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Abstract

Cryptographic assumptions regarding tamper-proof hardware tokens have gained increasing
attention. Even if the tamper-proof hardware is issued by one of the parties, and hence not
necessarily trusted by the other, many tasks become possible: Tamper proof hardware is suf-
ficient for universally composable protocols, for information-theoretically secure protocols, and
even can be used to create software that can only be used once (one-time programs).

However, all known protocols employing tamper-proof hardware are either indirect, i.e. addi-
tional computational assumptions must be used to obtain general two party computations, or a
large number of devices must be used. Unfortunately, issuing multiple independent tamper-proof
devices requires much stronger isolation assumptions.

This work is the extended version of a recent result of the same authors, where for the first
time a protocol was presented that realizes universally composable two party computations (and
even one-time programs) with information-theoretic security using only a single tamper-proof
device issued by one of the mutually distrusting parties. Now, we present the first protocols for
multiple one-time memories (OTMs), and reusable and bidirectional commitment and oblivious
transfer (OT) primitives in this setting. All these constructions have only linear communication
complexity and are thus asymptotically optimal. Moreover, the computation complexity of our
protocols for k-bit OTMs/commitments/OT is dominated by O(1) finite field multiplications
with field size 2k. This is considerably more efficient than any other known construction based
on untrusted tamper-proof hardware alone.

The central part of our contribution is a construction for oblivious affine function evaluation
(OAFE), which can be seen as a generalization of the well known oblivious transfer primitive:
Parametrized by a finite field Fq and a dimension k, the OAFE primitive allows a designated
sender party to choose an arbitrary affine function f : Fq → F

k
q , such that hidden from the

sender party a designated receiver party may learn f(x) for exactly one function argument
x ∈ Fq of its choice. All our abovementioned results build on this primitive and it may also be
of particular interest for the construction of garbled arithmetic circuits.

Keywords: non-interactive secure computation, universal composability, tamper-proof hard-
ware, information-theoretic security, oblivious transfer
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1 Introduction

Recently, tamper-proof hardware tokens have received increasing attention. Tamper-proof hardware
tokens allow information-theoretically secure protocols that are universally composable [Can01],
they can be employed for protocols in the globalized UC framework [HMQU05, CDPW07], and
they even allow for one-time programs, i.e. circuits that can be evaluated only once [GKR08].
However, almost all known protocols employing tamper-proof hardware are either indirect, i.e.
the secure hardware is used to implement commitments or zero-knowledge proofs and additional
computational assumptions must be used to obtain general two party computations [Kat07, CGS08,
DNW08, MS08, DNW09], or a large number of devices must be used [GKR08, GIS+10]. However,
issuing multiple independent tamper-proof devices requires much stronger isolation assumptions.
Not only the communication between the devices and the issuer must be prevented, but also the
many devices must be mutually isolated. This is especially difficult as the devices are not necessarily
trusted—e.g., see [BKMN09] for the difficulty of isolating two devices in one location.

In this work we extend a recent result of ours, where we presented a protocol that realizes univer-
sally composable two-party computations (and even one-time programs) with information-theoretic
security using only a single (untrusted) tamper-proof device [DKMQ11]. The main challenge, when
using only a single piece of tamper-proof hardware, is to prevent a corrupted token from encoding
previous inputs in subsequent outputs.

1.1 Related work

The idea of secure computation based on separation assumptions was introduced in [BOGKW88]
to construct multi-prover interactive proof systems. In particular, [BOGKW88] proposes an un-
conditionally secure protocol for Rabin-OT [Rab81] between two provers and a verifier. Even
though this result is not explicitly stated in the context of tamper-proof hardware1 and is proven
secure in a standalone, synchronous model, we suppose that an amplified variant of the protocol of
[BOGKW88] can be proven UC-secure.

The idea of explicitly using tamper-proof hardware for cryptographic purposes was introduced
by [GO96], where it was shown that tamper-proof hardware can be used for the purpose of software-
protection. The interest in secure hardware and separation assumptions was renewed, when it was
realized that universally secure multi-party computation can be based on the setup assumption of
tamper-proof hardware tokens. The tamper-proof hardware must suffice strong separation condi-
tions, even though a more recent result showed that the assumptions about the physical separation
can be relaxed to some extent [DNW08, DNW09].

Generally, the work on secure multi-party computation with tamper-proof hardware assump-
tions can be divided in works dealing with either stateful or stateless hardware-tokens. In [Kat07]
a scenario is considered where all parties can create and issue stateful tamper-proof hardware
tokens. Using additional number-theoretic assumptions, [Kat07] implements a reusable commit-
ment functionality in this scenario. Subsequently, [MS08] improved upon [Kat07] by constructing
information-theoretically secure commitments in an asymmetric scenario, where only one out of two
parties is able to issue stateful tamper-proof hardware tokens. Another improvement upon [Kat07]
was by [CGS08] with stateless tokens, but still bidirectional token exchange and use of enhanced
trapdoor permutations (eTDP). [HMQU05] use (stateless) signature cards, issued by a trusted au-

1The authors of [BOGKW88] mention that the provers in their protocol might be implemented as bank-cards.
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thority, to achieve universal composability with respect to global setup assumptions [CDPW07].
In [FPS+11] it is shown how set intersection can be computed securely using a single untrusted
tamper-proof hardware token and additional computational assumptions.

[GKR08] show that using a minimalistic stateful tamper-proof hardware assumption called
one-time memory (OTM), a new cryptographic primitive called one-time program (OTP) can be
implemented, i.e. programs that can be evaluated exactly once. An OTM can be seen as a non-
interactive version of the well-known

(
2
1

)
-string-OT functionality: The OTM sender stores two l-bit

strings on the token and sends it to the receiver party, who can arbitrarily later choose to learn
one (and only one) out of the two stored values (q.v. Figure 1).

Functionality FOTM

Parametrized by a string length l. The variable state is initialized by state ← waiting.

Creation:

• Upon receiving input (s0, s1) from Goliath, verify that state = waiting and s0, s1 ∈ {0, 1}l; else
ignore that input. Next, update state ← sent, record (s0, s1) and send (sent) to the adversary.

• Upon receiving a message (Delivery) from the adversary, verify that state = sent; else ignore that
input. Next, update state ← delivered and send (ready) to David.

Query:

• Upon receiving input (x) from David, verify that state = delivered and x ∈ {0, 1}; else ignore that
input. Next, update state ← queried and output (sx) to David.

When a party is corrupted, the adversary is granted unrestricted access to the channel between FOTM and
the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 1: The ideal/hybrid functionality modeling a single one-time memory (OTM). Following
[MS08], we call the token issuer “Goliath” and the receiver party “David”; see also Section 2.3.1.

Recently, [Kol10] implemented string-OT with stateless tamper-proof tokens, but achieved only
covert security [AL07]. A unified treatment of tamper-proof hardware assumptions is proposed by
[GIS+10]. Important in the context of our work, they show that in a mutually mistrusting setting,
trusted OTPs can be implemented statistically secure from a polynomial number of OTMs. In
[GIMS10], statistically secure commitments and statistical zero-knowledge are implemented on top
of a single stateless tamper-proof token. Furthermore, if tokens can be encapsulated into other
tokens, general statistically secure composable multi-party computation is possible in this setting.
[GIMS10] also show that unconditionally secure OT cannot be realized from stateless tamper-
proof hardware alone. Finally, the latest result in this research field is by [CKS+11], that combine
techniques of [GIS+10] and a previous version of our work [DKMQ11], resulting in a computationally
secure, constant-round protocol for OT with unlimited token reusability. They only need stateless
tokens and show black-box simulatability. However, this comes at the cost of bidirectional token
exchange and the assumption that collision resistant hashfunctions (CRHF) exist.

Except for [BOGKW88], all of the above schemes based on untrusted tamper-proof hardware
either use additional complexity assumptions to achieve secure two-party computations [HMQU05,
Kat07, MS08, GKR08, DNW08, DNW09, Kol10, CKS+11] or a large number of hardware tokens
must be issued [GKR08, GIS+10].
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1.2 Our contribution

In this paper we show that general, information-theoretically secure, composable two-party com-
putations are possible in a setting where a single untrusted stateful tamper-proof hardware token
is issued by one party. Previous solutions required that either the creator of the tamper-proof
hardware is honest, that additional complexity assumptions are used, or that a large number of
independent tamper-proof hardware tokens is issued. Our approach uses only a single tamper-proof
token and apart from that solely relies on some linear algebra and combinatorics, what may be of in-
dependent interest. As a drawback our protocols allow only for limited token reusability. However,
they can be transformed straightforwardly into computationally secure solutions with unlimited
token reusability. Remarkably, for this transformation only a very weak complexity assumption is
needed, namely the existence of a pseudorandom number generator (PRNG), and only the token
receiver needs to be computationally bounded.

As a reasonable abstraction for the primitives that can be implemented in our setting, we in-
troduce a new primitive called sequential one-time OAFE (q.v. Section 2.4), where the acronym
“OAFE” stands for oblivious affine function evaluation. We show that OT can be realized straight-
forwardly using this primitive; thus our results for statistically secure, composable two-party com-
putations follow immediately by the completeness of OT [Kil88, IPS08]. At the same time, we im-
prove upon the results of [DKMQ11] in several ways. Firstly, assuming a computationally bounded
token receiver our construction allows for unlimited reuse of the tamper-proof hardware, whereas
in [DKMQ11] the number of token queries always was a priori bounded. Furthermore, we can
still straightforwardly adapt the results of [GIS+10] to implement trusted OTPs at the cost of one
tamper-proof hardware token per OTP (cf. Section 2.4). Last but not least, we achieve a better
complexity than in [DKMQ11] (cf. Section 3.2.1 and Section 3.2.3). In particular, by our approach
one can implement several widely-used building blocks for secure multi-party computation and
these constructions have some remarkable optimality features.

Sequentially queriable OTMs: We propose an information-theoretically secure construction for
an arbitrary polynomial number of OTM functionalities from a single tamper-proof token.
The number of OTMs must be chosen when the token is issued and cannot be increased
later, unless the token contains a PRNG and the receiver is computationally bounded (i.e.
we partly give up information-theoretic security). The implemented OTM instances are only
queriable in a predefined order, but this can definitely be considered an advantage, since it
trivially rules out the out-of-order attacks dealt with in [GIS+10]. Our construction is not
truly non-interactive; it needs some interaction during an initialization phase. However, after
the initialization phase no further interaction between the token receiver and the token issuer
is necessary. Therefore we say that our construction is “semi-interactive”. What is more, we
need only two rounds of interaction, not counting for the token transmission. This is optimal
for a single-token solution. Besides, our construction can be straightforwardly transformed
into a truly non-interactive solution with two mutually isolated tokens. Last but not least, we
achieve an asymptotically optimal communication complexity in the sense that the number of
transferred bits is linear in the number and string length of the implemented OTM instances.

Admittedly, for information-theoretically secure implementation of a large number of OTMs
we need that our token stores a large (though still linear) amount of data. Now, if these OTMs
are used to implement a one-time program, one may ask why we do not just implement the
one-time program directly on the token. There are at least three good reasons to implement
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an OTP via OTMs. Firstly, the token can be transferred a long time before the sender chooses
which OTP to send. Secondly, via OTMs one can implement trusted OTPs [GIS+10], i.e.
sender and receiver agree on a circuit to be evaluated and only the inputs for this circuit are
kept secret. The crucial security feature of a trusted OTP is that even a corrupted sender
cannot change the circuit. Thirdly, since our token only needs to store random values, we
can dramatically compress its size at the cost of only a very weak computational assumption,
namely the existence of a PRNG. Moreover, this computational assumption is only needed to
hold for the token receiver; all our computational protocol variants are still statistically secure
against a malicious token issuer and even the token may be computationally unbounded.

To sum things up, our construction has the following features:

• many OTMs (arbitrary polynomial) by a single token; upper bound fixed at initialization
• implemented OTM instances only queriable in predefined order
• optimal round complexity: two rounds using one token or one round using two tokens
• optimal communication complexity (linear in number and size of implemented OTMs)
• information-theoretic security (but large token; compression possible by PRNG)

Commitments in both directions: We also propose a constant-round construction for a bidi-
rectional and reusable string-commitment functionality from a single tamper-proof token.
We offer several protocol variants, so that one can choose between limited reusability and
information-theoretic security on the one side, and unlimited reusability at the cost of com-
putational assumptions on the other side. Anyway, for unlimited reusability we only need
a PRNG and a computationally bounded token receiver; the token issuer (and even the to-
ken) may still have arbitrary computing power. What is more, by our construction one can
implement an arbitrary polynomial number of commitments in parallel with O(1) rounds
of communication. Besides, our construction can be straightforwardly transformed into a
non-interactive solution with two mutually isolated tokens, so that the whole communica-
tion of each commit and unveil phase only consists of a single message sent by the commit-
ting/unveiling party. Last but not least, we achieve an asymptotically optimal communication
complexity in the sense that the number of transferred bits is linear in the number and string
length of the implemented commitments. To the best of our knowledge, except for [MS08]
all other constructions based on tamper-proof hardware have higher communication com-
plexity and either use stronger complexity assumptions or have ω(1) rounds. However, the
construction of [MS08] is only unidirectional (from the token issuer to the token receiver).

To sum things up, our construction has the following features:

• bidirectional and reusable string-commitment functionality from a single token
• unlimited reusability at the cost of a minimal complexity assumption (PRNG)
• multiple commitments with O(1) rounds by one token or non-interactively by two tokens
• optimal communication complexity (linear in number and size of commitments)

String-OT: Our OT protocol enjoys the same features as our commitment protocol. We omit an
explicit itemization of the features of our OT construction; it is just exactly the same as the
above feature list of our commitment construction. Instead, by Figure 2 we compare our OT
protocol with earlier results in the literature.

At this point, it is important to mention that optimal communication complexity for only
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stateless tokens stateful tokens (simulator needs to rewind)
[CGS08] [GIS+10] [CKS+11] [GIS+10] [DKMQ11] this work

tokens 2 (bidirect.) Θ(k) 2 (bidirect.) Θ(k) 1 1 1
rounds Θ(k) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
bits sent ? Ω(k2) Ω(k2) Θ(k2) Θ(k2) Θ(k) Θ(k)
assumptions eTDP CRHF CRHF none none none PRNG
reusability unbounded none unbounded none bounded bounded unbounded

Figure 2: UC-secure k-bit string-OT based on tamper-proof tokens; table partly borrowed from
[CKS+11]. The CRHF-based protocols can instead be based on one-way functions (equivalent to
PRNGs), but using Θ(k/ log k) rounds. For [CGS08] an explicit estimation of the overall commu-
nication complexity is just omitted, since they use the heavy machinery of general zero-knowledge
proofs, signatures, etc. However, note that the complexity of any computationally secure OT
protocol can be amortized by standard techniques (cf. Section 3.2.7).

computationally secure OT is no great achievement at all. The string length of any compu-
tationally secure OT protocol can be polynomially extended by standard techniques, what
accordingly improves its efficiency: The sender party just uses the OT for transmission of two
random PRNG seeds and announces the actual OT inputs one-time pad encrypted with the
respective pseudorandomness. In particular, by this simple trick and some rescaling of the
security parameter, one can transform any OT protocol with polynomial communication com-
plexity into a protocol with linear (and thus optimal) communication complexity. However,
we stress that nevertheless we present the first information-theoretically secure construction
for multiple OT with optimal communication complexity based on reusable tamper-proof
hardware. Moreover, note that an analogous approach for extending the string length of
commitments or OTMs would destroy composability. We discuss this in further detail in
Section 3.2.7.

All our constructions also have remarkably low computation complexity, what makes them very
practical. Per implemented k-bit OTM/Commitment/OT all parties and the tamper-proof token
have to perform no more than O(1) finite field operations (only additions and multiplications) with
field size 2k. Additionally, the protocol variants with unlimited token reusability require that the
token generates Θ(k) bits of pseudorandomness respectively, but there are no exponentiations or
other operations costlier than finite field multiplication.

1.3 Outline of this paper

The rest of this paper is organized as follows. In Section 2 we introduce some notations (Section 2.1),
give a short overview of the notion of security that we use (Section 2.2), describe how our tamper-
proof hardware assumption is defined in that framework (Section 2.3) and introduce our new
primitive (Section 2.4), which serves as the basic building block for all other constructions. In
Section 3.1 we show how one can implement our new primitive from the aforementioned tamper-
proof hardware assumption. In Section 3.2 we discuss refinements and some unobvious applications
of our construction. At the end of Section 3.2, in Section 3.2.7, we also briefly discuss why an only
computationally secure OT protocol with optimal communication complexity is not a noteworthy
result, whereas the opposite is true for commitments and OTMs. In Section 4 we give a formal
security proof. Finally, in Section 5 we argue for some impossibility results, give a conclusion of
our work and suggest directions for improvements and future research.
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2 Preliminaries

2.1 Notations

General stuff (finite fields, naturals and power sets): By Fq we denote the finite field of
size q. The set of all naturals including zero is denoted by N, without zero it is denoted by
N>0. The power set of any set S is denoted by P(S).

Outer products: Given any field F and k, l ∈ N>0, we identify vectors in Fk by (k×1)-matrices,
so that for all x ∈ Fk and y ∈ F1×l the matrix product xy ∈ Fk×l is well-defined.

Complementary matrices: Given any field F, some k, l ∈ N>0 with k < l and any two matrices
C ∈ F(l−k)×l, G ∈ Fk×l, we say that G is complementary to C, if the matrix M ∈ Fl×l gen-
erated by writing G on top of C has maximal rank in the sense that rank(M) = rank(C) + k.
Note that, given any C ∈ F(l−k)×l, G ∈ Fk×l, x ∈ Fl, y ∈ Fk with G complementary to C,
we can always find some x′ ∈ Fl, such that Cx′ = Cx and Gx′ = y.

Random variables and uniform distribution: Throughout all formal proofs we will mostly
denote random variables by bold face characters, e.g. x. However, for ease of presentation
and better readability, we will sometimes refrain from this general convention and just write
random variables like non-random variables, e.g. x. When x is uniformly random over some
finite set X, we denote that by x

r← X.

Probabilities, entropy and expected values: We denote the probability that a random vari-
able x takes some specific value x by P[x = x], and analogously for any other relation. The
Shannon entropy of x is denoted by H1(x) = −

∑
αP[x = α] · log2P[x = α], its collision

entropy is denoted by H2(x) = − log2

(∑
α

(
P[x = α]

)2)
and its expected value by E(x).

Statistical distance: We denote the statistical distance of two given random variables x,y by
∆(x,y), using the following standard notion of statistical distance:

∆(x,y) = 1
2

∑
α

∣∣P[x = α]−P[y = α]
∣∣

Correlation of random variables: We define the following measure for the correlation of ran-
dom variables. Given any two random variables x,y that may depend on each other, we set
ι(x,y) := ∆

(
(x,y), (x̃, ỹ)

)
with x̃ and ỹ denoting independent versions of x and y respec-

tively. Note that ι(x,y) = 0 if and only if x and y are statistically independent.

2.2 Framework & notion of security

We state and prove our results in the Universal-Composability (UC) framework of [Can01]. In this
framework, security is defined by comparison of an ideal model and a real model. The protocol of
interest is running in the latter, where an adversary A coordinates the behavior of all corrupted
parties. In the ideal model, which is secure by definition, an ideal functionality F implements the
desired protocol task and a simulator S tries to mimic the actions of A. An environment Z is
plugged either to the ideal or the real model and has to guess, which model it is actually plugged
to. A protocol Π is a universally composable (UC-secure) implementation of an ideal functionality
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F , if for every adversary A there exists a simulator S, such that for all environments Z the entire
view of Z in the real model (with Π and A) is statistically close to its view in the ideal model (with
F and S). In our case the adversarial entities A,S and the environment Z are computationally
unbounded and a hybrid functionality F stateful

wrap models our tamper-proof hardware assumption (q.v.
Section 2.3). Note that for convenience and better readability we use the notation of [Can01] a bit
sloppy. E.g., throughout this paper we omit explicit notation of party and session IDs.

2.3 Modeling tamper-proof hardware

2.3.1 The hybrid functionality F stateful
wrap

Our formulation of general stateful tamper-proof hardware resembles the meanwhile standard def-
initions of [Kat07, MS08]. Following [MS08], we call the token issuer “Goliath” and the receiver
party “David”. This naming is also motivated by the fact that all computational versions of our pro-
tocols only need David’s computing power to be polynomially bounded in the security parameter;
Goliath (and even the token) may be far more powerful.

To model tamper-proof hardware, we employ the F stateful
wrap wrapper functionality (q.v. Figure 3).

The sender party Goliath provides as input a Turing machine M to F stateful
wrap . The receiver party

David can now query F stateful
wrap on arbitrary input words w, whereupon F stateful

wrap runs M on input
w, sends the output that M produced to David and stores the new state of M. Every time David
sends a new query w′ to F stateful

wrap , it resumes simulating M with its most recent state, sends the
output to David and updates the stored state of M.

