David \& Goliath Oblivious Affine Function Evaluation Asymptotically Optimal Building Blocks for Universally Composable Two-Party Computation from a Single Untrusted Stateful Tamper-Proof Hardware Token

Nico Döttling Daniel Kraschewski Jörn Müller-Quade
Institute of Cryptography and Security, Department of Informatics, Karlsruhe Institute of Technology, Germany

\{doettling,kraschewski,mueller-quade\}@kit.edu

Abstract

Cryptographic assumptions regarding tamper-proof hardware tokens have gained increasing attention. Even if the tamper-proof hardware is issued by one of the parties, and hence not necessarily trusted by the other, many tasks become possible: Tamper proof hardware is sufficient for universally composable protocols, for information-theoretically secure protocols, and even can be used to create software that can only be used once (one-time programs).

However, all known protocols employing tamper-proof hardware are either indirect, i.e. additional computational assumptions must be used to obtain general two party computations, or a large number of devices must be used. Unfortunately, issuing multiple independent tamper-proof devices requires much stronger isolation assumptions.

This work is the extended version of a recent result of the same authors, where for the first time a protocol was presented that realizes universally composable two party computations (and even one-time programs) with information-theoretic security using only a single tamper-proof device issued by one of the mutually distrusting parties. Now, we present the first protocols for multiple one-time memories (OTMs), and reusable and bidirectional commitment and oblivious transfer (OT) primitives in this setting. All these constructions have only linear communication complexity and are thus asymptotically optimal. Moreover, the computation complexity of our protocols for k-bit OTMs/commitments/OT is dominated by $O(1)$ finite field multiplications with field size 2^{k}. This is considerably more efficient than any other known construction based on untrusted tamper-proof hardware alone.

The central part of our contribution is a construction for oblivious affine function evaluation (OAFE), which can be seen as a generalization of the well known oblivious transfer primitive: Parametrized by a finite field \mathbb{F}_{q} and a dimension k, the OAFE primitive allows a designated sender party to choose an arbitrary affine function $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}^{k}$, such that hidden from the sender party a designated receiver party may learn $f(x)$ for exactly one function argument $x \in \mathbb{F}_{q}$ of its choice. All our abovementioned results build on this primitive and it may also be of particular interest for the construction of garbled arithmetic circuits.

Keywords: non-interactive secure computation, universal composability, tamper-proof hardware, information-theoretic security, oblivious transfer

Contents

1 Introduction 1
1.1 Related work 1
1.2 Our contribution 3
1.3 Outline of this paper 5
2 Preliminaries 6
2.1 Notations 6
2.2 Framework \& notion of security 6
2.3 Modeling tamper-proof hardware 7
2.3.1 The hybrid functionality $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ 7
2.3.2 Real world meaning of our hardware assumption and proof techniques 8
2.4 Sequential one-time OAFE and its relation to OTMs and OT 9
3 Semi-interactive seq-ot-OAFE from one tamper-proof token 10
3.1 The basic protocol 10
3.2 Refinements and applications of our construction 14
3.2.1 Reducing the number of rounds, e.g. for one-time programs 14
3.2.2 Computational solution for unlimited reusability of a memory-limited token 14
3.2.3 Unidirectional string-OT and OTMs with optimal communication complexity 15
3.2.4 Achieving optimal communication complexity for bidirectional string-OT 16
3.2.5 Efficient protocol for string-commitments in any direction 19
3.2.6 Non-interactive solution with two tokens 19
3.2.7 A note on optimal communication complexity 19
4 Correctness and security of our protocol 21
4.1 Correctness 21
4.2 Security against a corrupted receiver 21
4.3 Security against a corrupted sender 23
4.3.1 Independence of the token view 23
4.3.2 Committing the token to affine behavior 25
4.3.3 Uniqueness of affine approximations of the token functionality 28
4.3.4 Utilizing the Leftover Hash Lemma 29
4.3.5 The simulator for a corrupted Goliath 32
4.3.6 \quad A sequence of hybrid games 34
4.3.7 Transformation of successive hybrid games into an indistinguishability game 36
4.3.8 Concluding the security proof 49
5 No-go arguments \& conclusion 50
5.1 Impossibility of unlimited token reuse without computational assumptions 50
5.2 Lower bounds for David's communication overhead 51
5.3 Impossibility of polynomially bounded simulation runtime 52
5.4 Impossibility of random access solutions with a constant number of tokens 52
5.5 Conclusion \& improvement opportunities 53
References 57

1 Introduction

Recently, tamper-proof hardware tokens have received increasing attention. Tamper-proof hardware tokens allow information-theoretically secure protocols that are universally composable [Can01, they can be employed for protocols in the globalized $U C$ framework HMQU05, CDPW07, and they even allow for one-time programs, i.e. circuits that can be evaluated only once [GKR08]. However, almost all known protocols employing tamper-proof hardware are either indirect, i.e. the secure hardware is used to implement commitments or zero-knowledge proofs and additional computational assumptions must be used to obtain general two party computations Kat07, CGS08, DNW08, MS08, DNW09, or a large number of devices must be used [GKR08, GIS ${ }^{+} 10$. However, issuing multiple independent tamper-proof devices requires much stronger isolation assumptions. Not only the communication between the devices and the issuer must be prevented, but also the many devices must be mutually isolated. This is especially difficult as the devices are not necessarily trusted - e.g., see BKMN09 for the difficulty of isolating two devices in one location.

In this work we extend a recent result of ours, where we presented a protocol that realizes universally composable two-party computations (and even one-time programs) with information-theoretic security using only a single (untrusted) tamper-proof device [DKMQ11. The main challenge, when using only a single piece of tamper-proof hardware, is to prevent a corrupted token from encoding previous inputs in subsequent outputs.

1.1 Related work

The idea of secure computation based on separation assumptions was introduced in BOGKW88] to construct multi-prover interactive proof systems. In particular, [BOGKW88] proposes an unconditionally secure protocol for Rabin-OT [Rab81] between two provers and a verifier. Even though this result is not explicitly stated in the context of tamper-proof hardwar ${ }^{1}$ and is proven secure in a standalone, synchronous model, we suppose that an amplified variant of the protocol of BOGKW88 can be proven UC-secure.

The idea of explicitly using tamper-proof hardware for cryptographic purposes was introduced by GO96], where it was shown that tamper-proof hardware can be used for the purpose of softwareprotection. The interest in secure hardware and separation assumptions was renewed, when it was realized that universally secure multi-party computation can be based on the setup assumption of tamper-proof hardware tokens. The tamper-proof hardware must suffice strong separation conditions, even though a more recent result showed that the assumptions about the physical separation can be relaxed to some extent [DNW08, DNW09].

Generally, the work on secure multi-party computation with tamper-proof hardware assumptions can be divided in works dealing with either stateful or stateless hardware-tokens. In Kat07] a scenario is considered where all parties can create and issue stateful tamper-proof hardware tokens. Using additional number-theoretic assumptions, Kat07 implements a reusable commitment functionality in this scenario. Subsequently, MS08 improved upon Kat07 by constructing information-theoretically secure commitments in an asymmetric scenario, where only one out of two parties is able to issue stateful tamper-proof hardware tokens. Another improvement upon Kat07] was by [CGS08 with stateless tokens, but still bidirectional token exchange and use of enhanced trapdoor permutations (eTDP). HMQU05 use (stateless) signature cards, issued by a trusted au-

[^0]thority, to achieve universal composability with respect to global setup assumptions CDPW07. In $\mathrm{FPS}^{+} 11$ it is shown how set intersection can be computed securely using a single untrusted tamper-proof hardware token and additional computational assumptions.

GKR08] show that using a minimalistic stateful tamper-proof hardware assumption called one-time memory (OTM), a new cryptographic primitive called one-time program (OTP) can be implemented, i.e. programs that can be evaluated exactly once. An OTM can be seen as a noninteractive version of the well-known $\binom{2}{1}$-string-OT functionality: The OTM sender stores two l-bit strings on the token and sends it to the receiver party, who can arbitrarily later choose to learn one (and only one) out of the two stored values (q.v. Figure 1).

Functionality $\mathcal{F}_{\text {OTM }}$

Parametrized by a string length l. The variable state is initialized by state \leftarrow waiting.

Creation:

- Upon receiving input $\left(s_{0}, s_{1}\right)$ from Goliath, verify that state $=$ waiting and $s_{0}, s_{1} \in\{0,1\}^{l}$; else ignore that input. Next, update state \leftarrow sent, record $\left(s_{0}, s_{1}\right)$ and send (sent) to the adversary.
- Upon receiving a message (Delivery) from the adversary, verify that state $=$ sent; else ignore that input. Next, update state \leftarrow delivered and send (ready) to David.

Query:

- Upon receiving input (x) from David, verify that state $=$ delivered and $x \in\{0,1\}$; else ignore that input. Next, update state \leftarrow queried and output $\left(s_{x}\right)$ to David.

When a party is corrupted, the adversary is granted unrestricted access to the channel between $\mathcal{F}_{\text {OTM }}$ and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 1: The ideal/hybrid functionality modeling a single one-time memory (OTM). Following [MS08, we call the token issuer "Goliath" and the receiver party "David"; see also Section 2.3.1.

Recently, Kol10] implemented string-OT with stateless tamper-proof tokens, but achieved only covert security AL07. A unified treatment of tamper-proof hardware assumptions is proposed by [GIS ${ }^{+} 10$. Important in the context of our work, they show that in a mutually mistrusting setting, trusted OTPs can be implemented statistically secure from a polynomial number of OTMs. In [GIMS10, statistically secure commitments and statistical zero-knowledge are implemented on top of a single stateless tamper-proof token. Furthermore, if tokens can be encapsulated into other tokens, general statistically secure composable multi-party computation is possible in this setting. GIMS10 also show that unconditionally secure OT cannot be realized from stateless tamperproof hardware alone. Finally, the latest result in this research field is by [CKS ${ }^{+}$11], that combine techniques of [GIS ${ }^{+}$10] and a previous version of our work DKMQ11, resulting in a computationally secure, constant-round protocol for OT with unlimited token reusability. They only need stateless tokens and show black-box simulatability. However, this comes at the cost of bidirectional token exchange and the assumption that collision resistant hashfunctions (CRHF) exist.

Except for BOGKW88, all of the above schemes based on untrusted tamper-proof hardware either use additional complexity assumptions to achieve secure two-party computations HMQU05, Kat07, MS08, GKR08, DNW08, DNW09, Kol10, CKS ${ }^{+}$11] or a large number of hardware tokens must be issued [GKR08, GIS ${ }^{+} 10$].

1.2 Our contribution

In this paper we show that general, information-theoretically secure, composable two-party computations are possible in a setting where a single untrusted stateful tamper-proof hardware token is issued by one party. Previous solutions required that either the creator of the tamper-proof hardware is honest, that additional complexity assumptions are used, or that a large number of independent tamper-proof hardware tokens is issued. Our approach uses only a single tamper-proof token and apart from that solely relies on some linear algebra and combinatorics, what may be of independent interest. As a drawback our protocols allow only for limited token reusability. However, they can be transformed straightforwardly into computationally secure solutions with unlimited token reusability. Remarkably, for this transformation only a very weak complexity assumption is needed, namely the existence of a pseudorandom number generator (PRNG), and only the token receiver needs to be computationally bounded.

As a reasonable abstraction for the primitives that can be implemented in our setting, we introduce a new primitive called sequential one-time OAFE (q.v. Section 2.4), where the acronym "OAFE" stands for oblivious affine function evaluation. We show that OT can be realized straightforwardly using this primitive; thus our results for statistically secure, composable two-party computations follow immediately by the completeness of OT Kil88, IPS08. At the same time, we improve upon the results of DKMQ11 in several ways. Firstly, assuming a computationally bounded token receiver our construction allows for unlimited reuse of the tamper-proof hardware, whereas in DKMQ11 the number of token queries always was a priori bounded. Furthermore, we can still straightforwardly adapt the results of [GIS ${ }^{+}$10] to implement trusted OTPs at the cost of one tamper-proof hardware token per OTP (cf. Section 2.4). Last but not least, we achieve a better complexity than in DKMQ11 (cf. Section 3.2.1 and Section 3.2.3). In particular, by our approach one can implement several widely-used building blocks for secure multi-party computation and these constructions have some remarkable optimality features.

Sequentially queriable OTMs: We propose an information-theoretically secure construction for an arbitrary polynomial number of OTM functionalities from a single tamper-proof token. The number of OTMs must be chosen when the token is issued and cannot be increased later, unless the token contains a PRNG and the receiver is computationally bounded (i.e. we partly give up information-theoretic security). The implemented OTM instances are only queriable in a predefined order, but this can definitely be considered an advantage, since it trivially rules out the out-of-order attacks dealt with in [GIS ${ }^{+} 10$. Our construction is not truly non-interactive; it needs some interaction during an initialization phase. However, after the initialization phase no further interaction between the token receiver and the token issuer is necessary. Therefore we say that our construction is "semi-interactive". What is more, we need only two rounds of interaction, not counting for the token transmission. This is optimal for a single-token solution. Besides, our construction can be straightforwardly transformed into a truly non-interactive solution with two mutually isolated tokens. Last but not least, we achieve an asymptotically optimal communication complexity in the sense that the number of transferred bits is linear in the number and string length of the implemented OTM instances.
Admittedly, for information-theoretically secure implementation of a large number of OTMs we need that our token stores a large (though still linear) amount of data. Now, if these OTMs are used to implement a one-time program, one may ask why we do not just implement the one-time program directly on the token. There are at least three good reasons to implement
an OTP via OTMs. Firstly, the token can be transferred a long time before the sender chooses which OTP to send. Secondly, via OTMs one can implement trusted OTPs [GIS ${ }^{+}$10], i.e. sender and receiver agree on a circuit to be evaluated and only the inputs for this circuit are kept secret. The crucial security feature of a trusted OTP is that even a corrupted sender cannot change the circuit. Thirdly, since our token only needs to store random values, we can dramatically compress its size at the cost of only a very weak computational assumption, namely the existence of a PRNG. Moreover, this computational assumption is only needed to hold for the token receiver; all our computational protocol variants are still statistically secure against a malicious token issuer and even the token may be computationally unbounded.

To sum things up, our construction has the following features:

- many OTMs (arbitrary polynomial) by a single token; upper bound fixed at initialization
- implemented OTM instances only queriable in predefined order
- optimal round complexity: two rounds using one token or one round using two tokens
- optimal communication complexity (linear in number and size of implemented OTMs)
- information-theoretic security (but large token; compression possible by PRNG)

Commitments in both directions: We also propose a constant-round construction for a bidirectional and reusable string-commitment functionality from a single tamper-proof token. We offer several protocol variants, so that one can choose between limited reusability and information-theoretic security on the one side, and unlimited reusability at the cost of computational assumptions on the other side. Anyway, for unlimited reusability we only need a PRNG and a computationally bounded token receiver; the token issuer (and even the token) may still have arbitrary computing power. What is more, by our construction one can implement an arbitrary polynomial number of commitments in parallel with $O(1)$ rounds of communication. Besides, our construction can be straightforwardly transformed into a non-interactive solution with two mutually isolated tokens, so that the whole communication of each commit and unveil phase only consists of a single message sent by the committing/unveiling party. Last but not least, we achieve an asymptotically optimal communication complexity in the sense that the number of transferred bits is linear in the number and string length of the implemented commitments. To the best of our knowledge, except for [MS08] all other constructions based on tamper-proof hardware have higher communication complexity and either use stronger complexity assumptions or have $\omega(1)$ rounds. However, the construction of MS08] is only unidirectional (from the token issuer to the token receiver).

To sum things up, our construction has the following features:

- bidirectional and reusable string-commitment functionality from a single token
- unlimited reusability at the cost of a minimal complexity assumption (PRNG)
- multiple commitments with $O(1)$ rounds by one token or non-interactively by two tokens
- optimal communication complexity (linear in number and size of commitments)

String-OT: Our OT protocol enjoys the same features as our commitment protocol. We omit an explicit itemization of the features of our OT construction; it is just exactly the same as the above feature list of our commitment construction. Instead, by Figure 2 we compare our OT protocol with earlier results in the literature.
At this point, it is important to mention that optimal communication complexity for only

	stateless tokens				stateful tokens (simulator needs to rewind)			
	CGS08]		[GIS ${ }^{+} 10$	CKS 11$]$	GIS ${ }^{+} 10$	DKMQ11]	this work	
tokens	2 (bidirect.)	$\Theta(k)$	$2($ bidirect.)	$\Theta(k)$	1	1	1	
rounds	$\Theta(k)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	
bits sent	$?$	$\Omega\left(k^{2}\right)$	$\Omega\left(k^{2}\right)$	$\Theta\left(k^{2}\right)$	$\Theta\left(k^{2}\right)$	$\Theta(k)$	$\Theta(k)$	
assumptions	eTDP	CRHF	CRHF	none	none	none	PRNG	
reusability	unbounded	none	unbounded	none	bounded	bounded	unbounded	

Figure 2: UC-secure k-bit string-OT based on tamper-proof tokens; table partly borrowed from [CKS ${ }^{+} 11$. The CRHF-based protocols can instead be based on one-way functions (equivalent to PRNGs), but using $\Theta(k / \log k)$ rounds. For [CGS08] an explicit estimation of the overall communication complexity is just omitted, since they use the heavy machinery of general zero-knowledge proofs, signatures, etc. However, note that the complexity of any computationally secure OT protocol can be amortized by standard techniques (cf. Section 3.2.7).
computationally secure OT is no great achievement at all. The string length of any computationally secure OT protocol can be polynomially extended by standard techniques, what accordingly improves its efficiency: The sender party just uses the OT for transmission of two random PRNG seeds and announces the actual OT inputs one-time pad encrypted with the respective pseudorandomness. In particular, by this simple trick and some rescaling of the security parameter, one can transform any OT protocol with polynomial communication complexity into a protocol with linear (and thus optimal) communication complexity. However, we stress that nevertheless we present the first information-theoretically secure construction for multiple OT with optimal communication complexity based on reusable tamper-proof hardware. Moreover, note that an analogous approach for extending the string length of commitments or OTMs would destroy composability. We discuss this in further detail in Section 3.2.7.

All our constructions also have remarkably low computation complexity, what makes them very practical. Per implemented k-bit OTM/Commitment/OT all parties and the tamper-proof token have to perform no more than $O(1)$ finite field operations (only additions and multiplications) with field size 2^{k}. Additionally, the protocol variants with unlimited token reusability require that the token generates $\Theta(k)$ bits of pseudorandomness respectively, but there are no exponentiations or other operations costlier than finite field multiplication.

1.3 Outline of this paper

The rest of this paper is organized as follows. In Section 2 we introduce some notations (Section 2.1), give a short overview of the notion of security that we use (Section 2.2), describe how our tamperproof hardware assumption is defined in that framework (Section 2.3) and introduce our new primitive (Section 2.4), which serves as the basic building block for all other constructions. In Section 3.1 we show how one can implement our new primitive from the aforementioned tamperproof hardware assumption. In Section 3.2 we discuss refinements and some unobvious applications of our construction. At the end of Section 3.2, in Section 3.2.7, we also briefly discuss why an only computationally secure OT protocol with optimal communication complexity is not a noteworthy result, whereas the opposite is true for commitments and OTMs. In Section 4 we give a formal security proof. Finally, in Section 5 we argue for some impossibility results, give a conclusion of our work and suggest directions for improvements and future research.

