protocol enjoys exactly the same features as our commitment protocol, except
for the bidirectionality. Certainly, one can implement a bidirectional OT functionality, since
OT is complete [Kil88, IPS08]. However, for the direction from the token receiver to the token
sender we have no construction that is as efficient as our construction for the other direction.

We omit an explicit itemization of the features of our OT construction; except for the bidi-
rectionality it is the same as the above feature list of our commitment construction. Instead,
by Figure 2 we compare our OT protocol with earlier results in the literature. At this point,
it is important to mention that optimal communication complexity for only computationally
secure OT is no great achievement at all. The string length of any computationally secure OT
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stateless tokens stateful tokens (simulator needs to rewind)
[CGS08] [GIS+10] [CKS+11] [GIS+10] [DKMQ11] here

tokens 2 (bidirect.) Θ(k) 2 (bidirect.) Θ(k) 1 1 1
rounds Θ(k) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
bits sent ? Ω(k2) Ω(k2) Θ(k2) Θ(k2) Θ(k) Θ(k)
assumptions eTDP CRHF CRHF none none none PRNG
reusability unbounded none unbounded none bounded bounded unbounded

Figure 2: UC-secure k-bit string-OT based on tamper-proof tokens; table partly taken from
[CKS+11]. The CRHF-based protocols can instead be based on one-way functions (equivalent to
PRNGs), but using Θ(k/ log k) rounds. For [CGS08] an explicit estimation of the overall commu-
nication complexity is just omitted, since they use the heavy machinery of general zero-knowledge
proofs, signatures, etc. However, note that the complexity of any computationally secure OT
protocol can be amortized by standard techniques (cf. Section 3.2.6).

protocol can be polynomially extended by standard techniques, what accordingly improves
its efficiency: The sender party just uses the OT for transmission of two random PRNG seeds
and announces the actual OT inputs one-time pad encrypted with the respective pseudoran-
domness. In particular, by this simple trick and some rescaling of the security parameter, one
can transform any OT protocol with polynomial communication complexity into a protocol
with linear (and thus optimal) communication complexity. However, we stress that neverthe-
less we present the first information-theoretically secure construction for multiple OT based
on reusable tamper-proof hardware and with optimal communication complexity. Moreover,
note that an analogous approach for extending the string length of commitments or OTMs
would destroy composability. We discuss this in further detail in Section 3.2.6.

All our constructions also have remarkably low computational complexity, what makes them
very practical. Per implemented k-bit OTM/Commitment/OT all parties and the tamper-proof
token have to perform no more than O(1) finite field operations (only additions and multiplications)
with field size 2k. Additionally, the protocol variants with unlimited token reusability require that
the token generates Θ(k) bits of pseudorandomness respectively. There are no exponentiations or
other operations costlier than finite field multiplication. All in all, our constructions are way faster
than anything based on public key cryptography and can also compete with all known approaches
based on symmetric cryptography.

1.3 Outline of this paper

The rest of this paper is organized as follows. In Section 2 we introduce some notations (Section 2.1),
give a short overview of the notion of security that we use (Section 2.2), describe how our tamper-
proof hardware assumption is defined in that framework (Section 2.3) and introduce our new
primitive, which we call sequential one-time OAFE (Section 2.4). In Section 3.1 we show how one
can implement this new primitive from the aforementioned tamper-proof hardware assumption. In
Section 3.2 we discuss refinements and some unobvious applications of our construction. At the
end of Section 3.2, in Section 3.2.6, we also briefly discuss why an only computationally secure OT
protocol with optimal communication complexity is not a noteworthy result, whereas the opposite is
true for commitments and OTMs. In Section 4 we give a formal security proof. Finally, in Section 5
we argue for some impossibility results, give a conclusion of our work and suggest directions for
improvements and future research.
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2 Preliminaries

2.1 Notations

Finite fields, naturals and power sets: By Fq we denote the finite field of size q. The set of
all naturals including zero is denoted by N, without zero it is denoted by N>0. The power
set of any set S is denoted by P(S).

Outer products: Given any field F and k, l ∈ N>0, we identify vectors in Fk by (k×1)-matrices,
so that for all x ∈ Fk and y ∈ F1×l the matrix product xy ∈ Fk×l is well-defined.

Complementary matrices: Given any field F, some k, l ∈ N>0 with k < l and any two matrices
C ∈ F(l−k)×l, G ∈ Fk×l, we say that G is complementary to C, if the matrix M ∈ Fl×l gen-
erated by writing G on top of C has maximal rank in the sense that rank(M) = rank(C) + k.
Note that, given any C ∈ F(l−k)×l, G ∈ Fk×l, x ∈ Fl, y ∈ Fk with G complementary to C,
we can always find some x′ ∈ Fl, such that Cx′ = Cx and Gx′ = y.

Random events, random variables, support and distribution: We denote random variables
by bold face characters, e.g. x, and random events calligraphic, e.g. E . (However, for ease
of presentation and better readability, we will sometimes write random variables just like
non-random variables, e.g. x). By x ∈ X we denote that the support of the random variable
x is some subset of X; in other words, for convenience we sometimes just write x ∈ X instead
of P[x ∈ X] = 1. When x is uniformly random over X, we denote that by x

r← X.

Probabilities, expected values and collision entropy: We denote the probability that a ran-
dom variable x takes some specific value x by P[x = x], and analogously for any other
relation. If we additionally condition to some event E , we denote the resulting probability by
P[x = x | E ]. We denote the expected value of a random variable x by E(x) and its collision

entropy by H2(x) = − log2

(∑
α

(
P[x = α]

)2)
.

Statistical distance: We denote the statistical distance of two given random variables x,y by
∆(x,y), using the following standard notion of statistical distance:

∆(x,y) = 1
2

∑
α

∣∣P[x = α]−P[y = α]
∣∣

When we conditioned the joint distribution of x and y to some event E , we denote the resulting
statistical distance by ∆(x,y | E).

Correlation of random variables: We define the following measure for the correlation of ran-
dom variables. Given any two random variables x,y that may depend on each other, we set
ι(x,y) := ∆

(
(x,y), (x̃, ỹ)

)
with x̃ and ỹ denoting independent versions of x and y respec-

tively. Note that ι(x,y) = 0 if and only if x and y are statistically independent.

2.2 Framework & notion of security

We state and prove our results in the Universal-Composability (UC) framework of [Can01]. In this
framework security is defined by comparison of an ideal model and a real model. The protocol of
interest is running in the latter, where an adversary A coordinates the behavior of all corrupted
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parties. In the ideal model, which is secure by definition, an ideal functionality F implements the
desired protocol task and a simulator S tries to mimic the actions of A. An environment Z is
plugged either to the ideal or the real model and has to guess, which model it is actually plugged
to. A protocol Π is a universally composable (UC-secure) implementation of an ideal functionality
F , if for every adversary A there exists a simulator S, such that for all environments Z the entire
view of Z in the real model (with Π and A) is statistically close to its view in the ideal model (with
F and S). In our case the adversarial entities A,S and the environment Z are computationally
unbounded and a hybrid functionality F stateful

wrap models our tamper-proof hardware assumption (q.v.
Section 2.3).

Note that for convenience and better readability we use the notation of [Can01] a bit sloppy.
E.g., throughout this paper we omit explicit notation of party and session IDs.

2.3 Modeling tamper-proof hardware

2.3.1 The hybrid functionality F stateful
wrap

Our formulation of general stateful tamper-proof hardware resembles the meanwhile standard def-
initions of [Kat07, MS08]. To model tamper-proof hardware, we employ the F stateful

wrap wrapper
functionality (q.v. Figure 3). A sender party Goliath provides as input a Turing machine M to
F stateful

wrap . The receiver party David can now query F stateful
wrap on arbitrary input words w, whereupon

F stateful
wrap runsM on input w, sends the output thatM produced to David and stores the new state

of M. Every time David sends a new query w′ to F stateful
wrap , it resumes simulating M with its most

recent state, sends the output to David and updates the stored state of M.

Functionality F stateful
wrap

The variable state is initialized by state ← wait.

Creation:

• Upon receiving a message (Create,M, b) from Goliath, where M is the program of a deterministic
interactive Turing machine and b ∈ N, verify that state = wait; else ignore that input. Next,
initialize a simulated version of M, store b, set state ← sent and send (created) to the adversary.

• Upon receiving a message (Delivery) from the adversary, verify that state = sent; else ignore that
input. Next, set state ← execute and send (ready) to David.

Execution:

• Upon receiving a message (Run, w) from David, where w is an input word, verify that state = execute;
else ignore that input. Next, write w on the input tape of the simulated machine M and carry on
running M for at most b steps, starting from its most recent state. When M halts (or b steps have
passed) without generating output, send a special symbol ⊥ to David; else send the output of M.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F stateful
wrap

and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 3: The wrapper functionality by which we model stateful tamper-proof hardware sent from
Goliath to David. Note that delivery of the token in the creation phase is scheduled by the adversary,
whereas afterwards all communication between David and the token is immediate.
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This captures the following properties one expects from tamper-proof hardware. On the one
hand, Goliath is unable to revoke M once he has sent it to David. On the other hand, David can
runM on inputs of his choice, but the program code and state ofM are out of reach for him, due
to the tokens tamper-proofness. Note that M does not need a trusted source of randomness, as it
can be provided with a sufficiently long hard-coded random tape. Thus, w.l.o.g. we can restrictM
to be deterministic.

For formal reasons we require that the sender party Goliath not only specifies the program
code of M, but also an explicit runtime bound b ∈ N. This just ensures that even a corrupted
Goliath cannot make F stateful

wrap run perpetually. As we will state and prove our results without any
computational assumptions, a corrupted Goliath may choose b arbitrarily large. However, when
Goliath is honest, we will only need that the number of computing steps performed by the token is
polynomial in the security parameter. We will henceforth implicitly assume that an honest Goliath
always adjusts the parameter b accordingly.

2.3.2 Real world meaning of our hardware assumption and proof techniques

In Section 4 we will show that our construction from Section 3.1 is universally composable. However,
the respective simulator for a corrupted sender party Goliath will need to rewind the token and
thus has to know the token code. At first glance, it might seem a rather strong assumption that
a corrupted token manufacturer always knows the internal program code of his tokens. How can
such a party be prevented from just passing on a token received during another protocol from some
uncorrupted token issuer?

We argue that tokens can be bound to the corresponding issuer IDs by not too unrealistic
assumptions. The conceptually simplest (but a bit overoptimistic) way are standardized and un-
forgeable token cases, branded with the respective issuer ID, and that cannot be removed without
destroying the token completely. However, we can go with a bit less rigorous assumptions. We
just need that undetectable token encapsulation is infeasible (e.g., since the token’s weight and size
would be altered) and that every token initially outputs its manufacturer’s ID. Then only tokens of
corrupted manufacturers can be successfully passed on. Since w.l.o.g. all corrupted parties collude,
now every token issuer automatically knows the internal program code of all his issued and/or passed
on tokens. Infeasibility of token encapsulation is also needed by [HMQU05, Kat07, MS08, GKR08].

We also argue that using a stateful token is not a categorical disadvantage compared to protocols
based on stateless tokens. In the literature one can find the opposite point of view, usually motivated
by resetting attacks. These attacks only affect stateful approaches, whereas stateless approaches
stay secure. By a resetting attack a corrupted token receiver tries to rewind the token (e.g. by
cutting off the power supply) and then run it with new input. Such an attack, if successful, would
break security of all our protocols. However, as a countermeasure the tamper-proof token could
delete its secrets or just switch to a special “dead state” when a resetting attempt is detected. For
the technical realization we suggest, e.g., that the state information is stored as a code word of an
error correcting code and the token does not work unless the stored state information is an error-
free, non-trivial code word. Furthermore, we argue that all known stateless approaches are subject
to attacks that are quite similar to resetting attacks, since they inherently require that the tamper-
proof hardware internally generates some (pseudo-)randomness. So as to break security, one just has
to make the internal random generator behave predictable (e.g. by freezing the token if physical
randomness is used, or by deleting the secret seed of a pseudorandom function). In our view,
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building stateful tokens secure against resetting attacks is not significantly harder than building
stateless tokens secure against side channel attacks that kill the random generator. Anyway, we
consider a thorough investigation of this issue an interesting direction for future research.

2.4 Sequential one-time OAFE and its relation to OTMs and OT

There is a two-party functionality that we call oblivious affine function evaluation (OAFE), in the
literature sometimes referred to as oblivious linear function evaluation (OLFE), which is closely
related to OT and of particular interest for our constructions. In Fkq -OAFE, with q and k publicly
known but not necessarily constant, the sender chooses an linear function parametrized by two
vectors a, b ∈ Fkq and the receiver chooses a preimage x ∈ Fq. The receiver gets as output the

F
k
q -vector y = ax + b and the sender’s output is empty. The receiver does not learn more about

the sender’s input (a, b) than he can infer from (x, y) and the sender does not learn anything about
the receiver’s input x. As one can see quite easily, F2-OAFE and OT can be reduced to each other
without any overhead (q.v. Figure 4). Note that the reductions in Figure 4 also work perfectly for
F
k
2-OAFE and k-bit string-OT respectively.

OT

OAFE from OT

s0b
s1a+ b

c x

sc ax+ b

OAFE

OT from OAFE

as0 ⊕ s1
bs0

x c

ax+ b sc

Figure 4: Reductions between bit-OT and F2-OAFE; protocols taken from [WW06].

We implement a variant of OAFE that we call “sequential one-time OAFE”, or “seq-ot-OAFE”
for short. By one-time OAFE we mean a primitive that works analogously to an OTM. The sender
creates a token parametrized by a, b ∈ Fkq and sends it to the receiver. Arbitrarily later the receiver
may once input some x ∈ Fq of his choice into the token, whereupon the token outputs y := ax+ b
and then terminates. Sequential one-time OAFE lets the sender send up to a polynomial number
of single one-time OAFE tokens, but the receiver may only query them in the same order as they
were sent. However, when the receiver has queried some of the tokens he already received, this does
not vitiate the sender’s ability to send some additional tokens, which in turn can be queried by the
receiver afterwards, and so on. For a formal definition of the ideal seq-ot-OAFE functionality see
Figure 5.

Note that the reduction protocols in Figure 4 still can be adapted canonically to transform
k-bit string-OTMs into Fk2-OAFE tokens and vice versa. Hence, using the seq-ot-OAFE function-
ality (q.v. Figure 5), a polynomial number of OTMs can be implemented very efficiently, but the
receiver can query the single OTM tokens only in the same order as they were sent. However,
the construction of [GIS+10] for trusted OTPs from OTMs still works, as there an honest receiver
queries all the OTM tokens in a fixed order anyway. Interestingly, the technical challenges dealt
with in [GIS+10] arise from the fact that a malicious receiver might query the OTMs out of order.
Moreover, the restriction to sequential access can be exploited to securely notify the sender that
the receiver has already queried some OTM token. Thereto, every other OTM token is issued with
purely random input from the sender and the receiver just announces his corresponding input-
output tuple. A corrupted receiver that tries to adversarially delay his OTM queries is caught
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Functionality F seq−ot
OAFE

Parametrized by a finite vector space Fk
q , with k log q being the security parameter, and some runtime

bound n that is polynomially bounded in k log q. The counters jcreated, jsent, jqueried are all initialized to 0.

Send phases:

• Upon receiving input (a, b, i) from Goliath, verify that a, b ∈ Fk
q and i = jcreated + 1 ≤ n; else ignore

that input. Next, update jcreated ← i, record (a, b, i) and send (created, i) to the adversary.

• Upon receiving a message (Delivery, i) from the adversary, verify that i = jsent + 1 ≤ jcreated; else
ignore that message. Next, update jsent ← i and send (ready, i) to David.

Choice phases:

• Upon receiving input (x, i) from David, verify that x ∈ Fq and i = jqueried + 1 ≤ jsent; else ignore
that input. Next, update jqueried ← i and for the recorded tuple (a, b, i) compute y ← ax + b and
output (y, i) to David.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F seq−ot
OAFE

and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 5: The ideal functionality for sequential one-time OAFE (seq-ot-OAFE). Note that send
and choice phases can be executed in mixed order with the only restriction that the i-th send phase
must precede the i-th choice phase. Further note that David’s notifications about Goliath’s inputs
in the send phases are scheduled by the adversary, wheras all messages in the choice phases are
delivered immediately.

cheating with overwhelming probability, as he has only a negligible chance to correctly guess the
next check announcement. Thus, we can implement a polynomial number of OT instances that are
perfectly secure against the OT sender and statistically secure against the OT receiver. Still, the
receiver can query the single OT instances only in the same order as they were sent, but in fact
this is already premised in most protocols that build on OT. Noting that OT and OAFE can be
stored and reversed [Bea96, WW06, Wul07], we conclude that in the seq-ot-OAFE hybrid model
OT can be implemented in both ways (from the token sender to the token receiver and vice versa).