Functionality F stateful
wrap

The variable state is initialized by state ← wait.

Creation:

• Upon receiving a message (Create,M, b) from Goliath, where M is the program of a deterministic
interactive Turing machine and b ∈ N, verify that state = wait; else ignore that input. Next,
initialize a simulated version of M, store b, set state ← sent and send (created) to the adversary.

• Upon receiving a message (Delivery) from the adversary, verify that state = sent; else ignore that
input. Next, set state ← execute and send (ready) to David.

Execution:

• Upon receiving a message (Run, w) from David, where w is an input word, verify that state = execute;
else ignore that input. Next, write w on the input tape of the simulated machine M and carry on
running M for at most b steps, starting from its most recent state. When M halts (or b steps have
passed) without generating output, send a special symbol ⊥ to David; else send the output of M.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F stateful
wrap

and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 3: The wrapper functionality by which we model stateful tamper-proof hardware sent from
Goliath to David. Note that delivery of the token in the creation phase is scheduled by the adversary,
whereas afterwards all communication between David and the token is immediate.
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This captures the following properties one expects from tamper-proof hardware. On the one
hand, Goliath is unable to revoke M once he has sent it to David. On the other hand, David can
runM on inputs of his choice, but the program code and state ofM are out of reach for him, due
to the token’s tamper-proofness. Note that M does not need a trusted source of randomness, as
it can be provided with a sufficiently long hard-coded random tape. Thus, w.l.o.g. we can restrict
M to be deterministic.

For formal reasons we require that the sender party Goliath not only specifies the program
code of M, but also an explicit runtime bound b ∈ N. This just ensures that even a corrupted
Goliath cannot make F stateful

wrap run perpetually. As we will state and prove all our results without
any computational assumptions regarding the token, a corrupted Goliath may choose b arbitrarily
large. However, when Goliath is honest, we will only need that the number of computing steps
performed by the token is polynomial in the security parameter. We will henceforth implicitly
assume that an honest Goliath always adjusts the parameter b accordingly.

2.3.2 Real world meaning of our hardware assumption and proof techniques

In Section 4 we will show that our construction from Section 3.1 is universally composable. However,
the respective simulator for a corrupted sender party Goliath will need to rewind the token and
thus has to know the token code. At first glance, it might seem a rather strong assumption that
a corrupted token manufacturer always knows the internal program code of his tokens. How can
such a party be prevented from just passing on a token received during another protocol from some
uncorrupted token issuer?

We argue that tokens can be bound to the corresponding issuer IDs by not too unrealistic
assumptions. The conceptually simplest (but a bit overoptimistic) way are standardized and un-
forgeable token cases, branded with the respective issuer ID, and that cannot be removed without
destroying the token completely. However, we can go with a bit less rigorous assumptions. We
just need that undetectable token encapsulation is infeasible (e.g., since the token’s weight and size
would be altered) and that every honestly programmed token initially outputs its manufacturer’s
ID. Then, only tokens of corrupted manufacturers can be successfully passed on. Since w.l.o.g. all
corrupted parties collude, now every token issuer automatically knows the internal program code
of all his issued and/or passed on tokens. Infeasibility of token encapsulation is also needed by
[HMQU05, Kat07, MS08, GKR08].

We also argue that using a stateful token does not necessarily mean a categorical disadvantage
compared to protocols based on stateless tokens. In the literature one can find the opposite point
of view, usually motivated by resetting attacks. These attacks only affect stateful approaches,
whereas stateless approaches stay secure. By a resetting attack a corrupted token receiver tries to
rewind the token (e.g. by cutting off the power supply) and then run it with new input. Such an
attack, if successful, would break security of all our protocols. However, as a countermeasure the
tamper-proof token could delete its secrets or just switch to a special “dead state” when a resetting
attempt is detected. For the technical realization we suggest, e.g., that the state information is
stored as a code word of an error correcting code and the token does not work unless the stored state
information is an error-free, non-trivial code word. Anyway, we consider a thorough investigation
of this issue an interesting direction for future research.
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2.4 Sequential one-time OAFE and its relation to OTMs and OT

There is a two-party functionality that we call oblivious affine function evaluation (OAFE), in the
literature sometimes referred to as oblivious linear function evaluation (OLFE), which is closely
related to OT and of particular interest for our constructions. In Fkq -OAFE, with q and k publicly
known but not necessarily constant, the sender chooses an affine function parametrized by two
vectors a, b ∈ Fkq and the receiver chooses a preimage x ∈ Fq. The receiver gets as output the

F
k
q -vector y := ax + b and the sender’s output is empty. The receiver does not learn more about

the sender’s input (a, b) than he can infer from (x, y) and the sender does not learn anything about
the receiver’s input x. As one can see quite easily, F2-OAFE and OT can be reduced to each other
without any overhead (q.v. Figure 4). Note that the reductions in Figure 4 also work perfectly for
F
k
2-OAFE and k-bit string-OT respectively.

OT

OAFE from OT

s0b
s1a+ b

c x

sc ax+ b

OAFE

OT from OAFE

as0 ⊕ s1
bs0

x c

ax+ b sc

Figure 4: Reductions between bit-OT and F2-OAFE; protocols borrowed from [WW06].

We implement a variant of OAFE that we call “sequential one-time OAFE”, or “seq-ot-OAFE”
for short. By one-time OAFE we mean a primitive that works analogously to an OTM. The sender
creates a token parametrized by a, b ∈ Fkq and sends it to the receiver. Arbitrarily later the receiver
may once input some x ∈ Fq of his choice into the token, whereupon the token outputs y := ax+ b
and then terminates. Sequential one-time OAFE lets the sender send up to a polynomial number
of single one-time OAFE tokens, but the receiver may only query them in the same order as they
were sent. However, when the receiver has queried some of the tokens he already received, this does
not vitiate the sender’s ability to send some additional tokens, which in turn can be queried by the
receiver afterwards, and so on. For a formal definition of the ideal seq-ot-OAFE functionality see
Figure 5.

Note that the reduction protocols in Figure 4 still can be adapted canonically to transform k-bit
string-OTMs into Fk2-OAFE tokens and vice versa. Hence, using the seq-ot-OAFE functionality
(q.v. Figure 5), a polynomial number of OTMs can be implemented very efficiently, but the receiver
can query the single OTM tokens only in the same order as they were sent. However, the construc-
tion of [GIS+10] for trusted OTPs from OTMs still works, as there an honest receiver queries all
OTM tokens in a fixed order anyway. Interestingly, the technical challenges dealt with in [GIS+10]
arise from the fact that a malicious receiver might query the OTMs out of order. Moreover, the
restriction to sequential access can be exploited to securely notify the sender that the receiver
has already queried some OTM token. Therefor, every other OTM token is issued with purely
random input from the sender and the receiver just announces his corresponding input-output
tuple. A corrupted receiver that tries to adversarially delay his OTM queries is caught cheating
with overwhelming probability, as he has only a negligible chance to correctly guess the next check
announcement. Thus, we can implement a polynomial number of OT instances that are perfectly
secure against the OT sender and statistically secure against the OT receiver. Still, the receiver
can query the single OT instances only in the same order as they were sent, but in fact this is
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Functionality F seq−ot
OAFE

Parametrized by a finite vector space Fk
q and some runtime bound n that is polynomially bounded in the

security parameter λ := k log q. The counters jcreated, jsent, jqueried are all initialized to 0.

Send phases:

• Upon receiving input (a, b, i) from Goliath, verify that a, b ∈ Fk
q and i = jcreated + 1 ≤ n; else ignore

that input. Next, update jcreated ← i, record (a, b, i) and send (created, i) to the adversary.

• Upon receiving a message (Delivery, i) from the adversary, verify that i = jsent + 1 ≤ jcreated; else
ignore that message. Next, update jsent ← i and send (ready, i) to David.

Choice phases:

• Upon receiving input (x, i) from David, verify that x ∈ Fq and i = jqueried + 1 ≤ jsent; else ignore
that input. Next, update jqueried ← i and for the recorded tuple (a, b, i) compute y ← ax + b and
output (y, i) to David.

When a party is corrupted, the adversary is granted unrestricted access to the channel between F seq−ot
OAFE

and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 5: The ideal functionality for sequential one-time OAFE (seq-ot-OAFE). Note that send
and choice phases can be executed in mixed order with the only restriction that the i-th send phase
must precede the i-th choice phase. Further note that David’s notifications about Goliath’s inputs
in the send phases are scheduled by the adversary, whereas all messages in the choice phases are
delivered immediately.

already premised in most protocols that build on OT. Noting that OT and OAFE can be stored
and reversed [Bea96, WW06, Wul07], we conclude that in the seq-ot-OAFE hybrid model OT can
be implemented in both ways (from the token sender to the token receiver and vice versa).

Finally, a remark is in place. Even though seq-ot-OAFE can be used to implement several
OTPs, the sequential nature of seq-ot-OAFE demands that those OTPs can only be executed in a
predefined order. If one wishes to implement several OTPs that can be evaluated in random order,
as many seq-ot-OAFE functionalities have to be issued.

3 Semi-interactive seq-ot-OAFE from one tamper-proof token

3.1 The basic protocol

We want to implement seq-ot-OAFE (q.v. Section 2.4), using a single tamper-proof hardware token
that is issued by one of the mutually distrusting parties. The technical challenge in doing so is
twofold. Firstly, the receiver David must be able to verify that no token output does depend on
any input of previous choice phases. Secondly, each token output must be an affine function of
the corresponding input. However, note that the latter difficulty is only relevant if q > 2, as every
function f : F2 → F

k
2 is affine: f(x) =

(
f(0) + f(1)

)
· x+ f(0) for all x ∈ F2.

Our approach to solving these problems is enlarging the token’s output space to dimension
(1 + α)k and letting the sender Goliath announce αk-dimensional linear hash values of the token’s
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function parameters, which can be used by David for a consistency check; then there remains a
k-dimensional part of the token’s output for generation of the intended OAFE result. For technical
reasons we choose α := 3. In particular, a preliminary protocol idea can be sketched as follows:

• Goliath chooses the i-th token parameters uniformly at random, say r, s
r← F

4k
q .

• Upon receiving the token, David announces a random check matrix C
r← F

3k×4k
q .

• Goliath in turn announces r̃ := Cr and s̃ := Cs.

• When David queries the token the i-th time, say he inputs some x ∈ Fq and receives output
w ∈ F4k

q , he checks whether Cw = r̃x + s̃. When the check is not passed, David has caught
Goliath cheating and henceforth always outputs a default value.

This way, we can implement some kind of “weak” OAFE, where the receiver additionally learns
some linear projection of the sender’s inputs, but by announcing (r̃, s̃) Goliath has committed
the token to affine behavior. Otherwise, if the check would be passed for a large set of token
inputs X ⊆ Fq and there do not exist any r, s ∈ F4k

q such that τ(x) = rx+ s for all x ∈ X with τ
denoting the token functionality in the i-th round, then the token could as well form collisions for the
universal hash function C, of which it is oblivious. Moreover, we can nullify the receivers additional
knowledge about (r, s) by multiplication with any matrix G ∈ Fk×4k

q that is complementary to C.
When David just outputs Gw, we have implemented OAFE with random input (Gr,Gs) from
Goliath and arbitrarily selectable input x from David. Finally, Goliath can derandomize his input
to arbitrarily selectable a, b ∈ Fkq by announcing ã := a−Gr and b̃ := b−Gs. David then just has

to replace his output by y := Gw + ãx+ b̃.
However, there is still a security hole left, as the token might act honestly only on some spe-

cific input set X ( Fq or even only on some specific type of input history. Now, when David’s
inputs match this adversarially chosen specification, he will produce regular output; else a protocol
abortion is caused with overwhelming probability (i.e. David produces default output). Such a
behavior cannot be simulated in the ideal model, unless the simulator gathers some information
about David’s input. Thus, David must keep his real input x secret from the token (and as well
from Goliath, of course). However, David’s input must be reconstructible from the joint view of
Goliath and the token, as otherwise a corrupted David could evaluate the function specified by
Goliath’s input (a, b) on more than one input x. Our way out of this dilemma is by a linear secret
sharing scheme, whereby David shares his input x between Goliath and the token. In particular,
the protocol now roughly proceeds as follows:

• Goliath initializes the token with uniformly random parameters r
r← F

4k
q and S

r← F
4k×k
q .

• Upon receiving the token, David announces a random check matrix C
r← F

3k×4k
q and a random

share h
r← F

k
q \ {0}. David and Goliath also agree on some G ∈ Fk×4k

q complementary to C.

• Goliath announces the check information r̃ := Cr and S̃ := CS and the derandomization
information ã := a−Gr and b̃ := b−GSh, where (a, b) ∈ Fkq ×Fkq is his OAFE input.

• David randomly picks a second share z
r← {z̃ ∈ F1×k

q | z̃h = x}, where x ∈ Fq is his
OAFE input. He inputs z into the token, whereupon the token has to compute and output
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W := rz + S. When the check CW
?
= r̃z + S̃ is passed, David computes and outputs

y := GWh+ ãx+ b̃; else he outputs some default value.

Now, neither Goliath nor the token can gather non-negligible information about David’s OAFE
input x. Given any set of token inputs Z ⊆ F1×k

q adversarially chosen in advance, the hyperplanes

{z̃ ∈ F1×k
q | zh = x}x∈Fq will partition Z into q subsets of roughly equal size, since h is uniformly

random. In other words, when the token behaves dishonestly on some input set Z ( F
1×k
q , the

abort probability is practically independent of David’s input x.
A remarkable property of our protocol is that David’s input x is only needed in the last step,

where no further communication with Goliath takes place. So, we can partition the protocol into
an interactive phase (where Goliath provides his OAFE input) and a non-interactive phase (where
David provides his input and learns his output). Therefore, we say that our protocol is “semi-
interactive”. A formal description of the full protocol Πsemi−int

OAFE is given in Figure 6.
There are two crucial differences between Πsemi−int

OAFE and the construction in [DKMQ11]. Firstly,
we changed from F2 to Fq with the explicit option that q may depend on the security parameter.
This will enable us to implement OTMs, string-OT and string-commitments at optimal communi-
cation rate (cf. Section 3.2.3 and Section 3.2.5). Secondly, due to a new security proof we no longer
need that Goliath’s “commitments” (r̃1, S̃1), . . . , (r̃n, S̃n) are statistically independent of David’s
input shares h1, . . . , hn. This allows for multiple send phases and choice phases in mixed order, so
that a token that shares some random source with its issuer Goliath can be reused over and over
again without any predefined limit (cf. Section 3.2.2).

At this point we also want to point out that in the protocol description of Figure 6 we purposely
do not exactly specify how the parameters k and q depend on the security parameter λ. In fact, for
our security proof we only need that k ·log q = λ and k ≥ 5; e.g. one can choose k to be constant and
q to increase exponentially in λ. With parameters chosen this way, our protocol Πsemi−int

OAFE has only
linear communication complexity, what is clearly optimal. The condition that k ≥ 5 results from
our proof techniques and is probably not tight. If k = 1, the protocol is not UC-secure against a
corrupted sender party (see Remark 1 below), but for 2 ≤ k ≤ 4 we are not aware of any potential
attack. However, note that F seq−ot

OAFE with k < 5 can be implemented from F seq−ot
OAFE with k = 5

straightforwardly and the reduction protocol itself has only linear overhead. Thus, the asymptotic
optimality of our construction with k = 5 does directly carry over to the case that k < 5.

Finally, we want to note that our protocol allows any polynomial number of send phases to be
performed in parallel, so that one can still issue the polynomially many OTMs needed for an OTP
by just constantly many rounds of communication (cf. Section 3.2.1).

Remark 1. Our protocol Πsemi−int
OAFE is not UC-secure against a corrupted sender Goliath, if k = 1.

Proof. The problem with k = 1 basically arises from the fact that in this case Goliath’s shares hi
of David’s inputs xi are invertible field elements. Consider a maliciously programmed token that
stops functioning after the first choice phase, if z1 ∈ Z for some adversarially chosen Z ⊆ Fq, e.g.
with |Z| = q

2 , and otherwise just follows the protocol. Since Goliath knows Z and learns h1 during
the protocol, he also knows exactly on which inputs x1 the token breaks: It breaks, if x1h

−1
1 ∈ Z.

In other words, it depends on x1, if David’s outputs y2, . . . , yn are all-zero or not. This is not
simulatable in the ideal model, because the simulator gets absolutely no information about the
uncorrupted David’s inputs.
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Protocol Πsemi−int
OAFE

Parametrized by a finite vector space Fk
q and some runtime bound n that is polynomially bounded in the

security parameter λ := k log q. The setup phase is executed right at the start of the first send phase.

Setup phase:

i. For i = 1, . . . , n, Goliath chooses a random vector ri
r← F

4k
q and a random matrix Si

r← F
4k×k
q ,

creates a token T with parameters (r1, S1), . . . , (rn, Sn) and sends T to David via F stateful
wrap . The

token also contains a counter j′queried and Goliath has a counter jcreated, both initialized to 0.

ii. Having received T , David chooses a random matrix C
r← F

3k×4k
q , computes some G ∈ Fk×4k

q

complementary to C and sends (C,G) to Goliath. Furthermore, David initializes two counters
jqueried, jsent ← 0 and an initial flag f0 ← >.

iii. If Goliath finds G not complementary to C, he aborts the protocol.

Send phases:

1. Upon input (ai, bi, i) from the environment, Goliath verifies that ai, bi ∈ Fk
q and i = jcreated + 1 ≤ n;

else he ignores that input. Next, Goliath updates jcreated ← i, computes r̃i ← Cri and S̃i ← CSi and
sends (r̃i, S̃i, i) to David.

2. David chooses a random vector hi
r← F

k
q \ {0} and sends (hi, i) to Goliath.

3. Goliath computes ãi ← ai−Gri and b̃i ← bi−GSihi and sends (ãi, b̃i, i) to David, who ignores that
message if not i = jsent + 1 ≤ n.

4. David updates jsent ← i and outputs (ready, i) to the environment.

Throughout the whole send phase, obviously malformed messages are just ignored by the respective receiver.

Choice phases:

5. Upon input (xi, i) from the environment, David verifies that xi ∈ Fq and i = jqueried+1 ≤ jsent; else he

ignores that input. Next, he updates jqueried ← i, chooses a random vector zi
r← {z̃ ∈ F1×k

q | z̃hi = xi}
and inputs (zi, i) into the token T .

6. The token verifies that zi ∈ F1×k
q and i = j′queried + 1 ≤ n; else it ignores that input. Next, the token

updates j′queried ← i, computes Wi ← rizi + Si and outputs Wi to David.

7. David verifies that fi−1 = > and CWi = r̃izi+S̃i; if Wi /∈ F4l×k
q , it is treated as an encoding of the all-

zero matrix in F4l×k
q . If the check is passed, David sets fi ← > and computes yi ← GWihi+ ãixi+ b̃i;

otherwise he sets fi ← ⊥ and yi ← 0 (such that yi ∈ Fk
q ). Then he outputs (yi, i) to the environment.

Figure 6: A protocol for semi-interactive sequential OAFE, using one tamper-proof token. Note
that several send and choice phases can be executed in mixed order with the only restriction that
an honest David will not enter the i-th choice phase before the i-th send phase has been completed.
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3.2 Refinements and applications of our construction

Before we give a formal security proof for our protocol Πsemi−int
OAFE , we first want to present how the

claimed optimal constructions for multiple OTMs, Commitments and OT (cf. Section 1.2) do work.
As mentioned above, we will prove security of our protocol Πsemi−int

OAFE only for the case that

k ≥ 5. However, F seq−ot
OAFE with k < 5 can be implemented from F seq−ot

OAFE with k = 5 straightforwardly
and the reduction protocol itself has only linear overhead. Thus, the asymptotic optimality of our
construction for F seq−ot

OAFE with k = 5 does directly carry over to the case that k < 5.
At the end of this section, in Section 3.2.7, we also discuss why for computationally secure OT

protocols an improvement of the communication complexity is not a noteworthy result. However,
this does neither affect statistically secure OT nor any commitment or OTM constructions.