2 Preliminaries

2.1 Notations

General stuff (finite fields, naturals and power sets): By \mathbb{F}_{q} we denote the finite field of size q. The set of all naturals including zero is denoted by \mathbb{N}, without zero it is denoted by $\mathrm{N}_{>0}$. The power set of any set S is denoted by $\mathcal{P}(S)$.

Outer products: Given any field \mathbb{F} and $k, l \in \mathbb{N}_{>0}$, we identify vectors in \mathbb{F}^{k} by $(k \times 1)$-matrices, so that for all $x \in \mathbb{F}^{k}$ and $y \in \mathbb{F}^{1 \times l}$ the matrix product $x y \in \mathbb{F}^{k \times l}$ is well-defined.

Complementary matrices: Given any field \mathbb{F}, some $k, l \in \mathbb{N}_{>0}$ with $k<l$ and any two matrices $C \in \mathbb{F}^{(l-k) \times l}, G \in \mathbb{F}^{k \times l}$, we say that G is complementary to C, if the matrix $M \in \mathbb{F}^{l \times l}$ generated by writing G on top of C has maximal rank in the sense that $\operatorname{rank}(M)=\operatorname{rank}(C)+k$. Note that, given any $C \in \mathbb{F}^{(l-k) \times l}, G \in \mathbb{F}^{k \times l}, x \in \mathbb{F}^{l}, y \in \mathbb{F}^{k}$ with G complementary to C, we can always find some $x^{\prime} \in \mathbb{F}^{l}$, such that $C x^{\prime}=C x$ and $G x^{\prime}=y$.

Random variables and uniform distribution: Throughout all formal proofs we will mostly denote random variables by bold face characters, e.g. x. However, for ease of presentation and better readability, we will sometimes refrain from this general convention and just write random variables like non-random variables, e.g. x. When x is uniformly random over some finite set X, we denote that by $\mathbf{x} \stackrel{\mathrm{r}}{\leftarrow} X$.

Probabilities, entropy and expected values: We denote the probability that a random variable \mathbf{x} takes some specific value x by $\mathbb{P}[\mathbf{x}=x]$, and analogously for any other relation. The Shannon entropy of \mathbf{x} is denoted by $\mathbb{H}_{1}(\mathbf{x})=-\sum_{\alpha} \mathbb{P}[\mathbf{x}=\alpha] \cdot \log _{2} \mathbb{P}[\mathbf{x}=\alpha]$, its collision entropy is denoted by $\mathbb{H}_{2}(\mathbf{x})=-\log _{2}\left(\sum_{\alpha}(\mathbb{P}[\mathbf{x}=\alpha])^{2}\right)$ and its expected value by $\mathbb{E}(\mathbf{x})$.

Statistical distance: We denote the statistical distance of two given random variables \mathbf{x}, \mathbf{y} by $\Delta(\mathbf{x}, \mathbf{y})$, using the following standard notion of statistical distance:

$$
\Delta(\mathbf{x}, \mathbf{y})=\frac{1}{2} \sum_{\alpha}|\mathbb{P}[\mathbf{x}=\alpha]-\mathbb{P}[\mathbf{y}=\alpha]|
$$

Correlation of random variables: We define the following measure for the correlation of random variables. Given any two random variables \mathbf{x}, \mathbf{y} that may depend on each other, we set $\iota(\mathbf{x}, \mathbf{y}):=\Delta((\mathbf{x}, \mathbf{y}),(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}))$ with $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$ denoting independent versions of \mathbf{x} and \mathbf{y} respectively. Note that $\iota(\mathbf{x}, \mathbf{y})=0$ if and only if \mathbf{x} and \mathbf{y} are statistically independent.

2.2 Framework \& notion of security

We state and prove our results in the Universal-Composability (UC) framework of [Can01]. In this framework, security is defined by comparison of an ideal model and a real model. The protocol of interest is running in the latter, where an adversary \mathcal{A} coordinates the behavior of all corrupted parties. In the ideal model, which is secure by definition, an ideal functionality \mathcal{F} implements the desired protocol task and a simulator \mathcal{S} tries to mimic the actions of \mathcal{A}. An environment \mathcal{Z} is plugged either to the ideal or the real model and has to guess, which model it is actually plugged to. A protocol Π is a universally composable (UC-secure) implementation of an ideal functionality
\mathcal{F}, if for every adversary \mathcal{A} there exists a simulator \mathcal{S}, such that for all environments \mathcal{Z} the entire view of \mathcal{Z} in the real model (with Π and \mathcal{A}) is statistically close to its view in the ideal model (with \mathcal{F} and \mathcal{S}). In our case the adversarial entities \mathcal{A}, \mathcal{S} and the environment \mathcal{Z} are computationally unbounded and a hybrid functionality $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ models our tamper-proof hardware assumption (q.v. Section 2.3). Note that for convenience and better readability we use the notation of Can01 a bit sloppy. E.g., throughout this paper we omit explicit notation of party and session IDs.

2.3 Modeling tamper-proof hardware

2.3.1 The hybrid functionality $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$

Our formulation of general stateful tamper-proof hardware resembles the meanwhile standard definitions of [Kat07, MS08]. Following [MS08], we call the token issuer "Goliath" and the receiver party "David". This naming is also motivated by the fact that all computational versions of our protocols only need David's computing power to be polynomially bounded in the security parameter; Goliath (and even the token) may be far more powerful.

To model tamper-proof hardware, we employ the $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ wrapper functionality (q.v. Figure 33). The sender party Goliath provides as input a Turing machine \mathcal{M} to $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$. The receiver party David can now query $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ on arbitrary input words w, whereupon $\mathcal{F}_{\text {wrap }}^{\text {statul }}$ runs \mathcal{M} on input w, sends the output that \mathcal{M} produced to David and stores the new state of \mathcal{M}. Every time David sends a new query w^{\prime} to $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$, it resumes simulating \mathcal{M} with its most recent state, sends the output to David and updates the stored state of \mathcal{M}.

Functionality $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$

The variable state is initialized by state \leftarrow wait.

Creation:

- Upon receiving a message (Create, \mathcal{M}, b) from Goliath, where \mathcal{M} is the program of a deterministic interactive Turing machine and $b \in \mathbb{N}$, verify that state $=$ wait; else ignore that input. Next, initialize a simulated version of \mathcal{M}, store b, set state \leftarrow sent and send (created) to the adversary.
- Upon receiving a message (Delivery) from the adversary, verify that state $=$ sent; else ignore that input. Next, set state \leftarrow execute and send (ready) to David.

Execution:

- Upon receiving a message (Run, w) from David, where w is an input word, verify that state = execute; else ignore that input. Next, write w on the input tape of the simulated machine \mathcal{M} and carry on running \mathcal{M} for at most b steps, starting from its most recent state. When \mathcal{M} halts (or b steps have passed) without generating output, send a special symbol \perp to David; else send the output of \mathcal{M}.

When a party is corrupted, the adversary is granted unrestricted access to the channel between $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 3: The wrapper functionality by which we model stateful tamper-proof hardware sent from Goliath to David. Note that delivery of the token in the creation phase is scheduled by the adversary, whereas afterwards all communication between David and the token is immediate.

This captures the following properties one expects from tamper-proof hardware. On the one hand, Goliath is unable to revoke \mathcal{M} once he has sent it to David. On the other hand, David can run \mathcal{M} on inputs of his choice, but the program code and state of \mathcal{M} are out of reach for him, due to the token's tamper-proofness. Note that \mathcal{M} does not need a trusted source of randomness, as it can be provided with a sufficiently long hard-coded random tape. Thus, w.l.o.g. we can restrict \mathcal{M} to be deterministic.

For formal reasons we require that the sender party Goliath not only specifies the program code of \mathcal{M}, but also an explicit runtime bound $b \in \mathbb{N}$. This just ensures that even a corrupted Goliath cannot make $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ run perpetually. As we will state and prove all our results without any computational assumptions regarding the token, a corrupted Goliath may choose b arbitrarily large. However, when Goliath is honest, we will only need that the number of computing steps performed by the token is polynomial in the security parameter. We will henceforth implicitly assume that an honest Goliath always adjusts the parameter b accordingly.

2.3.2 Real world meaning of our hardware assumption and proof techniques

In Section 4 we will show that our construction from Section 3.1 is universally composable. However, the respective simulator for a corrupted sender party Goliath will need to rewind the token and thus has to know the token code. At first glance, it might seem a rather strong assumption that a corrupted token manufacturer always knows the internal program code of his tokens. How can such a party be prevented from just passing on a token received during another protocol from some uncorrupted token issuer?

We argue that tokens can be bound to the corresponding issuer IDs by not too unrealistic assumptions. The conceptually simplest (but a bit overoptimistic) way are standardized and unforgeable token cases, branded with the respective issuer ID, and that cannot be removed without destroying the token completely. However, we can go with a bit less rigorous assumptions. We just need that undetectable token encapsulation is infeasible (e.g., since the token's weight and size would be altered) and that every honestly programmed token initially outputs its manufacturer's ID. Then, only tokens of corrupted manufacturers can be successfully passed on. Since w.l.o.g. all corrupted parties collude, now every token issuer automatically knows the internal program code of all his issued and/or passed on tokens. Infeasibility of token encapsulation is also needed by HMQU05, Kat07, MS08, GKR08.

We also argue that using a stateful token does not necessarily mean a categorical disadvantage compared to protocols based on stateless tokens. In the literature one can find the opposite point of view, usually motivated by resetting attacks. These attacks only affect stateful approaches, whereas stateless approaches stay secure. By a resetting attack a corrupted token receiver tries to rewind the token (e.g. by cutting off the power supply) and then run it with new input. Such an attack, if successful, would break security of all our protocols. However, as a countermeasure the tamper-proof token could delete its secrets or just switch to a special "dead state" when a resetting attempt is detected. For the technical realization we suggest, e.g., that the state information is stored as a code word of an error correcting code and the token does not work unless the stored state information is an error-free, non-trivial code word. Anyway, we consider a thorough investigation of this issue an interesting direction for future research.

2.4 Sequential one-time OAFE and its relation to OTMs and OT

There is a two-party functionality that we call oblivious affine function evaluation (OAFE), in the literature sometimes referred to as oblivious linear function evaluation (OLFE), which is closely related to OT and of particular interest for our constructions. In \mathbb{F}_{q}^{k}-OAFE, with q and k publicly known but not necessarily constant, the sender chooses an affine function parametrized by two vectors $a, b \in \mathbb{F}_{q}^{k}$ and the receiver chooses a preimage $x \in \mathbb{F}_{q}$. The receiver gets as output the \mathbb{F}_{q}^{k}-vector $y:=a x+b$ and the sender's output is empty. The receiver does not learn more about the sender's input (a, b) than he can infer from (x, y) and the sender does not learn anything about the receiver's input x. As one can see quite easily, \mathbb{F}_{2}-OAFE and OT can be reduced to each other without any overhead (q.v. Figure 4). Note that the reductions in Figure 4 also work perfectly for \mathbb{F}_{2}^{k}-OAFE and k-bit string-OT respectively.

Figure 4: Reductions between bit-OT and \mathbb{F}_{2}-OAFE; protocols borrowed from [WW06].
We implement a variant of OAFE that we call "sequential one-time OAFE", or "seq-ot-OAFE" for short. By one-time OAFE we mean a primitive that works analogously to an OTM. The sender creates a token parametrized by $a, b \in \mathbb{F}_{q}^{k}$ and sends it to the receiver. Arbitrarily later the receiver may once input some $x \in \mathbb{F}_{q}$ of his choice into the token, whereupon the token outputs $y:=a x+b$ and then terminates. Sequential one-time OAFE lets the sender send up to a polynomial number of single one-time OAFE tokens, but the receiver may only query them in the same order as they were sent. However, when the receiver has queried some of the tokens he already received, this does not vitiate the sender's ability to send some additional tokens, which in turn can be queried by the receiver afterwards, and so on. For a formal definition of the ideal seq-ot-OAFE functionality see Figure 5

Note that the reduction protocols in Figure 4 still can be adapted canonically to transform k-bit string-OTMs into \mathbb{F}_{2}^{k}-OAFE tokens and vice versa. Hence, using the seq-ot-OAFE functionality (q.v. Figure 5), a polynomial number of OTMs can be implemented very efficiently, but the receiver can query the single OTM tokens only in the same order as they were sent. However, the construction of $\left[\mathrm{GIS}^{+} 10\right]$ for trusted OTPs from OTMs still works, as there an honest receiver queries all OTM tokens in a fixed order anyway. Interestingly, the technical challenges dealt with in GIS ${ }^{+} 10$ arise from the fact that a malicious receiver might query the OTMs out of order. Moreover, the restriction to sequential access can be exploited to securely notify the sender that the receiver has already queried some OTM token. Therefor, every other OTM token is issued with purely random input from the sender and the receiver just announces his corresponding input-output tuple. A corrupted receiver that tries to adversarially delay his OTM queries is caught cheating with overwhelming probability, as he has only a negligible chance to correctly guess the next check announcement. Thus, we can implement a polynomial number of OT instances that are perfectly secure against the OT sender and statistically secure against the OT receiver. Still, the receiver can query the single OT instances only in the same order as they were sent, but in fact this is

Functionality $\mathcal{F}_{\text {OAFE }}^{\text {seq-ot }}$

Parametrized by a finite vector space \mathbb{F}_{q}^{k} and some runtime bound n that is polynomially bounded in the security parameter $\lambda:=k \log q$. The counters $j_{\text {created }}, j_{\text {sent }}, j_{\text {queried }}$ are all initialized to 0 .

Send phases:

- Upon receiving input (a, b, i) from Goliath, verify that $a, b \in \mathbb{F}_{q}^{k}$ and $i=j_{\text {created }}+1 \leq n$; else ignore that input. Next, update $j_{\text {created }} \leftarrow i$, record (a, b, i) and send (created, i) to the adversary.
- Upon receiving a message (Delivery, i) from the adversary, verify that $i=j_{\text {sent }}+1 \leq j_{\text {created }}$; else ignore that message. Next, update $j_{\text {sent }} \leftarrow i$ and send (ready, i) to David.

Choice phases:

- Upon receiving input (x, i) from David, verify that $x \in \mathbb{F}_{q}$ and $i=j_{\text {queried }}+1 \leq j_{\text {sent }}$; else ignore that input. Next, update $j_{\text {queried }} \leftarrow i$ and for the recorded tuple (a, b, i) compute $y \leftarrow a x+b$ and output (y, i) to David.
When a party is corrupted, the adversary is granted unrestricted access to the channel between $\mathcal{F}_{\mathrm{OAFE}}^{\mathrm{seq}-\mathrm{ot}}$ and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 5: The ideal functionality for sequential one-time OAFE (seq-ot-OAFE). Note that send and choice phases can be executed in mixed order with the only restriction that the i-th send phase must precede the i-th choice phase. Further note that David's notifications about Goliath's inputs in the send phases are scheduled by the adversary, whereas all messages in the choice phases are delivered immediately.
already premised in most protocols that build on OT. Noting that OT and OAFE can be stored and reversed [Bea96, WW06, Wul07], we conclude that in the seq-ot-OAFE hybrid model OT can be implemented in both ways (from the token sender to the token receiver and vice versa).

Finally, a remark is in place. Even though seq-ot-OAFE can be used to implement several OTPs, the sequential nature of seq-ot-OAFE demands that those OTPs can only be executed in a predefined order. If one wishes to implement several OTPs that can be evaluated in random order, as many seq-ot-OAFE functionalities have to be issued.

3 Semi-interactive seq-ot-OAFE from one tamper-proof token

3.1 The basic protocol

We want to implement seq-ot-OAFE (q.v. Section 2.4), using a single tamper-proof hardware token that is issued by one of the mutually distrusting parties. The technical challenge in doing so is twofold. Firstly, the receiver David must be able to verify that no token output does depend on any input of previous choice phases. Secondly, each token output must be an affine function of the corresponding input. However, note that the latter difficulty is only relevant if $q>2$, as every function $f: \mathbb{F}_{2} \rightarrow \mathbb{F}_{2}^{k}$ is affine: $f(x)=(f(0)+f(1)) \cdot x+f(0)$ for all $x \in \mathbb{F}_{2}$.

Our approach to solving these problems is enlarging the token's output space to dimension $(1+\alpha) k$ and letting the sender Goliath announce αk-dimensional linear hash values of the token's
function parameters, which can be used by David for a consistency check; then there remains a k-dimensional part of the token's output for generation of the intended OAFE result. For technical reasons we choose $\alpha:=3$. In particular, a preliminary protocol idea can be sketched as follows:

- Goliath chooses the i-th token parameters uniformly at random, say $r, s \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{4 k}$.
- Upon receiving the token, David announces a random check matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$.
- Goliath in turn announces $\tilde{r}:=C r$ and $\tilde{s}:=C s$.
- When David queries the token the i-th time, say he inputs some $x \in \mathbb{F}_{q}$ and receives output $w \in \mathbb{F}_{q}^{4 k}$, he checks whether $C w=\tilde{r} x+\tilde{s}$. When the check is not passed, David has caught Goliath cheating and henceforth always outputs a default value.

This way, we can implement some kind of "weak" OAFE, where the receiver additionally learns some linear projection of the sender's inputs, but by announcing (\tilde{r}, \tilde{s}) Goliath has committed the token to affine behavior. Otherwise, if the check would be passed for a large set of token inputs $X \subseteq \mathbb{F}_{q}$ and there do not exist any $r, s \in \mathbb{F}_{q}^{4 k}$ such that $\tau(x)=r x+s$ for all $x \in X$ with τ denoting the token functionality in the i-th round, then the token could as well form collisions for the universal hash function C, of which it is oblivious. Moreover, we can nullify the receivers additional knowledge about (r, s) by multiplication with any matrix $G \in \mathbb{F}_{q}^{k \times 4 k}$ that is complementary to C. When David just outputs $G w$, we have implemented OAFE with random input ($G r, G s$) from Goliath and arbitrarily selectable input x from David. Finally, Goliath can derandomize his input to arbitrarily selectable $a, b \in \mathbb{F}_{q}^{k}$ by announcing $\tilde{a}:=a-G r$ and $\tilde{b}:=b-G s$. David then just has to replace his output by $y:=G w+\tilde{a} x+\tilde{b}$.

However, there is still a security hole left, as the token might act honestly only on some specific input set $X \subsetneq \mathbb{F}_{q}$ or even only on some specific type of input history. Now, when David's inputs match this adversarially chosen specification, he will produce regular output; else a protocol abortion is caused with overwhelming probability (i.e. David produces default output). Such a behavior cannot be simulated in the ideal model, unless the simulator gathers some information about David's input. Thus, David must keep his real input x secret from the token (and as well from Goliath, of course). However, David's input must be reconstructible from the joint view of Goliath and the token, as otherwise a corrupted David could evaluate the function specified by Goliath's input (a, b) on more than one input x. Our way out of this dilemma is by a linear secret sharing scheme, whereby David shares his input x between Goliath and the token. In particular, the protocol now roughly proceeds as follows:

- Goliath initializes the token with uniformly random parameters $r \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{4 k}$ and $S \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{4 k \times k}$.
- Upon receiving the token, David announces a random check matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$ and a random share $h \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{k} \backslash\{0\}$. David and Goliath also agree on some $G \in \mathbb{F}_{q}^{k \times 4 k}$ complementary to C.
- Goliath announces the check information $\tilde{r}:=C r$ and $\tilde{S}:=C S$ and the derandomization information $\tilde{a}:=a-G r$ and $\tilde{b}:=b-G S h$, where $(a, b) \in \mathbb{F}_{q}^{k} \times \mathbb{F}_{q}^{k}$ is his OAFE input.
 OAFE input. He inputs z into the token, whereupon the token has to compute and output
$W:=r z+S$. When the check $C W \stackrel{?}{=} \tilde{r} z+\tilde{S}$ is passed, David computes and outputs $y:=G W h+\tilde{a} x+\tilde{b}$; else he outputs some default value.