Finally, a remark is in place. Even though seq-ot-OAFE can be used to implement several
OTPs, the sequential nature of seq-ot-OAFE demands that those OTPs can only be executed in a
predefined order. If one wishes to implement several OTPs that can be evaluated in random order,
as many seq-ot-OAFE functionalities have to be issued.

3 Semi-interactive seq-ot-OAFE from one tamper-proof token

3.1 The basic protocol

We want to implement seq-ot-OAFE (q.v. Section 2.4), using a single tamper-proof hardware token
that is issued by one of the mutually distrusting parties. The technical challenge in doing so is
twofold. Firstly, the receiver David must be able to verify that no token output does depend on any
input of previous choice phases. Secondly, each token output must be a linear function (meaning,
a polynomial of degree 1) of the corresponding input. However, note that the latter difficulty
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only is relevant if q > 2, as every function F2 → F
k
2 is of the form x 7→ ax + b with constant

(a, b) ∈ Fk2 ×Fk2.
Our approach to solving these problems is enlarging the token’s output space to dimension

(1 + α)k and letting the sender Goliath announce αk-dimensional linear hash values of the token’s
function parameters, which can be used by David for a consistency check; then there remains a
k-dimensional part of the token’s output for generation of the intended OAFE result. For technical
reasons we choose α = 3. In particular, a preliminary protocol idea can be sketched as follows:

• Goliath chooses the i-th token parameters uniformly at random, say r, s
r← F

4k
q .

• Upon receiving the token, David announces a random check matrix C
r← F

3k×4k
q .

• Goliath in turn announces r̃ := Cr and s̃ := Cs.

• When David queries the token the i-th time, say he inputs some x ∈ Fq and receives output
w ∈ F4k

q , he checks whether Cw = r̃x + s̃. When the check is not passed, David has caught
Goliath cheating and henceforth always outputs some default value.

This way, we can implement some kind of “weak” OAFE, where the receiver additionally learns
some linear projection of the sender’s inputs, but by announcing (r̃, s̃) Goliath has committed
the token to linear behavior. Otherwise, if the check would be passed for different token inputs
x, x′ ∈ Fq and there do not exist any r, s ∈ F4k

q such that τ(x) = rx+ s and τ(x′) = rx′+ s with τ
denoting the token functionality in the i-th round, then the token could as well form collisions for the
universal hash function C, of which it is oblivious. Moreover, we can nullify the receivers additional
knowledge about (r, s) by multiplication with any matrix G ∈ Fk×4k

q that is complementary to C.
When David just outputs Gw, we have implemented OAFE with random input (Gr,Gs) from
Goliath and arbitrarily selectable input x from David. Finally, Goliath can derandomize his input
to arbitrarily selectable a, b ∈ Fkq by announcing ã := a−Gr and b̃ := b−Gs. David then just has

to replace his output by y := Gw + ãx+ b̃.
However, there is still a security hole left, as the token might act honestly only on some spe-

cific input set X ( Fq or even only on some specific type of input history. Now, when David’s
inputs match this adversarially chosen specification, he will produce regular output; else a protocol
abortion is caused with overwhelming probability (i.e. David produces default output). Such a
behavior cannot be simulated in the ideal model, unless the simulator gathers some information
about David’s input. Thus, David must keep his real input x secret from the token (and as well
from Goliath, of course). However, David’s input must be reconstructible from the joint view of
Goliath and the token, as otherwise a corrupted David could evaluate the function specified by
Goliath’s input (a, b) on more than one input x. Our way out of this dilemma is by a linear secret
sharing scheme, whereby David shares his input x between Goliath and the token. In particular,
the protocol now roughly proceeds as follows:

• Goliath initializes the token with uniformly random parameters r
r← F

4k
q and S

r← F
4k×k
q .

• Upon receiving the token, David announces a random check matrix C
r← F

3k×4k
q and a random

share h
r← F

4k
q \ {0}. David and Goliath also agree on any G ∈ Fk×4k

q complementary to C.

• Goliath announces the check information r̃ := Cr and S̃ := CS and the derandomization
information ã := a−Gr and b̃ := b−GSh, where (a, b) ∈ Fkq ×Fkq is his OAFE input.
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• David randomly picks a second share z
r← {z̃ ∈ F1×k

q | zh = x}, where x ∈ Fq is his
OAFE input. He inputs z into the token, whereupon the token has to compute and output

W := rz + S. When the check CW
?
= r̃z + S̃ is passed, David computes and outputs

y := GWh+ ãx+ b̃; else he outputs some default value.

Now, neither Goliath nor the token can gather non-negligible information about David’s OAFE
input x. Given any set of token inputs Z ⊆ F1×k

q adversarially chosen in advance, the hyperplanes

{z̃ ∈ F1×k
q | zh = α}α∈Fq will partition Z into q subsets of roughly equal size, since h is uniformly

random. In other words, when the token behaves dishonestly on some input set Z ( F
1×k
q , the

abort probability is practically independent of David’s input x.
A remarkable property of our protocol is that David’s input x is only needed in the last step,

where no further communication with Goliath takes place. So, we can partition the protocol into
an interactive phase (where Goliath provides his OAFE input) and a non-interactive phase (where
David provides his input and learns his output). Therefore, we say that our protocol is “semi-
interactive”. A formal description of the full protocol Πsemi−int

OAFE is given in Figure 6.
There are only two main differences between Πsemi−int

OAFE and the construction in [DKMQ11].
Firstly, we changed from F2 to Fq with the explicit option that q may depend on the security
parameter. This will enable us to implement OTMs, string-OT and string-commitments at optimal
communication rate (cf. Section 3.2.3 and Section 3.2.4). Secondly, due to a new security proof we
no longer need that Goliath’s “commitments” (r̃1, S̃1), . . . , (r̃n, S̃n) are statistically independent of
David’s input shares h1, . . . , hn. This allows for multiple send phases and choice phases in mixed
order, so that a token that shares some random source with its issuer Goliath can be reused over
and over again without any predefined limit (cf. Section 3.2.2).

At this point we also want to point out that in the protocol description of Figure 6 we purposely
do not exactly specify how the parameters k and q depend on the security parameter. In fact,
for our security proof we only need that k ≥ 5; e.g. one can choose k to be constant and q to
increase exponentially. With parameters chosen this way, our protocol Πsemi−int

OAFE has only linear
communication complexity, what is clearly optimal. The condition that k ≥ 5 results from our
proof techniques and is probably not tight. If k = 1, the protocol is not UC-secure against a
corrupted sender party (see Remark 1 below), but for 2 ≤ k ≤ 4 we are not aware of any potential
attack. However, note that F seq−ot

OAFE with k ≤ 4 can be implemented from F seq−ot
OAFE with k = 5

straightforwardly and the reduction protocol itself has only linear overhead. Thus, the asymptotic
optimality of our construction for F seq−ot

OAFE with k = 5 does directly carry over to the case that
k ≤ 4.

Finally, we want to note that our protocol allows any polynomial number of send phases to be
performed in parallel, so that one can still issue the polynomially many OTMs needed for an OTP
by just constantly many rounds of communication (cf. Section 3.2.1).

Remark 1. Our protocol Πsemi−int
OAFE is not UC-secure against a corrupted sender Goliath, if k = 1.

Proof. If the sender party Goliath is corrupted, the environment Z may learn h1 and h2—these
are the corrupted Goliath’s shares of David’s first two inputs x1 and x2 respectively. As k = 1 and
hence h2 ∈ Fq \{0}, the environment Z can now choose David’s second input such that x2 = h1 ·h2.
This way, we get that z2 = h1 and the token can compute David’s first input x1 = z1 · z2. Now,
the token can abort the protocol or not, depending on the value of x1. In other words, it depends
on x1, if David’s outputs y2, . . . , yn are all zero or not. This is not simulatable in the ideal model,
since the simulator does not learn the uncorrupted David’s first input x1.
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Protocol Πsemi−int
OAFE

Parametrized by a finite vector space Fk
q , with k log q being the security parameter, and some runtime

bound n that is polynomially bounded in k log q. The setup phase is executed right at the start of the first
send phase.

Setup phase:

i. For i = 1, . . . , n Goliath chooses a random vector ri
r← F

4k
q and a random matrix Si

r← F
4k×k
q ,

creates a token T with parameters (r1, S1), . . . , (rn, Sn) and sends T to David via F stateful
wrap . The

token also contains a counter j′queried and Goliath has a counter jcreated, both initialized to 0.

ii. Having received T , David chooses a random matrix C
r← F

3k×4k
q , computes some G ∈ Fk×4k

q

complementary to C and sends (C,G) to Goliath. Furthermore, David initializes two counters
jqueried, jsent ← 0 and an initial flag f0 ← >.

iii. If Goliath finds G not complementary to C, he aborts the protocol.

Send phases:

1. Upon input (ai, bi, i) from the environment, Goliath verifies that ai, bi ∈ Fk
q and i = jcreated + 1 ≤ n;

else he ignores that input. Next, Goliath updates jcreated ← i, computes r̃i ← Cri and S̃i ← CSi and
sends (r̃i, S̃i, i) to David.

2. David chooses a random vector hi
r← F

k
q \ {0} and sends (hi, i) to Goliath.

3. Goliath computes ãi ← ai−Gri and b̃i ← bi−GSihi and sends (ãi, b̃i, i) to David, who ignores that
message if not i = jsent + 1 ≤ n.

4. David updates jsent ← i and outputs (ready, i) to the environment.

Throughout the whole send phase obviously malformed messages are just ignored by the respective receiver.

Choice phases:

5. Upon input (xi, i) from the environment, David verifies that xi ∈ Fq and i = jqueried+1 ≤ jsent; else he

ignores that input. Next, he updates jqueried ← i, chooses a random vector zi
r← {z̃ ∈ F1×k

q | z̃hi = xi}
and inputs (zi, i) into the token T .

6. The token verifies that zi ∈ F1×k
q and i = j′queried + 1 ≤ n; else it ignores that input. Next, the token

updates j′queried ← i, computes Wi ← rizi + Si and outputs Wi to David.

7. David verifies that fi−1 = > and CWi = r̃izi+S̃i; ifWi /∈ F4k×k
q , it is treated as an encoding of the all-

zero matrix in F4k×k
q . If the check is passed, David sets fi ← > and computes yi ← GWihi+ãixi+ b̃i;

otherwise he sets fi ← ⊥ and yi ← 0 (such that yi ∈ Fk
q ). Then he outputs (yi, i) to the environment.

Figure 6: A protocol for semi-interactive sequential OAFE, using one tamper-proof token. Note
that several send and choice phases can be executed in mixed order with the only restriction that
an honest David will not enter the i-th choice phase before the i-th send phase is completed.
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3.2 Refinements and applications of our construction

Before we give a formal security proof for our protocol Πsemi−int
OAFE , we first want to present how the

claimed optimal constructions for multiple OTMs, Commitments and OT (cf. Section 1.2) do work.
As mentioned above, we will prove security of our protocol Πsemi−int

OAFE only for the case that

k ≥ 5. However, F seq−ot
OAFE with k ≤ 4 can be implemented from F seq−ot

OAFE with k = 5 straightforwardly
and the reduction protocol itself has only linear overhead. Thus, the asymptotic optimality of our
construction for F seq−ot

OAFE with k = 5 does directly carry over to the case that k ≤ 4.
At the end of this section, in Section 3.2.6, we also discuss why for computationally secure OT

protocols an improvement of the communication complexity is not a noteworthy result. However,
this does neither affect statistically secure OT nor any commitment or OTM constructions.

3.2.1 Reducing the number of rounds, e.g. for one-time programs

In [GIS+10] so-called trusted OTPs are implemented from a polynomial amount of OTM tokens.
As an honest receiver will query these tokens in some predefined (and publicly known) order, we
can adapt the results of [GIS+10] to implement trusted OTPs from a single untrusted hardware
token (cf. Section 2.4). However, if one implements some polynomial number (say l) of sequen-
tially queriable OTM tokens by the construction we proposed in Section 2.4, one will end up with
more than thrice as many (i.e. 3l) rounds of communication between David and Goliath. This
round complexity can be dramatically reduced as follows: In our protocol Πsemi−int

OAFE (q.v. Fig-
ure 6 in Section 3.1), instead of performing a large number of individual send phases, David can
already announce h1, . . . , hl along with the check matrix C in step ii of the setup phase and Go-
liath can send all his announcements of the corresponding l send phases in one single message(
(r̃1, S̃1, 1), (ã1, b̃1, 1), . . . , (r̃l, S̃l, l), (ãl, b̃l, l)

)
. Thereby we end up with two rounds of communica-

tion, not counting for the transmission of the token. This modification of the protocol Πsemi−int
OAFE

does not breach its security: in our formal security proof we even assume that a corrupted Go-
liath’s announcement of

(
(r̃1, S̃1), . . . , (r̃n, S̃n)

)
may arbitrarily depend on (h1, . . . , hn). Hence, our

security proof does directly carry over to the modified protocol. Note that analogously we just can
arbitrarily parallelize multiple send phases of our protocol Πsemi−int

OAFE without jeopardizing security.
This can be used, e.g., to implement polynomially many OTs (cf. Section 3.2.3) or commitments
(cf. Section 3.2.4) with constant round complexity.

It is quite straightforward to see that a two-round protocol for implementation of polynomi-
ally many OTM tokens from a single piece of untrusted tamper-proof hardware is optimal—cf.
Theorem 1 in [DKMQ11]. Furthermore, our new two-round protocol is an improvement upon
[DKMQ11], where we needed four rounds of communication between David and Goliath.

3.2.2 Computational solution for unlimited reusability of a memory-limited token

Our protocol Πsemi−int
OAFE (q.v. Figure 6 in Section 3.1) guarantees perfect security against David

(cf. Section 4.2). However, to achieve this, the token needs to be able to store Θ(nk2 log q) bits of
information. This contradicts the idea of a tamper-proof hardware token being a small and simple
device. In [MS08] it was noted, that if David is computationally bounded, then the functions stored
on the token could be chosen to be pseudorandom [GGM86, HILL99]. The same is true for our
construction. It suffices that the token stores a succinct seed of length Θ(k log q) for a pseudorandom
number generator F . Upon input (zi, i) the token can compute the next pseudorandom value
(ri, Si) = F (i) and output Wi = rizi + Si.
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Moreover, in such a setting we do not need our protocol Πsemi−int
OAFE and the ideal functionality

F seq−ot
OAFE to be parametrized by some explicit runtime bound n, as David’s computational bounded-

ness implies a polynomial upper bound for the number of token queries.

3.2.3 Achieving optimal communication complexity for string-OT and OTMs

As discussed in Section 2.4, one can reduce k-bit string-OT and Fk2-OAFE to each other without any
overhead. However, our construction for seq-ot-OAFE has communication complexity Θ(nk2 log q).
I.e., by the aforementioned reduction approach we would end up with a communication complexity
of Θ(k2) per implemented instance of k-bit string-OT, as it happened in [DKMQ11]. In contrast, if
k is constant and q grows exponentially in the security parameter, we have only a communication
complexity of O(log q) for each implemented instance of Fkq -OAFE (q.v. Figure 6 in Section 2.4),
what is clearly optimal. Therefore, it is desirable to implement l-bit string-OT by a constant
number of Fd

2l
-OAFE instances with constant dimension d. We present such a reduction protocol

in Figure 7; our construction needs only a single instance of F2
2l

-OAFE and the protocol idea
is as follows. The F2

2l
-OAFE primitive allows the sender party to specify two linear functions

f0, f1 : F2l → F2l , such that the receiver party can evaluate both functions only once and only
simultaneously on the same input. Thus, if the sender party announces its OT-inputs s0 and s1

encrypted with f0(0) and f1(1) respectively, then the receiver party may learn at most one of the
values needed for decryption of s0 and s1. One can even go without transmitting any ciphertexts:
The sender party just has to choose f0, f1, such that f0(0) = s0 and f1(1) = s1, whereas f0(1) and
f1(0) are completely random.

a, b
r← F

2
2l

m0 := s0 ⊕ (e0 · b)
m1 := s1 ⊕

(
e1 · (a+ b)

) m0,m1

with {e0, e1} being
any public basis of
the linear space F1×2

2l

F
2
2l -OAFE

a

b

c

ac+ b y

l-bit string-OT

s0

s1

c

mc ⊕ (ec · y) sc

Figure 7: Non-interactive reduction of l-bit string-OT to F2
2l

-OAFE. Note that the transmission of
m0 and m1 is not essential; instead the sender party can just choose (a, b) subject to the condition
that e0b = s0 and e1(a+ b) = s1.