3.2.1 Reducing the number of rounds, e.g. for one-time programs

In [GIS+10] so-called trusted OTPs are implemented from a polynomial amount of OTM tokens.
As an honest receiver will query these tokens in some predefined (and publicly known) order, we
can adapt the results of [GIS+10] to implement trusted OTPs from a single untrusted hardware
token (cf. Section 2.4). However, if one implements some polynomial number (say l) of sequen-
tially queriable OTM tokens by the construction we proposed in Section 2.4, one will end up with
more than thrice as many (i.e. 3l) rounds of communication between David and Goliath. This
round complexity can be dramatically reduced as follows: In our protocol Πsemi−int

OAFE (q.v. Fig-
ure 6 in Section 3.1), instead of performing a large number of individual send phases, David can
already announce h1, . . . , hl along with the check matrix C in step ii of the setup phase and Go-
liath can send all his announcements of the corresponding l send phases in one single message(
(r̃1, S̃1, 1), (ã1, b̃1, 1), . . . , (r̃l, S̃l, l), (ãl, b̃l, l)

)
. Thereby we end up with two rounds of communica-

tion, not counting for the transmission of the token. This modification of the protocol Πsemi−int
OAFE

does not breach its security: In our formal security proof we even assume that a corrupted Go-
liath’s announcement of

(
(r̃1, S̃1), . . . , (r̃n, S̃n)

)
may arbitrarily depend on (h1, . . . , hn). Hence, our

security proof does directly carry over to the modified protocol. Note that analogously we just can
arbitrarily parallelize multiple send phases of our protocol Πsemi−int

OAFE without jeopardizing security.
This can be used, e.g., to implement polynomially many OTs (cf. Section 3.2.3) or commitments
(cf. Section 3.2.5) with constant round complexity.

It is quite straightforward to see that a two-round protocol for implementation of polyno-
mially many OTM tokens from a single piece of untrusted tamper-proof hardware is optimal—
cf. [DKMQ11, Theorem 1]. Furthermore, our new two-round protocol is an improvement upon
[DKMQ11], where we needed four rounds of communication between David and Goliath.

3.2.2 Computational solution for unlimited reusability of a memory-limited token

Our protocol Πsemi−int
OAFE (q.v. Figure 6 in Section 3.1) guarantees perfect security against David

(cf. Section 4.2). However, to achieve this, the token needs to be able to store Θ(nk2 log q) bits of
information. This contradicts the idea of a tamper-proof hardware token being a small and simple
device. In [MS08] it was noted, that if David is computationally bounded, then the functions stored
on the token could be chosen to be pseudorandom [GGM86, HILL99]. The same is true for our
construction. It suffices that the token stores a succinct seed of length Θ(k log q) for a pseudorandom
number generator F . Upon input (zi, i) the token can compute the next pseudorandom value
(ri, Si) = F (i) and output Wi = rizi + Si.
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Moreover, in such a setting we do not need our protocol Πsemi−int
OAFE and the ideal functionality

F seq−ot
OAFE to be parametrized by an explicit runtime bound n, as David’s computational boundedness

implies a polynomial upper bound for the number of token queries.

3.2.3 Unidirectional string-OT and OTMs with optimal communication complexity

As discussed in Section 2.4, one can reduce k-bit string-OT and Fk2-OAFE to each other without any
overhead. However, our construction for seq-ot-OAFE has communication complexity Θ(nk2 log q).
I.e., by the aforementioned reduction approach we would end up with a communication complexity
of Θ(k2) per implemented instance of k-bit string-OT, as it happened in [DKMQ11]. In contrast, if
k is constant and q grows exponentially in the security parameter, we have only a communication
complexity of O(log q) for each implemented instance of Fkq -OAFE (q.v. Figure 6 in Section 2.4),
what is clearly optimal. Therefore, it is desirable to implement l-bit string-OT by a constant
number of Fd

2l
-OAFE instances with constant dimension d. We present such a reduction protocol

in Figure 7; our construction needs only a single instance of F2
2l

-OAFE and the protocol idea
is as follows. The F2

2l
-OAFE primitive allows the sender party to specify two affine functions

f0, f1 : F2l → F2l , such that the receiver party can evaluate both functions only once and only
simultaneously on the same input. Thus, if the sender party announces its OT-inputs s0 and s1

encrypted with f0(0) and f1(1) respectively, then the receiver party may learn at most one of the
values needed for decryption of s0 and s1. One can even go without transmitting any ciphertexts:
The sender party just has to choose f0, f1, such that f0(0) = s0 and f1(1) = s1, whereas f0(1) and
f1(0) are completely random.

a, b
r← F

2
2l

m0 := s0 ⊕ (e0 · b)
m1 := s1 ⊕

(
e1 · (a+ b)

) m0,m1

with {e0, e1} being
any public basis of
the linear space F1×2

2l

F
2
2l -OAFE

a

b

c

ac+ b y

l-bit string-OT

s0

s1

c

mc ⊕ (ec · y) sc

Figure 7: Reduction of l-bit string-OT to F2
2l

-OAFE. Note that the transmission of m0 and m1 is
not essential; instead the sender party can just choose (a, b) subject to the condition that e0 · b = s0

and e1 · (a+ b) = s1.

The protocol in Figure 7 is perfectly UC-secure, what can be shown straightforwardly, and it
also works perfectly for implementation of sequentially queriable OTM tokens from seq-ot-OAFE
(cf. the respective discussion in Section 2.4). Thus, in the outcome we also have a construction
for sequentially queriable log(q)-bit OTM tokens, using only Θ(log q) bits of communication per
implemented OTM token. This communication complexity is clearly optimal and to the best of our
knowledge our approach is the first to implement statistically secure OT (or OTMs respectively)
with optimal communication complexity, while based only on untrusted tamper-proof hardware.

Note that our protocols with linear communication complexity also have very low computation
complexity. Per implemented log(q)-bit string-OT (or log(q)-bit OTM respectively) every party
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(and in particular the exchanged token) has only to perform O(1) finite field operations with field
size q, what is considerably faster than, e.g., something based on modular exponentiation.

3.2.4 Achieving optimal communication complexity for bidirectional string-OT

In Section 3.2.3 we have shown how one can implement unidirectional string-OT (from the token
issuer to the token receiver) with optimal communication complexity, using our protocol Πsemi−int

OAFE

as a building block. Implementing string-OT in the other direction (from the token receiver to
the token issuer) with optimal communication complexity turns out a bit more challenging. The
starting point for our construction is the protocol in Figure 8 for reversing the direction of a given
Fq-OAFE primitive. Note that this protocol is not UC-secure, since a corrupted sender can cause
the receiver to output some y before a and b are fixed: The corrupted sender can just send a
random m ∈ Fq and arbitrarily later input some a ∈ Fq of his choice into the underlying Fq-OAFE
instance (and then compute b := m − z). This breaches UC-security, since an ideal version of the
reversed Fq-OAFE primitive would not send y to the receiver party before the sender’s inputs a and
b are fixed. However, in our case this problem can be solved straightforwardly: Since our protocol
Πsemi−int

OAFE implements sequentially queriable OAFE instances, it suffices to use every other OAFE
instance for a check announcement, i.e. both parties just input randomness and the receiver has to
announce his input-output tuple (cf. Section 2.4).

Fq-OAFE
x

Fq
r→ r

a

ax+ r z

m := z + b

reversed Fq-OAFE

x a

b

m− ry

Figure 8: Basic approach for reversing the direction of a given Fq-OAFE primitive; protocol taken
from [WW06]. Note that this protocol is not UC-secure, unless input of a into the underlying
Fq-OAFE instance is enforced before the receiver outputs y; otherwise a corrupted sender can
maliciously delay his choice of a (and b).

Obviously, the approach in Figure 8 does not work for Fkq -OAFE with k > 1, but we need F2
q-

OAFE for our aimed at OT protocol. Thus, a construction for Fkq -OAFE from some instances of
Fq-OAFE would come in very handy. In [DKMQ12] one can find such a construction and a security
proof for the case that k log q increases polynomially in the security parameter. For the sake of
self-containedness we recap in Figure 9 the approach of [DKMQ12] with k = 2. By combining this
with the protocol in Figure 8 and some optimization in the number of Fq-OAFE instances used for
check announcements we end up with the protocol depicted in Figure 10.

Now, by plugging the protocol of Figure 10 on top of Πsemi−int
OAFE (q.v. Figure 6 in Section 3.1)

we get sequentially queriable F2
q-OAFE from the token receiver to the token sender with an overall

communication complexity of O(log q) per implemented F2
q-OAFE instance. So finally, we can

apply again the protocol of Figure 7 in Section 3.2.3 and thereby implement string-OT with optimal
communication complexity also in the direction from the token receiver to the token issuer.
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Fq-OAFE
random αi

random βi

x

αix+ βi γi

for i ∈ {1, . . . , 5}

H
r← F

2×5
q

α′ := a−H · (α1, . . . , α5)T

β′ := b−H · (β1, . . . , β5)T

F
2
q-OAFE

xa

b

α′x+ β′ +H · (γ1, . . . , γ5)T y

Figure 9: Implementation of F2
q-OAFE from five instances of Fq-OAFE; protocol taken from

[DKMQ12]. Additional measures must be taken so that H is not announced before the receiver
party has provided some input to all five underlying Fq-OAFE instances in the dashed box; other-
wise the protocol is inherently insecure, as shown in [DKMQ12, Lemma 1].

Fq-OAFE
x

Fq
r→ γi

αi
r← Fq

αix+ γi βi

for i ∈ {1, . . . , 5}

Fq-OAFE
0

Fq
r→ ρ

0

ρ

ρ

H
r← F

2×5
q

α′ := a−H · (α1, . . . , α5)T

β′ := b−H · (β1, . . . , β5)T

reversed F2
q-OAFE

x a

b

α′x− β′ −H · (γ1, . . . , γ5)Ty

Figure 10: Combined protocol for UC-secure reversed F2
q-OAFE from six sequentially queriable

instances of Fq-OAFE. Note that the receiver must not output y unless ρ was announced correctly
by the sender party.
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Protocol Πforward
COM (Goliath is the committing/unveiling party)

Parametrized by a string length l, which also serves as security parameter, and some runtime bound n
that is polynomially bounded in l. All parties have access to a hybrid functionality F seq−ot

OAFE parametrized
by the finite vector space F1

2l and with runtime bound n. Bit strings of length l and elements of F2l are
identified with each other. The counter j, held by Goliath, is initialized to 0.

Commit phases:

1. Upon input (Commit, si, i) from the environment, Goliath verifies that si ∈ {0, 1}l and i = j+ 1 ≤ n;

else he ignores that input. Next, Goliath updates j ← i, chooses some random bi
r← F2l and sends

(si, bi, i) to F seq−ot
OAFE .

2. David, upon receiving the message (ready, i) from F seq−ot
OAFE , picks some random xi

r← F2l . He sends

(xi, i) to F seq−ot
OAFE , receives some (yi, i) and outputs (committed, i).

Unveil phases:

3. Upon input (Unveil, i) from the environment, Goliath verifies that i ≤ j; else he ignores that input.
Next, Goliath sends (si, bi, i) to David.

4. David verifies that sixi + bi = yi. If the check is passed, he outputs (si, i); otherwise he outputs
(⊥, i).

Protocol Πbackward
COM (David is the committing/unveiling party)

Parametrized by a string length l, which also serves as security parameter, and some runtime bound n
that is polynomially bounded in l. All parties have access to a hybrid functionality F seq−ot

OAFE parametrized
by the finite vector space F1

2l and with runtime bound 2n. Bit strings of length l and elements of F2l are
identified with each other. The counter j, held by David, is initialized to 0.

Commit phases:

1. Upon input (Commit, si, i) from the environment, David verifies that si ∈ {0, 1}l and i = j + 1 ≤ n;
else he ignores that input. Next, David updates j ← i and sends (i) to Goliath.

2. Goliath randomly picks ai, bi, ci, di
r← F2l and sends (ai, bi, 2i− 1) and (ci, di, 2i) to F seq−ot

OAFE .

3. David, after receiving the messages (ready, 2i − 1) and (ready, 2i) from F seq−ot
OAFE , sends (si, 2i − 1)

and (0, 2i) to F seq−ot
OAFE . He receives some (yi, 2i− 1) and (ri, 2i) and announces (ri, i) to Goliath.

4. Goliath outputs (committed, i).

Unveil phases:

5. Upon input (Unveil, i) from the environment, David verifies that i ≤ j; else he ignores that input.
Next, David sends (si, yi, i) to Goliath.

6. Goliath verifies that ri = di and yi = aisi + bi. If the check is passed, he outputs (si, i); otherwise
he outputs (⊥, i).

Figure 11: Asymptotically optimal protocols for string commitments from seq-ot-OAFE. Note
that in a straightforward manner one can use the same instance of F seq−ot

OAFE for both protocols
simultaneously.
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3.2.5 Efficient protocol for string-commitments in any direction

At this point we also want to note that string commitments can be implemented directly from seq-
ot-OAFE, even if the dimension k is constant (i.e. q grows exponentially in the security parameter).
See Figure 11 for the reduction protocols; they work analogously to the standard constructions for
commitments from OT. As our protocol for seq-ot-OAFE with constant dimension k has only linear
complexity, we thus get asymptotically optimal protocols for string commitments.

3.2.6 Non-interactive solution with two tokens

Our approach still needs the receiver party David to send some messages to the sender party
Goliath. In particular, for each implemented instance of Fkq -OAFE we have an interactive send
phase and a non-interactive choice phase (q.v. Figure 6 in Section 2.4). Therefore, we say that
our protocol Πsemi−int

OAFE is “semi-interactive”. It is quite straightforward to see that one cannot

implement F seq−ot
OAFE from a single instance of F stateful

wrap by any non-interactive protocol—cf. [DKMQ11,

Theorem 1]. However, we can easily give a generic non-interactive protocol for F seq−ot
OAFE , if two

instances of F stateful
wrap are in place, i.e. the sender party Goliath issues two tamper-proof tokens and

the receiver party David can trust that the tokens are mutually isolated. Then, the second token
can play Goliath’s role in the protocol Πsemi−int

OAFE with random inputs ai and bi. As Goliath knows
the second token’s random coins, derandomization of his inputs can be done as follows: If Goliath
wants to replace the random input tuple (ai, bi) by some arbitrarily chosen (a′i, b

′
i), he just sends

(a′i−ai, b′i− bi, i) to David, who then has to replace his output yi by y′i := yi+(a′i−ai)xi+(b′i− bi).
Note that based on the two-token protocol that implements F seq−ot

OAFE with random Goliath inputs,
step 2 of Πbackward

COM (q.v. Figure 11) can be made non-interactive, as Goliath does not need to
derandomize any of his inputs. All other protocols become non-interactive straightforwardly.

3.2.7 A note on optimal communication complexity

The string length of any computationally secure OT protocol can be polynomially extended by
standard techniques (cf. protocol Πenlarge

OT in Figure 12). It is straightforward to show UC-security
of this approach. Hence, optimal communication complexity of the computational versions of
our OT solution is not a noteworthy result. However, applying an analogous transformation to
commitments or OTMs would destroy UC-security (see Remark 2 below) and we are not aware of
any universally composable amortization techniques for these primitives that do not come along
with additional setup assumptions.

Remark 2. The protocols Πenlarge
COM and Πenlarge

OTM in Figure 12 are not UC-secure.

Proof. We just show that Πenlarge
COM is not UC-secure. For Πenlarge

OTM one can argue analogously. Con-
sider a passively corrupted receiver party that just hands over every message to the environment.
For the real model, this means that in the commit phase the environment learns some k-bit string
r and in the unveil phase it learns a seed s ∈ {0, 1}l, such that r⊕F (s) is the honest sender party’s
input c. Now, if the environment chooses the honest sender party’s input c ∈ {0, 1}k uniformly at
random, this is not simulatable in the ideal model. The simulator has to choose r before he learns
c. Thus, using a simple counting argument, the probability that there exists any seed s ∈ {0, 1}l
with r⊕F (s) = c can be upper bounded by 2l−k. In other words, the simulation fails at least with
probability 1− 2l−k.
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Protocol Πenlarge
OT

Parametrized by two security parameters k and l with k > l, a hybrid functionality FOT for l-bit string-OT
and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

1. Upon input (s0, s1) from the environment, the sender party verifies that s0, s1 ∈ {0, 1}k; else that

input is ignored. Next, the sender party chooses two random seeds s̃0, s̃1
r← {0, 1}l and inputs (s̃0, s̃1)

into FOT.

2. Upon input x from the environment, the receiver party verifies that x ∈ {0, 1}; else that input is
ignored. Next, the receiver party inputs x into FOT, thus receiving s̃x.

3. The sender party, after being notified that everybody did provide some input to FOT, announces
r0 := s0 ⊕ F (s̃0) and r1 := s1 ⊕ F (s̃1).

4. The receiver party computes and outputs sx = rx ⊕ F (s̃x).

Protocol Πenlarge
COM

Parametrized by two security parameters k and l with k > l, a hybrid functionality FCOM for l-bit string-
commitment and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

Commit phase:

1. Upon input (Commit, c) from the environment, the sender party verifies that c ∈ {0, 1}k; else that

input is ignored. Next, the sender party chooses some random s̃
r← {0, 1}l, commits to s via FCOM

and sends r := c⊕ F (s̃) to the receiver party.

2. The receiver party outputs (committed).

Unveil phase:

3. Upon input (Unveil) from the environment, the sender party unveils s̃.

4. If the unveil is successful, the receiver party computes and outputs r⊕F (s̃); otherwise it outputs ⊥.

Protocol Πenlarge
OTM

Parametrized by two security parameters k and l with k > l, a hybrid functionality FOTM for l-bit OTM
and a PRNG function F with seed length l and output length k, i.e. F : {0, 1}l → {0, 1}k.

Creation:

1. Upon input (s0, s1) from the environment, the sender party verifies that s0, s1 ∈ {0, 1}k; else that

input is ignored. Next, the sender party chooses two random seeds s̃0, s̃1
r← {0, 1}l, sends (s̃0, s̃1)

via FOTM to the receiver party and announces r0 := s0 ⊕ F (s̃0) and r1 := s1 ⊕ F (s̃1).

2. The receiver party outputs (ready).

Query:

3. Upon input x from the environment, the receiver party verifies that x ∈ {0, 1}; else that input is
ignored. Next, the receiver party inputs x into FOTM, thus receiving s̃x, and computes and outputs
sx = rx ⊕ F (s̃x).

Figure 12: Straightforward approaches for enlarging the string length of some given OT, commit-
ment or OTM functionality, using a PRNG. The protocol Πenlarge

OT is UC-secure, but Πenlarge
COM and

Πenlarge
OTM are not (q.v. Remark 2).
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4 Correctness and security of our protocol

In this section we show that in the F stateful
wrap -hybrid model our protocol Πsemi−int

OAFE is a universally

composable implementation of the ideal functionality F semi−int
OAFE , if only k ≥ 5. In particular, in

Section 4.2 we will prove perfect security against a corrupted David for all k and in Section 4.3 we
will prove statistical security against a corrupted Goliath for the case that k ≥ 5. However, first of
all we will show that Πsemi−int

OAFE always works correctly when no party is corrupted (Section 4.1).

4.1 Correctness

In a totally uncorrupted setting, simulation is straightforward. Since the simulator always is notified
when the ideal Goliath receives input from the environment and the simulator also may arbitrarily
delay the ideal David’s corresponding ready-message, he can perfectly simulate any scheduling of
the messages in the send phase. In turn, the choice phase cannot be influenced by the real model
adversary and therefore can be simulated trivially. Furthermore, whenever in the real model the
receiver David outputs some (yi, i), it holds that yi = aixi + bi, as one can verify as follows:

yi = G (rizi + Si)︸ ︷︷ ︸
=Wi

hi + (ai −Gri)︸ ︷︷ ︸
=ãi

xi + bi −GSihi︸ ︷︷ ︸
=b̃i

= Gri (zihi − xi)︸ ︷︷ ︸
=0

+aixi + bi

Also note that in a totally uncorrupted setting David’s consistency checks are always passed.

4.2 Security against a corrupted receiver

We first show security against a corrupted receiver party David, as this is the easy case. Basically,
there are only two things a corrupted David can do: follow the protocol honestly, or query the
token before the respective send phase is over. We will refer to the former as the regular case and
to the latter as the irregular case. A bit more formally, regarding some specific i ∈ {1, . . . , n} we
speak of the regular case if David sends (hi, i) to Goliath before inputting (zi, i) into the token,
and we speak of the irregular case if David sends (hi, i) to Goliath after inputting (zi, i) into the
token. Note that, although David is corrupted, hi and zi are still well-defined since Goliath and the
token accept only well-formed messages (hi, i) and (zi, i) respectively. It is quite straightforward
to see that due to the randomness of (ri, Si) every value seen by David, namely r̃i, S̃i, ãi, b̃i,Wi, is
just uniformly random subject to the sole condition that in the end the correct result yi can be
computed. We formalize this by the next lemma.

Lemma 3. In our protocol Πsemi−int
OAFE , if Goliath is honest, the variables r̃i, S̃i, ãi, b̃i,Wi are just

uniformly random subject to the condition that CWi = r̃izi+S̃i and GWihi+ãizihi+b̃i = aizihi+bi.