Now, neither Goliath nor the token can gather non-negligible information about David's OAFE input x. Given any set of token inputs $Z \subseteq \mathbb{F}_{q}^{1 \times k}$ adversarially chosen in advance, the hyperplanes $\left\{\tilde{z} \in \mathbb{F}_{q}^{1 \times k} \mid z h=x\right\}_{x \in \mathbb{F}_{q}}$ will partition Z into q subsets of roughly equal size, since h is uniformly random. In other words, when the token behaves dishonestly on some input set $Z \subsetneq \mathbb{F}_{q}^{1 \times k}$, the abort probability is practically independent of David's input x.

A remarkable property of our protocol is that David's input x is only needed in the last step, where no further communication with Goliath takes place. So, we can partition the protocol into an interactive phase (where Goliath provides his OAFE input) and a non-interactive phase (where David provides his input and learns his output). Therefore, we say that our protocol is "semiinteractive". A formal description of the full protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ is given in Figure 6 .

There are two crucial differences between $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ and the construction in DKMQ11. Firstly, we changed from \mathbb{F}_{2} to \mathbb{F}_{q} with the explicit option that q may depend on the security parameter. This will enable us to implement OTMs, string-OT and string-commitments at optimal communication rate (cf. Section 3.2.3 and Section 3.2.5). Secondly, due to a new security proof we no longer need that Goliath's "commitments" $\left(\tilde{r}_{1}, S_{1}\right), \ldots,\left(\tilde{r}_{n}, \tilde{S}_{n}\right)$ are statistically independent of David's input shares h_{1}, \ldots, h_{n}. This allows for multiple send phases and choice phases in mixed order, so that a token that shares some random source with its issuer Goliath can be reused over and over again without any predefined limit (cf. Section 3.2.2).

At this point we also want to point out that in the protocol description of Figure 6 we purposely do not exactly specify how the parameters k and q depend on the security parameter λ. In fact, for our security proof we only need that $k \cdot \log q=\lambda$ and $k \geq 5$; e.g. one can choose k to be constant and q to increase exponentially in λ. With parameters chosen this way, our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ has only linear communication complexity, what is clearly optimal. The condition that $k \geq 5$ results from our proof techniques and is probably not tight. If $k=1$, the protocol is not UC-secure against a corrupted sender party (see Remark 1 below), but for $2 \leq k \leq 4$ we are not aware of any potential attack. However, note that $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ with $k<5$ can be implemented from $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ with $k=5$ straightforwardly and the reduction protocol itself has only linear overhead. Thus, the asymptotic optimality of our construction with $k=5$ does directly carry over to the case that $k<5$.

Finally, we want to note that our protocol allows any polynomial number of send phases to be performed in parallel, so that one can still issue the polynomially many OTMs needed for an OTP by just constantly many rounds of communication (cf. Section 3.2.1).
Remark 1. Our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ is not UC-secure against a corrupted sender Goliath, if $k=1$.
Proof. The problem with $k=1$ basically arises from the fact that in this case Goliath's shares h_{i} of David's inputs x_{i} are invertible field elements. Consider a maliciously programmed token that stops functioning after the first choice phase, if $z_{1} \in Z$ for some adversarially chosen $Z \subseteq \mathbb{F}_{q}$, e.g. with $|Z|=\frac{q}{2}$, and otherwise just follows the protocol. Since Goliath knows Z and learns h_{1} during the protocol, he also knows exactly on which inputs x_{1} the token breaks: It breaks, if $x_{1} h_{1}^{-1} \in Z$. In other words, it depends on x_{1}, if David's outputs y_{2}, \ldots, y_{n} are all-zero or not. This is not simulatable in the ideal model, because the simulator gets absolutely no information about the uncorrupted David's inputs.

Protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$

Parametrized by a finite vector space \mathbb{F}_{q}^{k} and some runtime bound n that is polynomially bounded in the security parameter $\lambda:=k \log q$. The setup phase is executed right at the start of the first send phase.

Setup phase:

i. For $i=1, \ldots, n$, Goliath chooses a random vector $r_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{4 k}$ and a random matrix $S_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{4 k \times k}$, creates a token \mathcal{T} with parameters $\left(r_{1}, S_{1}\right), \ldots,\left(r_{n}, S_{n}\right)$ and sends \mathcal{T} to David via $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$. The token also contains a counter $j_{\text {queried }}^{\prime}$ and Goliath has a counter $j_{\text {created }}$, both initialized to 0 .
ii. Having received \mathcal{T}, David chooses a random matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$, computes some $G \in \mathbb{F}_{q}^{k \times 4 k}$ complementary to C and sends (C, G) to Goliath. Furthermore, David initializes two counters $j_{\text {queried }}, j_{\text {sent }} \leftarrow 0$ and an initial flag $f_{0} \leftarrow \top$.
iii. If Goliath finds G not complementary to C, he aborts the protocol.

Send phases:

1. Upon input $\left(a_{i}, b_{i}, i\right)$ from the environment, Goliath verifies that $a_{i}, b_{i} \in \mathbb{F}_{q}^{k}$ and $i=j_{\text {created }}+1 \leq n$; else he ignores that input. Next, Goliath updates $j_{\text {created }} \leftarrow i$, computes $\tilde{r}_{i} \leftarrow C r_{i}$ and $\tilde{S}_{i} \leftarrow C S_{i}$ and sends $\left(\tilde{r}_{i}, \tilde{S}_{i}, i\right)$ to David.
2. David chooses a random vector $h_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{k} \backslash\{0\}$ and sends $\left(h_{i}, i\right)$ to Goliath.
3. Goliath computes $\tilde{a}_{i} \leftarrow a_{i}-G r_{i}$ and $\tilde{b}_{i} \leftarrow b_{i}-G S_{i} h_{i}$ and sends ($\left.\tilde{a}_{i}, \tilde{b}_{i}, i\right)$ to David, who ignores that message if not $i=j_{\text {sent }}+1 \leq n$.
4. David updates $j_{\text {sent }} \leftarrow i$ and outputs (ready,i) to the environment.

Throughout the whole send phase, obviously malformed messages are just ignored by the respective receiver.

Choice phases:

5. Upon input $\left(x_{i}, i\right)$ from the environment, David verifies that $x_{i} \in \mathbb{F}_{q}$ and $i=j_{\text {queried }}+1 \leq j_{\text {sent }}$; else he ignores that input. Next, he updates $j_{\text {queried }} \leftarrow i$, chooses a random vector $z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathbb{F}_{q}^{1 \times k} \mid \tilde{z} h_{i}=x_{i}\right\}$ and inputs $\left(z_{i}, i\right)$ into the token \mathcal{T}.
6. The token verifies that $z_{i} \in \mathbb{F}_{q}^{1 \times k}$ and $i=j_{\text {queried }}^{\prime}+1 \leq n$; else it ignores that input. Next, the token updates $j_{\text {queried }}^{\prime} \leftarrow i$, computes $W_{i} \leftarrow r_{i} z_{i}+S_{i}$ and outputs W_{i} to David.
7. David verifies that $f_{i-1}=\top$ and $C W_{i}=\tilde{r}_{i} z_{i}+\tilde{S}_{i}$; if $W_{i} \notin \mathbb{F}_{q}^{4 l \times k}$, it is treated as an encoding of the allzero matrix in $\mathbb{F}_{q}^{4 l \times k}$. If the check is passed, David sets $f_{i} \leftarrow \top$ and computes $y_{i} \leftarrow G W_{i} h_{i}+\tilde{a}_{i} x_{i}+\tilde{b}_{i}$; otherwise he sets $f_{i} \leftarrow \perp$ and $y_{i} \leftarrow 0$ (such that $y_{i} \in \mathbb{F}_{q}^{k}$). Then he outputs $\left(y_{i}, i\right)$ to the environment.

Figure 6: A protocol for semi-interactive sequential OAFE, using one tamper-proof token. Note that several send and choice phases can be executed in mixed order with the only restriction that an honest David will not enter the i-th choice phase before the i-th send phase has been completed.

3.2 Refinements and applications of our construction

Before we give a formal security proof for our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$, we first want to present how the claimed optimal constructions for multiple OTMs, Commitments and OT (cf. Section 1.2) do work.

As mentioned above, we will prove security of our protocol $\Pi_{\mathrm{OAFE}}^{\mathrm{semi}-\mathrm{int}}$ only for the case that $k \geq 5$. However, $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ with $k<5$ can be implemented from $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ with $k=5$ straightforwardly and the reduction protocol itself has only linear overhead. Thus, the asymptotic optimality of our construction for $\mathcal{F}_{\mathrm{OAFE}}^{\mathrm{seq}-\mathrm{ot}}$ with $k=5$ does directly carry over to the case that $k<5$.

At the end of this section, in Section 3.2.7, we also discuss why for computationally secure OT protocols an improvement of the communication complexity is not a noteworthy result. However, this does neither affect statistically secure OT nor any commitment or OTM constructions.

3.2.1 Reducing the number of rounds, e.g. for one-time programs

In GIS ${ }^{+} 10$ so-called trusted OTPs are implemented from a polynomial amount of OTM tokens. As an honest receiver will query these tokens in some predefined (and publicly known) order, we can adapt the results of [GIS ${ }^{+}$10] to implement trusted OTPs from a single untrusted hardware token (cf. Section 2.4). However, if one implements some polynomial number (say l) of sequentially queriable OTM tokens by the construction we proposed in Section 2.4, one will end up with more than thrice as many (i.e. $3 l$) rounds of communication between David and Goliath. This round complexity can be dramatically reduced as follows: In our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ (q.v. Figure 6 in Section 3.1), instead of performing a large number of individual send phases, David can already announce h_{1}, \ldots, h_{l} along with the check matrix C in step iii of the setup phase and Goliath can send all his announcements of the corresponding l send phases in one single message $\left(\left(\tilde{r}_{1}, \tilde{S}_{1}, 1\right),\left(\tilde{a}_{1}, \tilde{b}_{1}, 1\right), \ldots,\left(\tilde{r}_{l}, \tilde{S}_{l}, l\right),\left(\tilde{a}_{l}, \tilde{b}_{l}, l\right)\right)$. Thereby we end up with two rounds of communication, not counting for the transmission of the token. This modification of the protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ does not breach its security: In our formal security proof we even assume that a corrupted Goliath's announcement of $\left(\left(\tilde{r}_{1}, \tilde{S}_{1}\right), \ldots,\left(\tilde{r}_{n}, \tilde{S}_{n}\right)\right)$ may arbitrarily depend on $\left(h_{1}, \ldots, h_{n}\right)$. Hence, our security proof does directly carry over to the modified protocol. Note that analogously we just can arbitrarily parallelize multiple send phases of our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ without jeopardizing security. This can be used, e.g., to implement polynomially many OTs (cf. Section 3.2.3) or commitments (cf. Section 3.2.5) with constant round complexity.

It is quite straightforward to see that a two-round protocol for implementation of polynomially many OTM tokens from a single piece of untrusted tamper-proof hardware is optimalcf. [DKMQ11, Theorem 1]. Furthermore, our new two-round protocol is an improvement upon DKMQ11, where we needed four rounds of communication between David and Goliath.

3.2.2 Computational solution for unlimited reusability of a memory-limited token

Our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ (q.v. Figure 6 in Section 3.1 guarantees perfect security against David (cf. Section 4.2). However, to achieve this, the token needs to be able to store $\Theta\left(n k^{2} \log q\right)$ bits of information. This contradicts the idea of a tamper-proof hardware token being a small and simple device. In MS08] it was noted, that if David is computationally bounded, then the functions stored on the token could be chosen to be pseudorandom [GGM86, HILL99]. The same is true for our construction. It suffices that the token stores a succinct seed of length $\Theta(k \log q)$ for a pseudorandom number generator F. Upon input $\left(z_{i}, i\right)$ the token can compute the next pseudorandom value $\left(r_{i}, S_{i}\right)=F(i)$ and output $W_{i}=r_{i} z_{i}+S_{i}$.

Moreover, in such a setting we do not need our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ and the ideal functionality $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ to be parametrized by an explicit runtime bound n, as David's computational boundedness implies a polynomial upper bound for the number of token queries.

3.2.3 Unidirectional string-OT and OTMs with optimal communication complexity

As discussed in Section 2.4, one can reduce k-bit string-OT and \mathbb{F}_{2}^{k}-OAFE to each other without any overhead. However, our construction for seq-ot-OAFE has communication complexity $\Theta\left(n k^{2} \log q\right)$. I.e., by the aforementioned reduction approach we would end up with a communication complexity of $\Theta\left(k^{2}\right)$ per implemented instance of k-bit string-OT, as it happened in DKMQ11. In contrast, if k is constant and q grows exponentially in the security parameter, we have only a communication complexity of $O(\log q)$ for each implemented instance of \mathbb{F}_{q}^{k}-OAFE (q.v. Figure 6 in Section 2.4), what is clearly optimal. Therefore, it is desirable to implement l-bit string-OT by a constant number of $\mathbb{F}_{2^{l}}^{d}$-OAFE instances with constant dimension d. We present such a reduction protocol in Figure 7 our construction needs only a single instance of $\mathbb{F}_{2^{l}}^{2}$-OAFE and the protocol idea is as follows. The $\mathbb{F}_{2^{l}}^{2}$-OAFE primitive allows the sender party to specify two affine functions $f_{0}, f_{1}: \mathbb{F}_{2^{l}} \rightarrow \mathbb{F}_{2^{l}}$, such that the receiver party can evaluate both functions only once and only simultaneously on the same input. Thus, if the sender party announces its OT-inputs s_{0} and s_{1} encrypted with $f_{0}(0)$ and $f_{1}(1)$ respectively, then the receiver party may learn at most one of the values needed for decryption of s_{0} and s_{1}. One can even go without transmitting any ciphertexts: The sender party just has to choose f_{0}, f_{1}, such that $f_{0}(0)=s_{0}$ and $f_{1}(1)=s_{1}$, whereas $f_{0}(1)$ and $f_{1}(0)$ are completely random.

Figure 7: Reduction of l-bit string-OT to $\mathbb{F}_{2^{l}}^{2}$-OAFE. Note that the transmission of m_{0} and m_{1} is not essential; instead the sender party can just choose (a, b) subject to the condition that $e_{0} \cdot b=s_{0}$ and $e_{1} \cdot(a+b)=s_{1}$.

The protocol in Figure 7 is perfectly UC-secure, what can be shown straightforwardly, and it also works perfectly for implementation of sequentially queriable OTM tokens from seq-ot-OAFE (cf. the respective discussion in Section 2.4). Thus, in the outcome we also have a construction for sequentially queriable $\log (q)$-bit OTM tokens, using only $\Theta(\log q)$ bits of communication per implemented OTM token. This communication complexity is clearly optimal and to the best of our knowledge our approach is the first to implement statistically secure OT (or OTMs respectively) with optimal communication complexity, while based only on untrusted tamper-proof hardware.

Note that our protocols with linear communication complexity also have very low computation complexity. Per implemented $\log (q)$-bit string-OT (or $\log (q)$-bit OTM respectively) every party
(and in particular the exchanged token) has only to perform $O(1)$ finite field operations with field size q, what is considerably faster than, e.g., something based on modular exponentiation.

3.2.4 Achieving optimal communication complexity for bidirectional string-OT

In Section 3.2.3 we have shown how one can implement unidirectional string-OT (from the token issuer to the token receiver) with optimal communication complexity, using our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ as a building block. Implementing string-OT in the other direction (from the token receiver to the token issuer) with optimal communication complexity turns out a bit more challenging. The starting point for our construction is the protocol in Figure 8 for reversing the direction of a given \mathbb{F}_{q}-OAFE primitive. Note that this protocol is not UC-secure, since a corrupted sender can cause the receiver to output some y before a and b are fixed: The corrupted sender can just send a random $m \in \mathbb{F}_{q}$ and arbitrarily later input some $a \in \mathbb{F}_{q}$ of his choice into the underlying \mathbb{F}_{q}-OAFE instance (and then compute $b:=m-z$). This breaches UC-security, since an ideal version of the reversed \mathbb{F}_{q}-OAFE primitive would not send y to the receiver party before the sender's inputs a and b are fixed. However, in our case this problem can be solved straightforwardly: Since our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ implements sequentially queriable OAFE instances, it suffices to use every other OAFE instance for a check announcement, i.e. both parties just input randomness and the receiver has to announce his input-output tuple (cf. Section 2.4).

Figure 8: Basic approach for reversing the direction of a given \mathbb{F}_{q}-OAFE primitive; protocol taken from WW06]. Note that this protocol is not UC-secure, unless input of a into the underlying $\mathbb{F}_{q^{-}}$-OAFE instance is enforced before the receiver outputs y; otherwise a corrupted sender can maliciously delay his choice of a (and b).

Obviously, the approach in Figure 8 does not work for \mathbb{F}_{q}^{k}-OAFE with $k>1$, but we need \mathbb{F}_{q}^{2-} OAFE for our aimed at OT protocol. Thus, a construction for \mathbb{F}_{q}^{k}-OAFE from some instances of $\mathbb{F}_{q^{-}}$-OAFE would come in very handy. In DKMQ12 one can find such a construction and a security proof for the case that $k \log q$ increases polynomially in the security parameter. For the sake of self-containedness we recap in Figure 9 the approach of DKMQ12 with $k=2$. By combining this with the protocol in Figure 8 and some optimization in the number of $\mathbb{F}_{q^{-}}$-OAFE instances used for check announcements we end up with the protocol depicted in Figure 10.

Now, by plugging the protocol of Figure 10 on top of $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ (q.v. Figure 6 in Section 3.1) we get sequentially queriable \mathbb{F}_{q}^{2}-OAFE from the token receiver to the token sender with an overall communication complexity of $O(\log q)$ per implemented \mathbb{F}_{q}^{2}-OAFE instance. So finally, we can apply again the protocol of Figure 7 in Section 3.2 .3 and thereby implement string-OT with optimal communication complexity also in the direction from the token receiver to the token issuer.

	\mathbb{F}_{q}^{2}-OAFE	
	$\begin{aligned} & \begin{array}{l} H \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{2 \times 5} \\ \alpha^{\prime}:=a-H \cdot\left(\alpha_{1}, \ldots, \alpha_{5}\right)^{\mathrm{T}} \\ \beta^{\prime}:=b-H \cdot\left(\beta_{1}, \ldots, \beta_{5}\right)^{\mathrm{T}} \end{array} \\ & \\ & \\ & \alpha^{\prime} x+\beta^{\prime}+H \cdot\left(\gamma_{1}, \ldots, \gamma_{5}\right)^{\mathrm{T}} \end{aligned}$	$\longrightarrow y$

Figure 9: Implementation of \mathbb{F}_{q}^{2}-OAFE from five instances of \mathbb{F}_{q}-OAFE; protocol taken from DKMQ12. Additional measures must be taken so that H is not announced before the receiver party has provided some input to all five underlying \mathbb{F}_{q}-OAFE instances in the dashed box; otherwise the protocol is inherently insecure, as shown in [DKMQ12, Lemma 1].