The protocol in Figure 7 is perfectly UC-secure, what can be shown straightforwardly, and it
also works perfectly for implementation of sequentially queriable OTM tokens from seq-ot-OAFE
(cf. the respective discussion in Section 2.4). Thus, in the outcome we also have a construction
for sequentially queriable log(q)-bit OTM tokens, using only Θ(log q) bits of communication per
implemented OTM token. This communication complexity is clearly optimal and to the best of our
knowledge beats all known protocols for OT (or OTMs respectively) based on untrusted tamper-
proof hardware in the literature.

Note that our protocols with linear communication complexity also have very low computation
complexity. Per implemented log(q)-bit string-OT (or log(q)-bit OTM respectively) every party
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(and in particular the exchanged token) has only to perform O(1) finite field operations with field
size q. This is way faster than anything based on public key cryptography and can also compete
with all known approaches based on symmetric cryptography.

3.2.4 Efficient protocol for string-commitments in any direction

At this point we also want to note that string commitments can be implemented directly from seq-
ot-OAFE, even if the dimension k is constant (i.e. q grows exponentially in the security parameter).
See Figure 8 for the reduction protocols; they work analogously to the standard constructions for
commitments from OT. As our protocol for seq-ot-OAFE with constant dimension k has only linear
complexity, we thus get asymptotically optimal protocols for string commitments.

3.2.5 Non-interactive solution with two tokens

Our approach still needs the receiver party David to send some messages to the sender party Goliath.
In particular, for each implemented instance of Fkq -OAFE we have an interactive send phase and
a non-interactive choice phase (q.v. Figure 6 in Section 2.4). Therefore, we say that our protocol
Πsemi−int

OAFE is “semi-interactive”. It is quite straightforward to see that one cannot implement F seq−ot
OAFE

from a single instance of F stateful
wrap by any non-interactive protocol—cf. Theorem 1 in [DKMQ11].

However, we can easily give a non-interactive protocol for F seq−ot
OAFE , if two instances of F stateful

wrap are
in place, i.e. the sender party Goliath issues two tamper-proof tokens and the receiver party David
can trust that the tokens are mutually isolated. Then, the second token can play Goliath’s role in
the protocol Πsemi−int

OAFE with random inputs ai and bi. As Goliath knows the second token’s random
coins, derandomization of his inputs can be done as follows: If Goliath wants to replace the random
input tuple (ai, bi) by some arbitrarily chosen (a′i, b

′
i), he just sends (a′i−ai, b′i− bi, i) to David, who

then has to replace his output yi by y′i := yi + (a′i − ai)xi + (b′i − bi).
Note that based on the two-token protocol that implements F seq−ot

OAFE with random Goliath inputs,
step 2 of Πbackward

COM (q.v. Figure 8) can be made non-interactive, as Goliath does not need to
derandomize any of his inputs. All other protocols become non-interactive straightforwardly.

3.2.6 A note on optimal communication complexity

The string length of any computationally secure OT protocol can be polynomially extended by
standard techniques (cf. protocol Πenlarge

OT in Figure 9). It is straightforward to show UC-security of
this approach. Hence, optimal communication complexity of our computational OT solution is not
a noteworthy result. However, the opposite is true for our commitment and OTM constructions,
since applying an analogous transformation to commitments or OTMs would destroy UC-security.

Remark 2. The protocols Πenlarge
COM and Πenlarge

OTM in Figure 9 are not UC-secure.

Proof. We just show that Πenlarge
COM is not UC-secure. For Πenlarge

OTM one can argue analogously. Con-
sider a passively corrupted receiver party that just hands over every message to the environment.
For the real model, this means that in the commit phase the environment learns some k-bit string
r and in the unveil phase it learns a seed s ∈ {0, 1}l, such that r⊕F (s) is the honest sender party’s
input c. Now, if the environment chooses the honest sender party’s input c ∈ {0, 1}k uniformly at
random, this is not simulatable in the ideal model. The simulator has to choose r before he learns
c. Thus, using a simple counting argument, the probability that there exists any seed s ∈ {0, 1}l
with r⊕F (s) = c can be upper bounded by 2l−k. In other words, the simulation fails at least with
probability 1− 2l−k.
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Protocol Πforward
COM

Parametrized by a string length l, which also serves as security parameter, and some runtime bound n
that is polynomially bounded in l. All parties have access to a hybrid functionality F seq−ot

OAFE parametrized
by the finite vector space F1

2l and with runtime bound n. Bit strings of length l and elements of F2l are
identified with each other. The counter j, held by Goliath, is initialized to 0.

Commit phases:

1. Upon input (Commit, si, i) from the environment, Goliath verifies that si ∈ {0, 1}l and i = j+ 1 ≤ n;

else he ignores that input. Next, Goliath updates j ← i, chooses some random bi
r← F2l and sends

(si, bi, i) to F seq−ot
OAFE .

2. David, upon receiving the message (ready, i) from F seq−ot
OAFE , picks some random xi

r← F2l . He sends

(xi, i) to F seq−ot
OAFE , receives some (yi, i) and outputs (committed, i).

Unveil phases:

3. Upon input (Unveil, i) from the environment, Goliath verifies that i ≤ j; else he ignores that input.
Next, Goliath sends (si, bi, i) to David.

4. David verifies that sixi + bi = yi. If the check is passed, he outputs (si, i); otherwise he outputs
(⊥, i).

Protocol Πbackward
COM

Parametrized by a string length l, which also serves as security parameter, and some runtime bound n
that is polynomially bounded in l. All parties have access to a hybrid functionality F seq−ot

OAFE parametrized
by the finite vector space F1

2l and with runtime bound 2n. Bit strings of length l and elements of F2l are
identified with each other. The counter j, held by David, is initialized to 0.

Commit phases:

1. Upon input (Commit, si, i) from the environment, David verifies that si ∈ {0, 1}l and i = j + 1 ≤ n;
else he ignores that input. Next, David updates j ← i and sends (i) to Goliath.

2. Goliath randomly picks ai, bi, ci, di
r← F2l and sends (ai, bi, 2i− 1) and (ci, di, 2i) to F seq−ot

OAFE .

3. David, after receiving the messages (ready, 2i − 1) and (ready, 2i) from F seq−ot
OAFE , sends (si, 2i − 1)

and (0, 2i) to F seq−ot
OAFE . He receives some (yi, 2i− 1) and (ri, 2i) and announces (ri, i) to Goliath.

4. Goliath outputs (committed, i).

Unveil phases:

5. Upon input (Unveil, i) from the environment, David verifies that i ≤ j; else he ignores that input.
Next, David sends (si, yi, i) to Goliath.

6. Goliath verifies that ri = di and yi = aisi + bi. If the check is passed, he outputs (si, i); otherwise
he outputs (⊥, i).

Figure 8: Asymptotically optimal protocols for string commitments from seq-ot-OAFE. Note that
in a straightforward manner one can use the same instance of F seq−ot

OAFE for both protocols simulta-
neously.
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Protocol Πenlarge
OT

Parametrized by two security parameters k and l with k > l, a hybrid functionality FOT for l-bit string-OT
and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

1. Upon input (s0, s1) from the environment, the sender party verifies that s0, s1 ∈ {0, 1}k; else that

input is ignored. Next, the sender party chooses two random seeds s̃0, s̃1
r← {0, 1}l and inputs (s̃0, s̃1)

into FOT.

2. Upon input x from the environment, the receiver party verifies that x ∈ {0, 1}; else that input is
ignored. Next, the receiver party inputs x into FOT, thus receiving s̃x.

3. The sender party, after being notified that everybody did provide some input to FOT, announces
r0 := s0 ⊕ F (s̃0) and r1 := s1 ⊕ F (s̃1).

4. The receiver party computes and outputs sx = rx ⊕ F (s̃x).

Protocol Πenlarge
COM

Parametrized by two security parameters k and l with k > l, a hybrid functionality FCOM for l-bit string-
commitment and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

Commit phase:

1. Upon input (Commit, c) from the environment, the sender party verifies that c ∈ {0, 1}k; else that

input is ignored. Next, the sender party chooses some random s̃
r← {0, 1}l, commits to s via FCOM

and sends r := c⊕ F (s̃) to the receiver party.

2. The receiver party outputs (committed).

Unveil phase:

3. Upon input (Unveil) from the environment, the sender party unveils s̃.

4. If the unveil is successful, the receiver party computes and outputs r⊕F (s̃); otherwise it outputs ⊥.

Protocol Πenlarge
OTM

Parametrized by two security parameters k and l with k > l, a hybrid functionality FOTM for l-bit OTM
and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

Creation:

1. Upon input (s0, s1) from the environment, the sender party verifies that s0, s1 ∈ {0, 1}k; else that

input is ignored. Next, the sender party chooses two random seeds s̃0, s̃1
r← {0, 1}l, sends (s̃0, s̃1)

via FOTM to the receiver party and announces r0 := s0 ⊕ F (s̃0) and r1 := s1 ⊕ F (s̃1).

2. The receiver party outputs (ready).

Query:

3. Upon input x from the environment, the receiver party verifies that x ∈ {0, 1}; else that input is
ignored. Next, the receiver party inputs x into FOTM, thus receiving s̃x, and computes and outputs
sx = rx ⊕ F (s̃x).

Figure 9: Straightforward approaches for enlarging the string length of some given OT, commitment
or OTM functionality, using a PRNG. The protocol Πenlarge

OT is UC-secure, but Πenlarge
COM and Πenlarge

OTM

are not.
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4 Correctness and security of our protocol

In this section we show that in the F stateful
wrap -hybrid model our protocol Πsemi−int

OAFE is a universally

composable implementation of the ideal functionality F semi−int
OAFE , if only k ≥ 5. In particular, in

Section 4.2 we will prove perfect security against a corrupted David for all k and in Section 4.3 we
will prove statistical security against a corrupted Goliath for the case that k ≥ 5. However, first of
all we will show that Πsemi−int

OAFE always works correctly when no party is corrupted (Section 4.1).

4.1 Correctness

In a totally uncorrupted setting, simulation is straightforward. Since the simulator always is notified
when the ideal Goliath receives input from the environment and the simulator also may arbitrarily
delay the ideal David’s corresponding ready-message, he can perfectly simulate any scheduling of
the messages in the send phase. In turn, the choice phase cannot be influenced by the real model
adversary and therefore can be simulated trivially. Furthermore, whenever in the real model the
receiver David outputs some (yi, i), it holds that yi = aixi + bi, as one can verify as follows:

yi = G (rizi + Si)︸ ︷︷ ︸
=Wi

hi + (ai −Gri)︸ ︷︷ ︸
=ãi

xi + bi −GSihi︸ ︷︷ ︸
=b̃i

= Gri (zihi − xi)︸ ︷︷ ︸
=0

+aixi + bi

Also note that in a totally uncorrupted setting David’s consistency checks are always passed.

4.2 Security against a corrupted receiver

We first show security against a corrupted receiver, as this is the easy case. The respective simulator
is depicted in Figure 10 and the high level idea of how simulation works is as follows.

When the corrupted David queries the token before he got the derandomization information
(ãi, b̃i) from Goliath in the corresponding send phase, the simulator can easily revise Goliath’s
announcement of the derandomization information so that it matches a protocol run in the real
model: When Goliath is to announce the derandomization information (ãi, b̃i), the simulator has
already seen both shares zi, hi that are needed to extract David’s input xi. The simulator then can
query the ideal functionality F seq−ot

OAFE on this input xi, thus receiving yi, and then just revise b̃i so

that yi = GWihi + ãixi + b̃i.
When the corrupted David queries the token after he already got the derandomization informa-

tion (ãi, b̃i) from Goliath in the corresponding send phase, the simulator revises the token’s output

Wi so that the check CWi
?
= r̃izi + S̃i is still passed, but GW now matches a protocol run in the

real model: When the token is to output Wi, the simulator has already seen both shares zi, hi
that are needed to extract David’s input xi. The simulator then can query the ideal functionality
F seq−ot

OAFE on this input xi, thus receiving yi, and then revise Wi by some W ′ so that CW ′ = CWi

and yi = GW ′hi + ãixi + b̃i. Note that existence of such W ′ is always guaranteed, since G is
complementary to C (i.e. especially G has full rank) and h 6= 0. Now, by Theorem 3, we give our
formal security proof.

Theorem 3. Let some arbitrary environment Z be given and some adversary A that corrupts the
receiver David. Then the view of Z in the ideal model with ideal functionality F seq−ot

OAFE and simulator
SDavid(A) is identically distributed to the view of Z in the real model with protocol Πsemi−int

OAFE and
adversary A.
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Simulator SDavid(A)

• Set up an honest Goliath-machine G; also set up a simulated version of F stateful
wrap and the given

real model adversary A (which especially impersonates the corrupted David). Wire the simulated
machines A,G,F stateful

wrap to each other and A to the environment right the way they would be wired
in the real model.

• Upon receiving a message (created, i) from the ideal functionality F seq−ot
OAFE , reply with (Delivery, i).

Then, upon receiving (ready, i) on behalf of the corrupted David, choose some random vectors

ai, bi
r← F

k
q and let G start the i-th send phase with input (ai, bi, i).

• Whenever G is to send some (ãi, b̃i, i) to the corrupted David in step 3 of a send phase, extract the
current state j of j′queried from the view of the simulated F stateful

wrap . If j ≥ i, replace the announcement

(ãi, b̃i, i) by (ãi, b̃
′, i), with b̃′ computed as follows:

0. Extract G, hi from the view of G and zi,Wi from the view of the simulated F stateful
wrap .

1. Compute xi ← zihi and (on behalf of the corrupted David) send (xi, i) to the ideal functionality
F seq−ot

OAFE ; let (yi, i) denote the respective answer from F seq−ot
OAFE .

2. Set b̃′ ← yi −GWihi − ãixi.

• Whenever the token is to output some matrix W to the corrupted David, extract the current state
i of j′queried from the view of the simulated F stateful

wrap . When G has already received (and not ignored)
a message (hi, i) in step 3 of a send phase, replace the token’s output by W ′, computed as follows:

0. Extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view of G and zi from the view of the simulated F stateful
wrap .

1. Compute xi ← zihi and (on behalf of the corrupted David) send (xi, i) to the ideal functionality
F seq−ot

OAFE ; let (yi, i) denote the respective answer from F seq−ot
OAFE .

2. Choose randomly W ′
r←
{
W̃ ∈ F4k×k

q

∣∣ CW̃ = r̃izi + S̃i ∧ GW̃hi + ãixi + b̃i = yi
}

.

Figure 10: The simulator program SDavid(A), given an adversary A that corrupts the receiver
David.

Proof. Let the random variable viewAreal(Z) denote the view of Z in the real model with adversary
A and let viewAideal(Z) denote the view of Z in the ideal model with simulator SDavid(A), i.e.
we have to show that the statistical distance ∆

(
viewAreal(Z),viewAideal(Z)

)
is zero. W.l.o.g. we

assume that Z has a hard coded random tape that maximizes this statistical distance. Thereby,
w.l.o.g. we have that in step ii of the setup phase the corrupted David announces some fixed
(Ĉ, Ĝ) ∈ F3k×4k

q × Fk×4k
q with Ĝ complementary to Ĉ. Now we can represent the ideal model by

the following ensemble of random variables (i = 1, . . . , n):

• (ri,Si)
r← F

4k
q ×F4k×k

q represents the i-th initialization parameter of the token.

• âi, b̂i ∈ Fkq represent the ideal Goliath’s i-th input from Z.

• ai,bi
r← F

k
q represent the random input of the simulated machine G in the i-th send phase.

• r̃i := Ĉri and S̃i := ĈSi represent the announcement of G in step 1 of the i-th send phase.

• hi ∈ Fkq \{0} represents the corrupted David’s announcement in step 2 of the i-th send phase.
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• ãi, b̃i ∈ Fkq represent the announcement of G in step 3 of the i-th send phase.

• zi ∈ F1×k
q represents the corrupted David’s i-th input into the token.

• xi := zihi represents the simulator’s i-th input to the ideal functionality F stateful
wrap .

• yi := âixi + b̂i represents the ideal functionality’s i-th output to the simulator SDavid(A).

• Wi ∈ F4k×k
q represents the token’s i-th output.