Proof. We give a proof by cases and start off with the regular case, i.e. David first sends (hi, i) to
Goliath and later on inputs (zi, i) into the token. In this case, Goliath obviously just announces some
r̃i, S̃i, ãi, b̃i uniformly at random. Consequently, we have to show now that the token output Wi is
uniformly random subject to the condition that CWi = r̃izi+S̃i and GWihi+ãizihi+b̃i = aizihi+bi.
However, we can imagine that right before the computation of Wi the token’s stored randomness
Si is uniformly resampled subject to the condition that CSi = S̃i and GSihi = bi− b̃i. This clearly
does not change David’s view at all. In other words, we can replace Si by Si + S′, where S′ is
uniformly random subject to the condition that CS′ = 0 and GS′h = 0. Thereby, Wi is also
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replaced by Wi + S′ and hence becomes uniformly random subject to the sole condition that CWi

and GWihi are not changed. This means that Wi is uniformly random subject to the condition
that CWi = r̃izi + S̃i and GWihi = (ai − ãi)zihi + bi − b̃i. This concludes our proof for the regular
case.

Now we consider the irregular case, i.e. the corrupted David inputs (zi, i) into the token before
he sends (hi, i) to Goliath. In this case, (r̃i, S̃i) announced by Goliath and the token’s output Wi

are just uniformly random subject to the condition that CWi = r̃izi + S̃i. Consequently, we have
to show now that the honest Goliath’s announcement of (ãi, b̃i) is uniformly random subject to
the condition that GWihi + ãizihi + b̃i = aizihi + bi. However, we can imagine that right before
the computation of (ãi, b̃i) the stored randomness ri in Goliath’s memory is uniformly resampled
subject to the condition that Cri = r̃i, and Si is replaced by the new value of Wi − rizi. It is
straightforward to verify that this does not change the corrupted David’s view at all. In other
words, we can replace (ri, Si) by (ri + r′, Si − r′zi), where r′ is uniformly random subject to the
condition that Cr′ = 0. Thereby, ãi is replaced by ãi − Gr′ and hence becomes just uniformly
random over Fkq , since G is complementary to C and thus Gr′ itself is uniformly random over Fkq .

Analogously, b̃i is replaced by b̃i +Gr′zihi, and it still holds:

GWihi + (ãi −Gr′)︸ ︷︷ ︸
new ãi

zihi + (b̃i +Gr′zihi)︸ ︷︷ ︸
new b̃i

= GWihi + ãizihi + b̃i = aizihi + bi

This means that ãi, b̃i are uniformly random subject to the sole condition that GWihi+ ãizihi+ b̃i =
aizihi + bi. This concludes our proof for the irregular case.

This lemma leads to a very straightforward simulator construction for the UC framework. When
the corrupted David queries the token after he already got the derandomization information (ãi, b̃i)
from Goliath in the corresponding send phase, the simulator can revise the token’s output Wi so

that the check CWi
?
= r̃izi + S̃i is still passed, but GWi now matches a protocol run in the real

model: When the token is to output Wi, the simulator has already seen both shares zi, hi that
are needed to extract David’s input xi. The simulator can then query the ideal functionality
F seq−ot

OAFE on this input xi, thus receiving yi, and then revise Wi by some W ′ so that CW ′ = CWi

and yi = GW ′hi + ãixi + b̃i. Note that existence of such a W ′ is always guaranteed, since G is
complementary to C (i.e. especially G has full rank) and h 6= 0.

When the corrupted David queries the token before he got the derandomization information
(ãi, b̃i) from Goliath in the corresponding send phase, the simulator can easily revise Goliath’s
announcement of the derandomization information so that it matches a protocol run in the real
model: When Goliath is to announce the derandomization information (ãi, b̃i), the simulator has
already seen both shares zi, hi that are needed to extract David’s input xi. The simulator can then
query the ideal functionality F seq−ot

OAFE on this input xi, thus receiving yi, and then just revise b̃i so

that yi = GWihi + ãixi + b̃i.
A formal description of this simulator construction is given in Figure 13. We conclude this

section with the corresponding security theorem.

Theorem 4. Let some arbitrary environment Z be given and some adversary A that corrupts the
receiver David. Then the view of Z in the ideal model with ideal functionality F seq−ot

OAFE and simulator
SDavid(A) is identically distributed to the view of Z in the real model with protocol Πsemi−int

OAFE and
adversary A.

Proof. This directly follows by Lemma 3.
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Simulator SDavid(A)

• Set up an honest Goliath-machine G; also set up simulated versions of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted David). Wire the simulated ma-
chines A,G,F stateful

wrap to each other and A to the environment right the way they would be wired in

the real model with protocol Πsemi−int
OAFE (q.v. Figure 6 in Section 3.1).

• Upon receiving a message (created, i) from the ideal functionality F seq−ot
OAFE , reply with (Delivery, i).

Then, upon receiving (ready, i) on behalf of the corrupted David, choose some random vectors

ai, bi
r← F

k
q and let G start the i-th send phase with input (ai, bi, i).

• Whenever G is to send some (ãi, b̃i, i) to the corrupted David in step 3 of Πsemi−int
OAFE , extract the

current state j of j′queried from the view of the simulated F stateful
wrap . If j ≥ i, replace the announcement

(ãi, b̃i, i) by (ãi, b̃
′, i), with b̃′ computed as follows:

0. Extract G, hi from the view of G and zi,Wi from the view of the simulated F stateful
wrap .

1. Compute xi ← zihi and (on behalf of the corrupted David) send (xi, i) to the ideal functionality
F seq−ot

OAFE ; let (yi, i) denote the respective answer from F seq−ot
OAFE .

2. Set b̃′ ← yi −GWihi − ãixi.

• Whenever the token is to output some matrix W to the corrupted David in step 6 of Πsemi−int
OAFE ,

extract the current state i of j′queried from the view of the simulated F stateful
wrap . When G has already

received (and not ignored) a message (hi, i) in step 3 of Πsemi−int
OAFE , replace the token’s output by W ′,

computed as follows:

0. Extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view of G and zi from the view of the simulated F stateful
wrap .

1. Compute xi ← zihi and (on behalf of the corrupted David) send (xi, i) to the ideal functionality
F seq−ot

OAFE ; let (yi, i) denote the respective answer from F seq−ot
OAFE .

2. Choose randomly W ′
r←
{
W̃ ∈ F4k×k

q

∣∣ CW̃ = r̃izi + S̃i ∧ GW̃hi + ãixi + b̃i = yi
}

.

Figure 13: The simulator program SDavid(A), given an adversary A that corrupts David.

4.3 Security against a corrupted sender

The case of a corrupted sender Goliath is the technically challenging part of the security proof. How-
ever, before we give our simulator construction for a corrupted sender Goliath (q.v. Section 4.3.5),
we first take a closer look at the problems we have to deal with, and introduce the respective
solution tools (Section 4.3.1, Section 4.3.3, Section 4.3.2 and Section 4.3.4).

4.3.1 Independence of the token view

We start our security considerations with showing that an honest David’s token inputs z1, . . . , zn
are statistically indistinguishable from uniform randomness. This is necessary for security, since
otherwise David’s OAFE inputs x1, . . . , xn would be non-negligibly correlated with the token view
and a malicious token’s behavior in the n-th choice phase could depend on x1, . . . , xn−1.

W.l.o.g., we can assume that David’s random tape is chosen after all other random tapes, i.e.
we can consider everything to be deterministic except for David’s random choice of h1, . . . , hn and
z1, . . . , zn. However, as we are aiming for universal composability, we must take into account that
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David’s i-th OAFE input xi might depend on everything that Goliath learned so far. In particular,
all n send phases might already be over, i.e. Goliath already knows h1, . . . , hn, and there might
have leaked some little information about z1, . . . , zi−1 during past choice phases. Therefore, we
have to model David’s i-th OAFE input xi as a function value xi(h1, . . . , hn, z1, . . . , zi−1).

Lemma 5. Let Fq be some arbitrary field of size q ≥ 2 and let k, n ∈ N>0. Let U := F
1×k
q and

H := F
k
q \ {0}. Further, for i = 1, . . . , n let any mapping xi : Hn × U i−1 → Fq be given. Finally,

for i = 1, . . . , n we define the following random variables:

hi
r← H zi

r←
{
z ∈ U

∣∣ zhi = xi(h1, . . . ,hn, z1, . . . , zi−1)
}

ui
r← U

Then it holds that ∆
(
(z1, . . . , zn), (u1, . . . ,un)

)
< 1

2

√
exp
(
n · q2−k

)
− 1.

Proof. We show this by estimation techniques borrowed from a proof for the Leftover Hash Lemma
[AB09, proof of Lemma 21.26]. Let ~z ∈ RUn denote the probability vector of (z1, . . . , zn) and let
~u ∈ RUn denote the probability vector of (u1, . . . ,un). Note that ~z − ~u is orthogonal to ~u:

〈~z − ~u | ~u〉 = 〈~z | ~u〉 − 〈~u | ~u〉 = ‖~z‖1
|Un| −

‖~u‖1
|Un| = 1

|Un| −
1
|Un| = 0

Let the 2n-tuple of random variables (h′1, . . . ,h
′
n, z
′
1, . . . , z

′
n) be identically distributed as its un-

primed counterpart (h1, . . . ,hn, z1, . . . , zn). The following equation system has exactly qk−2 differ-
ent solutions z ∈ U if hi and h′i are linearly independent, and at most qk−1 solutions otherwise:

zhi = xi(h1, . . . ,hn, z1, . . . , zi−1)

zh′i = xi(h
′
1, . . . ,h

′
n, z
′
1, . . . , z

′
i−1)

Using the auxiliary random variable m := #
{
i ∈ {1, . . . , n}

∣∣ hi and h′i are linearly independent
}

,
we can thus estimate:

P
[
(z1, . . . , zn) = (z′1, . . . , z

′
n)
∣∣ m = m

]
≤
(

qk−2

qk−1 · qk−1

)m
·
(

qk−1

qk−1 · qk−1

)n−m
Further, we have that P[m = m] =

(
n
m

)
·
(
|H|−(q−1)
|H|

)m
·
(
q−1
|H|

)n−m
by construction. It follows:

‖~z‖22 = P
[
(z1, . . . , zn) = (z′1, . . . , z

′
n)
]

=

n∑
m=0

P[m = m] ·P
[
(z1, . . . , zn) = (z′1, . . . , z

′
n)
∣∣ m = m

]
≤

n∑
m=0

(
n

m

)
·
(
|H| − (q − 1)

|H|

)m
·
(
q − 1

|H|

)n−m
·
(

qk−2

qk−1 · qk−1

)m
·
(

qk−1

qk−1 · qk−1

)n−m
=
(

1 + (q−1)2

|H|

)n
· q−nk

Using the Pythagorean Theorem, we can now estimate:

‖~z − ~u‖22 = ‖~z‖22 − ‖~u‖22 ≤
(

1 + (q−1)2

|H|

)n
· q−nk − q−nk
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Since ‖~v‖1 ≤
√
m · ‖~v‖2 for all m ∈ N, ~v ∈ Rm, this yields:

∆
(
(z1, . . . , zn), (u1, . . . ,un)

)
= 1

2‖~z − ~u‖1 ≤
1
2

√
|Un| · ‖~z − ~u‖2 ≤ 1

2

√(
1 + (q−1)2

|H|

)n
− 1

To conclude our proof, we further estimate:(
1 + (q−1)2

|H|

)n
= exp

(
n · ln

(
1 + (q−1)2

|H|

))
< exp

(
n·(q−1)2

|H|

)
< exp

(
n · q2−k

)
We will use this lemma not directly but for showing that the token functionality in the (m+ 1)-

th choice phase can be considered to be independent of C and hm+1, . . . , hn. So in the following
corollary, the random variable R can be thought of as David’s random choice of (C, hm+1, . . . , hn).

Corollary 6. Let Fq be some arbitrary field of size q ≥ 2 and let k,m ∈ N>0. Let U := F
1×k
q

and H := F
k
q \ {0}. Further, let R be some arbitrary random variable with finite support R. For

i = 1, . . . ,m let any mapping xi : R × Hm × U i−1 → Fq be given. Finally, for i = 1, . . . ,m we
define the following random variables:

hi
r← H zi

r←
{
z ∈ U

∣∣ zhi = xi(R,h1, . . . ,hm, z1, . . . , zi−1)
}

Then it holds that ι
(
R, (z1, . . . , zm)

)
<
√

exp
(
mq2−k

)
− 1.

Proof. By the Triangle Inequality (and the definition of ι, q.v. Section 2.1), we already have that
ι
(
R, (z1, . . . , zm)

)
≤ 2 ·∆

(
(z1, . . . , zm), (u1, . . . ,um)

)
for any random variables u1, . . . ,um that are

statistically independent from R. Hence, our corollary directly follows by Lemma 5.

After all, note that independence between the token view and David’s OAFE inputs x1, . . . , xn
is only a starting point for our security proof. E.g., we have not used so far David’s consistency

check CWi
?
= r̃izi + S̃i in the final step of the choice phases. Lemma 5 and Corollary 6 would still

hold true without this consistency check, but the protocol would become susceptible to attacks
where the token encodes zi−1 into Wi. Now, if this information about zi−1 is unveiled to Goliath,
e.g. through the unveil message in a commitment protocol (q.v. Protocol Πbackward

COM in Figure 11),
he can possibly reconstruct David’s secret OAFE input xi−1, although the token still learns nothing
but uniform randomness. Thus, what we have shown so far can only be one core argument amongst
several others.

4.3.2 Committing the token to affine behavior

In Section 3.1 we argued that David’s check CWi
?
= r̃izi + S̃i enforces affine behavior of the token,

since otherwise the token could form collisions for the universal hash function C. However, this is
only half the truth. In fact, with τi : F1×k

q → F
4k×k
q denoting the token functionality in the i-th

choice phase, for each possible token input z ∈ F1×k
q there are always exactly q4k different parameter

tuples (r, S) ∈ F4k
q × F4k×k

q , such that τi(z) = rz + S. In particular, for all z ∈ F1×k
q , r ∈ F4k

q we
can complement r to a matching parameter tuple by S := τi(z)− rz. In total, there might exist up
to q5k different parameter tuples belonging to any image of τi and we must somehow rule out that
there are too many collisions of the form (Cr,CS) = (Cr′, CS′) with distinct (r, S), (r′, S′).
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Since the space of potential parameter tuples is that large, pure counting arguments (e.g. by
considering the random matrix C as a 2-universal hash function) cannot be sufficient as long as the
special structure of our problem is ignored: For example, consider the hypothetical case that every
parameter tuple (r, S) has to be taken into account where each column of S equals r. Although
this yields only q4k different parameter tuples, we would always have that equivalence classes of qk

different parameter tuples do collide. However, this is exactly the size of the preimage space of τi.
Thereby we just cannot rule out that τi is non-affine on every Z ⊆ F1×k

q with |Z| > 1, but enough

parameter tuples collide so that C · τi is affine on the complete input space F1×k
q . Note also that

this problem cannot be circumvent by enlarging the token input space to F1×αk
q for some α > 1,

since in that case we can still argue analogously with the condition |Z| > 1 replace by |Z| > q(α−1)k.
So, we explicitly have to exploit that the space of affine mappings F1×k

q → F
4k×k
q has some

specific structure. In fact, we only need the random matrix C to have some rank-preserving
property when operating on the image space of τi. Given this (and a not too large overall abortion
probability in the current choice phase), we can show that τi is affine on all token inputs that do
not cause a protocol abortion.

Lemma 7. Let Fq be some finite field of size q ≥ 2 and let l,m, k ∈ N>0. Let τ : F1×k
q → F

m×k
q be

some arbitrary mapping and let C ∈ Fl×mq , r̃ ∈ Flq, S̃ ∈ Fl×kq , V :=
{
v ∈ F1×k

q

∣∣ C ·τ(v) = r̃ ·v+S̃
}

,
such that |V | > q and for all v, v′ ∈ V the following implications hold true:

rank
(
τ(v)− τ(v′)

)
> 0 ⇒ rank

(
C · τ(v)− C · τ(v′)

)
> 0

rank
(
τ(v)− τ(v′)

)
> 1 ⇒ rank

(
C · τ(v)− C · τ(v′)

)
> 1

Then there exists a unique tuple (r, S) ∈ Fmq × Fm×kq , such that τ(v) = r · v + S for all v ∈ V .

Further, for this unique tuple it holds that (Cr,CS) = (r̃, S̃).

Proof. We just need to show existence of (r, S); everything else follows straightforwardly. Moreover,
if r̃ = 0, the proof is trivial. In this case, since by assumption τ(v) = τ(v′) for all v, v′ ∈ V with
C · τ(v) = C · τ(v′), we have that τ is constant on the entire input set V . So, w.l.o.g. let r̃ 6= 0.

First of all, we now observe for all v, v′ ∈ V that rank(τ(v) − τ(v′)) ≤ 1, since else by the
rank-preserving properties of C we had the contradiction that 1 < rank

(
C · τ(v) − C · τ(v′)

)
=

rank
(
r̃ · (v − v′)

)
≤ 1. Thereby, for all v, v′ ∈ V we find some r ∈ Fmq , v̄ ∈ F1×n

q , such that
τ(v)− τ(v′) = r · v̄. Moreover, we can always choose v̄ := v − v′, since r̃ · (v − v′) = Cr · v̄ and we
assumed that r̃ 6= 0. Thus we have:

∀ v, v′ ∈ V ∃ r ∈ Fmq : τ(v)− τ(v′) = r · (v − v′)

We will show now that r in fact is independent of v, v′. More precisely, we will show that for
arbitrary v, v′, v′′ ∈ V with linearly independent v− v′, v′− v′′ there always exists an r ∈ Fmq , such
that τ(v)− τ(v′) = r · (v − v′) and τ(v′)− τ(v′′) = r · (v′ − v′′). It is sufficient to consider the case
of linearly independent v − v′, v′ − v′′, since |V | > q by assumption and hence the affine span of V
must have dimension 2 or higher; therefore for all v, v′, v′′ ∈ V with linearly dependent v−v′, v′−v′′
there exists some v̂ ∈ V , such that v− v′, v′− v̂ are linearly independent and also are v̂− v′, v′− v′′.
So, let any v, v′, v′′ ∈ V , r, r′ ∈ Fmq be given with linearly independent v − v′, v′ − v′′ and:

τ(v)− τ(v′) = r · (v − v′)
τ(v′)− τ(v′′) = r′ · (v′ − v′′)
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Thereby follows:

rank
(
r · (v − v′) + r′ · (v′ − v′′)

)
= rank

(
τ(v)− τ(v′′)

)
≤ 1

Since v − v′, v′ − v′′ are linearly independent, this yields that r, r′ must be linearly dependent.
Hence, on the one hand we find some r̂ ∈ Fmq and α, α′ ∈ Fq, such that r = αr̂ and r′ = α′r̂. On
the other hand, since v, v′ ∈ V , we also have:

r̃ · (v − v′) = C ·
(
τ(v)− τ(v′)

)
= Cr · (v − v′)

Since v − v′ 6= 0, this yields that Cr = r̃ and analogously it must hold that Cr′ = r̃. Thus we
have that αCr̂ = α′Cr̂ = r̃. Since we assumed that r̃ 6= 0, we can conclude that α = α′ and hence
r = r′.

So, once we have shown that r is unique, we can finally pick some arbitrary ṽ ∈ V and set
S := τ(ṽ)− r · ṽ, whereby for every ṽ′ ∈M it follows:

τ(ṽ′) =
(
τ(ṽ′)− τ(ṽ)

)
+ τ(ṽ) =

(
r · (ṽ′ − ṽ)

)
+
(
r · ṽ + S

)
= r · ṽ′ + S

To make this lemma applicable, yet we need to show that with overwhelming probability the
random matrix C has the required rank-preserving properties. As a formal preparation we state
our next technical lemma, where the matrix setW should be thought of as all possible token output
differences τi(z) − τi(z′) and l := 3k and m := 4k. Thereby, since |W| < |image(τi)|2 ≤ q2k and
thus qr−l|W| < qr−k, we get that the random matrix C has the required rank-preserving properties
with overwhelming probability. For convenience, we state this lemma only for the case that the
random matrix C is statistically independent from the token functionality τi (and W respectively).
However, the error introduced by this assumption can be estimated by ι(C, τi), and then Corollary 6
does apply.

Lemma 8. Let Fq be some finite field of size q ≥ 2 and let l,m, k, r ∈ N>0 with r ≤ min(l,m, k).