Figure 10: Combined protocol for UC-secure reversed \mathbb{F}_{q}^{2}-OAFE from six sequentially queriable instances of \mathbb{F}_{q}-OAFE. Note that the receiver must not output y unless ρ was announced correctly by the sender party.

Protocol $\Pi_{\text {COM }}^{\text {forward }}$ (Goliath is the committing/unveiling party)

Parametrized by a string length l, which also serves as security parameter, and some runtime bound n that is polynomially bounded in l. All parties have access to a hybrid functionality $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ parametrized by the finite vector space $\mathbb{F}_{2^{l}}^{1}$ and with runtime bound n. Bit strings of length l and elements of $\mathbb{F}_{2^{l}}$ are identified with each other. The counter j, held by Goliath, is initialized to 0 .

Commit phases:

1. Upon input (Commit, s_{i}, i) from the environment, Goliath verifies that $s_{i} \in\{0,1\}^{l}$ and $i=j+1 \leq n$; else he ignores that input. Next, Goliath updates $j \leftarrow i$, chooses some random $b_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{2^{l}}$ and sends $\left(s_{i}, b_{i}, i\right)$ to $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$.
2. David, upon receiving the message (ready, i) from $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$, picks some random $x_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{2^{l}}$. He sends $\left(x_{i}, i\right)$ to $\mathcal{F}_{\text {OAFE }}^{\text {seq-ot }}$, receives some $\left(y_{i}, i\right)$ and outputs (committed, i).

Unveil phases:

3. Upon input (Unveil, i) from the environment, Goliath verifies that $i \leq j$; else he ignores that input. Next, Goliath sends (s_{i}, b_{i}, i) to David.
4. David verifies that $s_{i} x_{i}+b_{i}=y_{i}$. If the check is passed, he outputs $\left(s_{i}, i\right)$; otherwise he outputs (\perp, i).

Protocol $\Pi_{\text {COM }}^{\text {backward }}$ (David is the committing/unveiling party)

Parametrized by a string length l, which also serves as security parameter, and some runtime bound n that is polynomially bounded in l. All parties have access to a hybrid functionality $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ parametrized by the finite vector space $\mathbb{F}_{2^{l}}^{1}$ and with runtime bound $2 n$. Bit strings of length l and elements of $\mathbb{F}_{2^{l}}$ are identified with each other. The counter j, held by David, is initialized to 0 .

Commit phases:

1. Upon input (Commit, s_{i}, i) from the environment, David verifies that $s_{i} \in\{0,1\}^{l}$ and $i=j+1 \leq n$; else he ignores that input. Next, David updates $j \leftarrow i$ and sends (i) to Goliath.
2. Goliath randomly picks $a_{i}, b_{i}, c_{i}, d_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{2^{l}}$ and sends $\left(a_{i}, b_{i}, 2 i-1\right)$ and $\left(c_{i}, d_{i}, 2 i\right)$ to $\mathcal{F}_{\text {OAFE }}^{\text {seq-ot }}$.
3. David, after receiving the messages (ready, $2 i-1$) and (ready, $2 i$) from $\mathcal{F}_{\text {OAFE }}^{\text {seq-ot }}$, sends $\left(s_{i}, 2 i-1\right)$ and $(0,2 i)$ to $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$. He receives some $\left(y_{i}, 2 i-1\right)$ and $\left(r_{i}, 2 i\right)$ and announces $\left(r_{i}, i\right)$ to Goliath.
4. Goliath outputs (committed, i).

Unveil phases:

5. Upon input (Unveil, i) from the environment, David verifies that $i \leq j$; else he ignores that input. Next, David sends (s_{i}, y_{i}, i) to Goliath.
6. Goliath verifies that $r_{i}=d_{i}$ and $y_{i}=a_{i} s_{i}+b_{i}$. If the check is passed, he outputs $\left(s_{i}, i\right)$; otherwise he outputs (\perp, i).

Figure 11: Asymptotically optimal protocols for string commitments from seq-ot-OAFE. Note that in a straightforward manner one can use the same instance of $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ for both protocols simultaneously.

3.2.5 Efficient protocol for string-commitments in any direction

At this point we also want to note that string commitments can be implemented directly from seq-ot-OAFE, even if the dimension k is constant (i.e. q grows exponentially in the security parameter). See Figure 11 for the reduction protocols; they work analogously to the standard constructions for commitments from OT. As our protocol for seq-ot-OAFE with constant dimension k has only linear complexity, we thus get asymptotically optimal protocols for string commitments.

3.2.6 Non-interactive solution with two tokens

Our approach still needs the receiver party David to send some messages to the sender party Goliath. In particular, for each implemented instance of \mathbb{F}_{q}^{k}-OAFE we have an interactive send phase and a non-interactive choice phase (q.v. Figure 6 in Section 2.4). Therefore, we say that our protocol $\Pi_{\mathrm{OAFE}}^{\mathrm{semi}} \mathrm{int}$ is "semi-interactive". It is quite straightforward to see that one cannot implement $\mathcal{F}_{\text {OAFE }}^{\text {seq-ot }}$ from a single instance of $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ by any non-interactive protocol-cf. DKMQ11, Theorem 1]. However, we can easily give a generic non-interactive protocol for $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$, if two instances of $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ are in place, i.e. the sender party Goliath issues two tamper-proof tokens and the receiver party David can trust that the tokens are mutually isolated. Then, the second token can play Goliath's role in the protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ with random inputs a_{i} and b_{i}. As Goliath knows the second token's random coins, derandomization of his inputs can be done as follows: If Goliath wants to replace the random input tuple (a_{i}, b_{i}) by some arbitrarily chosen ($a_{i}^{\prime}, b_{i}^{\prime}$), he just sends $\left(a_{i}^{\prime}-a_{i}, b_{i}^{\prime}-b_{i}, i\right)$ to David, who then has to replace his output y_{i} by $y_{i}^{\prime}:=y_{i}+\left(a_{i}^{\prime}-a_{i}\right) x_{i}+\left(b_{i}^{\prime}-b_{i}\right)$.

Note that based on the two-token protocol that implements $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ with random Goliath inputs, step 2 of $\Pi_{\text {COM }}^{\text {backward }}$ (q.v. Figure 11) can be made non-interactive, as Goliath does not need to derandomize any of his inputs. All other protocols become non-interactive straightforwardly.

3.2.7 A note on optimal communication complexity

The string length of any computationally secure OT protocol can be polynomially extended by standard techniques (cf. protocol $\Pi_{\mathrm{OT}}^{\text {enlarge }}$ in Figure 12). It is straightforward to show UC-security of this approach. Hence, optimal communication complexity of the computational versions of our OT solution is not a noteworthy result. However, applying an analogous transformation to commitments or OTMs would destroy UC-security (see Remark 2 below) and we are not aware of any universally composable amortization techniques for these primitives that do not come along with additional setup assumptions.
Remark 2. The protocols $\Pi_{\mathrm{COM}}^{\text {enlarge }}$ and $\Pi_{\mathrm{OTM}}^{\text {enlarge }}$ in Figure 12 are not UC-secure.
Proof. We just show that $\Pi_{\mathrm{COM}}^{\text {enlarge }}$ is not UC-secure. For $\Pi_{\mathrm{OTM}}^{\text {enlarge }}$ one can argue analogously. Consider a passively corrupted receiver party that just hands over every message to the environment. For the real model, this means that in the commit phase the environment learns some k-bit string r and in the unveil phase it learns a seed $s \in\{0,1\}^{l}$, such that $r \oplus F(s)$ is the honest sender party's input c. Now, if the environment chooses the honest sender party's input $c \in\{0,1\}^{k}$ uniformly at random, this is not simulatable in the ideal model. The simulator has to choose r before he learns c. Thus, using a simple counting argument, the probability that there exists any seed $s \in\{0,1\}^{l}$ with $r \oplus F(s)=c$ can be upper bounded by 2^{l-k}. In other words, the simulation fails at least with probability $1-2^{l-k}$.

Protocol $\Pi_{\mathrm{OT}}^{\text {enlarge }}$

Parametrized by two security parameters k and l with $k>l$, a hybrid functionality $\mathcal{F}_{\text {OT }}$ for l-bit string-OT and a PRNG function F with seed length l and output length k, i.e. $F:\{0,1\}^{l} \rightarrow\{0,1\}^{k}$.

1. Upon input $\left(s_{0}, s_{1}\right)$ from the environment, the sender party verifies that $s_{0}, s_{1} \in\{0,1\}^{k}$; else that input is ignored. Next, the sender party chooses two random seeds $\tilde{s}_{0}, \tilde{s}_{1} \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}^{l}$ and inputs ($\left.\tilde{s}_{0}, \tilde{s}_{1}\right)$ into $\mathcal{F}_{\mathrm{OT}}$.
2. Upon input x from the environment, the receiver party verifies that $x \in\{0,1\}$; else that input is ignored. Next, the receiver party inputs x into $\mathcal{F}_{\mathrm{OT}}$, thus receiving \tilde{s}_{x}.
3. The sender party, after being notified that everybody did provide some input to $\mathcal{F}_{\text {OT }}$, announces $r_{0}:=s_{0} \oplus F\left(\tilde{s}_{0}\right)$ and $r_{1}:=s_{1} \oplus F\left(\tilde{s}_{1}\right)$.
4. The receiver party computes and outputs $s_{x}=r_{x} \oplus F\left(\tilde{s}_{x}\right)$.

Protocol $\Pi_{\mathrm{COM}}^{\text {enlarge }}$

Parametrized by two security parameters k and l with $k>l$, a hybrid functionality $\mathcal{F}_{\mathrm{COM}}$ for l-bit stringcommitment and a PRNG function F with seed length l and output length k, i.e. $F:\{0,1\}^{l} \rightarrow\{0,1\}^{k}$.

Commit phase:

1. Upon input (Commit, c) from the environment, the sender party verifies that $c \in\{0,1\}^{k}$; else that input is ignored. Next, the sender party chooses some random $\tilde{s} \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}^{l}$, commits to s via $\mathcal{F}_{\mathrm{COM}}$ and sends $r:=c \oplus F(\tilde{s})$ to the receiver party.
2. The receiver party outputs (committed).

Unveil phase:

3. Upon input (Unveil) from the environment, the sender party unveils \tilde{s}.
4. If the unveil is successful, the receiver party computes and outputs $r \oplus F(\tilde{s})$; otherwise it outputs \perp.

Protocol $\Pi_{\text {OTM }}^{\text {enlarge }}$

Parametrized by two security parameters k and l with $k>l$, a hybrid functionality $\mathcal{F}_{\text {OTM }}$ for l-bit OTM and a PRNG function F with seed length l and output length k, i.e. $F:\{0,1\}^{l} \rightarrow\{0,1\}^{k}$.

Creation:

1. Upon input $\left(s_{0}, s_{1}\right)$ from the environment, the sender party verifies that $s_{0}, s_{1} \in\{0,1\}^{k}$; else that input is ignored. Next, the sender party chooses two random seeds $\tilde{s}_{0}, \tilde{s}_{1} \stackrel{r}{r}_{\leftarrow}^{\leftarrow}\{0,1\}^{l}$, sends $\left(\tilde{s}_{0}, \tilde{s}_{1}\right)$ via $\mathcal{F}_{\text {OTM }}$ to the receiver party and announces $r_{0}:=s_{0} \oplus F\left(\tilde{s}_{0}\right)$ and $r_{1}:=s_{1} \oplus F\left(\tilde{s}_{1}\right)$.
2. The receiver party outputs (ready).

Query:

3. Upon input x from the environment, the receiver party verifies that $x \in\{0,1\}$; else that input is ignored. Next, the receiver party inputs x into $\mathcal{F}_{\mathrm{OTM}}$, thus receiving \tilde{s}_{x}, and computes and outputs $s_{x}=r_{x} \oplus F\left(\tilde{s}_{x}\right)$.

Figure 12: Straightforward approaches for enlarging the string length of some given OT, commitment or OTM functionality, using a PRNG. The protocol $\Pi_{\mathrm{OT}}^{\text {enlarge }}$ is UC-secure, but $\Pi_{\mathrm{COM}}^{\text {enlarge }}$ and $\Pi_{\text {OTM }}^{\text {enlarge }}$ are not (q.v. Remark 2).

4 Correctness and security of our protocol

In this section we show that in the $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$-hybrid model our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ is a universally composable implementation of the ideal functionality $\mathcal{F}_{\mathrm{OAFE}}^{\text {semi-int }}$, if only $k \geq 5$. In particular, in Section 4.2 we will prove perfect security against a corrupted David for all k and in Section 4.3 we will prove statistical security against a corrupted Goliath for the case that $k \geq 5$. However, first of all we will show that $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ always works correctly when no party is corrupted (Section 4.1).

4.1 Correctness

In a totally uncorrupted setting, simulation is straightforward. Since the simulator always is notified when the ideal Goliath receives input from the environment and the simulator also may arbitrarily delay the ideal David's corresponding ready-message, he can perfectly simulate any scheduling of the messages in the send phase. In turn, the choice phase cannot be influenced by the real model adversary and therefore can be simulated trivially. Furthermore, whenever in the real model the receiver David outputs some $\left(y_{i}, i\right)$, it holds that $y_{i}=a_{i} x_{i}+b_{i}$, as one can verify as follows:

$$
y_{i}=G \underbrace{\left(r_{i} z_{i}+S_{i}\right)}_{=W_{i}} h_{i}+\underbrace{\left(a_{i}-G r_{i}\right)}_{=\tilde{a}_{i}} x_{i}+\underbrace{b_{i}-G S_{i} h_{i}}_{=\tilde{b}_{i}}=G r_{i} \underbrace{\left(z_{i} h_{i}-x_{i}\right)}_{=0}+a_{i} x_{i}+b_{i}
$$

Also note that in a totally uncorrupted setting David's consistency checks are always passed.

4.2 Security against a corrupted receiver

We first show security against a corrupted receiver party David, as this is the easy case. Basically, there are only two things a corrupted David can do: follow the protocol honestly, or query the token before the respective send phase is over. We will refer to the former as the regular case and to the latter as the irregular case. A bit more formally, regarding some specific $i \in\{1, \ldots, n\}$ we speak of the regular case if David sends $\left(h_{i}, i\right)$ to Goliath before inputting $\left(z_{i}, i\right)$ into the token, and we speak of the irregular case if David sends $\left(h_{i}, i\right)$ to Goliath after inputting $\left(z_{i}, i\right)$ into the token. Note that, although David is corrupted, h_{i} and z_{i} are still well-defined since Goliath and the token accept only well-formed messages $\left(h_{i}, i\right)$ and $\left(z_{i}, i\right)$ respectively. It is quite straightforward to see that due to the randomness of $\left(r_{i}, S_{i}\right)$ every value seen by David, namely $\tilde{r}_{i}, \tilde{S}_{i}, \tilde{a}_{i}, \tilde{b}_{i}, W_{i}$, is just uniformly random subject to the sole condition that in the end the correct result y_{i} can be computed. We formalize this by the next lemma.

Lemma 3. In our protocol $\Pi_{\mathrm{OAFE}}^{\mathrm{semi-int}}$, if Goliath is honest, the variables $\tilde{r}_{i}, \tilde{S}_{i}, \tilde{a}_{i}, \tilde{b}_{i}, W_{i}$ are just uniformly random subject to the condition that $C W_{i}=\tilde{r}_{i} z_{i}+\tilde{S}_{i}$ and $G W_{i} h_{i}+\tilde{a}_{i} z_{i} h_{i}+\tilde{b}_{i}=a_{i} z_{i} h_{i}+b_{i}$.

Proof. We give a proof by cases and start off with the regular case, i.e. David first sends $\left(h_{i}, i\right)$ to Goliath and later on inputs $\left(z_{i}, i\right)$ into the token. In this case, Goliath obviously just announces some $\tilde{r}_{i}, \tilde{S}_{i}, \tilde{a}_{i}, \tilde{b}_{i}$ uniformly at random. Consequently, we have to show now that the token output W_{i} is uniformly random subject to the condition that $C W_{i}=\tilde{r}_{i} z_{i}+\tilde{S}_{i}$ and $G W_{i} h_{i}+\tilde{a}_{i} z_{i} h_{i}+\tilde{b}_{i}=a_{i} z_{i} h_{i}+b_{i}$. However, we can imagine that right before the computation of W_{i} the token's stored randomness S_{i} is uniformly resampled subject to the condition that $C S_{i}=\tilde{S}_{i}$ and $G S_{i} h_{i}=b_{i}-\tilde{b}_{i}$. This clearly does not change David's view at all. In other words, we can replace S_{i} by $S_{i}+S^{\prime}$, where S^{\prime} is uniformly random subject to the condition that $C S^{\prime}=0$ and $G S^{\prime} h=0$. Thereby, W_{i} is also
replaced by $W_{i}+S^{\prime}$ and hence becomes uniformly random subject to the sole condition that $C W_{i}$ and $G W_{i} h_{i}$ are not changed. This means that W_{i} is uniformly random subject to the condition that $C W_{i}=\tilde{r}_{i} z_{i}+\tilde{S}_{i}$ and $G W_{i} h_{i}=\left(a_{i}-\tilde{a}_{i}\right) z_{i} h_{i}+b_{i}-\tilde{b}_{i}$. This concludes our proof for the regular case.

Now we consider the irregular case, i.e. the corrupted David inputs $\left(z_{i}, i\right)$ into the token before he sends $\left(h_{i}, i\right)$ to Goliath. In this case, $\left(\tilde{r}_{i}, \tilde{S}_{i}\right)$ announced by Goliath and the token's output W_{i} are just uniformly random subject to the condition that $C W_{i}=\tilde{r}_{i} z_{i}+\tilde{S}_{i}$. Consequently, we have to show now that the honest Goliath's announcement of ($\left.\tilde{a}_{i}, \tilde{b}_{i}\right)$ is uniformly random subject to the condition that $G W_{i} h_{i}+\tilde{a}_{i} z_{i} h_{i}+\tilde{b}_{i}=a_{i} z_{i} h_{i}+b_{i}$. However, we can imagine that right before the computation of ($\tilde{a}_{i}, \tilde{b}_{i}$) the stored randomness r_{i} in Goliath's memory is uniformly resampled subject to the condition that $C r_{i}=\tilde{r}_{i}$, and S_{i} is replaced by the new value of $W_{i}-r_{i} z_{i}$. It is straightforward to verify that this does not change the corrupted David's view at all. In other words, we can replace $\left(r_{i}, S_{i}\right)$ by $\left(r_{i}+r^{\prime}, S_{i}-r^{\prime} z_{i}\right)$, where r^{\prime} is uniformly random subject to the condition that $C r^{\prime}=0$. Thereby, \tilde{a}_{i} is replaced by $\tilde{a}_{i}-G r^{\prime}$ and hence becomes just uniformly random over \mathbb{F}_{q}^{k}, since G is complementary to C and thus $G r^{\prime}$ itself is uniformly random over \mathbb{F}_{q}^{k}. Analogously, \tilde{b}_{i} is replaced by $\tilde{b}_{i}+G r^{\prime} z_{i} h_{i}$, and it still holds:

$$
G W_{i} h_{i}+\underbrace{\left(\tilde{a}_{i}-G r^{\prime}\right)}_{\text {new } \tilde{a}_{i}} z_{i} h_{i}+\underbrace{\left(\tilde{b}_{i}+G r^{\prime} z_{i} h_{i}\right)}_{\text {new } \tilde{b}_{i}}=G W_{i} h_{i}+\tilde{a}_{i} z_{i} h_{i}+\tilde{b}_{i}=a_{i} z_{i} h_{i}+b_{i}
$$

This means that $\tilde{a}_{i}, \tilde{b}_{i}$ are uniformly random subject to the sole condition that $G W_{i} h_{i}+\tilde{a}_{i} z_{i} h_{i}+\tilde{b}_{i}=$ $a_{i} z_{i} h_{i}+b_{i}$. This concludes our proof for the irregular case.