When the corrupted David has announced hi before he queried the token with input (zi, i), the
simulator will not overwrite the simulated Goliath’s announcement (ãi, b̃i, i), but the token’s output
Wi will be overwritten. We will refer to this as the regular case. In this case it holds:

ãi ← ai − Ĝri

b̃i ← bi − ĜSihi

Wi
r←
{
W̃ ∈ F4k×k

q

∣∣ ĈW̃ = r̃izi + S̃i ∧ ĜW̃hi + ãixi + b̃i = yi
}

When the corrupted David has queried the token with input (zi, i) before he announced hi, the
simulator will not overwrite the token’s output Wi, but the simulated Goliath’s announcement
(ãi, b̃i, i) will be overwritten. We will refer to this as the irregular case. In this case it holds:

Wi ← rizi + Si

ãi ← ai − Ĝri

b̃i ← yi − ĜWihi − ãixi i.e. b̃i = b̂i − ĜSihi + (âi − ai)xi

Note that we did not exactly specify the distributions of the hi, zi, âi, b̂i, as these values are
chosen by the corrupted David or the environment Z respectively and may depend on all information
that Z has gathered so far. As we fixed the random tape of Z, the random variable viewAideal(Z)
becomes a function value of (r̃1, S̃1, ã1, b̃1,W1, . . . , r̃n, S̃n, ãn, b̃n,Wn). Now, let E denote the event
that ∀i ∈ {1, . . . , n} : (ai,bi) = (âi, b̂i) and let E ′ denote the event that ∀i ∈ {1, . . . , n} : Wi =
rizi + Si. The rest of our indistinguishability proof will proceed as follows: We first show that
conditioning the random variable viewAideal(Z) to the event E does not change its distribution,
then we show that further conditioning viewAideal(Z) to the event (E ∧ E ′) still does not change
its distribution. However, this will already conclude our proof, as viewAideal(Z) conditioned to
(E ∧ E ′) clearly is identically distributed to viewAreal(Z). Note that the events E and E ′ both have
non-zero probability, as for each i ∈ {1, . . . , n} the random variables ai and bi are independent of
(âi, b̂i) and in the case that (ai,bi) = (âi, b̂i) it always holds that Ĉ(rizi + Si) = r̃izi + S̃i and
Ĝ(rizi + Si)hi + ãixi + b̃i = yi.

In our first step we have to show that conditioning to E does not alter the joint distribution of
r̃1, S̃1, ã1, b̃1,W1, . . . , r̃n, S̃n, ãn, b̃n,Wn. Let us consider some arbitrary but fixed i ∈ {1, . . . , n}.
Now note that in the regular case ãi and b̃i are the only random variables that are computed from
(ai,bi). Furthermore, in the regular case ãi and b̃i also are the only random variables that are com-
puted from Ĝri and ĜSi; all other values computed from ri and Si in fact are computed from Ĉri
and ĈSi. Thus, since Ĝ is complementary to Ĉ and ri,Si are uniformly random (and hi 6= 0), we
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just could have stated ãi, b̃i
r← F

k
q instead of ãi ← ai−Ĝri and b̃i ← bi−ĜSihi, whereby indepen-

dence of (r̃i, S̃i, ãi, b̃i,Wi) from (ai,bi) becomes obvious. In the irregular case things are even eas-
ier, as there ãi is computed the same way as in the regular case, but b̃i does not depend on bi. Since
i was arbitrary, it follows that the joint distribution of r̃1, S̃1, ã1, b̃1,W1, . . . , r̃n, S̃n, ãn, b̃n,Wn is
independent of (a1,b1, . . . ,an,bn) and we can henceforth condition all our considerations to the
event E without changing the joint distribution of r̃1, S̃1, ã1, b̃1,W1, . . . , r̃n, S̃n, ãn, b̃n,Wn.

In our second step we have to show that conditioning to E ′ does not alter the joint distribution
of r̃1, S̃1, ã1, b̃1,W1, . . . , r̃n, S̃n, ãn, b̃n,Wn, when already conditioned to E . Again, let us consider
some arbitrary but fixed i ∈ {1, . . . , n}. Since in the irregular case we have that Wi = rizi + Si by
construction, we can focus to the regular case. There, since conditioned to the event that (ai,bi) =
(âi, b̂i), we have that Wi

r←
{
W̃ ∈ F4k×k

q

∣∣ ĈW̃ = Ĉ(rizi + Si) ∧ ĜW̃hi = Ĝ(rizi + Si)hi
}

.

This is equivalent to randomly sampling S′
r←
{
S̃′ ∈ F4k×k

q

∣∣ ĈS̃′ = ĈSi ∧ ĜS̃′hi = ĜSihi
}

and then just setting Wi ← rizi + S′. However, in the regular case the joint distribution of
r̃i, S̃i, ãi, b̃i,Wi is identical to the joint distribution of r̃i, ĈS′, ãi, b̃i,Wi by construction, what
concludes our proof.

4.3 Security against a corrupted sender

The case of a corrupted sender Goliath is the technically challenging part of the security proof.
The respective simulator is depicted in Figure 11.

Simulator SGoliath(A)

• Set up an honest David-machine D; also set up a simulated version of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted Goliath). Wire the simulated
machines A,D,F stateful

wrap to each other and A to the environment right the way they would be wired
in the real model. Further, initialize f0 ← >.

• Whenever D outputs (ready, i), extract a snapshot T ′ of T (including its current internal state)
from the view of the simulated F stateful

wrap and extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view of D. Then
run the following extraction program:

1. Pick a random vector ui
r← F

1×k
q and input (ui, i) into the token T ; let Wi denote the token’s

output (w.l.o.g. Wi ∈ F4k×k
q ). If fi−1 = ⊥ or CWi 6= r̃iui + S̃i, set fi ← ⊥ and go to step 4;

else just set fi ← >.

2. Pick a random vector vi
r← F

1×k
q and input (vi, i) into a copy of T ′; let W ′ denote the token’s

output (w.l.o.g. W ′ ∈ F4k×k
q ). Retry this step until CW ′ = r̃ivi + S̃i or qk iterations have

past; in the latter case give up, i.e. send (⊥, i) to the environment and terminate. If afterwards
ui = vi or any row of the matrix Wi −W ′ is linearly independent of ui − vi, also give up.

3. Compute the unique vector ri ∈ F4k
q , such that Wi−W ′ = ri(ui− vi), and set Si ←Wi− riui.

Then compute ai ← ãi +Gri and bi ← b̃i +GSihi.

4. If fi = >, send (ai, bi, i) on behalf of the corrupted Goliath to the ideal functionality F seq−ot
OAFE ;

else send (0, 0, i).

Finally, upon receiving (created, i) from the ideal functionality F seq−ot
OAFE , reply with (Delivery, i).

Figure 11: The simulator program SGoliath(A), given an adversary A that corrupts the sender party.
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The high level picture of how this simulator works is as follows. The send phases are simulated
perfectly, as Z just interacts with a simulated version of the complete real model. However, when
the i-th send phase is over, the simulator must extract a valid Goliath input (ai, bi, i), i.e. the
simulator needs a description of the token functionality for the i-th choice phase. Thereto, the
simulator first checks whether the token acts honestly in the i-th choice phase. He does so by
just executing the i-th choice phase with random input. If the token’s output appears faulty, the
simulator henceforth gives default input (0, 0, i) to the ideal functionality; otherwise he rewinds the
token to the beginning of the i-th choice phase and inputs other vectors vi ∈ F1×k

q until he can
extract a linear function that describes the token behavior in this phase. Once having extracted this
linear description of the token functionality, the simulator can easily compute the unique Goliath
input (ai, bi, i) corresponding to this token functionality and the messages of the i-th send phase.
Note that the running time of SGoliath(A) is not a priori polynomially bounded in the security
parameter k log q, but there may be up to qk simulated token queries in step 2 of the simulator’s
extraction program. However, the expected number of iterations in that step is constant. We also
refer to Section 5.2 for a further discussion on this issue.

Lemma 4. Let some arbitrary environment Z be given and some adversary A that corrupts
the sender Goliath. Then the expected running time of the simulator SGoliath(A) is polynomially
bounded in the running time of A and the corresponding token T .

Proof. We just have to show that the expected number of iterations in step 2 of the simulator’s
extraction program (q.v. Figure 11) is polynomially bounded. In fact, we will even show that the
expected number of iterations is constant. When the simulator enters his extraction program, we
can express by a variable p the probability that he picks some ui passing the check in step 1. Then
in each iteration of step 2 with probability 1− p he will pick some vi that does not pass the check.
Hence, if the simulator would not give up after qk iterations, we had the following probability that
exactly t iterations are performed:

1− p for t = 0

p2 · (1− p)t−1 for t > 0

This yields the following upper bound for the expected number of iterations:

p2 ·
∑∞

t=1
t · (1− p)t−1

Note that w.l.o.g. p > 0, as otherwise step 2 of the extraction program is not entered at all. However,
if p > 0, we can use the well-known formula for the expectation of a geometric distribution:

p ·
∑∞

t=1
t · (1− p)t−1 = 1

p

Putting things together, we have shown that the expected number of iterations is at most 1.

4.3.1 A sequence of hybrid games

We prove indistinguishability between the ideal model and the real model by a hybrid argument. In
particular, we will show that for l = 1, . . . , n no environment can distinguish non-negligibly between
some hybrid games Gamel−1 and Gamel, where Game0 and Gamen are statistically indistinguishable
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Functionality F ′

Parametrized by a finite vector space Fk
q , with k log q being the security parameter, and some runtime

bound n that is polynomially bounded in k log q. The counters jcreated, jsent, jqueried are all initialized to 0.

Send phases:

• Upon receiving input (a, b, i) from Goliath, verify that a, b ∈ Fk
q and i = jcreated + 1 ≤ n; else ignore

that input. Next, update jcreated ← i and send (created, i) to the simulator.

• Upon receiving a message (Delivery, i) from the simulator, verify that i = jsent + 1 ≤ jcreated; else
ignore that message. Next, update jsent ← i and send (ready, i) to David.

Choice phases:

• Upon receiving input (x, i) from David, verify that x ∈ Fq and i = jqueried +1 ≤ jsent; else ignore that
input. Next, update jqueried ← i, send (queried, x, i) to the simulator and wait for the simulator’s
next message. Then, upon receiving (Reply, y, i) from the simulator, output (y, i) to David.

When a party is corrupted, the simulator is granted unrestricted access to the channel between F seq−ot
OAFE

and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 12: The ideal functionality for the hybrid games Game0, . . . ,Gamen.

from the ideal and real model respectively. Each hybrid game Gamel works like an ideal model
with ideal functionality F ′ and (non-efficient) simulator S ′l(A). The functionality F ′ resembles the
ideal functionality F seq−ot

OAFE , but the simulator learns the ideal David’s inputs and may overwrite
the corresponding outputs of F ′. For a formal description see Figure 12. Each simulator S ′l(A)
overwrites the first l outputs, so that with overwhelming probability they equal the first l David
outputs in the real model. The remaining n − l outputs are computed from an extracted linear
description of the token functionality, very similar to the ideal model. For a formal description
of the simulators S ′l(A) see Figure 13. By the next lemma and the subsequent corollary we show
indistinguishability between Game0 and the ideal model, and between Gamen and the real model
respectively. The corresponding proofs make use of some technical lemmata, which we moved to a
separate section (Section 4.3.3).

Lemma 5. Let some arbitrary environment Z be given and some adversary A that corrupts the
sender Goliath. Then the probability that the simulator S ′l(A) in Gamel gives up (cf. step 3 in the
simulator’s extraction program in Figure 13) is upper bounded by:

2n

(
(1 + q)q1−k +

√
exp
(
lq2−k

)
− 1

)
Proof. For arbitrary but fixed i ∈ {1, . . . , n} let us consider the situation that S ′l(A) enters his
extraction program for the i-th time and that fi−1 = >. We have to estimate the probability that
fi = >, but vi = wi or any row of the matrix τi(wi) − τi(vi) is linearly independent of vi − wi.
Thereto, let Vi denote the set of token inputs that pass David’s consistency check and let Zi denote
the support of wi, i.e. we have:

Vi =
{
ṽ ∈ F1×k

q

∣∣ C · τi(ṽ) = r̃iṽ + S̃i
}

Zi =

{
{z̃ ∈ F1×k

q | z̃hi = xi} if i ≤ l
F

1×k
q else
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Simulator S ′l(A)

• Set up an honest David-machine D; also set up a simulated version of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted Goliath). Wire the simulated
machines A,D,F stateful

wrap to each other and A to the environment right the way they would be wired
in the real model. Further, initialize f0 ← >.

• Whenever D outputs (ready, i), choose any a, b ∈ Fk
q and send (a, b, i) on behalf of the corrupted

Goliath to the functionality F ′. Then, upon receiving (created, i) from F ′, reply with (Delivery, i).

• Upon receiving (queried, xi, i) from the functionality F ′, extract the token function τi of the cur-
rent choice phase from the view of the simulated F stateful

wrap , in the sense that on input (ṽ, i) the

token T currently would output τi(ṽ); w.l.o.g. τi(ṽ) ∈ F4k×k
q for all ṽ ∈ F1×k

q . Further, extract

C,G, r̃i, S̃i, hi, ãi, b̃i from the view of D. Then run the following extraction program:

1. Pick two random vectors ui
r← F

1×k
q and zi

r← {z̃ ∈ F1×k
q | z̃hi = xi}. If i ≤ l, set wi ← zi;

else set wi ← ui. Then input (wi, i) into the token T , thus progressing its internal state.

2. If fi−1 = ⊥ or C · τi(wi) 6= r̃iwi + S̃i, set fi ← ⊥ and go to step 4. Otherwise set fi ← > and

pick a random vector vi
r←
{
ṽ ∈ F1×k

q

∣∣ C · τi(ṽ) = r̃iṽ + S̃i

}
.

3. If vi = wi or τi(wi) − τi(vi) 6= r(wi − vi) for all r ∈ Fk
q , give up and (i.e., send (⊥, i) to

the environment and terminate). Otherwise compute the unique vector ri ∈ F1×k
q , such that

τi(wi) − τi(vi) = r(wi − vi), and set Si ← τi(wi) − riwi. Then compute ai ← ãi + Gri and
bi ← b̃i +GSihi.

4. If fi = >, compute yi ← aixi + bi; else just set yi ← 0. Then send (Reply, yi, i) to F ′.

Figure 13: The simulator program S ′l(A) for the hybrid game Gamel, given an adversary A that
corrupts the sender Goliath. The hybrid games Gamen and Game0 are statistically indistinguishable
from the real model with adversary A and the ideal model with simulator SGoliath(A) respectively.

Thereby, when we arbitrarily fix (τi, C, r̃i, S̃i, hi) and thus (Vi, Zi), we can already estimate the
probability that fi = > and vi = wi as follows:

P[fi = > ∧ vi = wi] = P[wi ∈ Vi ∧ vi = wi] = |Zi∩Vi|
|Zi| ·

1
|Vi| ≤

1
|Zi| ≤ q1−k

Now we estimate the probability that fi = > and at the same time τi(wi)− τi(vi) 6= r(vi − wi) for
all r ∈ Fkq . By the definition of ι (see Section 2.1) and the technical Lemma 13 we can estimate:

P

[
∃W,W ′ ∈ τi

(
F

1×k
q

)
: rank

(
W −W ′

)
≥ 1 > rank

(
C(W −W ′)

)]
< q1−3k|F1×k

q |2 + ι(C, τi)

P

[
∃W,W ′ ∈ τi

(
F

1×k
q

)
: rank

(
W −W ′

)
≥ 2 > rank

(
C(W −W ′)

)]
< q2−3k|F1×k

q |2 + ι(C, τi)

In other words, at least with probability 1−q1−k−q2−k−2·ι(C, τi) we have the following implications
for all ṽ, ṽ′ ∈ F1×k

q :

rank
(
τi(ṽ)− τi(ṽ′)

)
> 0 ⇒ rank

(
C · τi(ṽ)− C · τi(ṽ′)

)
> 0

rank
(
τi(ṽ)− τi(ṽ′)

)
> 1 ⇒ rank

(
C · τi(ṽ)− C · τi(ṽ′)

)
> 1

Now we can apply Lemma 14, whereby we get:

P
[
|Vi| ≤ q ∨ ∃ r ∈ F4k

q , S ∈ F4k×k
q ∀ ṽ ∈ Vi : τi(ṽ) = rṽ + S

]
≥ 1− (1 + q)q1−k − 2 · ι(C, τi)
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However, on the one hand we have that P
[
fi = >

∣∣ |Vi| ≤ q
]
≤ q2−k, as one verifies quite easily.

On the other hand, if there exist r ∈ F4k
q and S ∈ F4k×k

q , such that τi(ṽ) = rṽ + S for all ṽ ∈ Vi,
then it can not be that wi ∈ Vi and at the same time τi(wi) − τi(vi) 6= r(wi − vi) for all r ∈ F4k

q .
Putting things together, we have shown:

P
[
fi = > ∧ ∀ r ∈ F4k

q : τi(wi)− τi(vi) 6= r(wi − vi)
]
≤ (1 + 2q)q1−k + 2 · ι(C, τi)

So, finally we have to estimate ι(C, τi). Note that w.l.o.g. the environment in Gamel plays determin-
istically and hence David’s input xi can be written as a function value xi(C, h1, . . . , hn, w1, . . . wi−1).
Further note that ι(C, τi) ≤ ι

(
C, (w1, . . . , wi−1)

)
, since τi solely depends on (w1, . . . , wi−1). Also

note that ι
(
C, (w1, . . . , wi−1)

)
= ι
(
C, (w1, . . . , wl)

)
if i > l, since (wl+1, . . . , wn) = (ul+1, . . . , un)

and thus (wl+1, . . . , wn) is just completely independent randomness. By Corollary 20 we can con-
clude:

ι(C, τi) <


√

exp
(
(i− 1)q2−k

)
− 1 if i ≤ l√

exp
(
lq2−k

)
− 1 if i > l

All in all, the probability that S ′l(A) does give up during the i-th execution of his extraction program
can be estimated as follows:

P

[
fi = > ∧

(
vi = wi ∨ ∀ r ∈ F4k

q : τi(wi)−τi(vi) 6= r(wi−vi)
)]

< 2(1+q)q1−k+2
√

exp
(
lq2−k

)
− 1

Our lemma now just follows by the Union Bound.