Then for arbitrary W ⊆ Fm×kq and C
r← F

l×m
q it holds:

P
[
∃W ∈ W : rank(W ) ≥ r > rank(CW )

]
< qr−l|W|

Proof. We first estimate the number of matrices in Fl×rq that have full rank r. Given i ∈ {1, . . . , r}
and any matrix C ∈ Fl×iq with full rank i, there exist exactly ql− qi columns in Flq (only the linear
combinations of the columns of C are excluded) by which we can extend C to a matrix of dimension
l × (i+ 1) and rank i+ 1. By induction on i follows:

#
{
C ∈ Fl×rq

∣∣ rank(C) = r
}

=

r−1∏
i=0

ql − qi

Since the term
∏r−1
i=0 q

l − qi is a bit unhandy, we estimate it from below:

r−1∏
i=0

ql − qi = qlr
r−1∏
i=0

1− qi−l ≥ qlr

(
1−

r−1∑
i=0

qi−l

)
= qlr

(
1− qr − 1

ql(q − 1)

)
> qlr

(
1− qr−l

)
Now, let W ∈ Fm×kq be some arbitrary matrix with r̄ := rank(W ) ≥ r. Further let B̄ ∈ Fr̄×kq ,

such that B̄ only consists of linearly independent rows of W ; i.e. especially B̄ has full rank r̄. Let
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B ∈ Fm×kq , such that the first r̄ rows of B are B̄ and the rest of B is all-zero. Note that we can
find an invertible matrix M ∈ Fm×mq , such that W = MB. Hence we can estimate:

#
{
C ∈ Fl×mq

∣∣ rank(CW ) < r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CW ) ≥ r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CMB) ≥ r
}

= qlm −#
{
C ∈ Fl×mq

∣∣ rank(CB) ≥ r
}

= qlm −#
{
C ∈ Fl×r̄q

∣∣ rank(CB̄) ≥ r
}
· ql(m−r̄)

= qlm −#
{
C ∈ Fl×r̄q

∣∣ rank(C) ≥ r
}
· ql(m−r̄)

≤ qlm −#
{
C ∈ Fl×rq

∣∣ rank(C) = r
}
· ql(m−r)

< qlm − qlm
(

1− qr−l
)

= qlm+r−l

Thereby, for arbitrary W ∈ Fm×nq and C
r← F

l×m
q we can conclude:

P
[
rank(W ) ≥ r > rank(CW )

]
< qr−l

The assertion of our lemma now follows by the Union Bound.

Basically, in each choice phase of our protocol Πsemi−int
OAFE (with honest receiver party David) we

have now with overwhelming probability one of the following two cases:
• Either #

{
z ∈ F1×k

q

∣∣ C · τi(z) = r̃iz + S̃i
}
≤ q, i.e. only few token inputs pass David’s

consistency check and thus the protocol is aborted with overwhelming probability,
• or there exist some r ∈ F4k

q , S ∈ F4k×k
q , such that τi(z) = rz + S for all z ∈ F1×k

q with

C · τi(z) = r̃iz+ S̃i, i.e. the token functionality is affine on all inputs that pass the consistency
check.

4.3.3 Uniqueness of affine approximations of the token functionality

By our technical tools developed so far, we already have that the token functionality in each choice
phase is piecewise affine, and the protocol is aborted if the affine pieces are too small. However, for
our formal security proof we will need that the larger affine pieces yield a disjoint decomposition
of the preimage space. This motivates our next lemma.

Lemma 9. Let Fq be some finite field of size q ≥ 2, let ε > 0 and let k, l ∈ N>0, such that
qk ≥ 21/ε. Further, let τ : F1×k

q → F
l×k
q be an arbitrary mapping and let V ′ denote the set of all

v ∈ F1×k
q for that exist more than one tuple (r, S) ∈ Flq ×Fl×kq with the following property:

τ(v) = rv + S and #
{
ṽ ∈ F1×k

q

∣∣ τ(ṽ) = rṽ + S
}
≥ q(2/3+ε)k

Then we have that |V ′| < q2k/3.

Proof. We call a mapping γ : F1×k
q → F

l×k
q a straight line, if there exist r ∈ Fkq and S ∈ Fl×kq , such

that γ(v) = rv+S for all v ∈ F1×k
q . Given two straight lines γ, γ′, we call v ∈ F1×k

q an intersection
of γ and γ′, if γ(v) = γ′(v). Given a straight line γ, we say that γ intersects with τ for m times,
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if τ(v) = γ(v) for exactly m different v ∈ F1×k
q . Note that two straight lines are identical, iff they

have two or more common intersections.
Now, let Γ denote the set of all straight lines that intersect with τ for at least q(2/3+ε)k times.

Thus, V ′ is a subset of all intersections of distinct straight lines γ, γ′ ∈ Γ. However, as two distinct
straight lines may have no more than one common intersection, m straight lines have always less
than m2 intersections in total. Thus, if |V ′| ≥ q2k/3, there would be more than qk/3 straight lines in
Γ, i.e. we could find some Γ′ ⊆ Γ with |Γ′| = dqk/3e. However, this leads to a contradiction, as one
can see as follows. Each of the straight lines in Γ′ has less than qk/3 intersections with all the other
straight lines in Γ′, what leaves more than q(2/3+ε)k − qk/3 intersections with τ that are not shared
with other straight lines in Γ′. Hence, overall τ must have more than

⌈
qk/3

⌉
·
(
q(2/3+ε)k − qk/3

)
of such non-shared intersections with straight lines in Γ′, i.e.

∣∣τ(F1×k
q )

∣∣ > q(1+ε)k − q2k/3. Since

qεk ≥ 2 by assumption and thus q(1+ε)k − q2k/3 ≥ qk
(
2− q−k/3

)
> qk, this is impossible.

4.3.4 Utilizing the Leftover Hash Lemma

We introduce now our final technical tool, a fairly technical partitioning argument, which will
be needed to show that the abort behavior in the real model is indistinguishable from the abort
behavior in the ideal model. Before we take a closer look at the technical details, we briefly recap
the involved elements of our protocol Πsemi−int

OAFE (q.v. Section 3.1):

• First of all, by programming the token the adversary commits to a disjoint decomposition
of the i-th round token input space F1×k

q , in the sense that each part of this decomposition
corresponds to another affine token behavior in a later round.

• Next, the honest David announces a 2-universal hash function hi
r← F

k
q \ {0}.

• Then, Goliath announces some check information corresponding to one part of the disjoint
decomposition he committed to. The protocol will be aborted, iff David’s i-th token input zi
is not an element of this part.

• Finally, David gets his i-th OAFE input xi ∈ Fq from the environment, inputs a share

zi
r←
{
z̃ ∈ F1×k

q

∣∣ z̃hi = xi
}

into the token, and aborts the protocol if the token output does
not match Goliath’s check information.

On the one hand, since the environment w.l.o.g. knows how the corrupted Goliath programmed
the token and what check information he announced, the environment can exactly determine the
abort probability in the real model. On the other hand, since the simulator does not know the
ideal David’s OAFE input xi, the abort probability in the ideal model is independent of xi. Thus,
we have to show that the abort probability in the real model also is not noticeably correlated with
xi. A bit more formally, the security proof basically boils down to the following problem, where
A(h) can be seen as the current set of token inputs that will not yield a protocol abortion in the
current stage:

• There are two adversarially chosen mappings, x : Fkq \{0} → Fq and A : Fkq \{0} → P(F1×k
q )

(with P(F1×k
q ) denoting the power set of F1×k

q ), such that for all h, h′ ∈ Fkq \{0} the following
implication holds true:

A(h) 6= A(h′) ⇒ A(h) ∩A(h′) = ∅
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• There are the following three random variables:

h
r← F

k
q \ {0} z

r←
{
z̃ ∈ F1×k

q

∣∣ z̃h = x(h)
}

u
r← F

1×k
q

• We have to show that ∆
(
(z∈A(h),h), (u∈A(h),h)

)
is negligible, where z∈A(h) denotes a

predicate that is true iff z is an element of A(h), and analogously for u∈A(h).

We address this problem by showing that h partitions A(h) into parts of roughly equal size. Our
starting point is the well-known Leftover Hash Lemma, which we first recap for the sake of self-
containedness (Lemma 10). If x(h) and A(h) were independent of h, the Leftover Hash Lemma
would already suffice to straightforwardly solve our problem. However, our problem is more complex
and there seems no apparent way to directly apply the Leftover Hash Lemma. Nonetheless, we can
utilize the Leftover Hash Lemma to get an estimation for the case that only A(h) is independent of
h; q.v Lemma 11. Finally, this estimation is used to develop our technical partitioning argument
(Corollary 12).

Lemma 10 (Leftover Hash Lemma [BBR88, ILL89]). Let G be a 2-universal class of functions
X → Y and let g

r← G, i.e. for any distinct x, x′ ∈ X it holds that P
[
g(x) = g(x′)

]
≤ 1
|Y| . Further

let x ∈ X be some random variable with collision entropy H2(x). Then, if x and g are independent,
for the statistical distance between

(
g(x),g

)
and uniform randomness (u,g), i.e. u

r← Y, it holds:

∆
(
(g(x),g), (u,g)

)
≤ 1

2

√
2−H2(x) · |Y|

Proof. We adapt the proof from [AB09, proof of Lemma 21.26]. Let (g′,x′) be identically dis-
tributed as its unprimed counterpart (g,x). Thereby, when we treat the distribution of

(
g(x),g

)
as a probability vector ~p ∈ RY×G , we get:

‖~p‖22 = P
[
(g(x),g) = (g′(x′),g′)

]
= P[g = g′] ·P

[
g(x) = g′(x′)

∣∣g = g′
]

= P[g = g′] ·P
[
g(x) = g(x′)

]
= P[g = g′] ·

(
P[x = x′] +P[x 6= x′] ·P

[
g(x) = g(x′)

∣∣x 6= x′
])

≤ P[g = g′] ·
(
P[x = x′] +P

[
g(x) = g(x′)

∣∣x 6= x′
])

= |G|−1 ·
(

2−H2(x) +P
[
g(x) = g(x′)

∣∣x 6= x′
])

≤ |G|−1 ·
(

2−H2(x) + |Y|−1
)

Now, let ~u ∈ RY×G denote the probability vector corresponding to the uniform distribution over
Y×G. Note that ~p− ~u is orthogonal to ~u:

〈~p− ~u | ~u〉 = 〈~p | ~u〉 − 〈~u | ~u〉 = ‖~p‖1
|Y×G| −

‖~u‖1
|Y×G| = 1

|Y×G| −
1

|Y×G| = 0

By the Pythagorean Theorem follows:

‖~p− ~u‖22 = ‖~p‖22 − ‖~u‖
2
2 ≤ |G|−1 ·

(
2−H2(x) + |Y|−1

)
− |Y × G|−1 = |G|−1 · 2−H2(x)

Finally, since ‖~v‖1 ≤
√
m · ‖~v‖2 for all m ∈ N, ~v ∈ Rm, we can conclude:

∆
(
(g(x),g), (u,g)

)
= 1

2‖~p− ~u‖1 ≤
1
2

√
|Y×G| · ‖~p− ~u‖2 ≤

1
2

√
2−H2(x) · |Y|
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Lemma 11. Let Fq be some finite field of size q ≥ 2 and let k ∈ N>0. For each α ∈ Fq, h ∈ Fkq
let Zα(h) :=

{
z ∈ F1×k

q

∣∣ zh = α
}

. Further, let x : H → Fq be some arbitrary mapping. Then, for

h
r← H := Fkq \ {0} and arbitrary A ⊆ F1×k

q it holds:

E

∣∣∣∣∣A ∩ Zx(h)(h)
∣∣− 1

q

∣∣A∣∣∣∣∣ ≤ √
q · |A|

Proof. W.l.o.g., A 6= ∅. Let a
r← A and u

r← Fq. On the one hand, since P[ah = a′h] =

P[(a− a′)h = 0] = qk−1−1
qk−1

< 1
|Fq | for all distinct a, a′ ∈ A, we can estimate the statistical distance

∆
(
(ah,h), (u,h)

)
by the Leftover Hash Lemma (Lemma 10) as follows:

∆
(
(ah,h), (u,h)

)
≤ 1

2

√
2−H2(a) · |Fq| = 1

2

√
q
|A|

On the other hand, we have:

∆
(
(ah,h), (u,h)

)
= 1

2

∑
α∈Fq , h∈H

∣∣P[ah = α ∧ h = h]−P[u = α ∧ h = h]
∣∣

= 1
2

∑
α∈Fq , h∈H

P[h = h] ·
∣∣P[ah = α]−P[u = α]

∣∣
= 1

2

∑
α∈Fq , h∈H

P[h = h] ·
∣∣∣ |A∩Zα(h)|

|A| − 1
q

∣∣∣
≥ 1

2

∑
h∈H

P[h = h] ·
∣∣∣ |A∩Zx(h)(h)|

|A| − 1
q

∣∣∣
= 1

2 E

∣∣∣ |A∩Zx(h)(h)|
|A| − 1

q

∣∣∣
By the linearity of expected values follows:

E

∣∣∣∣∣A ∩ Zx(h)(h)
∣∣− 1

q

∣∣A∣∣∣∣∣ ≤ 2 |A| ·∆
(
(ah,h), (u,h)

)
≤

√
q · |A|

Corollary 12. Let Fq be some finite field of size q ≥ 2 and let k ∈ N>0. Let H := F
k
q \ {0} and

let R,Q be some arbitrary finite sets. Moreover, let some mapping A : R×Q → P(F1×k
q ) be given,

such that for all ν, ν ′ ∈ R, t ∈ Q the following implication holds true:

A(ν, t) 6= A(ν ′, t) ⇒ A(ν, t) ∩A(ν ′, t) = ∅

For each (α, h) ∈ Fq ×H let Zα(h) :=
{
z ∈ F1×k

q

∣∣ zh = α
}

. Finally, let h
r← H. Then for every

random variable t ∈ Q and arbitrary γ ∈ R>0 it holds:

P

[
∃α ∈ Fq, ν ∈ R :

∣∣∣∣∣A(ν, t) ∩ Zα(h)
∣∣− 1

q

∣∣A(ν, t)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2
+ ι(h, t)

Proof. It obviously suffices to give a proof for the case that t and h are statistically independent,
i.e. ι(h, t) = 0. Now, as t and h are independent, we may just assume that w.l.o.g. P[t = t] = 1
for some worst case constant t ∈ Q. However, once we have fixed t, we can consider α and ν as
function values of h, which we denote by α(h) and νh respectively. Thereby, for each h ∈ H we
can define the equivalence class [h] :=

{
h′ ∈ H

∣∣ A(t, νh′) = A(t, νh)
}

. Further, let H̄ ⊆ H denote
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a representative system for these equivalence classes, i.e.
∣∣H̄ ∩ [h]

∣∣ = 1 for all h ∈ H. Let some
arbitrary γ ∈ R>0 be given. By construction we have:

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
≤
∑
h∈H̄

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
Note that we can discard all summands with

∣∣A(t, νh)
∣∣< γ on the right side, since for any X ⊆ F1×k

q ,

α ∈ Fq, h ∈ H it trivially holds that
∣∣|X∩Zα(h)|− 1

q |X|
∣∣ < |X|. With Ĥ :=

{
h ∈ H̄

∣∣ γ < |A(t, νh)|
}

we get:

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
≤
∑
h∈Ĥ

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
However, since E(x) ≥ γ ·P[x ≥ γ] for every random variable x ∈ R, we can estimate by Lemma 11
for all ν ∈ Q:

P

[∣∣∣∣∣A(ν, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(ν, t)
∣∣∣∣∣ ≥ γ] ≤ 1

γ

√
q ·
∣∣A(ν, t)

∣∣
It follows:

P

[∣∣∣∣∣A(νh, t) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(νh, t)
∣∣∣∣∣ > γ

]
≤ 1

γ

∑
h∈Ĥ

√
q ·
∣∣A(νh, t)

∣∣
Since ‖~v‖1 ≤

√
m · ‖~v‖2 for all m ∈ N, ~v ∈ Rm, we can conclude that

∑m
i=1 |ai| ≤

√
m ·

∑m
i=1 a

2
i

for any a1, . . . , am ∈ R. Thus, it holds:∑
h∈Ĥ

√∣∣A(t, νh)
∣∣ ≤ √

|Ĥ| ·
∑

h∈Ĥ

∣∣A(t, νh)
∣∣

Since by construction
{
A(t, νh)

}
h∈Ĥ is a disjoint decomposition of some subset of F1×k

q , we can
further estimate: ∑

h∈Ĥ

∣∣A(t, νh)
∣∣ ≤ ∣∣F1×k

q

∣∣ = qk

Further note that by construction |Ĥ| < 1
γ · q

k. Putting things together, we have shown:

P

[∣∣∣∣∣A(t, νh) ∩ Zα(h)(h)
∣∣− 1

q

∣∣A(t, νh)
∣∣∣∣∣ > γ

]
<

qk+1/2

γ3/2

4.3.5 The simulator for a corrupted Goliath

In each choice phase, the simulator for a corrupted Goliath has to extract the correct affine function
parameters (ai, bi) ∈ Fkq × Fkq and send them to the ideal functionality F seq−ot

OAFE (q.v. Figure 5 in
Section 2.4). Note that the simulator has no influence on the choice phases (he even is not activated
at all), as long as David is not corrupted.

Our simulator for a corrupted Goliath is given in Figure 14. The high level picture how this
simulator works is as follows. The send phases are simulated straightforwardly: Z just interacts
with a simulated version of the complete real model. When the i-th send phase is over, the
simulator must extract a valid Goliath input (ai, bi, i), i.e. the simulator needs a description of the
token functionality for the i-th choice phase. Therefor, the simulator first checks whether the token
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Simulator SGoliath(A)

• Set up an honest David-machine D; also set up a simulated version of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted Goliath). Wire the simulated
machines A,D,F stateful

wrap to each other and A to the environment right the way they would be wired

in the real model with protocol Πsemi−int
OAFE (q.v. Figure 6 in Section 3.1). Further, initialize f0 ← >.

• Whenever D outputs (ready, i), extract a snapshot T ′ of T (including its current internal state)
from the view of the simulated F stateful

wrap and extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view of D. Then
run the following extraction program:

1. Pick a random vector ui
r← F

1×k
q and input (ui, i) into the token T ; let Wi denote the token’s

output (w.l.o.g. Wi ∈ F4l×k
q ). If fi−1 = ⊥ or CWi 6= r̃iui + S̃i, set fi ← ⊥ and go to step 4 of

this extraction program; else just set fi ← >.

2. Pick a random vector vi
r← F

1×k
q and input (vi, i) into a copy of T ′; let W ′ denote the token’s

output (w.l.o.g. W ′ ∈ F4l×k
q ). Retry this step until CW ′ = r̃ivi + S̃i or qk iterations have

past; in the latter case give up, i.e. send (?, i) to the environment and terminate. If afterwards
ui = vi or any row of the matrix Wi −W ′ is linearly independent of ui − vi, also give up.

3. Compute the unique vector ri ∈ F4l
q , such that Wi−W ′ = ri(ui− vi), and set Si ←Wi− riui.

Then compute ai ← ãi +Gri and bi ← b̃i +GSihi.

4. If fi = >, send (ai, bi, i) on behalf of the corrupted Goliath to the ideal functionality F seq−ot
OAFE ;

else send (0, 0, i).

Finally, upon receiving (created, i) from the ideal functionality F seq−ot
OAFE , reply with (Delivery, i).

Figure 14: The simulator program SGoliath(A), given an adversary A that corrupts the sender party.

acts honestly on random input. If the token’s output appears faulty, the simulator henceforth gives
default input (0, 0, i) to the ideal functionality; otherwise he rewinds the token to the beginning of
the i-th choice phase and inputs other vectors vi ∈ F1×k

q until he can extract an affine function that
describes the token behavior in this phase. Once having extracted this affine description of the token
functionality, the simulator can easily compute the unique Goliath input (ai, bi, i) corresponding
to this token functionality and the messages of the i-th send phase. Note that the running time of
SGoliath(A) is not a priori polynomially bounded in the security parameter λ := k log q, but there
may be up to qk simulated token queries in step 2 of the simulator’s extraction program. However,
the expected number of iterations in that step is constant. We also refer to Section 5.3 for a further
discussion on this issue.

Lemma 13. Let some arbitrary environment Z be given and some adversary A that corrupts
the sender Goliath. Then the expected running time of the simulator SGoliath(A) is polynomially
bounded in the running time of A and the corresponding token T . In particular, for each simulated
send phase the expected number of iterations performed in step 2 of the simulator’s extraction
program (q.v. Figure 14) is constant.

Proof. When the simulator enters his extraction program, we can express by a variable p the
probability that he picks some ui passing the check in step 1. Then, in each iteration of step 2 with
probability 1− p he will pick some vi that does not pass the check. Hence, if the simulator would
not give up after qk iterations but try on infinitely, we had the following probability that exactly t
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Functionality F ′

Parametrized by a finite vector space Fk
q and some runtime bound n that is polynomially bounded in the

security parameter λ := k log q. The counters jcreated, jsent, jqueried are all initialized to 0.

Send phases:

• Upon receiving input (a, b, i) from Goliath, verify that a, b ∈ Fk
q and i = jcreated + 1 ≤ n; else ignore

that input. Next, update jcreated ← i and send (created, i) to the simulator.

• Upon receiving a message (Delivery, i) from the simulator, verify that i = jsent + 1 ≤ jcreated; else
ignore that message. Next, update jsent ← i and send (ready, i) to David.