This lemma leads to a very straightforward simulator construction for the UC framework. When the corrupted David queries the token after he already got the derandomization information ($\tilde{a}_{i}, \tilde{b}_{i}$) from Goliath in the corresponding send phase, the simulator can revise the token's output W_{i} so that the check $C W_{i} \stackrel{?}{=} \tilde{r}_{i} z_{i}+\tilde{S}_{i}$ is still passed, but $G W_{i}$ now matches a protocol run in the real model: When the token is to output W_{i}, the simulator has already seen both shares z_{i}, h_{i} that are needed to extract David's input x_{i}. The simulator can then query the ideal functionality $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ on this input x_{i}, thus receiving y_{i}, and then revise W_{i} by some W^{\prime} so that $C W^{\prime}=C W_{i}$ and $y_{i}=G W^{\prime} h_{i}+\tilde{a}_{i} x_{i}+\tilde{b}_{i}$. Note that existence of such a W^{\prime} is always guaranteed, since G is complementary to C (i.e. especially G has full rank) and $h \neq 0$.

When the corrupted David queries the token before he got the derandomization information $\left(\tilde{a}_{i}, \tilde{b}_{i}\right)$ from Goliath in the corresponding send phase, the simulator can easily revise Goliath's announcement of the derandomization information so that it matches a protocol run in the real model: When Goliath is to announce the derandomization information ($\tilde{a}_{i}, \tilde{b}_{i}$), the simulator has already seen both shares z_{i}, h_{i} that are needed to extract David's input x_{i}. The simulator can then query the ideal functionality $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ on this input x_{i}, thus receiving y_{i}, and then just revise \tilde{b}_{i} so that $y_{i}=G W_{i} h_{i}+\tilde{a}_{i} x_{i}+\tilde{b}_{i}$.

A formal description of this simulator construction is given in Figure 13. We conclude this section with the corresponding security theorem.
Theorem 4. Let some arbitrary environment \mathcal{Z} be given and some adversary \mathcal{A} that corrupts the receiver David. Then the view of \mathcal{Z} in the ideal model with ideal functionality $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ and simulator $\mathcal{S}^{\text {David }}(\mathcal{A})$ is identically distributed to the view of \mathcal{Z} in the real model with protocol $\Pi_{\mathrm{OAFE}}^{\mathrm{semi}}$ int and adversary \mathcal{A}.
Proof. This directly follows by Lemma 3.

Simulator $\mathcal{S}^{\text {David }}(\mathcal{A})$

- Set up an honest Goliath-machine \mathcal{G}; also set up simulated versions of $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ and the given real model adversary \mathcal{A} (which especially impersonates the corrupted David). Wire the simulated machines $\mathcal{A}, \mathcal{G}, \mathcal{F}_{\text {wrap }}^{\text {stateful }}$ to each other and \mathcal{A} to the environment right the way they would be wired in the real model with protocol $\Pi_{\mathrm{OAFE}}^{\mathrm{semi}-\mathrm{int}}$ (q.v. Figure 6 in Section 3.1.
- Upon receiving a message (created, i) from the ideal functionality $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$, reply with (Delivery, i). Then, upon receiving (ready, i) on behalf of the corrupted David, choose some random vectors $a_{i}, b_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{k}$ and let \mathcal{G} start the i-th send phase with input $\left(a_{i}, b_{i}, i\right)$.
- Whenever \mathcal{G} is to send some $\left(\tilde{a}_{i}, \tilde{b}_{i}, i\right)$ to the corrupted David in step 3 of $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$, extract the current state j of $j_{\text {queried }}^{\prime}$ from the view of the simulated $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$. If $j \geq i$, replace the announcement $\left(\tilde{a}_{i}, \tilde{b}_{i}, i\right)$ by $\left(\tilde{a}_{i}, \tilde{b}^{\prime}, i\right)$, with \tilde{b}^{\prime} computed as follows:

0 . Extract G, h_{i} from the view of \mathcal{G} and z_{i}, W_{i} from the view of the simulated $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$.

1. Compute $x_{i} \leftarrow z_{i} h_{i}$ and (on behalf of the corrupted David) send $\left(x_{i}, i\right)$ to the ideal functionality $\mathcal{F}_{\mathrm{OAFE}}^{\mathrm{seq}-\mathrm{ot}}$; let $\left(y_{i}, i\right)$ denote the respective answer from $\mathcal{F}_{\mathrm{OAFE}}^{\mathrm{seq}-\mathrm{ot}}$.
2. Set $\tilde{b}^{\prime} \leftarrow y_{i}-G W_{i} h_{i}-\tilde{a}_{i} x_{i}$.

- Whenever the token is to output some matrix W to the corrupted David in step 6 of $\Pi_{\mathrm{OAFE}}^{\mathrm{semin}}$, extract the current state i of $j_{\text {queried }}^{\prime}$ from the view of the simulated $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$. When \mathcal{G} has already received (and not ignored) a message $\left(h_{i}, i\right)$ in step 3 of $\Pi_{\mathrm{OAFE}}^{\mathrm{semi-int}}$, replace the token's output by W^{\prime}, computed as follows:

0. Extract $C, G, \tilde{r}_{i}, \tilde{S}_{i}, h_{i}, \tilde{a}_{i}, \tilde{b}_{i}$ from the view of \mathcal{G} and z_{i} from the view of the simulated $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$.
1. Compute $x_{i} \leftarrow z_{i} h_{i}$ and (on behalf of the corrupted David) send $\left(x_{i}, i\right)$ to the ideal functionality $\mathcal{F}_{\mathrm{OAFE}}^{\mathrm{seq}-\mathrm{ot}}$; let $\left(y_{i}, i\right)$ denote the respective answer from $\mathcal{F}_{\mathrm{OAFE}}^{\mathrm{seq}-\mathrm{ot}}$.
2. Choose randomly $W^{\prime} \stackrel{\mathrm{r}}{\leftarrow}\left\{\widetilde{W} \in \mathbb{F}_{q}^{4 k \times k} \mid C \widetilde{W}=\tilde{r}_{i} z_{i}+\tilde{S}_{i} \wedge G \widetilde{W} h_{i}+\tilde{a}_{i} x_{i}+\tilde{b}_{i}=y_{i}\right\}$.

Figure 13: The simulator program $\mathcal{S}^{\text {David }}(\mathcal{A})$, given an adversary \mathcal{A} that corrupts David.

4.3 Security against a corrupted sender

The case of a corrupted sender Goliath is the technically challenging part of the security proof. However, before we give our simulator construction for a corrupted sender Goliath (q.v. Section 4.3.5), we first take a closer look at the problems we have to deal with, and introduce the respective solution tools (Section 4.3.1, Section 4.3.3, Section 4.3.2 and Section 4.3.4).

4.3.1 Independence of the token view

We start our security considerations with showing that an honest David's token inputs z_{1}, \ldots, z_{n} are statistically indistinguishable from uniform randomness. This is necessary for security, since otherwise David's OAFE inputs x_{1}, \ldots, x_{n} would be non-negligibly correlated with the token view and a malicious token's behavior in the n-th choice phase could depend on x_{1}, \ldots, x_{n-1}.
W.l.o.g., we can assume that David's random tape is chosen after all other random tapes, i.e. we can consider everything to be deterministic except for David's random choice of h_{1}, \ldots, h_{n} and z_{1}, \ldots, z_{n}. However, as we are aiming for universal composability, we must take into account that

David's i-th OAFE input x_{i} might depend on everything that Goliath learned so far. In particular, all n send phases might already be over, i.e. Goliath already knows h_{1}, \ldots, h_{n}, and there might have leaked some little information about z_{1}, \ldots, z_{i-1} during past choice phases. Therefore, we have to model David's i-th OAFE input x_{i} as a function value $x_{i}\left(h_{1}, \ldots, h_{n}, z_{1}, \ldots, z_{i-1}\right)$.
Lemma 5. Let \mathbb{F}_{q} be some arbitrary field of size $q \geq 2$ and let $k, n \in \mathbb{N}_{>0}$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. Further, for $i=1, \ldots, n$ let any mapping $x_{i}: \mathcal{H}^{n} \times \mathcal{U}^{i-1} \rightarrow \mathbb{F}_{q}$ be given. Finally, for $i=1, \ldots, n$ we define the following random variables:

$$
\mathbf{h}_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H} \quad \mathbf{z}_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{z \in \mathcal{U} \mid z \mathbf{h}_{i}=x_{i}\left(\mathbf{h}_{1}, \ldots, \mathbf{h}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{i-1}\right)\right\} \quad \mathbf{u}_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}
$$

Then it holds that $\Delta\left(\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right),\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)\right)<\frac{1}{2} \sqrt{\exp \left(n \cdot q^{2-k}\right)-1}$.
Proof. We show this by estimation techniques borrowed from a proof for the Leftover Hash Lemma [AB09, proof of Lemma 21.26]. Let $\vec{z} \in \mathbb{R}^{\mathcal{U}^{n}}$ denote the probability vector of $\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)$ and let $\vec{u} \in \mathbb{R}^{\mathcal{U}^{n}}$ denote the probability vector of $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)$. Note that $\vec{z}-\vec{u}$ is orthogonal to \vec{u} :

$$
\langle\vec{z}-\vec{u} \mid \vec{u}\rangle=\langle\vec{z} \mid \vec{u}\rangle-\langle\vec{u} \mid \vec{u}\rangle=\frac{\|\vec{z}\|_{1}}{\left|\mathcal{U}^{n}\right|}-\frac{\|\vec{u}\|_{1}}{\left|\mathcal{U}^{n}\right|}=\frac{1}{\left|\mathcal{U}^{n}\right|}-\frac{1}{\left|\mathcal{U}^{n}\right|}=0
$$

Let the $2 n$-tuple of random variables $\left(\mathbf{h}_{1}^{\prime}, \ldots, \mathbf{h}_{n}^{\prime}, \mathbf{z}_{1}^{\prime}, \ldots, \mathbf{z}_{n}^{\prime}\right)$ be identically distributed as its unprimed counterpart $\left(\mathbf{h}_{1}, \ldots, \mathbf{h}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)$. The following equation system has exactly q^{k-2} different solutions $z \in \mathcal{U}$ if \mathbf{h}_{i} and \mathbf{h}_{i}^{\prime} are linearly independent, and at most q^{k-1} solutions otherwise:

$$
\begin{aligned}
z \mathbf{h}_{i} & =x_{i}\left(\mathbf{h}_{1}, \ldots, \mathbf{h}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{i-1}\right) \\
z \mathbf{h}_{i}^{\prime} & =x_{i}\left(\mathbf{h}_{1}^{\prime}, \ldots, \mathbf{h}_{n}^{\prime}, \mathbf{z}_{1}^{\prime}, \ldots, \mathbf{z}_{i-1}^{\prime}\right)
\end{aligned}
$$

Using the auxiliary random variable $\mathbf{m}:=\#\left\{i \in\{1, \ldots, n\} \mid \mathbf{h}_{i}\right.$ and \mathbf{h}_{i}^{\prime} are linearly independent $\}$, we can thus estimate:

$$
\mathbb{P}\left[\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)=\left(\mathbf{z}_{1}^{\prime}, \ldots, \mathbf{z}_{n}^{\prime}\right) \mid \mathbf{m}=m\right] \leq\left(\frac{q^{k-2}}{q^{k-1} \cdot q^{k-1}}\right)^{m} \cdot\left(\frac{q^{k-1}}{q^{k-1} \cdot q^{k-1}}\right)^{n-m}
$$

Further, we have that $\mathbb{P}[\mathbf{m}=m]=\binom{n}{m} \cdot\left(\frac{|\mathcal{H}|-(q-1)}{|\mathcal{H}|}\right)^{m} \cdot\left(\frac{q-1}{\mathcal{H} \mid}\right)^{n-m}$ by construction. It follows:

$$
\begin{aligned}
\|\vec{z}\|_{2}^{2} & =\mathbb{P}\left[\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)=\left(\mathbf{z}_{1}^{\prime}, \ldots, \mathbf{z}_{n}^{\prime}\right)\right] \\
& =\sum_{m=0}^{n} \mathbb{P}[\mathbf{m}=m] \cdot \mathbb{P}\left[\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)=\left(\mathbf{z}_{1}^{\prime}, \ldots, \mathbf{z}_{n}^{\prime}\right) \mid \mathbf{m}=m\right] \\
& \leq \sum_{m=0}^{n}\binom{n}{m} \cdot\left(\frac{|\mathcal{H}|-(q-1)}{|\mathcal{H}|}\right)^{m} \cdot\left(\frac{q-1}{|\mathcal{H}|}\right)^{n-m} \cdot\left(\frac{q^{k-2}}{q^{k-1} \cdot q^{k-1}}\right)^{m} \cdot\left(\frac{q^{k-1}}{q^{k-1} \cdot q^{k-1}}\right)^{n-m} \\
& =\left(1+\frac{(q-1)^{2}}{|\mathcal{H}|}\right)^{n} \cdot q^{-n k}
\end{aligned}
$$

Using the Pythagorean Theorem, we can now estimate:

$$
\|\vec{z}-\vec{u}\|_{2}^{2}=\|\vec{z}\|_{2}^{2}-\|\vec{u}\|_{2}^{2} \leq\left(1+\frac{(q-1)^{2}}{|\mathcal{H}|}\right)^{n} \cdot q^{-n k}-q^{-n k}
$$

Since $\|\vec{v}\|_{1} \leq \sqrt{m} \cdot\|\vec{v}\|_{2}$ for all $m \in \mathbb{N}, \vec{v} \in \mathbb{R}^{m}$, this yields:

$$
\Delta\left(\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right),\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)\right)=\frac{1}{2}\|\vec{z}-\vec{u}\|_{1} \leq \frac{1}{2} \sqrt{\left|\mathcal{U}^{n}\right|} \cdot\|\vec{z}-\vec{u}\|_{2} \leq \frac{1}{2} \sqrt{\left(1+\frac{(q-1)^{2}}{|\mathcal{H}|}\right)^{n}-1}
$$

To conclude our proof, we further estimate:

$$
\left(1+\frac{(q-1)^{2}}{|\mathcal{H}|}\right)^{n}=\exp \left(n \cdot \ln \left(1+\frac{(q-1)^{2}}{|\mathcal{H}|}\right)\right)<\exp \left(\frac{n \cdot(q-1)^{2}}{|\mathcal{H}|}\right)<\exp \left(n \cdot q^{2-k}\right)
$$

We will use this lemma not directly but for showing that the token functionality in the ($m+1$)th choice phase can be considered to be independent of C and h_{m+1}, \ldots, h_{n}. So in the following corollary, the random variable \mathbf{R} can be thought of as David's random choice of ($C, h_{m+1}, \ldots, h_{n}$).

Corollary 6. Let \mathbb{F}_{q} be some arbitrary field of size $q \geq 2$ and let $k, m \in \mathbb{N}_{>0}$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. Further, let \mathbf{R} be some arbitrary random variable with finite support \mathcal{R}. For $i=1, \ldots, m$ let any mapping $x_{i}: \mathcal{R} \times \mathcal{H}^{m} \times \mathcal{U}^{i-1} \rightarrow \mathbb{F}_{q}$ be given. Finally, for $i=1, \ldots, m$ we define the following random variables:

$$
\mathbf{h}_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H} \quad \mathbf{z}_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{z \in \mathcal{U} \mid z \mathbf{h}_{i}=x_{i}\left(\mathbf{R}, \mathbf{h}_{1}, \ldots, \mathbf{h}_{m}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{i-1}\right)\right\}
$$

Then it holds that $\iota\left(\mathbf{R},\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right)\right)<\sqrt{\exp \left(m q^{2-k}\right)-1}$.
Proof. By the Triangle Inequality (and the definition of ι, q.v. Section 2.1), we already have that $\iota\left(\mathbf{R},\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right)\right) \leq 2 \cdot \Delta\left(\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{m}\right),\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right)\right)$ for any random variables $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ that are statistically independent from \mathbf{R}. Hence, our corollary directly follows by Lemma 5 .

After all, note that independence between the token view and David's OAFE inputs x_{1}, \ldots, x_{n} is only a starting point for our security proof. E.g., we have not used so far David's consistency check $C W_{i} \stackrel{?}{=} \tilde{r}_{i} z_{i}+\tilde{S}_{i}$ in the final step of the choice phases. Lemma 5 and Corollary 6 would still hold true without this consistency check, but the protocol would become susceptible to attacks where the token encodes z_{i-1} into W_{i}. Now, if this information about z_{i-1} is unveiled to Goliath, e.g. through the unveil message in a commitment protocol (q.v. Protocol $\Pi_{\text {COM }}^{\text {backward }}$ in Figure 11, , he can possibly reconstruct David's secret OAFE input x_{i-1}, although the token still learns nothing but uniform randomness. Thus, what we have shown so far can only be one core argument amongst several others.

4.3.2 Committing the token to affine behavior

In Section 3.1 we argued that David's check $C W_{i} \stackrel{?}{=} \tilde{r}_{i} z_{i}+\tilde{S}_{i}$ enforces affine behavior of the token, since otherwise the token could form collisions for the universal hash function C. However, this is only half the truth. In fact, with $\tau_{i}: \mathbb{F}_{q}^{1 \times k} \rightarrow \mathbb{F}_{q}^{4 k \times k}$ denoting the token functionality in the i-th choice phase, for each possible token input $z \in \mathbb{F}_{q}^{1 \times k}$ there are always exactly $q^{4 k}$ different parameter tuples $(r, S) \in \mathbb{F}_{q}^{4 k} \times \mathbb{F}_{q}^{4 k \times k}$, such that $\tau_{i}(z)=r z+S$. In particular, for all $z \in \mathbb{F}_{q}^{1 \times k}, r \in \mathbb{F}_{q}^{4 k}$ we can complement r to a matching parameter tuple by $S:=\tau_{i}(z)-r z$. In total, there might exist up to $q^{5 k}$ different parameter tuples belonging to any image of τ_{i} and we must somehow rule out that there are too many collisions of the form $(C r, C S)=\left(C r^{\prime}, C S^{\prime}\right)$ with distinct $(r, S),\left(r^{\prime}, S^{\prime}\right)$.