Corollary 6. Let some arbitrary environment Z be given and some adversary A that corrupts
the sender Goliath. Then the view of Z in the ideal model with ideal functionality F seq−ot

OAFE and
simulator SGoliath(A) and the view of Z in the hybrid game Game0 are statistically close in k log q.
Furthermore, the view of Z in the real model with protocol Πsemi−int

OAFE and adversary A and the view
of Z in the hybrid game Gamen also are statistically close in k log q, if only k ≥ 3.

Proof. We first show that the ideal model and Game0 are indistinguishable. There are only two
differences between the ideal model and Game0. Firstly, they differ in the exact moment when
the simulator runs his extraction program: The simulator SGoliath(A) runs his extraction program
directly after the simulated David machine D has finished a send phase, whereas S ′0(A) runs his
extraction program as recently as the ideal David queries the functionality F ′ in a choice phase.
However, this is completely invisible to the environment. The only other difference between the
ideal model and Game0 is that SGoliath(A) does give up after qk iterations in step 2 of his extraction
program. Thus, it suffices to show that SGoliath(A) does reach the limit of qk iterations only with
negligible probability. However, this is a direct consequence of Lemma 4.

Now we show that the real model and Gamen are indistinguishable, if only k ≥ 3. Note that, if
fi = >, we can write David’s output yi in Gamen as follows:

yi = aixi + bi = (ãi +Gri)xi + b̃i +G
(
τi(zi)− rizi

)︸ ︷︷ ︸
=Si

hi = Gi · τi(zi) · hi + ãixi + b̃i +Gri (xi − zihi)︸ ︷︷ ︸
=0

Thus, the environment’s view in Gamen may only differ from its view in the real model, if S ′n(A)
does give up in step 3 of his extraction program. However, by Lemma 5 we know that this may
happen only with negligible probability, if only k ≥ 3.
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4.3.2 Indistinguishability of successive hybrid games

In this section we finally show indistinguishability between the hybrid games Game0, . . . ,Gamen.
Our proof is game-based, i.e. we define four games Γ1(Fkq , n, l), . . . ,Γ4(Fkq , n, l) and show:

• The maximal winning probability (or to be more precise, the maximal advantage over a purely
random strategy) in Γ1(Fkq , n, l) induces a meaningful upper bound for the statistical distance
between the environment’s view in Gamel−1 and its view in Gamel (Lemma 7).

• The maximal winning probability in Γi+1(Fkq , n, l) is only negligibly higer than the maximal

winning probability in Γi(F
k
q , n, l) (Lemmata 8, 9 and 10).

• The maximal winning probability in Γ4(Fkq , n, l) is only negligibly higher than the winning
probability of a purely random strategy (Proposition 11), what is sufficient to conclude our
indistinguishability proof (Corollary 12).

The corresponding proofs make use of some technical lemmata, which we moved to a separate
section (Section 4.3.3).

The high level idea of our proof strategy is as follows. The game Γ1(Fkq , n, l) is just a straight-
forward abstraction of Gamel−1 and Gamel. Any distinguishing environment for Gamel−1 and
Gamel can be straightforwardly transformed into a winning player for Γ1(Fkq , n, l). The change

from Γ1(Fkq , n, l) to Γ2(Fkq , n, l) corresponds to changing the simulator S ′l(A) (q.v. Figure 13) such
that the extracted token parameters (ri, Si) no longer depend on the check matrix C. As now the
extracted token parameters (ri, Si) solely depend on token inputs, we can next change the token
functionality such that it directly outputs the parameters (ri, Si). This is done by Γ3(Fkq , n, l).

In Γ3(Fkq , n, l) the player/adversary still has to correctly forecast a linear projection (Cri, CSi) of
the token parameters (ri, Si) or the game is aborted. However, if the linear mapping defined by
C has no collisions on any possible token parameters (ri, Si) and (r′i, S

′
i) of the current stage, the

player/adversary could as well forecast the extracted token parameters directly. This is what he has
to do in Γ4(Fkq , n, l). Now, the player/adversary has to correctly forecast everything he might learn
through token outputs and we can compute an upper bound for the amount of this information.

Lemma 7. Let 1
2 + δ be the maximal winning probability in the game Γ1(Fkq , n, l). Then the

statistical distance between the environment’s view in Gamel−1 and its view in Gamel is upper
bounded by 2δ.

Proof. Let some environment Z and some adversary A be given and let ε denote the statistical
distance between the views of Z in the hybrid games Gamel−1 and Gamel with simulator S ′l−1(A)

and S ′l(A) respectively. It is straightforward to see, how the player K in the game Γ1(Fkq , n, l) can
generate a view of Z in Gamel−d, where d is the secret random bit that K tries to guess. The high
level idea can be sketched as follows:

• The mappings τ1, . . . , τn are specified by the token T ; when we fix the first i− 1 token inputs
w1, . . . , wi−1, the token functionality in the i-th choice phase is wi 7→ τi(w1, . . . , wi).

• The variables C, h1, . . . , hl, (r̃1, S̃1, x1, w1, v1, r1, S1), . . . , (r̃n, S̃n, xn, wn, vn, rn, Sn) correspond
to their same-named counterparts in Gamel−d. Note that the player K can choose hl+1, . . . , hn
arbitrarily and w.l.o.g. Z and A ignore these values, since they are just uniform randomness
and statistically independent of everything else in Gamel−1 as well as in Gamel.
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Game Γ1(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q \{0}

and C := F3k×4k
q and M := F4k

q ×F4k×k
q . The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns l random vectors h1, . . . , hl
r← H and a random matrix C

r← C.

3. A random bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q and S̃i ∈ F3k×k

q and xi ∈ Fq.

(b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.

(c) If C · τi(w1, . . . , wi) 6= r̃iwi + S̃i, the player K is notified about that by a special message (∗, i)
and the game is aborted in the sense that step 5 follows next. Otherwise, a random vector
vi

r←
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i

}
is chosen secretly.

(d) If vi = wi or τi(w1, . . . , wi) − τi(w1, . . . , wi−1, vi) 6= r(wi − vi) for all r ∈ Fk
q , the player K is

notified about that by a special message (⊥, i) and the game is aborted in the sense that step 5
follows next; else K learns the unique tuple (ri, Si) ∈ M, such that τi(w1, . . . , wi) = riwi + Si

and τi(w1, . . . , wi−1, vi) = rivi + Si.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 14: Definition of a stand-alone indistinguishability game that captures the difference between
the hybrid games Gamel−1 and Gamel.

• When the game Γ1(Fkq , n, l) is aborted in the i-th round of step 4 and the abort happens in
substep 4c, this corresponds to the event that fi = ⊥ and hence yi = . . . = yn = 0.

• When the game Γ1(Fkq , n, l) is aborted in the i-th round of step 4 and the abort happens in
substep 4d, this corresponds to the event that the simulator S ′l−d(A) does give up and outputs
(⊥, i).

It is straightforward to see that this way the player K can perfectly emulate a view of Z in the
hybrid game Gamel−d. Now, let the random variable viewZ denote this emulated view and let
the random variable d denote the secret random bit that K tries to guess. Since K may win
the game Γ1(Fkq , n, l) at most with probability 1

2 + δ, it must hold for every predicate P that

P
[
P (viewZ) = 0 ∧ d = 0

]
+P

[
P (viewZ) = 1 ∧ d = 1

]
≤ 1

2 + δ. Furthermore, note that there
exists some predicate P , such that we can write the statistical distance dist l between the views of
Z in Gamel−1 and Gamel as follows:

dist l =

=P[P (view of Z in Gamel−1)=1]︷ ︸︸ ︷
P
[
P (viewZ) = 1

∣∣ d = 1
]
−

=P[P (view of Z in Gamel)=1]︷ ︸︸ ︷
P
[
P (viewZ) = 1

∣∣ d = 0
]

Thus, we can conclude:

dist l = P
[
P (viewZ) = 1

∣∣ d = 1
]︸ ︷︷ ︸

=2P[P (viewZ)=1∧d=1]

−
(

1−P
[
P (viewZ) = 0

∣∣ d = 0
]︸ ︷︷ ︸

=2P[P (viewZ)=0∧d=0]

)
≤ 2δ

28



Game Γ2(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q \{0}

and C := F3k×4k
q and M := F4k

q ×F4k×k
q . The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns l random vectors h1, . . . , hl
r← H and a random matrix C

r← C.

3. A random bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q and S̃i ∈ F3k×k

q and xi ∈ Fq.

(b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.

(c) If there exists a unique tuple (ri, Si) ∈ M, such that τi(w1, . . . , wi) = riwi + Si and
#
{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = riṽ + Si

}
≥ q3k/4, and for this unique tuple it holds that

(Cri, CSi) = (r̃i, S̃i), then the player K learns (ri, Si); else the player K receives a special
message (∗, i) and the game is aborted in the sense that step 5 follows next.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 15: The second version of our indistinguishability game. The only difference from Γ1(Fkq , n, l)
is that the messages for the player K in step 4 are now computed deterministically.

Lemma 8. Let some finite vector space Fkq and n, l ∈ N>0 be given, such that l ≤ n and qk ≥ 22,

i.e. qk ≤ q9k/8− q3k/4. Let 1
2 + δ be the maximal winning probability in the game Γ2(Fkq , n, l). Then

the maximal winning probability in the game Γ1(Fkq , n, l) is upper bounded by:

1
2 + δ + n

(
2q1−k/4 + 3(1 + 2q)q1−k

)
+ 4

n−1∑
i=0

√
exp(iq2−k)− 1

Proof. The only difference between Γ1(Fkq , n, l) and Γ2(Fkq , n, l) is that in step 4c of the game

Γ2(Fkq , n, l) the message for the player K is computed deterministically, rather than probabilistically

as in Γ1(Fkq , n, l). So all we have to show is that in the game Γ1(Fkq , n, l) with sufficiently high
probability the message for K in the steps 4c and 4d is the same as if it were computed the
deterministic way of Γ2(Fkq , n, l).

Thereto, for arbitrary but fixed i ∈ {1, . . . , n} we consider the i-th round of step 4 in Γ1(Fkq , n, l).
Given that the game is not aborted before this round, we show:

1. If the game is aborted and K receives the message (∗, i), then there does not exist any tuple
(r, S) ∈ M, such that τi(w1, . . . , wi) = rwi + S and (Cr,CS) = (r̃i, S̃i). In other words, the
player K would have received the same message in the game Γ2(Fkq , n, l).

2. Only with very little probability it may happen that the player K receives the message (⊥, i).
The probability is upper bounded by 2

(
(1 + q)q1−k +

√
exp
(
(i− 1)q2−k)− 1

)
.

3. If the player K receives some (ri, Si) ∈M, then we have that τi(w1, . . . , wi) = riwi + Si.
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4. If the player K receives some (ri, Si) ∈M, then we have that (Cri, CSi) = (r̃i, S̃i).

5. Only with very little probability it may happen that there exist two or more tuples (r, S) ∈M,
such that τi(w1, . . . , wi) = rwi +S and #

{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = rṽ+S
}
≥ q3k/4. The

probability is upper bounded by q1−k/4.

6. Only with very little probability it may happen that the player K receives some (ri, Si) ∈M,
such that #

{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = riṽ+Si
}
< q3k/4. The probability is upper bounded

by q1−k/4 + (1 + 2q)q1−k + 2
√

exp
(
(i− 1)q2−k)− 1.

Putting things together, we will have that with very high probability the player K does receive the
same message as if it were computed by step 4c of the game Γ2(Fkq , n, l). In particular, by adding

the above bounds we get 2q1−k/4 + 3(1 + 2q)q1−k + 4
√

exp
(
(i− 1)q2−k)− 1 as an upper bound for

the probability that K receives a different message. Given this upper bound, our lemma follows by
the Union Bound.

Assertion 1 can be shown straightforwardly. If there exits some tuple (r, S) ∈ M, such that
τi(w1, . . . , wi) = rwi + S and (Cr,CS) = (r̃i, S̃i), then we have that C · τ(w1, . . . , wi) =
C(rwi + S) = r̃iwi + S̃i and hence K does not receive the message (∗, i).

Assertion 2 needs some more sophisticated arguments; see below.

Assertion 3 holds trivially.

Assertion 4 can be shown very straightforwardly, exploiting the following facts. If the player K
receives some (ri, Si) ∈M, we have that vi 6= wi and we have the following equation system:

C · τi(w1, . . . , wi) = r̃iwi + S̃i τi(w1, . . . , wi) = riwi + Si

C · τi(w1, . . . , wi−1, vi) = r̃ivi + S̃i τi(w1, . . . , wi−1, vi) = rivi + Si

Thus, Cri(wi − vi) = r̃i(wi − vi) and C(riwi + Si) = r̃iwi + S̃i. However, since vi 6= wi, this
implies that Cri = r̃i and CSi = S̃i.

Assertion 5 is a direct consequence of Lemma 18. Note that qk ≤ q9k/8−q3k/4 by assumption. So
once w1, . . . , wi−1 are fixed, we have by Lemma 18 that there are less than q3k/4 different values
for wi such that τi(w1, . . . , wi) = rwi+S and #

{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = rṽ+S
}
≥ q3k/4.

Thus, the probability that wi takes one of these values is upper bounded by q3k/4

qk−1 .

Assertion 6 can be shown by the same arguments as assertion 2; see below.

For our proof of the assertions 2 and 6 we need a more formal treatment of what happens in
Γ1(Fkq , n, l). So, let any player K be given. W.l.o.g. we assume that K plays deterministically
and hence the mappings τ1, . . . , τn are fixed. We define the following random variables that just
represent the respective random values in Γ1(Fkq , n, l) with player K: h1, . . . ,hl ∈ H, C ∈ C,
d ∈ {0, 1}, w1, . . . ,wn,v1, . . . ,vn ∈ U ∪ {⊥}, (r̃1, S̃1, . . . , r̃n, S̃n) ∈ (F4k

q × F4k×k
q ) ∪ {(⊥,⊥)} and

(r1,S1), . . . , (rn,Sn) ∈ M ∪ {(⊥,⊥)}. If the game is aborted, we represent that by the event
that all remaining random variables are set to ⊥. Moreover, we define the random variables
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Wi := τi(w1, . . . ,wi−1,U) and Vi :=
{
ṽ ∈ U

∣∣ C · τi(w1, . . . ,wi−1, ṽ) = r̃iṽ + S̃i
}

. Let E denote
the event that (ri,Si) 6= (⊥,⊥), i.e. the game is not aborted in stage i or earlier. We have to bound
the following probabilities:

assertion 2: P

[
wi ∈ Vi ∧

(
vi = wi ∨

E ′:=︷ ︸︸ ︷
∀ (r, S) ∈M∃ ṽ ∈ Vi : τi(w1, . . . ,wi−1, ṽ) 6= rṽ + S

)]
assertion 6: P

[
E ∧

E ′′:=︷ ︸︸ ︷
#
{
ṽ ∈ U

∣∣ τi(w1, . . . ,wi−1, ṽ) = riṽ + Si
}
< q3k/4

]
Note that by the definition of ι (see Section 2.1) and Lemma 13 we have:

P

[
∃W,W ′ ∈Wi : rank

(
W −W ′

)
≥ 1 > rank

(
C(W −W ′)

)]
< q1−3k|U|2 + ι(C,Wi)

P

[
∃W,W ′ ∈Wi : rank

(
W −W ′

)
≥ 2 > rank

(
C(W −W ′)

)]
< q2−3k|U|2 + ι(C,Wi)

In other words, with probability higher than 1−(1+q)q1−k−2 · ι(C,Wi) the following implications
hold true for all W,W ′ ∈Wi:

rank(W −W ′) > 0 ⇒ rank(CW −CW ′) > 0

rank(W −W ′) > 1 ⇒ rank(CW −CW ′) > 1

Hence by Lemma 14 it holds:

P
[
|Vi| ≤ q ∨ ∃ (r, S) ∈M∀ ṽ ∈ Vi : τi(w1, . . . ,wi−1, ṽ) = rṽ + S︸ ︷︷ ︸

=¬E ′

]
> 1−(1+q)q1−k−2 ·ι(C,Wi)

Moreover, for all λ ∈ N we can estimate:

P
[
wi ∈ Vi ∧ |Vi| ≤ λ

]
≤ λq1−k (1)

Thus, we can conclude:

P[wi ∈ Vi ∧ E ′] < (1 + 2q)q1−k + 2 · ι(C,Wi) (2)

Furthermore, since vi is uniformly random over Vi, we have:

P[wi ∈ Vi ∧ vi = wi] =

qk∑
λ=1

P
[
wi ∈ Vi ∧ |Vi| = λ

]
· 1
λ ≤ q1−k

Hence, for assertion 2 we already have the following estimation:

P
[
wi ∈ Vi ∧

(
vi = wi ∨ E ′)

]
< 2(1 + q)q1−k + 2 · ι(C,Wi)

By Corollary 20 we have that ι(C,Wi) ≤ ι
(
C, (w1, . . . ,wi−1)

)
<
√

exp
(
(i− 1)q2−k)− 1, what

already concludes our proof of assertion 2:

P
[
wi ∈ Vi ∧

(
vi = wi ∨ E ′)

]
< 2

(
(1 + q)q1−k +

√
exp
(
(i− 1)q2−k)− 1

)
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Now, note that by construction the following implications always hold true:

E ⇒ wi ∈ Vi ∧ vi ∈ Vi ∧ vi 6= wi

E ⇒ τi(w1, . . . ,wi) = riwi + Si

E ⇒ τi(w1, . . . ,wi−1,vi) = rivi + Si

Thus, also the following implication does always hold true:

E ∧ ¬E ′ ⇒ ∀ ṽ ∈ Vi : τi(w1, . . . ,wi−1, ṽ) = riṽ + Si

This yields:
E ∧ ¬E ′ ∧ E ′′ ⇒ |Vi| < q3k/4

Putting things together, we can conclude our proof for assertion 6. The above implications yield:

P[E ∧E ′′] ≤ P[E ∧¬E ′ ∧E ′′] +P[E ∧E ′] ≤ P
[
wi ∈ Vi ∧ |Vi| < q3k/4

]
+P

[
wi ∈ Vi ∧ E ′

]
By (1,2) and Corollary 20 it follows:

P[E ∧ E ′′] ≤ q1−k/4 + (1 + 2q)q1−k + 2
√

exp
(
(i− 1)q2−k)− 1

Game Γ3(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q \{0}

and C := F3k×4k
q and M := F

4k×(1+k)
q . The player K is computationally unbounded.