Choice phases:

• Upon receiving input (x, i) from David, verify that x ∈ Fq and i = jqueried +1 ≤ jsent; else ignore that
input. Next, update jqueried ← i, send (queried, x, i) to the simulator and wait for the simulator’s
next message. Then, upon receiving (Reply, y, i) from the simulator, output (y, i) to David.

When a party is corrupted, the simulator is granted unrestricted access to the channel between F ′ and the
corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 15: The ideal functionality for the hybrid games Game0, . . . ,Gamen. The difference to the
ideal functionality F stateful

wrap (q.v. Figure 5) is that in the choice phases the simulator learns David’s
input x and may overwrite the respective output y. The inputs a, b in the send phase are just
meaningless.

iterations are performed:

1− p for t = 0

p2 · (1− p)t−1 for t > 0

This yields the following upper bound for the expected number of iterations:

p2 ·
∑∞

t=1
t · (1− p)t−1

Note that w.l.o.g. p > 0, as otherwise step 2 of the extraction program is not entered at all. However,
if p > 0, we can use the well-known formula for the expectation of a geometric distribution:

p ·
∑∞

t=1
t · (1− p)t−1 = 1

p

Putting things together, we have shown that the expected number of iterations is at most 1.

4.3.6 A sequence of hybrid games

We prove indistinguishability between the ideal model and the real model by a hybrid argument.
In particular, we will show that for l = 1, . . . , n no environment can distinguish non-negligibly
between some hybrid games Gamel−1 and Gamel, where Game0 and Gamen are indistinguishable
from the ideal and real model respectively. Each hybrid game Gamel works like an ideal model
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with ideal functionality F ′ and (non-efficient) simulator S ′l(A). The functionality F ′ resembles the
ideal functionality F seq−ot

OAFE , but the simulator learns the ideal David’s inputs and may overwrite
the corresponding outputs of F ′. For a formal description see Figure 15. Each simulator S ′l(A)
overwrites the first l outputs, so that they exactly equal the first l David outputs in the real
model. The remaining n− l outputs are computed from an extracted affine description of the token
functionality, very similar to the ideal model. For a formal description of the simulators S ′l(A) see
Figure 16.

Simulator S ′l(A)

• Set up an honest David-machine D; also set up a simulated version of F stateful
wrap and the given real

model adversary A (which especially impersonates the corrupted Goliath). Wire the simulated
machines A,D,F stateful

wrap to each other and A to the environment right the way they would be wired
in the real model. Further, initialize f0 ← >.

• Whenever D outputs (ready, i), choose any a, b ∈ Fk
q and send (a, b, i) on behalf of the corrupted

Goliath to the functionality F ′. Then, upon receiving (created, i) from F ′, reply with (Delivery, i).

• Upon receiving (queried, xi, i) from the functionality F ′, extract the token function τi of the current
choice phase from the view of the simulated F stateful

wrap , in the sense that on input (ṽ, i) the token T
currently would output τi(ṽ). If τi(ṽ) /∈ F4k×k

q for some ṽ ∈ F1×k
q , treat this as an encoding of the

all-zero matrix; thus w.l.o.g. τi : F1×k
q → F

4k×k
q . Further, extract C,G, r̃i, S̃i, hi, ãi, b̃i from the view

of D. Then, if i > l, run the following extraction program:

1. Pick randomly ui
r← F

1×k
q and input (ui, i) into the token T , thus progressing its internal state.

2. If fi−1 = > and C · τi(ui) = r̃iui + S̃i, set fi ← >; otherwise set fi ← ⊥.

3. If fi = >, pick a random vector vi
r←
{
ṽ ∈ F1×k

q

∣∣ C · τi(ṽ) = r̃iṽ + S̃i

}
. Then, if vi = ui

or any row of the matrix τi(ui) − τi(vi) is linearly independent of ui − vi, send (?, i) to the
environment and terminate; else compute yi ← (ãi + Gri)xi + b̃i + GSihi, where ri ∈ F4k

q is
the unique vector with τi(ui)− τi(vi) = ri · (ui − vi), and Si := τi(ui)− riui.
If fi = ⊥, just set yi ← 0 (such that yi ∈ Fk

q ).

4. Send (Reply, yi, i) to F ′.

If i ≤ l, just run the following program instead:

1. Pick a random vector zi
r← {z̃ ∈ F1×k

q | z̃hi = xi} and input (zi, i) into the token T , thus
progressing its internal state.

2. If fi−1 = > and C · τi(zi) = r̃izi + S̃i, set fi ← >; otherwise set fi ← ⊥.

3. If fi = >, compute yi ← G · τi(zi) · hi + ãixi + b̃i.

If fi = ⊥, just set yi ← 0 (such that yi ∈ Fk
q ).

4. Send (Reply, yi, i) to F ′.

Figure 16: The simulator program S ′l(A) for the hybrid game Gamel, given an adversary A that
corrupts the sender Goliath. The hybrid games Gamen and Game0 are indistinguishable from the
real model with adversary A and the ideal model with simulator SGoliath(A) respectively.

Corollary 14. Given any adversary A that corrupts the sender party Goliath, our hybrid game
Game0 with simulator S ′0(A) is statistically indistinguishable from the ideal model with simulator
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SGoliath(A), and our hybrid game Gamen with simulator S ′n(A) is perfectly indistinguishable from
the real model with adversary A.

Proof. It is straightforward to see that Gamen is perfectly indistinguishable from the real model.
It is also straightforward to see that Game0 is perfectly indistinguishable from the ideal model
conditioned to the event that the simulator SGoliath(A) does not reach the iteration bound qk in
step 2 of his extraction program. However, by Lemma 13 this iteration bound is only reached with
negligible probability and thus Game0 is statistically indistinguishable from the ideal model.

4.3.7 Transformation of successive hybrid games into an indistinguishability game

For our security proof we have to show that from the environment’s view any successive hybrid
games Gamel−1,Gamel, parametrized with the finite vector space Fkq and runtime bound n, are
statistically indistinguishable. Our approach is to transform these hybrid games into an indistin-
guishability game Γ0(Fq, n, l), so that every environment Z that can distinguish Gamel−1 from
Gamel corresponds to a player that wins in Γ0(Fq, n, l) with some non-negligible advantage. This
approach allows us to successively modify the obtained indistinguishability game Γ0(Fq, n, l), so
that it becomes feasible to derive a maximum winning probability from which we can then infer a
negligible upper bound for the statistical distance between Z’s views in Gamel−1 and Gamel. The
intuition behind this sequence of indistinguishability games can be sketched as follows.

Γ0(Fq, n, l): This is just a straightforward reformulation of what the environment Z sees in the
hybrid games Gamel−1 and Gamel respectively.

Γ1(Fq, n, l): We make the player a bit stronger by giving him more direct access to the internal
game state.

Γ2(Fq, n, l, ε): We exploit that the token is somehow committed to affine behavior (cf. Section 4.3.2).
This allows us to unify the way, David’s outputs are computed in the hybrid real part and
the hybrid ideal part: Basically, David’s outputs in the hybrid real part are now also com-
puted from an extracted affine approximation of the token functionality. The additional game
parameter ε is introduced for technical reasons; it will be needed later to apply Lemma 9.

Γ3(Fq, n, l, ε): We replace the simulator’s abort message (?, i), q.v. step 2 in Figure 14. This
corresponds to a simulator modification, so that he may not give up any more, but instead
switches to the mode where David henceforth produces default (all-zero) output.

Γ4(Fq, n, l, ε): We exploit that the token functionality for most inputs can be approximated by no
more than one affine function (cf. Section 4.3.3). This allows us to consider the extracted affine
function parameters as token outputs rather than approximations of the token functionality.

Γ5(Fq, n, l): We no longer only consider the extracted affine function parameters as token outputs;
now they are.

Γ6(Fq, n, l): We make the player stronger. We let him learn the first l−1 token inputs and let him
choose the last n − l token inputs. Thus only the stage l, which is the only stage in which
Gamel−1 differs from Gamel, stays out of control of the player.

Γ7(Fq, n, l): We just exploit that several variables have become obsolete, and get rid of them.
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Γ8(Fq, n, l): We get rid of the challenge matrix C. The player must now exactly forecast token
outputs rather than only linear projections.

Γ9(Fq, n, l): We make it explicit that w.l.o.g. the player follows a deterministic strategy, solely
depending on what he learns during the game run. This is the final version of our indistin-
guishability game.

We give now a detailed description of our indistinguishability game (Figure 17) and its relation to
Gamel−1 and Gamel (Lemma 15). Then we successively transform it and show how this affects the
winning probability.

Game Γ0(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q andH := Fk
q \{0}.

The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H, a random matrix C

r← F
3k×4k
q and some

G ∈ Fk×4k
q complementary to C.

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , l − d:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , ãi, b̃i ∈ Fk
q and xi ∈ Fq.

(b) Let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, chosen secretly.

(c) If C · τj(w1, . . . , wj) 6= r̃jwj + S̃j for any j ≤ i, the player K learns yi := 0 ∈ Fk
q .

Otherwise, K learns yi := G · τi(w1, . . . , wi) · hi + ãixi + b̃i.

5. For i = l − d+ 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , ãi, b̃i ∈ Fk
q and xi ∈ Fq.

(b) Let wi := ui
r← U , chosen secretly.

(c) If C · τj(w1, . . . , wj) 6= r̃jwj + S̃j for any j ≤ i, the player K learns yi := 0 ∈ Fk
q .

Otherwise, a random vector vi
r←
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i

}
is chosen

secretly. Then, if vi = wi or any row of the matrix τi(w1, . . . , wi) − τi(w1, . . . , wi−1, vi) is
linearly independent of wi − vi, the player K receives a special message (?, i) and the game is
aborted in the sense that step 6 follows next; else K learns yi := (ãi + Gri)xi + b̃i + GSihi,
where ri ∈ F4k

q is the unique vector with τi(w1, . . . , wi)− τi(w1, . . . , wi−1, vi) = r(wi− vi), and
Si := τi(w1, . . . , wi)− riwi.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 17: Definition of a stand-alone indistinguishability game that captures the difference be-
tween the hybrid games Gamel−1 and Gamel. The player’s view in the indistinguishability game
Γ0(Fkq , n, l) corresponds straightforwardly to the environment’s view in the hybrid game Gamel−d,

where d is the secret challenge bit from step 3 of Γ0(Fkq , n, l). Thus, the statistical distance between

the environment’s view in Gamel−1 and its view in Gamel is upper bounded by 2δ, where 1
2 + δ is

the maximum winning probability in the indistinguishability game Γ0(Fkq , n, l).
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Lemma 15. Let 1
2 +δ be the maximal winning probability in the game Γ0(Fkq , n, l). Then the statis-

tical distance between the environment’s view in Gamel−1 and its view in Gamel, both parametrized
with the finite vector space Fkq and runtime bound n, is upper bounded by 2δ.

Proof. The proof is absolutely straightforward. Basically, we just have to show how the player K
in Γ0(Fkq , n, l) can perfectly emulate the hybrid game Gamel−d for an environment Z, where d is
the secret challenge bit that K finally tries to guess. Our player K just works as follows:

• Setup a simulated version of the given environment Z and the complete hybrid game Gamel.

• As soon as in the game Gamel the token T is fixed, specify the mappings τ1, . . . , τn such
that the token functionality in the i-th choice phase on input history (w1, 1), . . . , (wi−1, i− 1)
implements the function (wi, i) 7→ τi(w1, . . . , wi). This is step 1 of Γ0(Fkq , n, l).

• Always overwrite the simulated David’s random choices of C,G, h1, . . . , hn by the respective
values learned in step 2 of Γ0(Fkq , n, l).

• Whenever some r̃i, S̃i, ãi, b̃i are to be chosen in step 4a or step 5a of Γ0(Fkq , n, l), just take the
respective values from the simulated David’s view. Analogously take xi from the view of the
simulated functionality F ′.

• Whenever the simulated functionality F ′ outputs some (yi, i), overwrite yi by the respective
value learned in step 4c or step 5c of Γ0(Fkq , n, l) respectively.

• Upon receiving a special message (?, i), just forward it to the simulated environment Z and
stop the simulated hybrid game.

It is straightforward to see that this way the player K perfectly emulates a view of Z in the hybrid
game Gamel−d; this is just how we constructed the game Γ0(Fkq , n, l).

Now, let the random variable viewZ denote this emulated view of Z, and let the random
variable d denote the secret challenge bit that K tries to guess in step 6 of Γ0(Fkq , n, l). Since by

assumption the player K wins the game Γ0(Fkq , n, l) at most with probability 1
2 + δ, it must hold

for every predicate P that P
[
P (viewZ) = 0 ∧ d = 0

]
+ P

[
P (viewZ) = 1 ∧ d = 1

]
≤ 1

2 + δ.
Furthermore, note that there does exist a predicate P such that we can write the statistical distance
dist l between the views of Z in Gamel−1 and Gamel as follows:

dist l =

=P[P (view of Z in Gamel−1)=1]︷ ︸︸ ︷
P
[
P (viewZ) = 1

∣∣ d = 1
]
−

=P[P (view of Z in Gamel)=1]︷ ︸︸ ︷
P
[
P (viewZ) = 1

∣∣ d = 0
]

Thus we can conclude:

dist l = P
[
P (viewZ) = 1

∣∣ d = 1
]︸ ︷︷ ︸

=2·P[P (viewZ)=1∧d=1]

−
(

1−P
[
P (viewZ) = 0

∣∣ d = 0
]︸ ︷︷ ︸

=2·P[P (viewZ)=0∧d=0]

)
≤ 2δ
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Game Γ1(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q andH := Fk
q \{0}.

The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , l − d:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) Let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, chosen secretly.

(c) If C · τi(w1, . . . , wi) 6= r̃iwi + S̃i, the player K receives a special message (⊥, i) and the game is
aborted in the sense that step 6 follows next.

Otherwise, the player K learns τi(w1, . . . , wi) · hi.

5. For i = l − d+ 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) Let wi := ui
r← U , chosen secretly.

(c) If C · τi(w1, . . . , wi) 6= r̃iwi + S̃i, the player K receives a special message (⊥, i) and the game is
aborted in the sense that step 6 follows next.

Otherwise, a random vector vi
r←
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ+ S̃i

}
is chosen secretly.

Then, if vi = wi or any row of the matrix τi(w1, . . . , wi) − τi(w1, . . . , wi−1, vi) is linearly
independent of wi − vi, the player K receives a special message (?, i) and the game is aborted
in the sense that step 6 follows next; else K learns rixi + Sihi, where ri ∈ F4k

q is the unique
vector with τi(w1, . . . , wi)− τi(w1, . . . , wi−1, vi) = r(wi − vi), and Si := τi(w1, . . . , wi)− riwi.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 18: First transformation of our stand-alone indistinguishability game. There are two differ-
ences to the game Γ0(Fkq , n, l). Firstly, where Γ0(Fkq , n, l) in step 4c or step 5c switched to a mode
such that the player K henceforth only receives all-zero outputs, now K is notified about that by a
special message (⊥, i) and the game is aborted. Secondly, K now directly learns τi(w1, . . . , wi) · hi
in step 4c and rixi + Sihi in step 5c instead of the corresponding image of ϑ 7→ Gϑ + ãixi + b̃i.
These game modifications just make K strictly stronger and G, (ã1, b̃1), . . . , (ãn, b̃n) obsolete.

Lemma 16. The maximum winning probability in the game Γ0(Fkq , n, l) is upper bounded by the

maximum winning probability in the game Γ1(Fkq , n, l).

Proof. This holds trivially, since the player in Γ1(Fkq , n, l) is strictly stronger than in Γ0(Fkq , n, l).

Lemma 17. The probability that the game Γ2(Fkq , n, l, ε) is aborted in step 4d, is upper bounded
by:

n ·
(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1
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Game Γ2(Fk
q , n, l, ε)

Parametrized by a finite vector space Fk
q , some n, l ∈ N>0 with l ≤ n, and ε ∈ R>0 such that q(2/3+ε)k ≥ q.

Let U := F1×k
q and H := Fk

q \ {0}. The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.

(c) If C · τi(w1, . . . , wi) 6= r̃iwi + S̃i, the player K receives a special message (⊥, i) and the game is
aborted in the sense that step 5 follows next.

(d) In the following cases the player K receives a special message (?, i) and the game is aborted in
the sense that step 5 follows next:

i. C ·τi(w1, . . . , wi) = r̃iwi+ S̃i and #
{
ṽ ∈ U

∣∣ C ·τi(w1, . . . , wi−1, ṽ) = r̃iṽ+ S̃i

}
≤ q(2/3+ε)k.

ii. There exist some W,W ′ ∈ τi(w1, . . . , wi−1,U), such that rank(CW − CW ′) ≤ 1 and
rank(W −W ′) > rank(CW − CW ′).

Otherwise, K learns rixi + Sihi, where (ri, Si) ∈ F4k
q × F4k×k

q is the unique tuple such that

τi(w1, . . . , wi−1, v) = riv + Si for all v ∈
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i

}
.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 19: Second transformation of our stand-alone indistinguishability game. The difference to
the game Γ1(Fkq , n, l) is the now uniform way to compute outputs for K. Note that the tuple (ri, Si)
in step 4d is well-defined by Lemma 7.

Proof. Let some arbitrary player K be given and let the random variables C,w1, . . . ,wn represent
the same-named values in the game Γ2(Fkq , n, l, ε). It is straightforward to see that for each stage

i ∈ {1, . . . , n} the case 4(d)i occurs at most with probability p := q(2/3+ε)k/qk−1. Further, for
each stage i ∈ {1, . . . , n} we have by Lemma 8 that the case 4(d)ii occurs at most with probability
p′ := (q1−3k + q2−3k) · |U|2, if C and (w1, . . . ,wi−1) are statistically independent. Thus, by the
Union Bound we can estimate the overall probability that the game Γ2(Fkq , n, l, ε) is aborted in
step 4d by n · (p+ p′) + ι

(
C, (w1, . . . ,wn)

)
. Estimating ι

(
C, (w1, . . . ,wn)

)
by Corollary 6 yields:

n · (p+ p′) + ι
(
C, (w1, . . . ,wn)

)
< n ·

(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1

Lemma 18. The statistical distance between K’s view in the game Γ1(Fkq , n, l) and K’s view in the

game Γ2(Fkq , n, l, ε) is upper bounded by:

n ·
(
q−(2/3+ε)k + q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1

Proof. Let some arbitrary player K for the game Γ2(Fkq , n, l, ε) be given. Note that the only

difference to the game Γ1(Fkq , n, l) is the computation of K’s output in step 4d, which is now the
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Game Γ3(Fk
q , n, l, ε)

Parametrized by a finite vector space Fk
q , some n, l ∈ N>0 with l ≤ n, and ε ∈ R>0 such that q(2/3+ε)k ≥ q.

Let U := F1×k
q and H := Fk

q \ {0}. The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.

(c) In the following cases the player K receives a special message (⊥, i) and the game is aborted in
the sense that step 5 follows next:

i. It holds that C · τi(w1, . . . , wi) 6= r̃iwi + S̃i.
ii. It holds that #

{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i

}
≤ q(2/3+ε)k.

iii. There exist some W,W ′ ∈ τi(w1, . . . , wi−1,U), such that rank(CW − CW ′) ≤ 1 and
rank(W −W ′) > rank(CW − CW ′).

Otherwise, K learns rixi + Sihi, where (ri, Si) ∈ F4k
q × F4k×k

q is the unique tuple such that

τi(w1, . . . , wi−1, v) = riv + Si for all v ∈
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i

}
.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 20: Third transformation of our stand-alone indistinguishability game. The only difference
to the game Γ2(Fkq , n, l, ε) is that the abort message (?, i) was replaced by (⊥, i).

same for i ≤ l − d and i > l − d. Since by Lemma 17 we already have an estimation for the abort
probability in step 4d, it suffices to consider the case that K actually learns rixi+Sihi. If i ≤ l−d,
we can just argue that rixi + Sihi = (riwi + Si)hi = τi(w1, . . . , wi) · hi by construction, and thus
the player K receives exactly the same as he would have received in step 4c of Γ1(Fkq , n, l). For
i > l − d, we exploit the following facts:

• If the game is not aborted afore, in step 4d of Γ2(Fkq , n, l, ε) the player K learns rixi + Sihi,

where (ri, Si) ∈ F4k
q × F4k×k

q is the unique tuple such that τi(w1, . . . , wi−1, v) = riv + Si for

all v ∈
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}

.

• Thus, for every v ∈
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}

either v = wi, or ri is
the unique vector with τi(w1, . . . , wi) − τi(w1, . . . , wi−1, vi) = r(wi − vi) and it holds that
Si = τi(w1, . . . , wi)− riwi.

• Moreover, since #
{
ṽ ∈ U

∣∣ C · τi(w1, . . . , wi−1, ṽ) = r̃iṽ + S̃i
}
> q(2/3+ε)k for non-aborted

stages, a uniformly random v may equal wi with probability less than q−(2/3+ε)k.