Since the space of potential parameter tuples is that large, pure counting arguments (e.g. by considering the random matrix C as a 2-universal hash function) cannot be sufficient as long as the special structure of our problem is ignored: For example, consider the hypothetical case that every parameter tuple (r, S) has to be taken into account where each column of S equals r. Although this yields only $q^{4 k}$ different parameter tuples, we would always have that equivalence classes of q^{k} different parameter tuples do collide. However, this is exactly the size of the preimage space of τ_{i}. Thereby we just cannot rule out that τ_{i} is non-affine on every $Z \subseteq \mathbb{F}_{q}^{1 \times k}$ with $|Z|>1$, but enough parameter tuples collide so that $C \cdot \tau_{i}$ is affine on the complete input space $\mathbb{F}_{q}^{1 \times k}$. Note also that this problem cannot be circumvent by enlarging the token input space to $\mathbb{F}_{q}^{1 \times \alpha k}$ for some $\alpha>1$, since in that case we can still argue analogously with the condition $|Z|>1$ replace by $|Z|>q^{(\alpha-1) k}$.

So, we explicitly have to exploit that the space of affine mappings $\mathbb{F}_{q}^{1 \times k} \rightarrow \mathbb{F}_{q}^{4 k \times k}$ has some specific structure. In fact, we only need the random matrix C to have some rank-preserving property when operating on the image space of τ_{i}. Given this (and a not too large overall abortion probability in the current choice phase), we can show that τ_{i} is affine on all token inputs that do not cause a protocol abortion.

Lemma 7. Let \mathbb{F}_{q} be some finite field of size $q \geq 2$ and let $l, m, k \in \mathbb{N}_{>0}$. Let $\tau: \mathbb{F}_{q}^{1 \times k} \rightarrow \mathbb{F}_{q}^{m \times k}$ be some arbitrary mapping and let $C \in \mathbb{F}_{q}^{l \times m}, \tilde{r} \in \mathbb{F}_{q}^{l}, \tilde{S} \in \mathbb{F}_{q}^{l \times k}, V:=\left\{v \in \mathbb{F}_{q}^{1 \times k} \mid C \cdot \tau(v)=\tilde{r} \cdot v+\tilde{S}\right\}$, such that $|V|>q$ and for all $v, v^{\prime} \in V$ the following implications hold true:

$$
\begin{aligned}
\operatorname{rank}\left(\tau(v)-\tau\left(v^{\prime}\right)\right)>0 & \Rightarrow \quad \operatorname{rank}\left(C \cdot \tau(v)-C \cdot \tau\left(v^{\prime}\right)\right)>0 \\
\operatorname{rank}\left(\tau(v)-\tau\left(v^{\prime}\right)\right)>1 & \Rightarrow \quad \operatorname{rank}\left(C \cdot \tau(v)-C \cdot \tau\left(v^{\prime}\right)\right)>1
\end{aligned}
$$

Then there exists a unique tuple $(r, S) \in \mathbb{F}_{q}^{m} \times \mathbb{F}_{q}^{m \times k}$, such that $\tau(v)=r \cdot v+S$ for all $v \in V$. Further, for this unique tuple it holds that $(C r, C S)=(\tilde{r}, \tilde{S})$.
Proof. We just need to show existence of (r, S); everything else follows straightforwardly. Moreover, if $\tilde{r}=0$, the proof is trivial. In this case, since by assumption $\tau(v)=\tau\left(v^{\prime}\right)$ for all $v, v^{\prime} \in V$ with $C \cdot \tau(v)=C \cdot \tau\left(v^{\prime}\right)$, we have that τ is constant on the entire input set V. So, w.l.o.g. let $\tilde{r} \neq 0$.

First of all, we now observe for all $v, v^{\prime} \in V$ that $\operatorname{rank}\left(\tau(v)-\tau\left(v^{\prime}\right)\right) \leq 1$, since else by the rank-preserving properties of C we had the contradiction that $1<\operatorname{rank}\left(C \cdot \tau(v)-C \cdot \tau\left(v^{\prime}\right)\right)=$ $\operatorname{rank}\left(\tilde{r} \cdot\left(v-v^{\prime}\right)\right) \leq 1$. Thereby, for all $v, v^{\prime} \in V$ we find some $r \in \mathbb{F}_{q}^{m}, \bar{v} \in \mathbb{F}_{q}^{1 \times n}$, such that $\tau(v)-\tau\left(v^{\prime}\right)=r \cdot \bar{v}$. Moreover, we can always choose $\bar{v}:=v-v^{\prime}$, since $\tilde{r} \cdot\left(v-v^{\prime}\right)=C r \cdot \bar{v}$ and we assumed that $\tilde{r} \neq 0$. Thus we have:

$$
\forall v, v^{\prime} \in V \exists r \in \mathbb{F}_{q}^{m}: \tau(v)-\tau\left(v^{\prime}\right)=r \cdot\left(v-v^{\prime}\right)
$$

We will show now that r in fact is independent of v, v^{\prime}. More precisely, we will show that for arbitrary $v, v^{\prime}, v^{\prime \prime} \in V$ with linearly independent $v-v^{\prime}, v^{\prime}-v^{\prime \prime}$ there always exists an $r \in \mathbb{F}_{q}^{m}$, such that $\tau(v)-\tau\left(v^{\prime}\right)=r \cdot\left(v-v^{\prime}\right)$ and $\tau\left(v^{\prime}\right)-\tau\left(v^{\prime \prime}\right)=r \cdot\left(v^{\prime}-v^{\prime \prime}\right)$. It is sufficient to consider the case of linearly independent $v-v^{\prime}, v^{\prime}-v^{\prime \prime}$, since $|V|>q$ by assumption and hence the affine span of V must have dimension 2 or higher; therefore for all $v, v^{\prime}, v^{\prime \prime} \in V$ with linearly dependent $v-v^{\prime}, v^{\prime}-v^{\prime \prime}$ there exists some $\hat{v} \in V$, such that $v-v^{\prime}, v^{\prime}-\hat{v}$ are linearly independent and also are $\hat{v}-v^{\prime}, v^{\prime}-v^{\prime \prime}$. So, let any $v, v^{\prime}, v^{\prime \prime} \in V, r, r^{\prime} \in \mathbb{F}_{q}^{m}$ be given with linearly independent $v-v^{\prime}, v^{\prime}-v^{\prime \prime}$ and:

$$
\begin{aligned}
\tau(v)-\tau\left(v^{\prime}\right) & =r \cdot\left(v-v^{\prime}\right) \\
\tau\left(v^{\prime}\right)-\tau\left(v^{\prime \prime}\right) & =r^{\prime} \cdot\left(v^{\prime}-v^{\prime \prime}\right)
\end{aligned}
$$

Thereby follows:

$$
\operatorname{rank}\left(r \cdot\left(v-v^{\prime}\right)+r^{\prime} \cdot\left(v^{\prime}-v^{\prime \prime}\right)\right)=\operatorname{rank}\left(\tau(v)-\tau\left(v^{\prime \prime}\right)\right) \leq 1
$$

Since $v-v^{\prime}, v^{\prime}-v^{\prime \prime}$ are linearly independent, this yields that r, r^{\prime} must be linearly dependent. Hence, on the one hand we find some $\hat{r} \in \mathbb{F}_{q}^{m}$ and $\alpha, \alpha^{\prime} \in \mathbb{F}_{q}$, such that $r=\alpha \hat{r}$ and $r^{\prime}=\alpha^{\prime} \hat{r}$. On the other hand, since $v, v^{\prime} \in V$, we also have:

$$
\tilde{r} \cdot\left(v-v^{\prime}\right)=C \cdot\left(\tau(v)-\tau\left(v^{\prime}\right)\right)=C r \cdot\left(v-v^{\prime}\right)
$$

Since $v-v^{\prime} \neq 0$, this yields that $C r=\tilde{r}$ and analogously it must hold that $C r^{\prime}=\tilde{r}$. Thus we have that $\alpha C \hat{r}=\alpha^{\prime} C \hat{r}=\tilde{r}$. Since we assumed that $\tilde{r} \neq 0$, we can conclude that $\alpha=\alpha^{\prime}$ and hence $r=r^{\prime}$.

So, once we have shown that r is unique, we can finally pick some arbitrary $\tilde{v} \in V$ and set $S:=\tau(\tilde{v})-r \cdot \tilde{v}$, whereby for every $\tilde{v}^{\prime} \in M$ it follows:

$$
\tau\left(\tilde{v}^{\prime}\right)=\left(\tau\left(\tilde{v}^{\prime}\right)-\tau(\tilde{v})\right)+\tau(\tilde{v})=\left(r \cdot\left(\tilde{v}^{\prime}-\tilde{v}\right)\right)+(r \cdot \tilde{v}+S)=r \cdot \tilde{v}^{\prime}+S
$$

To make this lemma applicable, yet we need to show that with overwhelming probability the random matrix C has the required rank-preserving properties. As a formal preparation we state our next technical lemma, where the matrix set \mathcal{W} should be thought of as all possible token output differences $\tau_{i}(z)-\tau_{i}\left(z^{\prime}\right)$ and $l:=3 k$ and $m:=4 k$. Thereby, since $|\mathcal{W}|<\left|\operatorname{image}\left(\tau_{i}\right)\right|^{2} \leq q^{2 k}$ and thus $q^{r-l}|\mathcal{W}|<q^{r-k}$, we get that the random matrix C has the required rank-preserving properties with overwhelming probability. For convenience, we state this lemma only for the case that the random matrix C is statistically independent from the token functionality τ_{i} (and \mathcal{W} respectively). However, the error introduced by this assumption can be estimated by $\iota\left(C, \tau_{i}\right)$, and then Corollary 6 does apply.

Lemma 8. Let \mathbb{F}_{q} be some finite field of size $q \geq 2$ and let $l, m, k, r \in \mathbb{N}_{>0}$ with $r \leq \min (l, m, k)$. Then for arbitrary $\mathcal{W} \subseteq \mathbb{F}_{q}^{m \times k}$ and $\mathbf{C} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{l \times m}$ it holds:

$$
\mathbb{P}[\exists W \in \mathcal{W}: \operatorname{rank}(W) \geq r>\operatorname{rank}(\mathbf{C W})]<q^{r-l}|\mathcal{W}|
$$

Proof. We first estimate the number of matrices in $\mathbb{F}_{q}^{l \times r}$ that have full rank r. Given $i \in\{1, \ldots, r\}$ and any matrix $C \in \mathbb{F}_{q}^{l \times i}$ with full rank i, there exist exactly $q^{l}-q^{i}$ columns in \mathbb{F}_{q}^{l} (only the linear combinations of the columns of C are excluded) by which we can extend C to a matrix of dimension $l \times(i+1)$ and rank $i+1$. By induction on i follows:

$$
\#\left\{C \in \mathbb{F}_{q}^{l \times r} \mid \operatorname{rank}(C)=r\right\}=\prod_{i=0}^{r-1} q^{l}-q^{i}
$$

Since the term $\prod_{i=0}^{r-1} q^{l}-q^{i}$ is a bit unhandy, we estimate it from below:

$$
\prod_{i=0}^{r-1} q^{l}-q^{i}=q^{l r} \prod_{i=0}^{r-1} 1-q^{i-l} \geq q^{l r}\left(1-\sum_{i=0}^{r-1} q^{i-l}\right)=q^{l r}\left(1-\frac{q^{r}-1}{q^{l}(q-1)}\right)>q^{l r}\left(1-q^{r-l}\right)
$$

Now, let $W \in \mathbb{F}_{q}^{m \times k}$ be some arbitrary matrix with $\bar{r}:=\operatorname{rank}(W) \geq r$. Further let $\bar{B} \in \mathbb{F}_{q}^{\bar{r} \times k}$, such that \bar{B} only consists of linearly independent rows of W; i.e. especially \bar{B} has full rank \bar{r}. Let
$B \in \mathbb{F}_{q}^{m \times k}$, such that the first \bar{r} rows of B are \bar{B} and the rest of B is all-zero. Note that we can find an invertible matrix $M \in \mathbb{F}_{q}^{m \times m}$, such that $W=M B$. Hence we can estimate:

$$
\begin{aligned}
\#\left\{C \in \mathbb{F}_{q}^{l \times m} \mid \operatorname{rank}(C W)<r\right\} & =q^{l m}-\#\left\{C \in \mathbb{F}_{q}^{l \times m} \mid \operatorname{rank}(C W) \geq r\right\} \\
& =q^{l m}-\#\left\{C \in \mathbb{F}_{q}^{l \times m} \mid \operatorname{rank}(C M B) \geq r\right\} \\
& =q^{l m}-\#\left\{C \in \mathbb{F}_{q}^{l \times m} \mid \operatorname{rank}(C B) \geq r\right\} \\
& =q^{l m}-\#\left\{C \in \mathbb{F}_{q}^{l \times \bar{r}} \mid \operatorname{rank}(C \bar{B}) \geq r\right\} \cdot q^{l(m-\bar{r})} \\
& =q^{l m}-\#\left\{C \in \mathbb{F}_{q}^{l \times \bar{r}} \mid \operatorname{rank}(C) \geq r\right\} \cdot q^{l(m-\bar{r})} \\
& \leq q^{l m}-\#\left\{C \in \mathbb{F}_{q}^{l \times r} \mid \operatorname{rank}(C)=r\right\} \cdot q^{l(m-r)} \\
& <q^{l m}-q^{l m}\left(1-q^{r-l}\right) \\
& =q^{l m+r-l}
\end{aligned}
$$

Thereby, for arbitrary $W \in \mathbb{F}_{q}^{m \times n}$ and $\mathbf{C} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{l \times m}$ we can conclude:

$$
\mathbb{P}[\operatorname{rank}(W) \geq r>\operatorname{rank}(\mathbf{C} W)]<q^{r-l}
$$

The assertion of our lemma now follows by the Union Bound.
Basically, in each choice phase of our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ (with honest receiver party David) we have now with overwhelming probability one of the following two cases:

- Either $\#\left\{z \in \mathbb{F}_{q}^{1 \times k} \mid C \cdot \tau_{i}(z)=\tilde{r}_{i} z+\tilde{S}_{i}\right\} \leq q$, i.e. only few token inputs pass David's consistency check and thus the protocol is aborted with overwhelming probability,
- or there exist some $r \in \mathbb{F}_{q}^{4 k}, S \in \mathbb{F}_{q}^{4 k \times k}$, such that $\tau_{i}(z)=r z+S$ for all $z \in \mathbb{F}_{q}^{1 \times k}$ with $C \cdot \tau_{i}(z)=\tilde{r}_{i} z+\tilde{S}_{i}$, i.e. the token functionality is affine on all inputs that pass the consistency check.

4.3.3 Uniqueness of affine approximations of the token functionality

By our technical tools developed so far, we already have that the token functionality in each choice phase is piecewise affine, and the protocol is aborted if the affine pieces are too small. However, for our formal security proof we will need that the larger affine pieces yield a disjoint decomposition of the preimage space. This motivates our next lemma.

Lemma 9. Let \mathbb{F}_{q} be some finite field of size $q \geq 2$, let $\varepsilon>0$ and let $k, l \in \mathbb{N}_{>0}$, such that $q^{k} \geq 2^{1 / \varepsilon}$. Further, let $\tau: \mathbb{F}_{q}^{1 \times k} \rightarrow \mathbb{F}_{q}^{l \times k}$ be an arbitrary mapping and let V^{\prime} denote the set of all $v \in \mathbb{F}_{q}^{1 \times k}$ for that exist more than one tuple $(r, S) \in \mathbb{F}_{q}^{l} \times \mathbb{F}_{q}^{l \times k}$ with the following property:

$$
\tau(v)=r v+S \quad \text { and } \quad \#\left\{\tilde{v} \in \mathbb{F}_{q}^{1 \times k} \mid \tau(\tilde{v})=r \tilde{v}+S\right\} \geq q^{(2 / 3+\varepsilon) k}
$$

Then we have that $\left|V^{\prime}\right|<q^{2 k / 3}$.
Proof. We call a mapping $\gamma: \mathbb{F}_{q}^{1 \times k} \rightarrow \mathbb{F}_{q}^{l \times k}$ a straight line, if there exist $r \in \mathbb{F}_{q}^{k}$ and $S \in \mathbb{F}_{q}^{l \times k}$, such that $\gamma(v)=r v+S$ for all $v \in \mathbb{F}_{q}^{1 \times k}$. Given two straight lines γ, γ^{\prime}, we call $v \in \mathbb{F}_{q}^{1 \times k}$ an intersection of γ and γ^{\prime}, if $\gamma(v)=\gamma^{\prime}(v)$. Given a straight line γ, we say that γ intersects with τ for m times,
if $\tau(v)=\gamma(v)$ for exactly m different $v \in \mathbb{F}_{q}^{1 \times k}$. Note that two straight lines are identical, iff they have two or more common intersections.

Now, let Γ denote the set of all straight lines that intersect with τ for at least $q^{(2 / 3+\varepsilon) k}$ times. Thus, V^{\prime} is a subset of all intersections of distinct straight lines $\gamma, \gamma^{\prime} \in \Gamma$. However, as two distinct straight lines may have no more than one common intersection, m straight lines have always less than m^{2} intersections in total. Thus, if $\left|V^{\prime}\right| \geq q^{2 k / 3}$, there would be more than $q^{k / 3}$ straight lines in Γ, i.e. we could find some $\Gamma^{\prime} \subseteq \Gamma$ with $\left|\Gamma^{\prime}\right|=\left\lceil q^{k / 3}\right\rceil$. However, this leads to a contradiction, as one can see as follows. Each of the straight lines in Γ^{\prime} has less than $q^{k / 3}$ intersections with all the other straight lines in Γ^{\prime}, what leaves more than $q^{(2 / 3+\varepsilon) k}-q^{k / 3}$ intersections with τ that are not shared with other straight lines in Γ^{\prime}. Hence, overall τ must have more than $\left\lceil q^{k / 3}\right\rceil \cdot\left(q^{(2 / 3+\varepsilon) k}-q^{k / 3}\right)$ of such non-shared intersections with straight lines in Γ^{\prime}, i.e. $\left|\tau\left(\mathbb{F}_{q}^{1 \times k}\right)\right|>q^{(1+\varepsilon) k}-q^{2 k / 3}$. Since $q^{\varepsilon k} \geq 2$ by assumption and thus $q^{(1+\varepsilon) k}-q^{2 k / 3} \geq q^{k}\left(2-q^{-k / 3}\right)>q^{k}$, this is impossible.

4.3.4 Utilizing the Leftover Hash Lemma

We introduce now our final technical tool, a fairly technical partitioning argument, which will be needed to show that the abort behavior in the real model is indistinguishable from the abort behavior in the ideal model. Before we take a closer look at the technical details, we briefly recap the involved elements of our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ (q.v. Section 3.1):

- First of all, by programming the token the adversary commits to a disjoint decomposition of the i-th round token input space $\mathbb{F}_{q}^{1 \times k}$, in the sense that each part of this decomposition corresponds to another affine token behavior in a later round.
- Next, the honest David announces a 2-universal hash function $h_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{k} \backslash\{0\}$.
- Then, Goliath announces some check information corresponding to one part of the disjoint decomposition he committed to. The protocol will be aborted, iff David's i-th token input z_{i} is not an element of this part.
- Finally, David gets his i-th OAFE input $x_{i} \in \mathbb{F}_{q}$ from the environment, inputs a share $z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathbb{F}_{q}^{1 \times k} \mid \tilde{z} h_{i}=x_{i}\right\}$ into the token, and aborts the protocol if the token output does not match Goliath's check information.