1. For each i ∈ {l, . . . , n} the player K specifies some mapping τi : U l →M∪ {⊥}.

2. The player K learns l random vectors h1, . . . , hl
r← H and a random matrix C

r← C.

3. For i = 1, . . . , l − 1:

(a) The player K chooses some xi ∈ Fq.

(b) The player K lerns zi
r← {z̃ ∈ U | z̃hi = xi}.

4. A random bit d
r← {0, 1} is chosen secretly. If d = 0, let w

r← {z̃ ∈ U | z̃hi = xi}, else let w
r← U .

5. For i = l, . . . , n:

(a) The player K chooses some M̃i ∈ F3k×k
q .

(b) Let Mi := τi(z1, . . . , zl−1, w). If Mi 6= ⊥ and CMi = M̃i, the player K learns Mi; else K
receives a special message (∗, i) and the game is aborted in the sense that step 6 follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 16: The third version of our indistinguishability game. The main difference from Γ2(Fkq , n, l)
is a more powerful player K that effectively may choose ul+1, . . . , un right at the start of the game
and automatically learns the values z1, . . . , zl−1.
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Lemma 9. The maximal winning probability in the game Γ2(Fkq , n, l) is upper bounded by the

maximal winning probability in Γ3(Fkq , n, l).

Proof. The proof is straightforward, as the game Γ3(Fkq , n, l) is actually the same as Γ2(Fkq , n, l)

with a more powerful player K. In particular, we have the following changes from Γ2(Fkq , n, l) to

Γ3(Fkq , n, l):

• We identify tuples (r̃, S̃) ∈ F4k
q ×F4k×k

q with matrices M̃ ∈ F4k×(1+k)
q .

• The player K learns z1, . . . , zl−1, whereby for i ∈ {1, . . . , l− 1} the step 4c of Γ2(Fkq , n, l) just
becomes needless. Hence, the functions τ1, . . . , τl−1 also are not needed any more.

• Instead of picking ul+1, . . . , un uniformly at random, the player K may choose them right at
the start of the game. Thereby, the functions τl, . . . , τn effectively have input domain U l.

• The functions τi now directly map toM∪{⊥}, whereas in step 4c of Γ2(Fkq , n, l) an element
of M∪ {⊥} was deterministically computed from τi and its inputs w1, . . . , wi.

Game Γ4(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q and H := Fk
q \{0}

and C := F3k×4k
q and M := F

4k×(1+k)
q . The player K is computationally unbounded.

1. For each i ∈ {l, . . . , n} the player K specifies some mapping τi : U l →M∪ {⊥}.

2. The player K learns l random vectors h1, . . . , hl
r← H.

3. For i = 1, . . . , l − 1:

(a) The player K chooses some xi ∈ Fq.

(b) The player K lerns zi
r← {z̃ ∈ U | z̃hi = xi}.

4. A random bit d
r← {0, 1} is chosen secretly. If d = 0, let w

r← {z̃ ∈ U | z̃hi = xi}, else let w
r← U .

5. For i = l, . . . , n:

(a) The player K chooses some Mi ∈M.

(b) If Mi = τi(z1, . . . , zl−1, w), the player K is notified about that by the message (>, i); else K
receives a special message (∗, i) and the game is aborted in the sense that step 6 follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 17: The fourth version of our indistinguishability game. The only difference from Γ3(Fkq , n, l)
is that the player K in step 5 now has to precisely forecast τi(z1, . . . , zl−1, w) rather than only
C · τi(z1, . . . , zl−1, w).

Lemma 10. Let 1
2 + δ be the maximal winning probability in the game Γ4(Fkq , n, l). Then the

maximal winning probability in Γ3(Fkq , n, l) is upper bounded by:

1
2 + δ + (n− l + 1)

(
q1−k +

√
exp
(
(l − 1)q2−k

)
− 1

)
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Proof. Let the random variables C ∈ C and z1, . . . , zl−1,w ∈ U represent the same-named random
values in the game Γ3(Fkq , n, l). W.l.o.g. we assume a deterministic player K, i.e. the mappings
τl, . . . , τn are fixed. Further, for i = l, . . . , n we set Wi := τi(z1, . . . , zl−1,U). Note that the
only difference between the games Γ3(Fkq , n, l) and Γ4(Fkq , n, l) is that in Γ4(Fkq , n, l) the player K
would have to precisely forecast the values τi(z1, . . . , zl−1,w), whereas in Γ3(Fkq , n, l) he has only
to forecast C · τi(z1, . . . , zl−1,w). However, both forecasts are equivalent, whenever C operates
injectively on τi(z1, . . . , zl−1,U)—note that K always knows C and τi(z1, . . . , zl−1,U). In other
words, for our proof we just have to upper bound the probability that CW = CW ′ for any distinct
W,W ′ ∈ Wi. By Lemma 13 and the definition of ι (see Section 2.1) we can estimate for all
i ∈ {l, . . . , n}:

P[∃W,W ′ ∈Wi : W 6= W ′ ∧ CW = CW ′] < q1−3k|U|2 + ι(C,Wi) = q1−k + ι(C,Wi)

Moreover, by Corollary 20 we have that ι(C,Wi) ≤ ι
(
C, (z1, . . . , zl−1)

)
<
√

exp
(
(l − 1)q2−k

)
− 1

for all i ∈ {l, . . . , n}. Our lemma now follows by the Union Bound.

Proposition 11. Let 1
2 + δ be the maximal winning probability in the game Γ4(Fkq , n, l). Then it

holds:

δ < (n− l + 1)

(
3q(4−k)/3 + q ·

√
exp
(
(l − 1)q2−k

)
− 1

)
Proof. Let any player K for the game Γ4(Fkq , n, l) be given, that w.l.o.g. plays deterministically,
i.e. the mappings τl, . . . , τn are fixed. Let the random variables h1, . . . ,hl ∈ H, z1, . . . , zl−1,w ∈ U
and d, d̃ ∈ {0, 1} represent the same-named random values in the game Γ4(Fkq , n, l) with player

K, i.e. in particular h1, . . . ,hl
r← H and d

r← {0, 1}. Since w.l.o.g. K plays deterministically, for
i = 1, . . . , l we can write his choice of xi as a function value xi(z1, . . . , zi−1,h1, . . . ,hl), whereby we
get:

zi
r←
{
z̃ ∈ U

∣∣ z̃hi = xi(z1, . . . , zi−1,h1, . . . ,hl)
}

Note that thereby the random variables z1, . . . , zl−1 are well-defined. Further, for i = l, . . . , n let the
mapping σi : U l−1×Hl →M represent how the playerK computesMi from (z1, . . . , zl−1,h1, . . . ,hl).
Finally, let the random variable m ∈ {l − 1, . . . , n} represent the index of the latest stage, where
the game is not aborted, i.e. σi(z1, . . . , zl−1,h1, . . . ,hl) = τi(z1, . . . , zl−1,w) for all i ∈ {l, . . . ,m}
and σm+1(z1, . . . , zl−1,h1, . . . ,hl) 6= τm+1(z1, . . . , zl−1,w). Note that the view of K can be com-
pletely reconstructed from (z1, . . . , zl−1,h1, . . . ,hl,m) and K’s program code. To make formulas a
bit shorter, we set R := (z1, . . . , zl−1,h1, . . . ,hl−1). Let R denote the support of R. Thus we get:

P[d̃ = d]

= P[d̃ = 0 | d = 0] ·P[d = 0] +P[d̃ = 1 | d = 1] ·P[d = 1]

= 1
2

(
P[d̃ = 0 | d = 0] +P[d̃ = 1 | d = 1]

)
= 1

2

(
P[d̃ = 0 | d = 0] + 1−P[d̃ = 0 | d = 1]

)
≤ 1

2 + 1
2

∣∣∣P[d̃ = 0 | d = 0]−P[d̃ = 0 | d = 1]
∣∣∣

≤ 1
2 + 1

2

∑
R∈R
h∈H

n∑
m=l−1

∣∣P[(R,hl,m) = (R, h,m)
∣∣ d = 0

]
−P

[
(R,hl,m) = (R, h,m)

∣∣ d = 1
]∣∣ (3)
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The last inequality is by the fact that the value of d̃ can be deterministically computed from
(z1, . . . , zl−1,h1, . . . ,hl,m), as mentioned above. Now, for m = l−1, . . . , n+ 1 and (R, h) ∈ R×H
we define the following sets:

Ām(R, h) :=
{
ṽ ∈ U

∣∣ (R,hl,w) = (R, h, ṽ) ⇒ m = m
}

Am(R, h) :=
{
ṽ ∈ U

∣∣ (R,hl,w) = (R, h, ṽ) ⇒ m ≥ m
}

I.e.,Am(R,hl) is exactly the set of vectors ṽ ∈ U , such that τl(z1, . . . , zl−1, ṽ), . . . , τm(z1, . . . , zl−1, ṽ)
match K’s forecasts σl(z1, . . . , zl−1,h1, . . . ,hl), . . . , σm(z1, . . . , zl−1,h1, . . . ,hl). Finally, for α ∈ Fq
and h ∈ H let Zα(h) :=

{
ṽ ∈ V

∣∣ ṽh = α
}

, i.e. we have that zi
r← Zxi(z1,...,zi−1,h1,...,hl)(hi). Note

that w
r← Zxl(R,hl) if d = 0, and that w

r← U if d = 1. Hence, given any R ∈ R and h ∈ H, we
can compute:

n∑
m=l−1

∣∣∣P[m = m
∣∣ (d,R,hl) = (0, R, h)

]
− P

[
m = m

∣∣ (d,R,hl) = (1, R, h)
]∣∣∣

=

n∑
m=l−1

∣∣∣P[w ∈ Ām(R, h)
∣∣ (d,R,hl) = (0, R, h)

]
− P

[
w ∈ Ām(R, h)

∣∣ (d,R,hl) = (1, R, h)
]∣∣∣

=
n∑

m=l−1

∣∣∣∣∣
∣∣Zxl(R,h)(h) ∩ Ām(R, h)

∣∣∣∣Zxl(R,h)(h)
∣∣ −

∣∣Ām(R, h)
∣∣∣∣U|
∣∣∣∣∣

= q1−k
n∑

m=l−1

∣∣∣∣∣Zxl(R,h)(h) ∩ Ām(R, h)
∣∣− 1

q

∣∣Ām(R, h)
∣∣∣∣∣

Putting this together with (3), we can conclude:

P[d̃ = d] ≤ 1
2 + q1−k

2

n∑
m=l−1

E

∣∣∣∣∣Zxl(R,hl)(hl) ∩ Ām(R,hl)
∣∣− 1

q

∣∣Ām(R,hl)
∣∣∣∣∣

However, by construction we have that
∣∣V ∩ Ām(R, h)

∣∣ =
∣∣V ∩ Am(R, h)

∣∣ − ∣∣V ∩ Am+1(R, h)
∣∣ for

all V ⊆ U , since Ām(R, h) = Am(R, h) \ Am+1(R, h) and Am(R, h) ⊇ Am+1(R, h). Also note that
Al−1(R, h) = U and An+1(R, h) = ∅. Using this and the Triangle Inequality, we can derive:

P[d̃ = d] < 1
2 + q1−k

n∑
m=l

E

∣∣∣∣∣Zxl(R,hl)(hl) ∩Am(R,hl)
∣∣− 1

q

∣∣Am(R,hl)
∣∣∣∣∣ (4)

Now let t := (z1, . . . , zl−1). For m = l, . . . , n and H ∈ Hl we can rewrite Am(t, H) as follows:

Am(t, H) =
{
ṽ ∈ U

∣∣ ∀ j ∈ {l, . . . ,m} : τj(t, ṽ) = σj(t, H)
}

Thus, we always have for all H,H ′ ∈ Hl and m = l, . . . , n that Am(t, H) ∩ Am(t, H ′) = ∅ or
Am(t, H) = Am(t, H ′). By Corollary 17 for arbitrary γ ∈ R>0 follows:

P

[
∃α ∈ Fq, H ∈ Hl :

∣∣∣∣∣Zα(hl) ∩Am(t, H)
∣∣− 1

q

∣∣Am(t, H)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2
+ ι(hl, t)
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Thus, for m = l, . . . , n and arbitrary γ ∈ R>0 we especially have:

P

[∣∣∣∣∣Zxl(R,hl)(hl) ∩Am(R,hl)
∣∣− 1

q

∣∣Am(R,hl)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2
+ ι(hl, t)

Since E(x) =
∫∞

0 P[x > γ] dγ for every real-valued random variable x ∈ R≥0, this yields:

E

∣∣∣∣∣Zxl(R,hl)(hl) ∩Am(R,hl)
∣∣− 1

q

∣∣Am(R,hl)
∣∣∣∣∣ ≤ ∫ qk

0
min

{
1, q

k+1/2

γ3/2

}
+ ι(hl, t) dγ

< 3q(2k+1)/3 + qk · ι(hl, t)

Moreover, by Corollary 20 we have that ι(hl, t) <
√

exp
(
(l − 1)q2−k

)
− 1. Using (4), we conclude:

P[d̃ = d] < 1
2 + q1−k(n− l + 1)

(
3q(2k+1)/3 + qk ·

√
exp
(
(l − 1)q2−k

)
− 1

)
= 1

2 + (n− l + 1)

(
3q(4−k)/3 + q ·

√
exp
(
(l − 1)q2−k

)
− 1

)
Corollary 12. The statistical distance between the environment’s view in the hybrid game Game0

and its view in Gamen is negligible in the security parameter k log q, if only k ≥ 5.

Proof. For i = 1, . . . , 4 let δi denote the maximal advantage of the player K in the game Γi(F
k
q , n, l),

i.e. the respective winning probability is 1
2 + δi. By Lemma 7 we know that the statistical distance

between the environment’s view in the hybrid game Gamel−1 and its view in Gamel is upper bounded
by 2δ1. Furthermore, it holds:

δ1 ≤ δ2 + n
(

2q1−k/4 + 3(1 + 2q)q1−k
)

+ 4
∑n−1

i=0

√
exp(iq2−k)− 1 by Lemma 8, if qk ≥ 22

δ2 ≤ δ3 by Lemma 9

δ3 ≤ δ4 + (n− l + 1)

(
q1−k +

√
exp
(
(l − 1)q2−k

)
− 1

)
by Lemma 10

δ4 < (n− l + 1)

(
3q(4−k)/3 + q ·

√
exp
(
(l − 1)q2−k

)
− 1

)
by Proposition 11

Thus, exploiting that 1 ≤ l ≤ n we can upper bound the statistical distance between the environ-
ment’s views in Gamel−1 and Gamel by:

2n

(
(6q + 4)q1−k + 3q(4−k)/3 + 2q1−k/4 + (q + 5)

√
exp(nq2−k)− 1

)
(5)

Note that the last three summands within the brackets are negligible in k log q if only k ≥ 5, and the
first summand is negligible if only k ≥ 3. Since the statistical distance between the environment’s
views in Game0 and Gamen is at most by a factor n bigger than (5), this concludes our proof.
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4.3.3 Technical lemmata

In this section we develop the technical tools our security proof is based on. The following is a high
level overview of what we are going to show:

• Our first technical lemma (Lemma 13) yields an upper bound for the probability that in our
protocol Πsemi−int

OAFE the random matrix C cancels differences between token outputs in the sense
that rank

(
τi(z)− τi(z′)

)
> rank

(
C ·
(
τi(z)− τi(z′)

))
with τi denoting the token functionality

in stage i.