Putting these three observations together, we can conclude that with probability higher than
q−(2/3+ε)k in step 5c of Γ1(Fkq , n, l) the same tuple (ri, Si) and hence the same output rixi + Sihi
would be generated as in step 4d of Γ2(Fkq , n, l, ε). Thus, conditioned to the event that Γ2(Fkq , n, l, ε)
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Game Γ4(Fk
q , n, l, ε)

Parametrized by a finite vector space Fk
q , some n, l ∈ N>0 with l ≤ n, and ε ∈ R>0 such that q(2/3+ε)k ≥ q.

Let U := F1×k
q and H := Fk

q \ {0}. The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τi : U i → F
4k×k
q .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.

(c) If there exists a unique tuple (ri, Si) ∈ F4k
q × F4k×k

q such that τi(w1, . . . , wi) = riwi + Si and

#
{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = riṽ + Si

}
> q(2/3+ε)k, and for this unique tuple it holds that

(Cri, CSi) = (r̃i, S̃i), then K learns rixi + Sihi.

Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that step 5
follows next.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 21: Fourth transformation of our stand-alone indistinguishability game. The only difference
to Γ3(Fkq , n, l, ε) is the way the tuple (ri, Si) is computed in step 4c.

is not aborted in step 4d, the statistical distance between K’s view in Γ2(Fkq , n, l, ε) and K’s view

in Γ1(Fkq , n, l) is upper bounded by n · q−(2/3+ε)k. Finally, we just have to add the estimation
from Lemma 17 to get the claimed upper bound for the statistical distance between K’s view in
Γ1(Fkq , n, l) and K’s view in Γ2(Fkq , n, l, ε) without any conditions.

Corollary 19. The statistical distance between K’s view in the game Γ2(Fkq , n, l, ε) and K’s view

in the game Γ3(Fkq , n, l, ε) is upper bounded by:

n ·
(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1

Proof. The only difference between Γ2(Fkq , n, l, ε) and Γ2(Fkq , n, l, ε) is that the abort message (?, i)

in step 4d of Γ2(Fkq , n, l, ε) was replaced by (⊥, i). Thus, the statistical distance between K’s

respective views is just the probability that the game Γ2(Fkq , n, l, ε) is aborted in step 4d. We
already estimated this abort probability by the claimed term in Lemma 17.

Lemma 20. The statistical distance between K’s view in the game Γ3(Fkq , n, l, ε) and K’s view in

the game Γ4(Fkq , n, l, ε) is upper bounded by n · q1−k/3, if qk ≥ 21/ε.

Proof. The only difference between Γ4(Fkq , n, l, ε) and Γ3(Fkq , n, l, ε) is in the computation of the
tuple (ri, Si). It is straightforward to verify (see also Lemma 7) that by construction in step 4c
of Γ3(Fkq , n, l, ε) it always holds: Either the game is aborted, or τi(w1, . . . , wi) = riwi + Si and
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Game Γ5(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q andH := Fk
q \{0}.

The player K is computationally unbounded.

1. For each i ∈ {1, . . . , n} the player K specifies some mapping τ̃i : U i → F
4k×(1+k)
q ∪ {⊥}.

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. A challenge bit d
r← {0, 1} is chosen secretly.

4. For i = 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q , xi ∈ Fq.

(b) If i ≤ l − d, let wi := zi
r← {z̃ ∈ U | z̃hi = xi}, else let wi := ui

r← U , chosen secretly.

(c) If C · τ̃i(w1, . . . , wi) = (r̃i, S̃i), then K learns (ri, Si) := τ̃i(w1, . . . , wi).

Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that step 5
follows next.

5. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 22: Fifth transformation of our stand-alone indistinguishability game. There are two differ-
ences to the game Γ4(Fkq , n, l, ε), which just make the player K strictly stronger. Firstly, the player
K directly learns (ri, Si) instead of only rixi+Sihi in step 4c. Secondly, the tuple (ri, Si) in step 4c
is no longer generated deterministically from τi and w1, . . . , wi by the game, but the player K may
specify an arbitrary mapping τ̃i instead that directly generates (ri, Si) from w1, . . . , wi.

#
{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = riṽ+ Si
}
> q(2/3+ε)k and (Cri, CSi) = (r̃i, S̃i). Thus, we just have

to estimate the probability that there exists some other tuple (r′, S′) ∈ F4k
q × F4k×k

q \ {(ri, Si)}
with τi(w1, . . . , wi) = r′wi + S′ and #

{
ṽ ∈ U

∣∣ τi(w1, . . . , wi−1, ṽ) = r′ṽ + S′
}
> q(2/3+ε)k. Now

given that qk ≥ 21/ε, we have by Lemma 9 that only for less than q2k/3 different choices of wi there
may exist such a second tuple (r′, S′). For each stage i ∈ {1, . . . , n}, since wi is chosen uniformly
random with support size qk−1 or larger, we can hence upper bound the probability that such a
second tuple (r′, S′) exists by q2k/3/qk−1. Thus, our lemma follows by the Union bound.

Lemma 21. The maximum winning probability in the game Γ4(Fkq , n, l, ε) is upper bounded by the

maximum winning probability in the game Γ5(Fkq , n, l).

Proof. This holds trivially, since the player in Γ5(Fkq , n, l) is strictly stronger than in Γ4(Fkq , n, l, ε).

Lemma 22. The maximum winning probability in the game Γ5(Fkq , n, l) is upper bounded by the

maximum winning probability in the game Γ6(Fkq , n, l).

Proof. This holds trivially, since the player in Γ6(Fkq , n, l) is strictly stronger than in Γ5(Fkq , n, l).

Lemma 23. The games Γ6(Fkq , n, l) and Γ7(Fkq , n, l) have the same maximum winning probability.

Proof. This holds trivially, since the changes from Γ6(Fkq , n, l) to Γ7(Fkq , n, l) are just cosmetic.
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Game Γ6(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q andH := Fk
q \{0}.

The player K is computationally unbounded.

1. (a) For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U i → F
4k×(1+k)
q ∪ {⊥}.

(b) For each i ∈ {l + 1, . . . , n} the player K chooses some ui ∈ U .

2. The player K learns n random vectors h1, . . . , hn
r← H and a random matrix C

r← F
3k×4k
q .

3. For i = 1, . . . , l − 1: The player K chooses some xi ∈ Fq and learns wi := zi
r← {z̃ ∈ U | z̃hi = xi}.

4. (a) A challenge bit d
r← {0, 1} is chosen secretly, and K chooses some r̃l ∈ F3k

q , S̃l ∈ F3k×k
q , xl ∈ Fq.

(b) If d = 0, let wl := zl
r← {z̃ ∈ U | z̃hl = xl}, else let wl := ul

r← U , chosen secretly.

(c) If C · τ̃l(w1, . . . , wl) = (r̃l, S̃l), then K learns (rl, Sl) := τ̃l(w1, . . . , wl).

Otherwise, K receives a special message (⊥, l) and the game is aborted in the sense that step 6
follows next.

5. For i = l + 1, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q . Let wi := ui.

(b) If C · τ̃i(w1, . . . , wi) = (r̃i, S̃i), then K learns (ri, Si) := τ̃i(w1, . . . , wi).

Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that step 6
follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 23: Sixth transformation of our stand-alone indistinguishability game. There are two dif-
ferences to the game Γ5(Fkq , n, l), which just make the player K strictly stronger. Firstly, the last
n− l “token inputs” wl+1, . . . , wn are no longer chosen uniformly at random, but the player K may
choose them at the start of the game in step 1b. Secondly, in the first l−1 stages the game may no
longer be aborted, and the player K directly learns wi instead of only τ̃i(w1, . . . , wi), which makes
the mappings τ̃1, . . . , τ̃l−1 obsolete.

Lemma 24. The maximum winning probability in the game Γ7(Fkq , n, l) and the maximum winning

probability in the game Γ8(Fkq , n, l) differ at most by:

n · q1−k +
√

exp
(
n · q2−k

)
− 1

Proof. Let some arbitrary player K be given and let the random variables C,w1, . . . ,wl denote the
same-named values in the game Γ7(Fkq , n, l). First of all, we just arbitrarily fix the random coins

of K and hence get some fixed mappings τ̃l, . . . , τ̃n : U l → F
4k×(1+k)
q ∪ {⊥} in step 1 of Γ7(Fkq , n, l).

Now note that, if CM 6= CM ′ for all distinct M,M ′ ∈ τ̃i(w1, . . . ,wl−1,U), then τ̃i(w1, . . . ,wl) is
completely determined by

(
C,w1, . . . ,wl−1,C · τ̃i(w1, . . . ,wl)

)
and the specification of τ̃i. Thus,

conditioned to the event that CM 6= CM ′ for all distinct M,M ′ ∈ τ̃i(w1, . . . ,wl−1,U) for all
i ∈ {l, . . . , n} in both games Γ7(Fkq , n, l) and Γ8(Fkq , n, l), we can straightforwardly transform a

player for Γ7(Fkq , n, l) into a player for Γ8(Fkq , n, l) with exactly the same winning probability.

In other words, the maximum winning probability in the game Γ7(Fkq , n, l) may differ from the
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Game Γ7(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q andH := Fk
q \{0}.

The player K is computationally unbounded.

1. For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U l → F
4k×(1+k)
q ∪ {⊥}.

2. The player K learns l random vectors h1, . . . , hl
r← H and a random matrix C

r← F
3k×4k
q .

3. For i = 1, . . . , l − 1: The player K chooses some xi ∈ Fq and learns wi := zi
r← {z̃ ∈ U | z̃hi = xi}.

4. (a) A challenge bit d
r← {0, 1} is chosen secretly, and K chooses some xl ∈ Fq.

(b) If d = 0, let wl := zl
r← {z̃ ∈ U | z̃hl = xl}, else let wl := ul

r← U , chosen secretly.

5. For i = l, . . . , n:

(a) The player K chooses some r̃i ∈ F3k
q , S̃i ∈ F3k×k

q .

(b) If C · τ̃i(w1, . . . , wl) = (r̃i, S̃i), then K learns (ri, Si) := τ̃i(w1, . . . , wl).

Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that step 6
follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 24: Seventh transformation of our stand-alone indistinguishability game. This is just a
“cleaned” version of Γ6(Fkq , n, l). Firstly, instead of letting the player K choose the last n − l
“token inputs” wl+1, . . . , wn at the start of the game explicitly, they are now implicitly hard-coded.
Secondly, the meanwhile obsolete random vectors hl+1, . . . , hn are omitted. Thirdly, we moved K’s
choice of (r̃l, S̃l) and the subsequent output generation from step 4 to step 5.

maximum winning probability in the game Γ8(Fkq , n, l) at most by the probability that CM = CM ′

for some distinct M,M ′ ∈ τ̃i(w1, . . . ,wl−1,U) with i ∈ {l, . . . , n}. However, by Lemma 8 and the

Union Bound we can estimate this probability by (n − l + 1) · q1−3k ·
∣∣U∣∣2 + ι

(
C, (w1, . . . ,wl−1)

)
.

Further, by Corollary 6 we have that ι
(
C, (w1, . . . ,wl−1)

)
<
√

exp
(
(l − 1)q2−k

)
− 1. Together this

yields the claimed estimation.

Lemma 25. The games Γ8(Fkq , n, l) and Γ9(Fkq , n, l) have the same maximum winning probability.

Proof. This holds trivially, since w.l.o.g. we only need to consider deterministic players.

Lemma 26. The maximum winning probability in the game Γ9(Fkq , n, l) is upper bounded by:

1
2 + n ·

(
2q(4−k)/3 + q ·

√
exp
(
n · q2−k

)
− 1

)
Proof. W.l.o.g. we consider a deterministic player K, i.e. the mappings τ̃i, xi, σ̃i are all fixed. Let
the random variables h1, . . . ,hn, z1, . . . , zl−1,w,d represent the same-named random values in the
game Γ9(Fkq , n), i.e. it holds:

d
r← {0, 1} h1, . . . ,hl

r← H zi
r←
{
z ∈ U

∣∣ zhi = xi(h1, . . . ,hl, z1, . . . , zi−1)
}
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Game Γ8(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q andH := Fk
q \{0}.

The player K is computationally unbounded.

1. For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U l → F
4k×(1+k)
q ∪ {⊥}.

2. The player K learns l random vectors h1, . . . , hl
r← H and a random matrix C

r← F
3k×4k
q .

3. For i = 1, . . . , l − 1: The player K chooses some xi ∈ Fq and learns wi := zi
r← {z̃ ∈ U | z̃hi = xi}.

4. (a) A challenge bit d
r← {0, 1} is chosen secretly, and K chooses some xl ∈ Fq.

(b) If d = 0, let wl := zl
r← {z̃ ∈ U | z̃hi = xi}, else let wl := ul

r← U , chosen secretly.

5. For i = l, . . . , n:

(a) The player K chooses some ri ∈ F4k
q , Si ∈ F4k×k

q .

(b) If τ̃i(w1, . . . , wl) = (ri, Si), then K is notified about that by a special message (>, i).
Otherwise, K receives a special message (⊥, i) and the game is aborted in the sense that step 6
follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 25: Eighth transformation of our stand-alone indistinguishability game. The only difference
to Γ7(Fq, n, l) is that in step 5b the player K now must exactly forecast τ̃i(w1, . . . , wl) rather than
only the linear projection C · τ̃i(w1, . . . , wl).

For convenience we set:

H := (h1, . . . ,hl) H′ := (h1, . . . ,hl−1) T := (z1, . . . , zl−1,w) T′ := (z1, . . . , zl−1)

Further, let the random variable m ∈ {l − 1, . . . , n} represent the index of the latest stage where
the game is not aborted; i.e. τ̃i(T) = σ̃i(H,T′) for all i ∈ {l, . . . ,m}, and τ̃m+1(T) 6= σ̃m+1(H,T′)
if not m = n. Note that K’s complete view can be deterministically reconstructed from (H,T′,m)
and K’s program code. Thus, with the random variable d̃ ∈ {0, 1} representing K’s final guess, we
have:

P
[
d̃ = d

]
= P

[
d̃ = 0

∣∣d = 0
]
·P
[
d = 0

]
+P

[
d̃ = 1

∣∣d = 1
]
·P
[
d = 1

]
= 1

2

(
P
[
d̃ = 0

∣∣d = 0
]

+P
[
d̃ = 1

∣∣d = 1
])

= 1
2

(
P
[
d̃ = 0

∣∣d = 0
]

+ 1−P
[
d̃ = 0

∣∣d = 1
])

≤ 1
2 + 1

2

∣∣∣P[d̃ = 0
∣∣d = 0

]
−P

[
d̃ = 0

∣∣d = 1
]∣∣∣

≤ 1
2 + 1

2

∑
H,T ′,m

∣∣∣P[(H,T′,m) = (H,T ′,m)
∣∣d = 0

]
−P

[
(H,T′,m) = (H,T ′,m)

∣∣d = 1
]∣∣∣ (1)

Now, for H ∈ Hl, T ′ ∈ U l−1, m ∈ {l − 1, . . . , n} we define the following sets:

Am(H,T ′) :=
{
ṽ ∈ U

∣∣ ∀ j ∈ {l, . . . ,m} : τ̃j(T
′, ṽ) = σ̃j(H,T

′)
}

Ām(H,T ′) := Am\Am+1 with the convention that An+1(H,T ′) = ∅
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Game Γ9(Fk
q , n, l)

Parametrized by a finite vector space Fk
q and some n, l ∈ N>0 with l ≤ n. Let U := F1×k

q andH := Fk
q \{0}.

The player K is computationally unbounded.

1. (a) For each i ∈ {1, . . . , l} the player K specifies some mapping xi : Hl × U i−1 → Fq.

(b) For each i ∈ {l, . . . , n} the player K specifies some mapping τ̃i : U l → F
4k×(1+k)
q ∪ {⊥}.

(c) For each i ∈ {l, . . . , n} the player K specifies some mapping σ̃i : Hl × U l−1 → F
4k×(1+k)
q .

2. The player K learns l random vectors h1, . . . , hl
r← H.

3. For i = 1, . . . , l − 1: The player K learns zi
r←
{
z̃ ∈ U

∣∣ z̃hi = xi(h1, . . . , hl, z1, . . . , zi−1)
}

.

4. (a) A challenge bit d
r← {0, 1} is chosen secretly.

(b) If d = 0, let w
r←
{
z̃ ∈ U

∣∣ z̃hl = xl(h1, . . . , hn, z1, . . . , zl−1)
}

, else let w
r← U , chosen secretly.

5. For i = l, . . . , n: If τ̃i(z1, . . . , zl−1, w) = σ̃i(h1, . . . , hl, z1, . . . , zl−1), then K is notified about that by
a special message (>, i); else K receives a special message (⊥, i) and the game is aborted in the sense
that step 6 follows next.

6. The player K computes and outputs a guess bit d̃ ∈ {0, 1}. He wins the game, if d̃ = d.

Figure 26: Final transformation of our stand-alone indistinguishability game. The difference to the
game Γ8(Fkq , n, l) is that the player K must specify in step 1 how all his future choices will depend
on the information gathered so far, and the meanwhile obsolete random matrix C is omitted.

The intuition behind this is that Am(H,T′) consists of all token inputs for stage l, such that the
game is not aborted before stage m. Accordingly, Ām(H,T′) consists of all token inputs for stage
l, such that stage m is the latest non-aborted stage. In other words, it holds:

Am(H,T ′) =
{
w ∈ U

∣∣ (H,T′,w) = (H,T ′, w) ⇒ m ≥ m
}

Ām(H,T ′) =
{
w ∈ U

∣∣ (H,T′,w) = (H,T ′, w) ⇒ m = m
}

Further, for all h ∈ H, α ∈ Fq we define:

Zα(h) := {z̃ ∈ U | zh = α}

Note that w
r← Zxl(H,T′)(hl) if d = 0, and w

r← U if d = 1. Hence, given H := (h1, . . . , hl) ∈ Hl,
T ′ ∈ U l−1, m ∈ {l − 1, . . . , n}, we can compute:∣∣∣P[m = m

∣∣ (d,H,T′) = (0, H, T ′)
]
− P

[
m = m

∣∣ (d,H,T′) = (1, H, T ′)
]∣∣∣

=
∣∣∣P[w ∈ Ām(H,T ′)

∣∣ (d,H,T′) = (0, H, T ′)
]
− P

[
w ∈ Ām(H,T ′)

∣∣ (d,H,T′) = (1, H, T ′)
]∣∣∣

=

∣∣∣∣∣
∣∣Zxl(H,T ′)(hl) ∩ Ām(H,T ′)

∣∣∣∣Zxl(H,T ′)(hl)∣∣ −
∣∣Ām(H,T ′)

∣∣∣∣U|
∣∣∣∣∣

= q1−k ·
∣∣∣∣∣Zxl(H,T ′)(hl) ∩ Ām(H,T ′)

∣∣− 1
q

∣∣Ām(H,T ′)
∣∣∣∣∣
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Plugging this into (1), we get:

P[d̃ = d] ≤ 1
2 + q1−k

2

n∑
m=l−1

E

∣∣∣∣∣Zxl(H,T′)(hl) ∩ Ām(H,T′)
∣∣− 1

q

∣∣Ām(H,T′)
∣∣∣∣∣

Now we exploit that
∣∣Ām(H,T ′)

∣∣ =
∣∣Am(H,T ′) \ Am−1(H,T ′)

∣∣ =
∣∣Am(H,T ′)

∣∣− ∣∣Am−1(H,T ′)
∣∣ by

construction and analogously
∣∣Z ∩ Ām(H,T ′)

∣∣ =
∣∣Z ∩ Am(H,T ′)

∣∣ − ∣∣Z ∩ Am−1(H,T ′)
∣∣ for every

Z ⊆ U . Using this and the Triangle Inequality, we can derive:

P[d̃ = d] ≤ 1
2 + q1−k

n+1∑
m=l−1

E

∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣

I.e., we just lost the factor 1
2 in front of the big sum and in return could replace each Ām by Am.