On the one hand, since the environment w.l.o.g. knows how the corrupted Goliath programmed the token and what check information he announced, the environment can exactly determine the abort probability in the real model. On the other hand, since the simulator does not know the ideal David's OAFE input x_{i}, the abort probability in the ideal model is independent of x_{i}. Thus, we have to show that the abort probability in the real model also is not noticeably correlated with x_{i}. A bit more formally, the security proof basically boils down to the following problem, where $A(h)$ can be seen as the current set of token inputs that will not yield a protocol abortion in the current stage:

- There are two adversarially chosen mappings, $x: \mathbb{F}_{q}^{k} \backslash\{0\} \rightarrow \mathbb{F}_{q}$ and $A: \mathbb{F}_{q}^{k} \backslash\{0\} \rightarrow \mathcal{P}\left(\mathbb{F}_{q}^{1 \times k}\right)$ (with $\mathcal{P}\left(\mathbb{F}_{q}^{1 \times k}\right)$ denoting the power set of $\mathbb{F}_{q}^{1 \times k}$), such that for all $h, h^{\prime} \in \mathbb{F}_{q}^{k} \backslash\{0\}$ the following implication holds true:

$$
A(h) \neq A\left(h^{\prime}\right) \quad \Rightarrow \quad A(h) \cap A\left(h^{\prime}\right)=\emptyset
$$

- There are the following three random variables:

$$
\mathbf{h} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{k} \backslash\{0\} \quad \mathbf{z} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathbb{F}_{q}^{1 \times k} \mid \tilde{z} \mathbf{h}=x(\mathbf{h})\right\} \quad \mathbf{u} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{1 \times k}
$$

- We have to show that $\Delta((\mathbf{z} \in A(\mathbf{h}), \mathbf{h}),(\mathbf{u} \in A(\mathbf{h}), \mathbf{h}))$ is negligible, where $\mathbf{z} \in A(\mathbf{h})$ denotes a predicate that is true iff \mathbf{z} is an element of $A(\mathbf{h})$, and analogously for $\mathbf{u} \in A(\mathbf{h})$.
We address this problem by showing that \mathbf{h} partitions $A(\mathbf{h})$ into parts of roughly equal size. Our starting point is the well-known Leftover Hash Lemma, which we first recap for the sake of selfcontainedness (Lemma 10). If $x(\mathbf{h})$ and $A(\mathbf{h})$ were independent of \mathbf{h}, the Leftover Hash Lemma would already suffice to straightforwardly solve our problem. However, our problem is more complex and there seems no apparent way to directly apply the Leftover Hash Lemma. Nonetheless, we can utilize the Leftover Hash Lemma to get an estimation for the case that only $A(\mathbf{h})$ is independent of \mathbf{h}; q.v Lemma 11. Finally, this estimation is used to develop our technical partitioning argument (Corollary 12).
Lemma 10 (Leftover Hash Lemma [BBR88, ILL89]). Let \mathcal{G} be a 2-universal class of functions $\mathcal{X} \rightarrow \mathcal{Y}$ and let $\mathbf{g} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{G}$, i.e. for any distinct $x, x^{\prime} \in \mathcal{X}$ it holds that $\mathbb{P}\left[\mathbf{g}(x)=\mathbf{g}\left(x^{\prime}\right)\right] \leq \frac{1}{|\mathcal{Y}|}$. Further let $\mathbf{x} \in \mathcal{X}$ be some random variable with collision entropy $\mathbb{H}_{2}(\mathbf{x})$. Then, if \mathbf{x} and \mathbf{g} are independent, for the statistical distance between $(\mathbf{g}(\mathbf{x}), \mathbf{g})$ and uniform randomness (\mathbf{u}, \mathbf{g}), i.e. $\mathbf{u} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{Y}$, it holds:

$$
\Delta((\mathbf{g}(\mathbf{x}), \mathbf{g}),(\mathbf{u}, \mathbf{g})) \leq \frac{1}{2} \sqrt{2^{-\mathbb{H}_{2}(\mathbf{x}) \cdot|\mathcal{Y}|}}
$$

Proof. We adapt the proof from AB09, proof of Lemma 21.26]. Let ($\mathbf{g}^{\prime}, \mathbf{x}^{\prime}$) be identically distributed as its unprimed counterpart (\mathbf{g}, \mathbf{x}). Thereby, when we treat the distribution of $(\mathbf{g}(\mathbf{x}), \mathbf{g})$ as a probability vector $\vec{p} \in \mathbb{R}^{\mathcal{Y} \times \mathcal{G}}$, we get:

$$
\begin{aligned}
\|\vec{p}\|_{2}^{2} & =\mathbb{P}\left[(\mathbf{g}(\mathbf{x}), \mathbf{g})=\left(\mathbf{g}^{\prime}\left(\mathbf{x}^{\prime}\right), \mathbf{g}^{\prime}\right)\right] \\
& =\mathbb{P}\left[\mathbf{g}=\mathbf{g}^{\prime}\right] \cdot \mathbb{P}\left[\mathbf{g}(\mathbf{x})=\mathbf{g}^{\prime}\left(\mathbf{x}^{\prime}\right) \mid \mathbf{g}=\mathbf{g}^{\prime}\right] \\
& =\mathbb{P}\left[\mathbf{g}=\mathbf{g}^{\prime}\right] \cdot \mathbb{P}\left[\mathbf{g}(\mathbf{x})=\mathbf{g}\left(\mathbf{x}^{\prime}\right)\right] \\
& =\mathbb{P}\left[\mathbf{g}=\mathbf{g}^{\prime}\right] \cdot\left(\mathbb{P}\left[\mathbf{x}=\mathbf{x}^{\prime}\right]+\mathbb{P}\left[\mathbf{x} \neq \mathbf{x}^{\prime}\right] \cdot \mathbb{P}\left[\mathbf{g}(\mathbf{x})=\mathbf{g}\left(\mathbf{x}^{\prime}\right) \mid \mathbf{x} \neq \mathbf{x}^{\prime}\right]\right) \\
& \leq \mathbb{P}\left[\mathbf{g}=\mathbf{g}^{\prime}\right] \cdot\left(\mathbb{P}\left[\mathbf{x}=\mathbf{x}^{\prime}\right]+\mathbb{P}\left[\mathbf{g}(\mathbf{x})=\mathbf{g}\left(\mathbf{x}^{\prime}\right) \mid \mathbf{x} \neq \mathbf{x}^{\prime}\right]\right) \\
& =|\mathcal{G}|^{-1} \cdot\left(2^{-\mathbb{H}_{2}(\mathbf{x})}+\mathbb{P}\left[\mathbf{g}(\mathbf{x})=\mathbf{g}\left(\mathbf{x}^{\prime}\right) \mid \mathbf{x} \neq \mathbf{x}^{\prime}\right]\right) \\
& \leq|\mathcal{G}|^{-1} \cdot\left(2^{-\mathbb{H}_{2}(\mathbf{x})}+|\mathcal{Y}|^{-1}\right)
\end{aligned}
$$

Now, let $\vec{u} \in \mathbb{R}^{\mathcal{Y} \times \mathcal{G}}$ denote the probability vector corresponding to the uniform distribution over $\mathcal{Y} \times \mathcal{G}$. Note that $\vec{p}-\vec{u}$ is orthogonal to \vec{u} :

$$
\langle\vec{p}-\vec{u} \mid \vec{u}\rangle=\langle\vec{p} \mid \vec{u}\rangle-\langle\vec{u} \mid \vec{u}\rangle=\frac{\|\vec{p}\|_{1}}{|\mathcal{Y} \times \mathcal{G}|}-\frac{\|\vec{u}\|_{1}}{|\mathcal{Y} \times \mathcal{G}|}=\frac{1}{|\mathcal{Y} \times \mathcal{G}|}-\frac{1}{|\mathcal{Y} \times \mathcal{G}|}=0
$$

By the Pythagorean Theorem follows:

$$
\|\vec{p}-\vec{u}\|_{2}^{2}=\|\vec{p}\|_{2}^{2}-\|\vec{u}\|_{2}^{2} \leq|\mathcal{G}|^{-1} \cdot\left(2^{-\mathbb{H}_{2}(\mathbf{x})}+|\mathcal{Y}|^{-1}\right)-|\mathcal{Y} \times \mathcal{G}|^{-1}=|\mathcal{G}|^{-1} \cdot 2^{-\mathbb{H}_{2}(\mathbf{x})}
$$

Finally, since $\|\vec{v}\|_{1} \leq \sqrt{m} \cdot\|\vec{v}\|_{2}$ for all $m \in \mathbb{N}, \vec{v} \in \mathbb{R}^{m}$, we can conclude:

$$
\Delta((\mathbf{g}(\mathbf{x}), \mathbf{g}),(\mathbf{u}, \mathbf{g}))=\frac{1}{2}\|\vec{p}-\vec{u}\|_{1} \leq \frac{1}{2} \sqrt{|\mathcal{Y} \times \mathcal{G}|} \cdot\|\vec{p}-\vec{u}\|_{2} \leq \frac{1}{2} \sqrt{2^{-\mathbb{H}_{2}(\mathbf{x})} \cdot|\mathcal{Y}|}
$$

Lemma 11. Let \mathbb{F}_{q} be some finite field of size $q \geq 2$ and let $k \in \mathbb{N}_{>0}$. For each $\alpha \in \mathbb{F}_{q}, h \in \mathbb{F}_{q}^{k}$ let $Z_{\alpha}(h):=\left\{z \in \mathbb{F}_{q}^{1 \times k} \mid z h=\alpha\right\}$. Further, let $x: \mathcal{H} \rightarrow \mathbb{F}_{q}$ be some arbitrary mapping. Then, for $\mathbf{h} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$ and arbitrary $A \subseteq \mathbb{F}_{q}^{1 \times k}$ it holds:

$$
\mathbb{E}\left|\left|A \cap Z_{x(\mathbf{h})}(\mathbf{h})\right|-\frac{1}{q}\right| A|\mid \leq \sqrt{q \cdot|A|}
$$

Proof. W.l.o.g., $A \neq \emptyset$. Let $\mathbf{a} \stackrel{\mathrm{r}}{\leftarrow} A$ and $\mathbf{u} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}$. On the one hand, since $\mathbb{P}\left[a \mathbf{h}=a^{\prime} \mathbf{h}\right]=$ $\mathbb{P}\left[\left(a-a^{\prime}\right) \mathbf{h}=0\right]=\frac{q^{k-1}-1}{q^{k}-1}<\frac{1}{\left|\mathbb{F}_{q}\right|}$ for all distinct $a, a^{\prime} \in A$, we can estimate the statistical distance $\Delta((\mathbf{a h}, \mathbf{h}),(\mathbf{u}, \mathbf{h}))$ by the Leftover Hash Lemma (Lemma 10) as follows:

$$
\Delta((\mathbf{a h}, \mathbf{h}),(\mathbf{u}, \mathbf{h})) \leq \frac{1}{2} \sqrt{2^{-\mathbb{H}_{2}(\mathbf{a})} \cdot\left|\mathbb{F}_{q}\right|}=\frac{1}{2} \sqrt{\frac{q}{|A|}}
$$

On the other hand, we have:

$$
\begin{aligned}
\Delta((\mathbf{a h}, \mathbf{h}),(\mathbf{u}, \mathbf{h})) & =\frac{1}{2} \sum_{\alpha \in \mathbb{F}_{q}, h \in \mathcal{H}}|\mathbb{P}[\mathbf{a h}=\alpha \wedge \mathbf{h}=h]-\mathbb{P}[\mathbf{u}=\alpha \wedge \mathbf{h}=h]| \\
& =\frac{1}{2} \sum_{\alpha \in \mathbb{F}_{q}, h \in \mathcal{H}} \mathbb{P}[\mathbf{h}=h] \cdot|\mathbb{P}[\mathbf{a} h=\alpha]-\mathbb{P}[\mathbf{u}=\alpha]| \\
& =\frac{1}{2} \sum_{\alpha \in \mathbb{F}_{q}, h \in \mathcal{H}} \mathbb{P}[\mathbf{h}=h] \cdot\left|\frac{\left|A \cap Z_{\alpha}(h)\right|}{|A|}-\frac{1}{q}\right| \\
& \geq \frac{1}{2} \sum_{h \in \mathcal{H}} \mathbb{P}[\mathbf{h}=h] \cdot\left|\frac{\left|A \cap Z_{x(h)}(h)\right|}{|A|}-\frac{1}{q}\right| \\
& =\frac{1}{2} \mathbb{E}\left|\frac{\left|A \cap Z_{x(\mathbf{h})}(\mathbf{h})\right|}{|A|}-\frac{1}{q}\right|
\end{aligned}
$$

By the linearity of expected values follows:

$$
\mathbb{E}\left|\left|A \cap Z_{x(\mathbf{h})}(\mathbf{h})\right|-\frac{1}{q}\right| A||\leq 2| A| \cdot \Delta((\mathbf{a h}, \mathbf{h}),(\mathbf{u}, \mathbf{h})) \leq \sqrt{q \cdot|A|}
$$

Corollary 12. Let \mathbb{F}_{q} be some finite field of size $q \geq 2$ and let $k \in \mathbb{N}_{>0}$. Let $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$ and let \mathcal{R}, \mathcal{Q} be some arbitrary finite sets. Moreover, let some mapping $A: \mathcal{R} \times \mathcal{Q} \rightarrow \mathcal{P}\left(\mathbb{F}_{q}^{1 \times k}\right)$ be given, such that for all $\nu, \nu^{\prime} \in \mathcal{R}, t \in \mathcal{Q}$ the following implication holds true:

$$
A(\nu, t) \neq A\left(\nu^{\prime}, t\right) \quad \Rightarrow \quad A(\nu, t) \cap A\left(\nu^{\prime}, t\right)=\emptyset
$$

For each $(\alpha, h) \in \mathbb{F}_{q} \times \mathcal{H}$ let $Z_{\alpha}(h):=\left\{z \in \mathbb{F}_{q}^{1 \times k} \mid z h=\alpha\right\}$. Finally, let $\mathbf{h} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}$. Then for every random variable $\mathbf{t} \in \mathcal{Q}$ and arbitrary $\gamma \in \mathbb{R}_{>0}$ it holds:

$$
\mathbb{P}\left[\exists \alpha \in \mathbb{F}_{q}, \nu \in \mathcal{R}:\left|\left|A(\nu, \mathbf{t}) \cap Z_{\alpha}(\mathbf{h})\right|-\frac{1}{q}\right| A(\nu, \mathbf{t})| |>\gamma\right] \leq \frac{q^{k+1 / 2}}{\gamma^{3 / 2}}+\iota(\mathbf{h}, \mathbf{t})
$$

Proof. It obviously suffices to give a proof for the case that \mathbf{t} and \mathbf{h} are statistically independent, i.e. $\iota(\mathbf{h}, \mathbf{t})=0$. Now, as \mathbf{t} and \mathbf{h} are independent, we may just assume that w.l.o.g. $\mathbb{P}[\mathbf{t}=t]=1$ for some worst case constant $t \in \mathcal{Q}$. However, once we have fixed \mathbf{t}, we can consider α and ν as function values of \mathbf{h}, which we denote by $\alpha(\mathbf{h})$ and $\nu_{\mathbf{h}}$ respectively. Thereby, for each $h \in \mathcal{H}$ we can define the equivalence class $[h]:=\left\{h^{\prime} \in \mathcal{H} \mid A\left(t, \nu_{h^{\prime}}\right)=A\left(t, \nu_{h}\right)\right\}$. Further, let $\overline{\mathcal{H}} \subseteq \mathcal{H}$ denote
a representative system for these equivalence classes, i.e. $|\overline{\mathcal{H}} \cap[h]|=1$ for all $h \in \mathcal{H}$. Let some arbitrary $\gamma \in \mathbb{R}_{>0}$ be given. By construction we have:

$$
\mathbb{P}\left[\left.\left|A\left(\nu_{\mathbf{h}}, t\right) \cap Z_{\alpha(\mathbf{h})}(\mathbf{h})\right|-\frac{1}{q}\left|A\left(\nu_{\mathbf{h}}, t\right)\right| \right\rvert\,>\gamma\right] \leq \sum_{h \in \overline{\mathcal{H}}} \mathbb{P}\left[| | A\left(\nu_{h}, t\right) \cap Z_{\alpha(\mathbf{h})}(\mathbf{h})\left|-\frac{1}{q}\right| A\left(\nu_{h}, t\right)| |>\gamma\right]
$$

Note that we can discard all summands with $\left|A\left(t, \nu_{h}\right)\right|<\gamma$ on the right side, since for any $X \subseteq \mathbb{F}_{q}^{1 \times k}$, $\alpha \in \mathbb{F}_{q}, h \in \mathcal{H}$ it trivially holds that $\left|\left|X \cap Z_{\alpha}(h)\right|-\frac{1}{q}\right| X\left|\left|<|X|\right.\right.$. With $\hat{\mathcal{H}}:=\left\{h \in \overline{\mathcal{H}}\left|\gamma<\left|A\left(t, \nu_{h}\right)\right|\right\}\right.$ we get:

$$
\mathbb{P}\left[\left.\left|A\left(\nu_{\mathbf{h}}, t\right) \cap Z_{\alpha(\mathbf{h})}(\mathbf{h})\right|-\frac{1}{q}\left|A\left(\nu_{\mathbf{h}}, t\right)\right| \right\rvert\,>\gamma\right] \leq \sum_{h \in \hat{\mathcal{H}}} \mathbb{P}\left[| | A\left(\nu_{h}, t\right) \cap Z_{\alpha(\mathbf{h})}(\mathbf{h})\left|-\frac{1}{q}\right| A\left(\nu_{h}, t\right)| |>\gamma\right]
$$

However, since $\mathbb{E}(\mathbf{x}) \geq \gamma \cdot \mathbb{P}[\mathbf{x} \geq \gamma]$ for every random variable $\mathbf{x} \in \mathbb{R}$, we can estimate by Lemma 11 for all $\nu \in \mathcal{Q}$:

$$
\mathbb{P}\left[\left.\left|A(\nu, t) \cap Z_{\alpha(\mathbf{h})}(\mathbf{h})\right|-\frac{1}{q}|A(\nu, t)| \right\rvert\, \geq \gamma\right] \leq \frac{1}{\gamma} \sqrt{q \cdot|A(\nu, t)|}
$$

It follows:

$$
\mathbb{P}\left[\left.\left|A\left(\nu_{\mathbf{h}}, t\right) \cap Z_{\alpha(\mathbf{h})}(\mathbf{h})\right|-\frac{1}{q}\left|A\left(\nu_{\mathbf{h}}, t\right)\right| \right\rvert\,>\gamma\right] \leq \frac{1}{\gamma} \sum_{h \in \hat{\mathcal{H}}} \sqrt{q \cdot\left|A\left(\nu_{h}, t\right)\right|}
$$

Since $\|\vec{v}\|_{1} \leq \sqrt{m} \cdot\|\vec{v}\|_{2}$ for all $m \in \mathbb{N}, \vec{v} \in \mathbb{R}^{m}$, we can conclude that $\sum_{i=1}^{m}\left|a_{i}\right| \leq \sqrt{m \cdot \sum_{i=1}^{m} a_{i}^{2}}$ for any $a_{1}, \ldots, a_{m} \in \mathbb{R}$. Thus, it holds:

$$
\sum_{h \in \hat{\mathcal{H}}} \sqrt{\left|A\left(t, \nu_{h}\right)\right|} \leq \sqrt{|\hat{\mathcal{H}}| \cdot \sum_{h \in \hat{\mathcal{H}}}\left|A\left(t, \nu_{h}\right)\right|}
$$

Since by construction $\left\{A\left(t, \nu_{h}\right)\right\}_{h \in \hat{\mathcal{H}}}$ is a disjoint decomposition of some subset of $\mathbb{F}_{q}^{1 \times k}$, we can further estimate:

$$
\sum_{h \in \hat{\mathcal{H}}}\left|A\left(t, \nu_{h}\right)\right| \leq\left|\mathbb{F}_{q}^{1 \times k}\right|=q^{k}
$$

Further note that by construction $|\hat{\mathcal{H}}|<\frac{1}{\gamma} \cdot q^{k}$. Putting things together, we have shown:

$$
\mathbb{P}\left[\left|\left|A\left(t, \nu_{\mathbf{h}}\right) \cap Z_{\alpha(\mathbf{h})}(\mathbf{h})\right|-\frac{1}{q}\right| A\left(t, \nu_{\mathbf{h}}\right)|\mid>\gamma]<\frac{q^{k+1 / 2}}{\gamma^{3 / 2}}\right.
$$

4.3.5 The simulator for a corrupted Goliath

In each choice phase, the simulator for a corrupted Goliath has to extract the correct affine function parameters $\left(a_{i}, b_{i}\right) \in \mathbb{F}_{q}^{k} \times \mathbb{F}_{q}^{k}$ and send them to the ideal functionality $\mathcal{F}_{\text {OAFE }}^{\text {seq-ot }}$ (q.v. Figure 5 in Section 2.4). Note that the simulator has no influence on the choice phases (he even is not activated at all), as long as David is not corrupted.