• Next (in Lemma 14), we exploit these rank preserving properties of C to show that the token
functionality τ is linear on all inputs that do not cause a protocol abortion.

• In Section 3.1 we argued that the randomly chosen hi partition token input sets into subsets
of roughly equal size. Using an appropriate version of the well-known Leftover Hash Lemma
(Lemma 15) as a technical tool, we establish an upper bound for the variance of the cardinality
of these parts (Lemma 16 and Corollary 17). The main technical difficulty herein is to take
into account that the token’s current behavior may depend on all previous inputs, which are
absolutely not independent of the environment’s view.

• By Lemma 18 we estimate the number of token inputs belonging to two or more different
linear functions that a simulator is likely to extract. We show that these inputs are only a
negligible fraction of all possible token inputs.

• Finally, we show that the token inputs z1, . . . zn are indistinguishable from pure randomness
(Lemma 19) and thus the correlation between the token’s view and David’s inputs x1, . . . , xn
is negligible (Corollary 20).

Lemma 13. Let Fq be some finite field of size q ≥ 2 and let l,m, n, r ∈ N>0 with r ≤ min(l,m, n).

Then for arbitrary W ⊆ Fm×nq and C
r← F

l×m
q it does hold:

P
[
∃W ∈ W : rank(W ) ≥ r > rank(CW )

]
< qr−l|W|

Proof. We first estimate the number of matrices in Fl×rq that have full rank r. Given i ∈ {1, . . . , r}
and any matrix C ∈ Fl×iq with rank(C) = i, there exist exactly ql − qi columns in Flq (only the
linear combinations of the columns of C are excluded) by which we can extend C to a matrix of
dimension l × (i+ 1) and rank i+ 1. By induction on i follows:

#
{
C ∈ Fl×rq

∣∣ rank(C) = r
}

=
r−1∏
i=0

ql − qi

Since the term
∏r−1
i=0 q

l − qi is a bit unhandy, we estimate it from below:

r−1∏
i=0

ql − qi = qlr
r−1∏
i=0

1− qi−l ≥ qlr

(
1−

r−1∑
i=0

qi−l

)
= qlr

(
1− qr − 1

ql(q − 1)

)
> qlr

(
1− qr−l

)
Now, let W ∈ Fm×nq be some arbitrary matrix with r̄ := rank(W ) ≥ r. Further let B̄ ∈ Fr̄×nq ,

such that B̄ only consists of linearly independent rows of W , i.e. especially B̄ has full rank r̄. Let
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B ∈ Fm×nq , such that the first r̄ rows of B are B̄ and the rest of B is all-zero. Note that we can
find an invertible matrix M ∈ Fm×mq , such that W = MB. Hence we can estimate:

#
{
C ∈ Fl×mq

∣∣ rank(CW ) < r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CW ) ≥ r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CMB) ≥ r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CB) ≥ r
}

= qlm −#
{
C ∈ Fl×r̄q

∣∣ rank(CB̄) ≥ r
}
· ql(m−r̄)

= qlm −#
{
C ∈ Fl×r̄q

∣∣ rank(C) ≥ r
}
· ql(m−r̄)

≤ qlm −#
{
C ∈ Fl×rq

∣∣ rank(C) = r
}
· ql(m−r)

< qlm − qlm
(

1− qr−l
)

= ql(m−1)+r

Thereby, for arbitrary W ∈ Fm×nq and C
r← F

l×m
q we can conclude:

P
[
rank(W ) ≥ r > rank(CW )

]
< qr−l

Lemma 14. Let Fq be some finite field of size q ≥ 2 and let l,m, n ∈ N>0. Let τ : F1×n
q → F

m×n
q be

some arbitrary mapping and let C ∈ Fl×mq , such that for all v, v′ ∈ F1×n
q the following implications

hold true:

rank
(
τ(v)− τ(v′)

)
> 0 ⇒ rank

(
C · τ(v)− C · τ(v′)

)
> 0

rank
(
τ(v)− τ(v′)

)
> 1 ⇒ rank

(
C · τ(v)− C · τ(v′)

)
> 1

Moreover, let r̃ ∈ Flq, S̃ ∈ Fl×nq and V :=
{
v ∈ F1×n

q

∣∣ C · τ(v) = r̃ · v + S̃
}

, such that |V | > q.
Then there exist some r ∈ Fmq , S ∈ Fm×nq , such that τ(v) = r · v + S for all v ∈ V .

Proof. If r̃ = 0 the proof is trivial, since in this case by our choice of C and V we have that τ(v) = S
for all v ∈ V and some constant S ∈ Fm×nq . So, w.l.o.g. let r̃ 6= 0.

First of all, we now observe for all v, v′ ∈ V that rank(τ(v)− τ(v′)) ≤ 1, since else by our choice
of C we had the contradiction that 1 < rank

(
C · τ(v)−C · τ(v′)

)
= rank

(
r̃ · (v− v′)

)
≤ 1. Thereby,

for each v, v′ ∈ V we find some r ∈ Fmq and v̄ ∈ F1×n
q , such that τ(v)− τ(v′) = r · v̄. Moreover, we

can always choose v̄ = v − v′, since r̃ · (v − v′) = Cr · v̄ and we assumed that r̃ 6= 0. Thus we have:

∀ v, v′ ∈ V ∃ r ∈ Fmq : τ(v)− τ(v′) = r · (v − v′)

We will show now that r in fact is independent of v, v′. More precisely, we will show that for
arbitrary v, v′, v′′ ∈ V with linearly independent v− v′, v′− v′′ there always exists an r ∈ Fmq , such
that τ(v)− τ(v′) = r · (v − v′) and τ(v′)− τ(v′′) = r · (v′ − v′′). It is sufficient to consider the case
of linearly independent v − v′, v′ − v′′, since |V | > q by assumption and hence the affine span of V
must have dimension 2 or higher; therefore for all v, v′, v′′ ∈ V with linearly dependent v−v′, v′−v′′
there exists some v̂ ∈ V , such that v− v′, v′− v̂ are linearly independent and also are v̂− v′, v′− v′′.
So, let any v, v′, v′′ ∈ V , r, r′ ∈ Fmq be given with linearly independent v − v′, v′ − v′′ and:

τ(v)− τ(v′) = r · (v − v′)
τ(v′)− τ(v′′) = r′ · (v′ − v′′)
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Thereby follows:

rank
(
r · (v − v′) + r′ · (v′ − v′′)

)
= rank

(
τ(v)− τ(v′′)

)
≤ 1

Since v − v′, v′ − v′′ are linearly independent, this yields that r, r′ must be linearly dependent.
Hence, on the one hand we find some r̂ ∈ Fmq and α, α′ ∈ Fq, such that r = αr̂ and r′ = α′r̂. On
the other hand, since v, v′ ∈ V , we also have:

r̃ · (v − v′) = C ·
(
τ(v)− τ(v′)

)
= Cr · (v − v′)

Since v − v′ 6= 0, this yields that Cr = r̃ and analogously it must hold that Cr′ = r̃. Thus we
have that αCr̂ = α′Cr̂ = r̃. Since we assumed that r̃ 6= 0, we can conclude that α = α′ and hence
r = r′.

So, once we have shown that r is unique, finally we can pick some arbitrary ṽ ∈ V and set
S := τ(ṽ)− r · ṽ, whereby for every ṽ′ ∈M it follows:

τ(ṽ′) =
(
τ(ṽ′)− τ(ṽ)

)
+ τ(ṽ) =

(
r · (ṽ′ − ṽ)

)
+
(
r · ṽ + S

)
= r · ṽ′ + S

Lemma 15 (Leftover Hash Lemma [BBR88, ILL89]). Let G be a 2-universal class of functions
X → Y and let g

r← G, i.e. for any distinct x, x′ ∈ X it holds that P[g(x) = g(x′)] ≤ 1
|Y| . Further

let x ∈ X be some random variable with collision entropy H2(x). Then, if x and g are independent,
for the statistical distance between

(
g(x),g

)
and uniform randomness (u,g), i.e. u

r← Y, it holds:

∆
(
(g(x),g), (u,g)

)
≤ 1

2

√
2log2 |Y|−H2(x)

Proof. We adapt the proof from [AB09]. Let (g′,x′) be identically distributed as its unprimed
counterpart (g,x). Thereby, when we treat the distribution of

(
g(x),g

)
as a probability vector

~p ∈ RY×G , we get:

‖~p‖22 = P
[
(g(x),g) = (g′(x′),g′)

]
= P[g = g′] ·P

[
g(x) = g′(x′)

∣∣ g = g′
]

= P[g = g′] ·P
[
g(x) = g(x′)

]
= P[g = g′] ·

(
P[x = x′] +P[x 6= x′] ·P

[
g(x) = g(x′)

∣∣ x 6= x′
])

≤ P[g = g′] ·
(
P[x = x′] +P

[
g(x) = g(x′)

∣∣ x 6= x′
])

= |G|−1 ·
(

2−H2(x) +P
[
g(x) = g(x′)

∣∣ x 6= x′
])

≤ |G|−1 ·
(

2−H2(x) + |Y|−1
)

Now, let ~u ∈ RY×G denote the probability vector corresponding to the uniform distribution over
Y×G. Note that ~p− ~u is orthogonal to ~u:

〈~p− ~u | ~u〉 = 〈~p | ~u〉 − 〈~u | ~u〉 = ‖~p‖1
|Y×G| −

‖~u‖1
|Y×G| = 1

|Y×G| −
1

|Y×G| = 0

By the Pythagorean Theorem follows:

‖~p− ~u‖22 = ‖~p‖22 − ‖~u‖
2
2 ≤ |G|−1 ·

(
2−H2(x) + |Y|−1

)
− |Y × G|−1 = |G|−1 · 2−H2(x)

Finally, since ‖~v‖1 ≤
√
|Y×G| · ‖~v‖2 for every ~v ∈ RY×G , we can conclude:

∆
(
(g(x),g), (u,g)

)
= 1

2‖~p− ~u‖1 ≤
1
2

√
|Y×G| · ‖~p− ~u‖2 ≤

1
2

√
2log2 |Y|−H2(x)

39



Lemma 16. Let Fq be some finite field of size q ≥ 2 and let k ∈ N>0. For each α ∈ Fq, h ∈ Fkq let

Zα(h) :=
{
z ∈ F1×k

q

∣∣ z ·h = α
}

. Further let A ⊆ F1×k
q and H := Fkq \{0}. Finally, let x : H → Fq

be some arbitrary function and let h
r← H. Then it holds:

E

∣∣∣∣∣A ∩ Zx(h)(h)
∣∣− 1

q

∣∣A∣∣∣∣∣ ≤ √
q · |A|

Proof. Let a
r← A and u

r← Fq. On the one hand, since for all distinct a, a′ ∈ A it holds that

P[ah = a′h] = P[(a − a′)h = 0] = qk−1−1
qk

< 1
|Fq | , we can estimate the statistical distance δ :=

∆
(
(ah,h), (u,h)

)
by the Leftover Hash Lemma (Lemma 15) as follows:

δ ≤ 1
2

√
2log2 |Fq |−H2(a) = 1

2

√
q
|A|

On the other hand, we can estimate:

δ = 1
2

∑
α∈Fq , h∈H

∣∣P[ah = α ∧ h = h]−P[u = α ∧ h = h]
∣∣

= 1
2

∑
α∈Fq , h∈H

P[h = h] ·
∣∣P[ah = α]−P[u = α]

∣∣
= 1

2

∑
α∈Fq , h∈H

P[h = h] ·
∣∣∣ |A∩Zα(h)|

|A| − 1
q

∣∣∣
≥ 1

2

∑
h∈H

P[h = h] ·
∣∣∣ |A∩Zx(h)(h)|

|A| − 1
q

∣∣∣
= 1

2 E

∣∣∣ |A∩Zx(h)(h)|
|A| − 1

q

∣∣∣
By the linearity of expected values follows:

E

∣∣∣∣∣A ∩ Zx(h)(h)
∣∣− 1

q

∣∣A∣∣∣∣∣ ≤ 2δ · |A| ≤
√
q · |A|

Corollary 17. Let Fq be some finite field of size q ≥ 2 and let k ∈ N>0. Let H := F
k
q \ {0} and

let Q,R be some arbitrary finite sets. Moreover, let some mapping A : Q×R → P(F1×k
q ) be given,

such that for all t ∈ Q and ν, ν ′ ∈ R either A(t, ν) ∩ A(t, ν ′) = ∅ or A(t, ν) = A(t, ν ′). For each
(α, h) ∈ Fq ×H let Zα(h) :=

{
z ∈ F1×k

q

∣∣ zh = α
}

. Finally, let h
r← H. Then for every random

variable t ∈ Q and arbitrary γ ∈ R>0 it holds:

P

[
∃α ∈ Fq, ν ∈ R :

∣∣∣∣∣A(t, ν) ∩ Zα(h)
∣∣− 1

q

∣∣A(t, ν)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2
+ ι(h, t)

Proof. It obviously suffices to give a proof for the case that t and h are independent, i.e. ι(h, t) = 0.
Moreover, w.l.o.g. we have that P[t = t] = 1 for some worst case constant t ∈ Q. However, once
we have fixed t, we can consider α and ν function values of h, which we denote by α(h) and νh
respectively. For each h ∈ H we define the equivalence class [h] :=

{
h′ ∈ H

∣∣ A(t, νh′) = A(t, νh)
}

.
Further, let H̄ ⊆ H denote a representative system for these equivalence classes, i.e.

∣∣H̄ ∩ [h]
∣∣ = 1

for all h ∈ H. Let some arbitrary γ ∈ R>0 be given. By construction we have:

P

[∣∣∣∣∣A(t, νh) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(t, νh)
∣∣∣∣∣ > γ

]
≤
∑
h∈H̄

P

[∣∣∣∣∣A(t, νh) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(t, νh)
∣∣∣∣∣ > γ

]
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Let Ĥ :=
{
h ∈ H̄

∣∣ γ < |A(t, νh)|
}

. Since always
∣∣∣∣∣X ∩ Zα(h)(h)

∣∣− 1
q

∣∣X∣∣∣∣∣ < ∣∣X∣∣ for all X ⊆ F1×k
q ,

it follows:∑
h∈H̄

P

[∣∣∣∣∣A(t, νh) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(t, νh)
∣∣∣∣∣ > γ

]
=
∑
h∈Ĥ

P

[∣∣∣∣∣A(t, νh) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(t, νh)
∣∣∣∣∣ > γ

]
However, by Lemma 16 we can estimate for all ν ∈ Q:

P

[∣∣∣∣∣A(t, ν) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(t, ν)
∣∣∣∣∣ ≥ γ] ≤ 1

γ

√
q ·
∣∣A(t, ν)

∣∣
Thus, we can conclude:

P

[∣∣∣∣∣A(t, νh) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(t, νh)
∣∣∣∣∣ > γ

]
≤ 1

γ

∑
h∈Ĥ

√
q ·
∣∣A(t, νh)

∣∣
By the standard estimation between the L1-norm and L2-norm of R-vectors we have:∑

h∈Ĥ

√∣∣A(t, νh)
∣∣ ≤ √

|Ĥ| ·
∑

h∈Ĥ

∣∣A(t, νh)
∣∣

Since F1×k
q ⊇

⋃̇
h∈ĤA(t, νh), we can further estimate:∑

h∈Ĥ

∣∣A(t, νh)
∣∣ ≤ ∣∣F1×k

q

∣∣ = qk

Note that by construction |Ĥ| < qk

γ . Putting things together, we have shown:

P

[∣∣∣∣∣A(t, νh) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(t, νh)
∣∣∣∣∣ > γ

]
<

qk+1/2

γ3/2

Lemma 18. Let Fq be some finite field of size q ≥ 2 and let l, k ∈ N>0, such that qk ≤ q9k/8−q3k/4.
Let τ : F1×k

q → F
l×k
q ∪ {⊥} be an arbitrary mapping and let V ′ denote the set of all v ∈ F1×k

q for

that exist more than one tuple (r, S) ∈ Flq ×Fl×kq with the following properties:

τ(v) = rv + S and #
{
ṽ ∈ F1×k

q

∣∣ τ(ṽ) = rṽ + S
}
≥ q3k/4

Then we have that |V ′| < q3k/4.