Moreover, since always Al−1(H,T′) = F
1×k
q and An+1(H,T′) = ∅ by definition, the first and last

summand of the expression above are always zero and can be discarded; i.e. it holds:

P[d̃ = d] ≤ 1
2 + q1−k

n∑
m=l

E

∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣ (2)

Now we exploit that
{
Am(H,T ′)

}
H∈Hl can be considered as a disjoint decomposition of some subset

of F1×k
q , since by construction we have:

Am(H1, T
′) 6= Am(H2, T

′) ⇒ Am(H1, T
′) ∩Am(H2, T

′) = ∅

Thus, for arbitrary γ ∈ R>0 by Corollary 12 follows:

P

[
∃α ∈ Fq, H ∈ Hl :

∣∣∣∣∣Zα(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2
+ ι(hl,T

′)

We instantiate α in this inequality by xl(H,T′) and H by H, which yields:

P

[∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣ > γ

]
≤ qk+1/2

γ3/2
+ ι(hl,T

′)

Since E(x) =
∫∞

0 P[x > γ] dγ for every real-valued random variable x ∈ R≥0, this directly implies:

E

∣∣∣∣∣Zxl(H,T′)(hl) ∩Am(H,T′)
∣∣− 1

q

∣∣Am(H,T′)
∣∣∣∣∣ ≤ ∫ qk

0
min

{
1, q

k+1/2

γ3/2

}
+ ι(hl,T

′) dγ

= q(2k+1)/3 +

∫ qk

q(2k+1)/3

qk+1/2

γ3/2
dγ + qk · ι(hl,T′) = 2q(2k+1)/3 − q(k+1)/2 + qk · ι(hl,T′)

Moreover, by Corollary 6 we have that ι(hl,T
′) <

√
exp
(
(l − 1)q2−k

)
− 1. Using (2), we conclude:

P[d̃ = d] < 1
2 + q1−k · (n− l + 1) ·

(
2q(2k+1)/3 − q(k+1)/2 + qk ·

√
exp
(
(l − 1) · q2−k

)
− 1

)
< 1

2 + n ·
(

2q(4−k)/3 + q ·
√

exp
(
n · q2−k

)
− 1

)
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4.3.8 Concluding the security proof

We can now finally conclude our security proof by just putting things together. We first sum up
what we know so far about successive hybrid games; then we conclude this whole section with our
final security theorem.

Corollary 27. For any l ∈ {1, . . . , n}, the hybrid games Gamel−1 and Gamel are statistically
indistinguishable, if k ≥ 5. More particular, the statistical distance between the environment’s
respective views is negligible in the security parameter λ := k log q, if only k ≥ 5.

Proof. For i = 0, . . . , 9, let δi denote the player’s advantage in the respective indistinguishability
game; i.e. the maximum winning probability in the game Γi(F

k
q , n, l), or Γi(F

k
q , n, l, ε) respectively,

is 1
2 + δi. By Lemma 15, the statistical distance between the environment’s views in Gamel−1 and

Gamel is upper bounded by 2δ0. Furthermore, given any ε ∈ R>0 with q(2/3+ε)k ≥ q, it holds:

δ0 ≤ δ1 by Lemma 16

δ1 ≤ δ2 + n ·
(
q−(2/3+ε)k + q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1 by Lemma 18

δ2 ≤ δ3 + n ·
(
q1−(1/3−ε)k + q1−k + q2−k)+

√
exp
(
n · q2−k

)
− 1 by Corollary 19

δ3 ≤ δ4 + n · q1−k/3, if qk ≥ 21/ε by Lemma 20

δ4 ≤ δ5 by Lemma 21

δ5 ≤ δ6 by Lemma 22

δ6 = δ7 by Lemma 23

δ7 ≤ δ8 + n · q1−k +
√

exp
(
n · q2−k

)
− 1 by Lemma 24

δ8 = δ9 by Lemma 25

δ9 ≤ n ·
(

2q(4−k)/3 + q ·
√

exp
(
n · q2−k

)
− 1

)
by Lemma 26

Now, let ε := 1
12 and let k ≥ 5, which especially yields that q(2/3+ε)k ≥ q and allows us to estimate:

q−(2/3+ε)k, q1−(1/3−ε)k, q1−k, q2−k, q1−(1/3−ε)k, q1−k/3, q(4−k)/3 ≤ q−k/5

Further let qk ≥ n25/3. This, together with k ≥ 5, allows us to estimate:

q ·
√

exp
(
n · q2−k

)
− 1 ≤ q ·

√
exp
(
q2−22k/25

)
− 1 < q ·

√
4q2−22k/25 = 2q2−11k/25 ≤ 2q−k/5

Putting things together, we have shown that the statistical distance between the environment’s
views in the hybrid games Gamel−1 and Gamel is upper bounded by (13n+ 3) · exp(−λ/5), where
λ := k log q is the security parameter and we need that exp(λ) ≥ max

(
212, n25/3

)
.

Theorem 28. Let some arbitrary environment Z be given and some adversary A that corrupts
the sender Goliath. Then the view of Z in the ideal model with ideal functionality F seq−ot

OAFE and
simulator SGoliath(A) is statistically indistinguishable (with security parameter λ := k log q) from
the view of Z in the real model with protocol Πsemi−int

OAFE and adversary A, if only k ≥ 5.
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Proof. By Corollary 27 we have that the statistical distance between the environment’s views in
successive hybrid games Gamel−1,Gamel is negligible in the security parameter λ, if only k ≥ 5. By
the Union Bound, we can conclude that the statistical distance between the environment’s views
in Game0 and Gamen may be at most by a factor n bigger, and hence is still negligible. Finally, by
Corollary 14 we have that Game0 is statistical indistinguishable from the ideal model, and Gamen
is perfectly indistinguishable from the real model. Thus, the ideal ideal model and the real model
must be statistical indistinguishable.

5 No-go arguments & conclusion

In this section we conclude our work by a short summery of what we achieved so far, what further
improvement opportunities are left open and which drawbacks of our work seem unavoidable (or
at least hard to circumvent). We start with the negative aspects; they highlight that our results
are quite close to optimal. Though, we give rather intuitive arguments than full formal proofs.

5.1 Impossibility of unlimited token reuse without computational assumptions

Our first negative result is that tokens with a limited amount of entropy can only be used to
implement a limited number of statistically secure OTs. To show this we will only consider passively
secure protocols and show stronger statements. Namely, given a token that can store ` bits of
randomness, we cannot hope to instantiate more than `/2 bit-OTs between David and Goliath
using this token. For passive security this is optimal. Given that the token behaves honestly, we
can implement bit-OT from Goliath to David by using the token as a selective decrypter : Goliath
one-time-pad encrypts his OT-inputs, sends them to David, and David can ask the token for one
of the keys and decrypt his output. The correctness and privacy properties of this protocol follow
immediately.

Now, for our impossibility argumentation assume we were given k bit-OTs between Goliath
and David. In the semi-honest setting, implementing k-bit string-OT is then trivial: David just
inputs the same choice-bit into each bit-OT. We thus only need to show that there is no protocol
Π that implements a single k-bit string-OT using a token with at most ` bits of randomness, when
k is significantly larger than `/2. With the above said, we can also conclude that there exists no
protocol realizing k bit-OTs using a token with significantly less than 2k bits of randomness.

Assume we were given a correct and statistically receiver-private protocol Π that implements
k-bit string-OT in the F stateful

wrap -hybrid model, where the sender of the OT is also the sender of
the token. We first provide an extractor Extc(τ, σ) which computes the most likely David output,
given David’s choice bit c, a transcript τ of all messages between David and Goliath, and the token
random tape σ. Notice that τ only contains the messages sent and received by David, not his
complete view. Our extractor does the following. It iterates through all possible random tapes r
for David, of which there are at most 2poly(k), since we require an honest David to be efficient. For
each such random tape r, Extc(τ, σ) checks if r is consistent with the message transcrip τ and the
token random tape σ. More precisely, Extc(τ, σ) simulates David with input c and random tape r,
and a token with random tape σ. For each message m sent by this simulated David to Goliath,
Extc(τ, σ) checks whether m appears in the transcript τ at the appropriate position. If for any
message m this is not the case, the random tape r is discarded. If m is identical to the message in
τ , then Extc(τ, σ) answers the message by the simulated David with the next message of Goliath
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in τ . In the end, the simulated David will produce an output s. Extc(τ, σ) stores these David
outputs in a list. After all possible random tapes r are iterated, Extc(τ, σ) checks which output s
appears most frequently in the list of David outputs and then outputs this s. By the correctness
property of Π it must hold with overwhelming probability that Extc(τ, σ) = sc, where σ and τ are
generated by a real run of Π with Goliath input (s0, s1), David input c, and fresh random tapes for
both of them.

However, it must also hold with overwhelming probability that Ext1−c(τ, σ) = s1−c, as otherwise
an unbounded Goliath could simply compute

(
Ext0(τ, σ),Ext1(τ, σ)

)
, compare it with (s0, s1) and

thereby learn David’s choice bit c. Thus, for real runs of Π it holds with overwhelming probability
that (s0, s1) =

(
Ext0(τ, σ),Ext1(τ, σ)

)
, regardless of Goliath’s input distribution. In other words,

the Shannon entropy H1(s0, s1 | τ, σ) =: ν is always negligible.
Now we turn to show that a transcript τ alone may contain only negligible information about

Goliath’s input (s0, s1). This will conclude our argumentation, since together with the negligibility
of H1(s0, s1 | τ, σ) it will yield that σ may have only negligibly less entropy than (s0, s1). Assume
that Π is also statistically sender-private and consider protocol runs with uniformly random Goliath
input (s0, s1). If we set c = 0, it must hold thatH1(s1 | τ, s0) ≥ k−µ for some negligible µ, because of
the sender-privacy property of Π. Especially, in the case of c = 0 it must hold thatH1(s1 | τ) ≥ k−µ.
Analogously, in the case of c = 1 it must hold that H1(s0 | τ) ≥ H1(s0 | τ, s1) ≥ k − µ′ for some
negligible µ′. However, as an unbounded Goliath can compute H1(s0 | τ = τ̃) and H1(s1 | τ = τ̃)
for any actually observed message transcript τ̃ , it must just hold that H1(s0 | τ) and H1(s1 | τ) are
negligibly close to k in either case; otherwise Goliath could distinguish both cases and the receiver-
privacy of Π would be broken. Say H1(s0 | τ) ≥ k−µ′′ and H1(s1 | τ) ≥ k−µ′′′ in both cases. Thus,
if c = 0, we can estimate:

H1(s0, s1 | τ) = H1(s1 | τ, s0) +H1(s0 | τ) ≥ (k − µ) + (k − µ′′) = 2k − (µ+ µ′′)

Analogously, if c = 1, we can estimate:

H1(s0, s1 | τ) = H1(s0 | τ, s1) +H1(s1 | τ) ≥ (k − µ′) + (k − µ′′′) = 2k − (µ′ + µ′′′)

Hence, we find some negligible ν ′, such that H1(s0, s1 | τ) ≥ 2k − ν ′ for any distribution of David’s
input c. Remember that we assumed Goliath’s input (s0, s1) to be uniformly random. Since
H1(s0, s1 | τ, σ) ≥ H1(s0, s1 | τ)−H1(σ), we can conclude:

` = H1(σ) ≥ H1(s0, s1 | τ)−H1(s0, s1 | τ, σ) ≥ 2k − ν ′ − ν

I.e., since ν and ν ′ are negligible, there cannot exist a correct and statistically secure protocol
Π that implements k-bit string-OT using a token with at most ` bits of randomness, when k is
significantly larger than `/2.

5.2 Lower bounds for David’s communication overhead

Even our refined construction for l-bit string-OT (q.v. Section 3.2.3) needs that David inputs Θ(l)
bits into the token. One could wonder, if it is possible to implement multiple instances of OT from
reusable tamper-proof tokens, such that for each implemented instance of OT the communication
complexity for the receiver party David is constant. We argue that this seems very improbable.
The main argument is that a corrupted sender Goliath can correctly guess David’s token inputs for
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the first OT instances with some constant probability. Thus, he can maliciously create the tokens
so that they immediately shut down, if David’s first token inputs do not match Goliath’s guess.
Thereby, when Goliath learns that the protocol was not aborted, he can reconstruct David’s first
OT input. Such a protocol cannot be UC-secure, since in the ideal model the abort probability
may not depend on Davids inputs. Moreover, the whole argumentation still seems valid, even if we
allow that David inputs polylogarithmically many bits per OT into the tokens.

5.3 Impossibility of polynomially bounded simulation runtime

The running time of our simulator SGoliath(A) for a corrupted sender is not a priori polynomially
bounded (cf. Section 4.3). Instead, we have only a polynomial bound for the expected running time
(cf. Lemma 13). The same problem occurred in [MS08] and they stated it as an open problem to
find a protocol with strict polynomial-time simulation. We argue that such a protocol seems very
hard to find, unless computational assumptions are used.

Since information-theoretically secure OT cannot be realized from stateless tokens, as shown
by [GIMS10], it suffices to consider stateful solutions. However, simulatability is only possible if
a corrupted sender’s inputs can be extracted from his messages sent to the receiver party and the
program code of the token(s). The straightforward approach of extraction is to rewind the token,
but as the token may act honestly only on some fraction of inputs, the simulator will have to rewind
the token repeatedly. In particular, a corrupted token issuer can choose some arbitrary probability
p, such that the token acts honestly only with this probability p. Unless p is negligible, this will
necessitate a simulator that can rewind the token for about 1

p times. Since p may be effectively
chosen by the adversary (and thus by the environment) during runtime, strict polynomial-time
simulation with repeated token rewinding seems impossible. Moreover, we are not aware of any
information-theoretic approach (i.e. without computational assumptions) that would allow us to
avoid repeated token rewinding.

5.4 Impossibility of random access solutions with a constant number of tokens

Via our protocol Πsemi−int
OAFE one can implement sequentially queriable OTM tokens from a single

piece of untrusted tamper-proof hardware (cf. Section 3.1 and Section 2.4). We discuss now, why
it seems impossible to implement multiple OTMs that the token receiver can access in arbitrary
order. The main argument is that a corrupted token issuer can try to let the token work only for
the first OTM query and then shut down. This is not simulatable in the ideal model, since the
simulator does not learn which OTM is queried first—the decision which OTM to query first even
might be made not until the interactive part of the protocol is over.

In particular, the attack idea is as follows. Given any hypothetical protocol for random access
OTMs from a single token, let b denote a lower bound of token queries that are needed for the first
OTM access and let B denote an upper bound. W.l.o.g., b and B are polynomially bounded in
the security parameter. The corrupted token issuer randomly picks j

r← {b, . . . , B} and programs
the token such that it shuts down after the j-th query. Now, with probability 1

B−b+1 the receiver
party will be able to access only the very OTM that is queried first. Note that this probability
is independent of the access order to the implemented OTMs. Further note that by this attack it
cannot happen that the OTM accessed first is malformed and any other is not. For the simulator
this means an unsolvable dilemma. With non-negligible probability, all but one of the sent OTMs
must be malformed and the non-malformed OTM must always be that one that will be accessed
first.
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5.5 Conclusion & improvement opportunities

In this paper, we showed that a single untrusted tamper-proof hardware token is sufficient for
non-interactive (or to be more precise, semi-interactive), composable, information-theoretically
secure computation. Our approach is the first to implement several widely used primitives (namely
string-commitments, string-OT and sequentially queriable OTMs) at optimal rates. Moreover,
our constructions have remarkably low computation complexity, way more efficient than any other
construction in the literature. As a drawback, our information-theoretically secure protocols have
only limited token reusability, but can be transformed straightforwardly into computationally secure
protocols with unlimited token reusability. The computational assumption needed is the weakest
standard assumption in cryptography, namely the existence of a pseudorandom number generator,
and beyond that we only need the receiver party David to be computationally bounded. After all,
we consider our work a substantial gain towards practical two-party computation, but still want to
point out some issues that in our view need some further improvement.

Smaller constants for better practicability. Even though we achieve asymptotically optimal
communication complexity, there are some nasty constants left that might make our protocols
somewhat slow in practice. In particular, for every l-bit string-OT (or l-bit OTM respectively)
the token has to compute and output an F20×5

2l
-matrix, i.e. we have a blow-up factor of 100. This

enormous factor results from two technical artifacts. Firstly, we were only able to prove that our
protocol Πsemi−int

OAFE securely realizes Fkq -OAFE, if k ≥ 5 (cf. Section 4). In contrast, we only need
F

2
2l

-OAFE for our optimal l-bit string-OT protocol (cf. Section 3.2.3) and are not aware of any

potential attack against Πsemi−int
OAFE with k = 2. Secondly, for technical reasons we need that David

chooses a check matrix C of dimension 3k×4k in step ii of the setup phase (q.v. Figure 6) and later
computes a check value CWi from the i-th token output Wi, i.e. we especially need that Wi has

dimension 4k× k. However, we are not aware of any potential attack, if only C ∈ Fαk×(1+α)k
q with

constant α > 0. Now, if we choose α = 1
2 and k = 2, this means that David chooses a check matrix

C of dimension 1 × 3 and the token just needs to compute and output F3×2
2l

-matrices. In other
words, we believe that the blow-up factor can be reduced from 100 to 6 just by more sophisticated
proof techniques and a slight modification of the protocol.

Less interaction. Our protocol Πsemi−int
OAFE (q.v. Figure 6 in Section 3.1) is semi-interactive in the

sense that it consists of send and choice phases, such that communication between the sender party
Goliath and the receiver party David does only take place in the send phases, whereas Goliath is
not involved in the choice phases at all. Moreover, even if Goliath learns all of David’s send phase
messages in advance (but not before the token is transmitted!), the protocol stays secure. Thus,
as David’s send phase messages only consist of randomness, we can go with a total of only one
single message from David to Goliath, which is sent during the initialization phase of the protocol
(cf. Section 3.2.1). However, this approach comes along with two drawbacks. Firstly, the single
message from David to Goliath will be quite large. Secondly, David needs to know an upper bound
for the number of upcoming send phases, what clearly rules out unlimited token reusability. As a
solution for both drawbacks we suggest that David just sends a random seed of a pseudorandom
number generator. We believe (but were not able to prove) that this does not breach security, as
long as Goliath and the token are computationally bounded.

More realistic hardware assumptions. For security of our protocol Πsemi−int
OAFE (q.v. Figure 6

in Section 3.1) against a corrupted sender party Goliath we need that the tamper-proof token in
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David’s hands and the token issuer Goliath are perfectly isolated from each other. This assumption
is questionable, since one cannot prevent Goliath from placing a very powerful communication
device near David’s lab. At least, this will enable Goliath to send some messages to the token.
However, we hold the view that the token’s transmitting power can be reliably bounded by its
weight and size, so that it cannot send any messages back to Goliath. Still, even a unidirectional
channel from Goliath to the token suffices to break our protocols.

Therefore, we propose a two-token solution (namely that of Section 3.2.6), where one token
just plays Goliath’s role of the original protocol. As long as neither token can send any message,
the tokens are mutually isolated and everything seems well except for one subtle issue: Goliath
can change the behavior of the tokens during runtime und thus change his OAFE inputs without
being noticed. However, this may be considered unavoidable in real world applications, since a very
similar attack could also be mounted if adversarially issued tokens contain clocks.

Closing the gap between primitives and general two-party computation. By our ap-
proach we implement OT (and OTMs respectively) via some quite general Fkq -OAFE functionality

(cf. Section 2.4). However, Fkq -OAFE is strictly stronger than OT in the sense that in general many

OT instances and a quite sophisticated protocol are needed to implement Fkq -OAFE, whereas l-

bit string-OT can be implemented rather straightforwardly from a single instance of Fl2-OAFE
or F2

2l
-OAFE (cf. also Section 3.2.3). This raises the question, whether one could base general

two-party computation directly on Fkq -OAFE rather than OT, e.g. via (garbled) arithmetic circuits
[Cle91, CFIK03, AIK11], and thereby possibly reduce the computational overhead. More generally,
one could also try to implement other sorts of functions directly on the tamper-proof hardware.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic
circuits. In Rafail Ostrovsky, editor, Proceedings of FOCS 2011, pages 120–129.
IEEE, 2011.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. In Salil P. Vadhan, editor, Theory of Cryptography,
Proceedings of TCC 2007, volume 4392 of Lecture Notes in Computer Science, pages
137–156. Springer, 2007.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification
by public discussion. SIAM J. Comput., 17(2):210–229, 1988.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private compu-
tations. In Proceedings of STOC 1996, pages 479–488. ACM, 1996.

[BKMN09] Julien Brouchier, Tom Kean, Carol Marsh, and David Naccache. Temperature at-
tacks. IEEE Security & Privacy, 7(2):79–82, 2009.

54



[BOGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover
interactive proofs: How to remove intractability assumptions. In Proceedings of STOC
1988, pages 113–131. ACM, 1988.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of FOCS 2001, pages 136–145, 2001. Revised version online
available at http://eprint.iacr.org/2000/067.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally compos-
able security with global setup. In Salil P. Vadhan, editor, Theory of Cryptography,
Proceedings of TCC 2007, volume 4392 of Lecture Notes in Computer Science, pages
61–85. Springer, 2007.

[CFIK03] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-party
computation over rings. In Eli Biham, editor, Advances in Cryptology, Proceedings
of EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages
596–613. Springer, 2003.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC secure
computation using tamper-proof hardware. In Nigel P. Smart, editor, Advances in
Cryptology, Proceedings of EUROCRYPT 2008, volume 4965 of Lecture Notes in
Computer Science, pages 545–562. Springer, 2008.

[CKS+11] Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and
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