Proof. We call a mapping γ : F1×k
q → F

l×k
q a straight line, if there exist r ∈ Flq and S ∈ Fl×kq , such

that γ(v) = rv+S for all v ∈ F1×k
q . Given two straight lines γ, γ′, we call v ∈ F1×k

q an intersection
of γ and γ′, if γ(v) = γ′(v). Given a straight line γ, we say that γ intersects with τ for m times,
if τ(v) = γ(v) for exactly m different v ∈ F1×k

q . Note that two straight lines are identical, iff they
have more than one common intersection.

Now, let Γ denote the set of all straight lines that intersect with τ for at least q3k/4 times. Thus,
V ′ can be considered a subset of all intersections of distinct straight lines γ, γ′ ∈ Γ. However, as
two distinct straight lines may have no more than one intersection, m straight lines always will
have less than m2 intersections in total. Thus, if |V ′| ≥ q3k/4, there would be more than q3k/8

straight lines in Γ, i.e. we could find some Γ′ ⊆ Γ, such that |Γ′| = dq3k/8e. However, this will lead
to a contradiction, as one can see as follws. Each of the straight lines in Γ′ has less than q3k/8

intersections with all other straight lines in Γ′, what leaves more than q3k/4 − q3k/8 intersections
with τ that are not shared with other straight lines in Γ′. Hence, overall τ must have more than
dq3k/8e · (q3k/4 − q3k/8) of such non-shared intersections with straight lines in Γ′, what directly
contradicts the assumption that qk ≤ q9k/8 − q3k/4.
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Lemma 19. Let Fq be some arbitrary field of size q ≥ 2 and let k, n ∈ N>0. Let U := F
1×k
q and

H := F
k
q \ {0}. Further, for i = 1, . . . , n let any mapping xi : Hn × U i−1 → Fq be given. Finally,

for i = 1, . . . , n we define the following random variables:

hi
r← H zi

r←
{
z ∈ U

∣∣ zhi = xi(h1, . . . ,hn, z1, . . . , zi−1)
}

ui
r← U

Then it holds that ∆
(
(z1, . . . , zn), (u1, . . . ,un)

)
< 1

2

√
exp
(
nq2−k

)
− 1.

Proof. We show this by very similar techniques as Lemma 15. Let ~z ∈ RUn denote the probability
vector of (z1, . . . , zn) and let ~u ∈ RUn denote the probability vector of (u1, . . . ,un). Note that ~z−~u
is orthogonal to ~u:

〈~z − ~u | ~u〉 = 〈~z | ~u〉 − 〈~u | ~u〉 = ‖~z‖1
|Un| −

‖~u‖1
|Un| = 1

|Un| −
1
|Un| = 0

Let the 2n-tuple of random variables (h′1, . . . ,h
′
n, z
′
1, . . . , z

′
n) be identically distributed as its un-

primed counterpart (h1, . . . ,hn, z1, . . . , zn). Now, some notes needed for our next estimation are
in place. On the one hand, when hi and h′i are linearly independent, exactly qk−2 different z ∈ U
will fulfill the following linear equation system:

zhi = xi(h1, . . . ,hn, z1, . . . , zi−1)

zh′i = xi(h
′
1, . . . ,h

′
n, z
′
1, . . . , z

′
i−1)

On the other hand, when hi and h′i are linearly dependent, this linear equation system may have
either qk−1 solutions or no solution at all—remember that always hi,h

′
i 6= 0, since 0 /∈ H. Thus,

using the auxiliary random variable m := #
{
i ∈ {1, . . . , n}

∣∣ hi and h′i are linearly independent
}

we can estimate:

P
[
(z1, . . . , zn) = (z′1, . . . , z

′
n)
∣∣ m = m

]
≤
(

qk−2

qk−1 · qk−1

)m
·
(

qk−1

qk−1 · qk−1

)n−m
In other words, it holds:

‖~z‖22 = P
[
(z1, . . . , zn) = (z′1, . . . , z

′
n)
]

=

n∑
m=0

P[m = m] ·P
[
(z1, . . . , zn) = (z′1, . . . , z

′
n)
∣∣ m = m

]
≤

n∑
m=0

P[m = m] ·
(

qk−2

qk−1 · qk−1

)m
·
(

qk−1

qk−1 · qk−1

)n−m
=

n∑
m=0

(
n

m

)
·
(
q − 1

|H|

)n−m
·
(
|H| − (q − 1)

|H|

)m
·
(

qk−2

qk−1 · qk−1

)m
·
(

qk−1

qk−1 · qk−1

)n−m
=
(

1 + (q−1)2

|H|

)n
· q−nk

By the Pythagorean Theorem follows:

‖~z − ~u‖22 = ‖~z‖22 − ‖~u‖22 ≤
(

1 + (q−1)2

|H|

)n
· q−nk − q−nk
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Since ‖~v‖1 ≤
√
m · ‖~v‖2 for all m ∈ N, ~v ∈ Rm, this yields:

∆
(
(z1, . . . , zn), (u1, . . . ,un)

)
= 1

2‖~z − ~u‖1 ≤
1
2

√
|Un| · ‖~z − ~u‖2 ≤ 1

2

√(
1 + (q−1)2

|H|

)n
− 1

To conclude our proof, we further estimate:(
1 + (q−1)2

|H|

)n
= exp

(
n · ln

(
1 + (q−1)2

|H|

))
< exp

(
n·(q−1)2

|H|

)
< exp

(
nq2−k

)
Corollary 20. Let Fq be some arbitrary field of size q ≥ 2 and let k, n ∈ N>0. Let U := F

1×k
q

and H := F
k
q \ {0}. Further, let R be some arbitrary random variable with finite support R. For

i = 1, . . . , n let any mapping xi : R×Hn ×U i−1 → Fq be given. Finally, for i = 1, . . . , n we define
the following random variables:

hi
r← H zi

r←
{
z ∈ U

∣∣ zhi = xi(R,h1, . . . ,hn, z1, . . . , zi−1)
}

Then it holds that ι
(
R, (z1, . . . , zn)

)
<
√

exp
(
nq2−k

)
− 1.

Proof. Let (z̃1, . . . , z̃n) be identically distributed as (z1, . . . , zn), but be independent of R, i.e.
ι
(
R, (z1, . . . , zn)

)
= ∆

(
(R, z1, . . . , zn), (R, z̃1, . . . , z̃n)

)
. Further, let u1, . . . ,un

r← U . First note

that ∆
(
(z1, . . . , zn), (u1, . . . ,un)

∣∣ R = R
)
< 1

2

√
exp
(
nq2−k

)
− 1 for every R ∈ R by Lemma 19.

Moreover, it holds (see Section 2.1 for the definition of the conditioned statistical distance):

∆
(
(R, z1, . . . , zn), (R,u1, . . . ,un)

)
=
∑
R∈R

P[R = R] ·∆
(
(z1, . . . , zn), (u1, . . . ,un)

∣∣ R = R
)

Hence we can estimate:

∆
(
(R, z1, . . . , zn), (R,u1, . . . ,un)

)
< 1

2

√
exp
(
nq2−k

)
− 1

Note that also ∆
(
(R, z̃1, . . . , z̃n), (R,u1, . . . ,un)

)
< 1

2

√
exp
(
nq2−k

)
− 1, since by construction

∆
(
(R, z̃1, . . . , z̃n), (R,u1, . . . ,un)

)
= ∆

(
(z1, . . . , zn), (u1, . . . ,un)

)
and by Lemma 19 we have that

∆
(
(z1, . . . , zn), (u1, . . . ,un)

)
< 1

2

√
exp
(
nq2−k

)
− 1. Thus, using the Triangle Inequality we can

finally conclude:

∆
(
(R, z1, . . . , zn), (R, z̃1, . . . , z̃n)

)
<
√

exp
(
nq2−k

)
− 1

5 No-go arguments & conclusion

In this section we conclude our work by a short summery of what we achieved so far, what further
improvement opportunities are left open and which drawbacks of our work seem unavoidable (or at
least hard to circumvent). We start with the negative aspects; they highlight that our results are
quite close to optimal. Though, we only give rather intuitive arguments than full formal proofs.
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5.1 Lower bounds for David’s communication overhead

Even our refined construction for l-bit string-OT (q.v. Section 3.2.3) needs that David inputs Θ(l)
bits into the token. One could wonder, if it is possible to implement multiple instances of OT from
reusable tamper-proof tokens, such that for each implemented instance of OT the communication
complexity for the receiver party David is constant. We argue that this seems very improbable.
The main argument is that a corrupted sender Goliath can correctly guess David’s token inputs for
the first OT instances with some constant probability. Thus, he can maliciously create the tokens
so that they immediately shut down, if David’s first token inputs do not match Goliath’s guess.
Thereby, when Goliath learns that the protocol was not aborted, he can reconstruct David’s first
OT input. Such a protocol cannot be UC-secure, since in the ideal model the abort probability
may not depend on Davids inputs. Moreover, the whole argumentation still seems valid, even if we
allow that David inputs polylogarithmically many bits per OT into the tokens.

5.2 Impossibility of polynomially bounded simulation runtime

The running time of our simulator SGoliath(A) for a corrupted sender is not a priori polynomially
bounded (cf. Section 4.3). Instead, we have only a polynomial bound for the expected running time
(cf. Lemma 4). The same problem occurred in [MS08] and they stated it as an open problem to
find a protocol with strict polynomial-time simulation. We argue that such a protocol seems very
hard to find, unless computational assumptions are used.

Since information-theoretically secure OT cannot be realized from stateless tokens, what was
shown by [GIMS10], it suffices to consider stateful solutions. However, simulatability is only possible
if a corrupted sender’s inputs can be extracted from his messages sent to the receiver party and the
program code of the token(s). The straightforward approach of extraction is to rewind the token,
but as the token may act honestly only on some fraction of inputs, the simulator will have to rewind
the token repeatedly. In particular, a corrupted token issuer can choose some arbitrary probability
p, such that the token acts honestly only with this probability p. Unless p is negligible, this will
necessitate a simulator that can rewind the token for about 1

p times. Since p may be effectively
chosen by the adversary (and thus by the environment) during runtime, strict polynomial-time
simulation with repeated token rewinding seems impossible. Moreover, we are not aware of any
information-theoretic approach (i.e. without computational assumptions) by that one could avoid
repeated token rewinding.

5.3 Impossibility of random access solutions with a constant number of tokens

Via our protocol Πsemi−int
OAFE one can implement sequentially queriable OTM tokens from a single piece

of untrusted tamper-proof hardware (cf. Section 3.1 and Section 2.4). We will discuss now, why
it seems impossible to implement multiple OTMs that the token receiver can access in arbitrary
order. The main argument is that a corrupted token issuer can try to let the token work only for
the first OTM query and then shut down. This is not simulatable in the ideal model, since the
simulator does not learn which OTM is queried first—the decision which OTM to query first even
might be made not until the interactive part of the protocol is over.

In particular, the attack idea is as follows. Given any hypothetical protocol for random access
OTMs from a single token, let b denote a lower bound of token queries that are needed for the first
OTM access and let B denote an upper bound. W.l.o.g. we have that b and B are polynomially
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bounded in the security parameter. The corrupted token issuer randomly picks j
r← {b, . . . , B}

and programs the token such that it shuts down after the j-th query. Now, with probability 1
B−b+1

the receiver party will be able to access only the very OTM that is queried first. Note that this
probability is independent of the access order to the implemented OTMs. Further note that by
this attack it cannot happen that the OTM accessed first is malformed and any other is not. For
the simulator this means an unsolvable dilemma. With non-negligible probability, all but one of
the sent OTMs must be malformed and the non-malformed OTM must always be that one that
will be accessed first.

5.4 Conclusion & improvement opportunities

In this paper, we showed that a single untrusted tamper-proof hardware token is sufficient for non-
interactive (or to be more precise, semi-interactive), composable, information-theoretically secure
computation. Our approach is the first by that one can implement several widely used primitives
(namely string-commitments, string-OT and sequentially queriable OTMs) at optimal rates. More-
over, our constructions have remarkably low computation complexity, way more efficient than any
other construction in the literature. As a drawback, our information-theoretically secure protocols
have only limited token reusability, but can be transformed straightforwardly into computationally
secure protocols with unlimited token reusability. The computational assumption needed is the
weakest standard assumption in cryptography, namely the existence of a pseudorandom number
generator. After all, we consider our work a substantial gain towards practical two-party compu-
tation, but still want to point out some issues that in our view need some further improvement.

Smaller constants for better practicability. Even though we achieve asymptotically optimal
communication complexity, there are some nasty constants left that might make our protocols
somewhat slow in practice. In particular, for every l-bit string-OT (or l-bit OTM respectively)
the token has to compute and output an F20×5

2l
-matrix, i.e. we have a blow-up factor of 100. This

enormous factor results from two technical artifacts. Firstly, we were only able to prove that our
protocol Πsemi−int

OAFE securely realizes Fkq -OAFE, if k ≥ 5 (cf. Section 4). In contrast, we only need
F

2
2l

-OAFE for our optimal l-bit string-OT protocol (cf. Section 3.2.3) and are not aware of any

potential attack against Πsemi−int
OAFE with k = 2. Secondly, for technical reasons we need that David

chooses a check matrix C of dimension 3k×4k in step ii of the setup phase (q.v. Figure 6) and later
computes a check value CWi from the i-th token output Wi, i.e. we especially need that Wi has

dimension 4k× k. However, we are not aware of any potential attack, if only C ∈ Fαk×(1+α)k
q with

constant α > 0. Now, if we choose α = 1
2 and k = 2, this means that David chooses a check matrix

C of dimension 1 × 3 and the token just needs to compute and output F3×2
2l

-matrices. In other
words, we believe that the blow-up factor can be reduced from 100 to 6 just by more sophisticated
proof techniques and a slight modification of the protocol.

Less interaction. Our protocol Πsemi−int
OAFE (q.v. Figure 6 in Section 3.1) is semi-interactive in the

sense that it consists of send and choice phases, such that communication between the sender party
Goliath and the receiver party David does only take place in the send phases, whereas Goliath is
not involved in the choice phases at all. Moreover, even if Goliath learns all of David’s send phase
messages in advance (but not before the token is transmitted!), the protocol stays secure. Thus,
as David’s send phase messages only consist of randomness, we can go with a total of only one
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single message from David to Goliath, which is sent during the initialization phase of the protocol
(cf. Section 3.2.1). However, this approach comes along with two drawbacks. Firstly, the single
message from David to Goliath will be quite large. Secondly, David needs to know an upper bound
for the number of upcoming send phases, what clearly rules out unlimited token reusability. As a
solution for both drawbacks we suggest that David just sends a random seed of a pseudorandom
number generator. We believe (but were not able to prove) that this does not breach security, as
long as Goliath and the token are computationally bounded.

More realistic hardware assumptions. For security of our protocol Πsemi−int
OAFE (q.v. Figure 6

in Section 3.1) against a corrupted sender party Goliath we need that the tamper-proof token in
David’s hands and the token issuer Goliath are perfectly isolated from each other. This assumption
is questionable, since one cannot prevent Goliath from placing a very powerful communication
device near David’s lab. At least, this will enable Goliath to send some messages to the token.
However, we hold the view that the token’s transmitting power can be reliably bounded by its
weight and size, so that it cannot send any messages back to Goliath. Still, even a unidirectional
channel from Goliath to the token suffices to break our protocols.

Therefore, we propose a two-token solution (namely that of Section 3.2.5), where one token
just plays Goliath’s role of the original protocol. As long as neither token can send any message,
the tokens are mutually isolated and everything seems well except for one subtle issue: Goliath
can change the behavior of the tokens during runtime und thus change his OAFE-inputs without
being noticed. However, this may be considered unavoidable in real world applications, since a very
similar attack could also be mounted if adversarially issued tokens contain clocks.

Closing the gap between primitives and general two-party computation. By our ap-
proach we implement OT (and OTMs respectively) via some quite general Fkq -OAFE functionality

(cf. Section 2.4). However, Fkq -OAFE is strictly stronger than OT in the sense that in general many

OT instances and a quite sophisticated protocol are needed to implement Fkq -OAFE, whereas l-

bit string-OT can be implemented rather straightforwardly from a single instance of Fl2-OAFE
or F2

2l
-OAFE (cf. also Section 3.2.3). This raises the question, whether one could base general

two-party computation directly on Fkq -OAFE rather than OT and thereby possibly reduce the
computational overhead. More generally, one could also try to implement other sorts of functions
directly on the tamper-proof hardware.
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