Our simulator for a corrupted Goliath is given in Figure 14. The high level picture how this simulator works is as follows. The send phases are simulated straightforwardly: \mathcal{Z} just interacts with a simulated version of the complete real model. When the i-th send phase is over, the simulator must extract a valid Goliath input $\left(a_{i}, b_{i}, i\right)$, i.e. the simulator needs a description of the token functionality for the i-th choice phase. Therefor, the simulator first checks whether the token

Simulator $\mathcal{S}^{\text {Goliath }}(\mathcal{A})$

- Set up an honest David-machine \mathcal{D}; also set up a simulated version of $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ and the given real model adversary \mathcal{A} (which especially impersonates the corrupted Goliath). Wire the simulated machines $\mathcal{A}, \mathcal{D}, \mathcal{F}_{\text {wrap }}^{\text {stateful }}$ to each other and \mathcal{A} to the environment right the way they would be wired in the real model with protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ (q.v. Figure 6 in Section 3.1). Further, initialize $f_{0} \leftarrow T$.
- Whenever \mathcal{D} outputs (ready, i), extract a snapshot \mathcal{T}^{\prime} of \mathcal{T} (including its current internal state) from the view of the simulated $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ and extract $C, G, \tilde{r}_{i}, \tilde{S}_{i}, h_{i}, \tilde{a}_{i}, \tilde{b}_{i}$ from the view of \mathcal{D}. Then run the following extraction program:

1. Pick a random vector $u_{i} \stackrel{\mathbb{r}}{\leftarrow} \mathbb{F}_{q}^{1 \times k}$ and input $\left(u_{i}, i\right)$ into the token \mathcal{T}; let W_{i} denote the token's output (w.l.o.g. $W_{i} \in \mathbb{F}_{q}^{4 \times k}$). If $f_{i-1}=\perp$ or $C W_{i} \neq \tilde{r}_{i} u_{i}+\tilde{S}_{i}$, set $f_{i} \leftarrow \perp$ and go to step 4 of this extraction program; else just set $f_{i} \leftarrow T$.
2. Pick a random vector $v_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{1 \times k}$ and input $\left(v_{i}, i\right)$ into a copy of $\mathcal{T}^{\prime} ;$ let W^{\prime} denote the token's output (w.l.o.g. $W^{\prime} \in \mathbb{F}_{q}^{4 l \times k}$). Retry this step until $C W^{\prime}=\tilde{r}_{i} v_{i}+\tilde{S}_{i}$ or q^{k} iterations have past; in the latter case give up, i.e. send (\star, i) to the environment and terminate. If afterwards $u_{i}=v_{i}$ or any row of the matrix $W_{i}-W^{\prime}$ is linearly independent of $u_{i}-v_{i}$, also give up.
3. Compute the unique vector $r_{i} \in \mathbb{F}_{q}^{4 l}$, such that $W_{i}-W^{\prime}=r_{i}\left(u_{i}-v_{i}\right)$, and set $S_{i} \leftarrow W_{i}-r_{i} u_{i}$. Then compute $a_{i} \leftarrow \tilde{a}_{i}+G r_{i}$ and $b_{i} \leftarrow \tilde{b}_{i}+G S_{i} h_{i}$.
4. If $f_{i}=\mathrm{T}$, send $\left(a_{i}, b_{i}, i\right)$ on behalf of the corrupted Goliath to the ideal functionality $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq }}$, ; else send $(0,0, i)$.
Finally, upon receiving (created, i) from the ideal functionality $\mathcal{F}_{\text {OAFE }}^{\text {seq-ot }}$, reply with (Delivery, i).
Figure 14: The simulator program $\mathcal{S}^{\text {Goliath }}(\mathcal{A})$, given an adversary \mathcal{A} that corrupts the sender party.
acts honestly on random input. If the token's output appears faulty, the simulator henceforth gives default input $(0,0, i)$ to the ideal functionality; otherwise he rewinds the token to the beginning of the i-th choice phase and inputs other vectors $v_{i} \in \mathbb{F}_{q}^{1 \times k}$ until he can extract an affine function that describes the token behavior in this phase. Once having extracted this affine description of the token functionality, the simulator can easily compute the unique Goliath input (a_{i}, b_{i}, i) corresponding to this token functionality and the messages of the i-th send phase. Note that the running time of $\mathcal{S}^{\text {Goliath }}(\mathcal{A})$ is not a priori polynomially bounded in the security parameter $\lambda:=k \log q$, but there may be up to q^{k} simulated token queries in step 2 of the simulator's extraction program. However, the expected number of iterations in that step is constant. We also refer to Section 5.3 for a further discussion on this issue.

Lemma 13. Let some arbitrary environment \mathcal{Z} be given and some adversary \mathcal{A} that corrupts the sender Goliath. Then the expected running time of the simulator $\mathcal{S}^{\mathrm{Goliath}}(\mathcal{A})$ is polynomially bounded in the running time of \mathcal{A} and the corresponding token \mathcal{T}. In particular, for each simulated send phase the expected number of iterations performed in step 2 of the simulator's extraction program (q.v. Figure 14) is constant.

Proof. When the simulator enters his extraction program, we can express by a variable p the probability that he picks some u_{i} passing the check in step 1. Then, in each iteration of step 2 with probability $1-p$ he will pick some v_{i} that does not pass the check. Hence, if the simulator would not give up after q^{k} iterations but try on infinitely, we had the following probability that exactly t

Functionality \mathcal{F}^{\prime}

Parametrized by a finite vector space \mathbb{F}_{q}^{k} and some runtime bound n that is polynomially bounded in the security parameter $\lambda:=k \log q$. The counters $j_{\text {created }}, j_{\text {sent }}, j_{\text {queried }}$ are all initialized to 0 .

Send phases:

- Upon receiving input (a, b, i) from Goliath, verify that $a, b \in \mathbb{F}_{q}^{k}$ and $i=j_{\text {created }}+1 \leq n$; else ignore that input. Next, update $j_{\text {created }} \leftarrow i$ and send (created, i) to the simulator.
- Upon receiving a message (Delivery, i) from the simulator, verify that $i=j_{\text {sent }}+1 \leq j_{\text {created }}$; else ignore that message. Next, update $j_{\text {sent }} \leftarrow i$ and send (ready, i) to David.

Choice phases:

- Upon receiving input (x, i) from David, verify that $x \in \mathbb{F}_{q}$ and $i=j_{\text {queried }}+1 \leq j_{\text {sent }}$; else ignore that input. Next, update $j_{\text {queried }} \leftarrow i$, send (queried, $\left.x, i\right)$ to the simulator and wait for the simulator's next message. Then, upon receiving (Reply, y, i) from the simulator, output (y, i) to David.

When a party is corrupted, the simulator is granted unrestricted access to the channel between \mathcal{F}^{\prime} and the corrupted party, including the ability of deleting and/or forging arbitrary messages.

Figure 15: The ideal functionality for the hybrid games $\mathrm{Game}_{0}, \ldots, \mathrm{Game}_{n}$. The difference to the ideal functionality $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ (q.v. Figure 5) is that in the choice phases the simulator learns David's input x and may overwrite the respective output y. The inputs a, b in the send phase are just meaningless.
iterations are performed:

$$
\begin{aligned}
1-p & \text { for } t=0 \\
p^{2} \cdot(1-p)^{t-1} & \text { for } t>0
\end{aligned}
$$

This yields the following upper bound for the expected number of iterations:

$$
p^{2} \cdot \sum_{t=1}^{\infty} t \cdot(1-p)^{t-1}
$$

Note that w.l.o.g. $p>0$, as otherwise step 2 of the extraction program is not entered at all. However, if $p>0$, we can use the well-known formula for the expectation of a geometric distribution:

$$
p \cdot \sum_{t=1}^{\infty} t \cdot(1-p)^{t-1}=\frac{1}{p}
$$

Putting things together, we have shown that the expected number of iterations is at most 1 .

4.3.6 A sequence of hybrid games

We prove indistinguishability between the ideal model and the real model by a hybrid argument. In particular, we will show that for $l=1, \ldots, n$ no environment can distinguish non-negligibly between some hybrid games Game_{l-1} and Game_{l}, where Game_{0} and Game_{n} are indistinguishable from the ideal and real model respectively. Each hybrid game Game_{l} works like an ideal model
with ideal functionality \mathcal{F}^{\prime} and (non-efficient) simulator $\mathcal{S}_{l}^{\prime}(\mathcal{A})$. The functionality \mathcal{F}^{\prime} resembles the ideal functionality $\mathcal{F}_{\text {OAFE }}^{\text {seq-ot }}$, but the simulator learns the ideal David's inputs and may overwrite the corresponding outputs of \mathcal{F}^{\prime}. For a formal description see Figure 15 . Each simulator $\mathcal{S}_{l}^{\prime}(\mathcal{A})$ overwrites the first l outputs, so that they exactly equal the first l David outputs in the real model. The remaining $n-l$ outputs are computed from an extracted affine description of the token functionality, very similar to the ideal model. For a formal description of the simulators $\mathcal{S}_{l}^{\prime}(\mathcal{A})$ see Figure 16.

Simulator $\mathcal{S}_{l}^{\prime}(\mathcal{A})$

- Set up an honest David-machine \mathcal{D}; also set up a simulated version of $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$ and the given real model adversary \mathcal{A} (which especially impersonates the corrupted Goliath). Wire the simulated machines $\mathcal{A}, \mathcal{D}, \mathcal{F}_{\text {wrap }}^{\text {stateful }}$ to each other and \mathcal{A} to the environment right the way they would be wired in the real model. Further, initialize $f_{0} \leftarrow T$.
- Whenever \mathcal{D} outputs (ready,i), choose any $a, b \in \mathbb{F}_{q}^{k}$ and send (a, b, i) on behalf of the corrupted Goliath to the functionality \mathcal{F}^{\prime}. Then, upon receiving (created, i) from \mathcal{F}^{\prime}, reply with (Delivery, i).
- Upon receiving (queried, x_{i}, i) from the functionality \mathcal{F}^{\prime}, extract the token function τ_{i} of the current choice phase from the view of the simulated $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$, in the sense that on input (\tilde{v}, i) the token \mathcal{T} currently would output $\tau_{i}(\tilde{v})$. If $\tau_{i}(\tilde{v}) \notin \mathbb{F}_{q}^{4 k \times k}$ for some $\tilde{v} \in \mathbb{F}_{q}^{1 \times k}$, treat this as an encoding of the all-zero matrix; thus w.l.o.g. $\tau_{i}: \mathbb{F}_{q}^{1 \times k} \rightarrow \mathbb{F}_{q}^{4 k \times k}$. Further, extract $C, G, \tilde{r}_{i}, \tilde{S}_{i}, h_{i}, \tilde{a}_{i}, \tilde{b}_{i}$ from the view of \mathcal{D}. Then, if $i>l$, run the following extraction program:

1. Pick randomly $u_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{1 \times k}$ and input $\left(u_{i}, i\right)$ into the token \mathcal{T}, thus progressing its internal state.
2. If $f_{i-1}=\top$ and $C \cdot \tau_{i}\left(u_{i}\right)=\tilde{r}_{i} u_{i}+\tilde{S}_{i}$, set $f_{i} \leftarrow \top$; otherwise set $f_{i} \leftarrow \perp$.
3. If $f_{i}=\top$, pick a random vector $v_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{v} \in \mathbb{F}_{q}^{1 \times k} \mid C \cdot \tau_{i}(\tilde{v})=\tilde{r}_{i} \tilde{v}+\tilde{S}_{i}\right\}$. Then, if $v_{i}=u_{i}$ or any row of the matrix $\tau_{i}\left(u_{i}\right)-\tau_{i}\left(v_{i}\right)$ is linearly independent of $u_{i}-v_{i}$, send (\star, i) to the environment and terminate; else compute $y_{i} \leftarrow\left(\tilde{a}_{i}+G r_{i}\right) x_{i}+\tilde{b}_{i}+G S_{i} h_{i}$, where $r_{i} \in \mathbb{F}_{q}^{4 k}$ is the unique vector with $\tau_{i}\left(u_{i}\right)-\tau_{i}\left(v_{i}\right)=r_{i} \cdot\left(u_{i}-v_{i}\right)$, and $S_{i}:=\tau_{i}\left(u_{i}\right)-r_{i} u_{i}$.
If $f_{i}=\perp$, just set $y_{i} \leftarrow 0$ (such that $y_{i} \in \mathbb{F}_{q}^{k}$).
4. Send (Reply, y_{i}, i) to \mathcal{F}^{\prime}.

If $i \leq l$, just run the following program instead:

1. Pick a random vector $z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathbb{F}_{q}^{1 \times k} \mid \tilde{z} h_{i}=x_{i}\right\}$ and input $\left(z_{i}, i\right)$ into the token \mathcal{T}, thus progressing its internal state.
2. If $f_{i-1}=\top$ and $C \cdot \tau_{i}\left(z_{i}\right)=\tilde{r}_{i} z_{i}+\tilde{S}_{i}$, set $f_{i} \leftarrow \top$; otherwise set $f_{i} \leftarrow \perp$.
3. If $f_{i}=\top$, compute $y_{i} \leftarrow G \cdot \tau_{i}\left(z_{i}\right) \cdot h_{i}+\tilde{a}_{i} x_{i}+\tilde{b}_{i}$.

If $f_{i}=\perp$, just set $y_{i} \leftarrow 0$ (such that $y_{i} \in \mathbb{F}_{q}^{k}$).
4. Send (Reply, $\left.y_{i}, i\right)$ to \mathcal{F}^{\prime}.

Figure 16: The simulator program $\mathcal{S}_{l}^{\prime}(\mathcal{A})$ for the hybrid game Game $_{l}$, given an adversary \mathcal{A} that corrupts the sender Goliath. The hybrid games Game_{n} and Game_{0} are indistinguishable from the real model with adversary \mathcal{A} and the ideal model with simulator $\mathcal{S}^{\text {Goliath }}(\mathcal{A})$ respectively.

Corollary 14. Given any adversary \mathcal{A} that corrupts the sender party Goliath, our hybrid game Game $_{0}$ with simulator $\mathcal{S}_{0}^{\prime}(\mathcal{A})$ is statistically indistinguishable from the ideal model with simulator
$\mathcal{S}^{\text {Goliath }}(\mathcal{A})$, and our hybrid game Game $_{n}$ with simulator $\mathcal{S}_{n}^{\prime}(\mathcal{A})$ is perfectly indistinguishable from the real model with adversary \mathcal{A}.

Proof. It is straightforward to see that Game_{n} is perfectly indistinguishable from the real model. It is also straightforward to see that Game_{0} is perfectly indistinguishable from the ideal model conditioned to the event that the simulator $\mathcal{S}^{\text {Goliath }}(\mathcal{A})$ does not reach the iteration bound q^{k} in step 2 of his extraction program. However, by Lemma 13 this iteration bound is only reached with negligible probability and thus Game_{0} is statistically indistinguishable from the ideal model.

4.3.7 Transformation of successive hybrid games into an indistinguishability game

For our security proof we have to show that from the environment's view any successive hybrid games $\mathrm{Game}_{l-1}, \mathrm{Game}_{l}$, parametrized with the finite vector space \mathbb{F}_{q}^{k} and runtime bound n, are statistically indistinguishable. Our approach is to transform these hybrid games into an indistinguishability game $\Gamma_{0}\left(\mathbb{F}_{q}, n, l\right)$, so that every environment \mathcal{Z} that can distinguish $G^{\prime} \mathrm{me}_{l-1}$ from Game $_{l}$ corresponds to a player that wins in $\Gamma_{0}\left(\mathbb{F}_{q}, n, l\right)$ with some non-negligible advantage. This approach allows us to successively modify the obtained indistinguishability game $\Gamma_{0}\left(\mathbb{F}_{q}, n, l\right)$, so that it becomes feasible to derive a maximum winning probability from which we can then infer a negligible upper bound for the statistical distance between \mathcal{Z} 's views in Game $_{l-1}$ and Game_{l}. The intuition behind this sequence of indistinguishability games can be sketched as follows.
$\Gamma_{0}\left(\mathbb{F}_{q}, n, l\right)$: This is just a straightforward reformulation of what the environment \mathcal{Z} sees in the hybrid games Game_{l-1} and Game_{l} respectively.
$\Gamma_{1}\left(\mathbb{F}_{q}, n, l\right)$: We make the player a bit stronger by giving him more direct access to the internal game state.
$\Gamma_{2}\left(\mathbb{F}_{q}, n, l, \varepsilon\right):$ We exploit that the token is somehow committed to affine behavior (cf. Section 4.3.2). This allows us to unify the way, David's outputs are computed in the hybrid real part and the hybrid ideal part: Basically, David's outputs in the hybrid real part are now also computed from an extracted affine approximation of the token functionality. The additional game parameter ε is introduced for technical reasons; it will be needed later to apply Lemma 9 .
$\Gamma_{3}\left(\mathbb{F}_{q}, n, l, \varepsilon\right)$: We replace the simulator's abort message (\star, i), q.v. step 2 in Figure 14 . This corresponds to a simulator modification, so that he may not give up any more, but instead switches to the mode where David henceforth produces default (all-zero) output.
$\Gamma_{4}\left(\mathbb{F}_{q}, n, l, \varepsilon\right)$: We exploit that the token functionality for most inputs can be approximated by no more than one affine function (cf. Section 4.3.3). This allows us to consider the extracted affine function parameters as token outputs rather than approximations of the token functionality.
$\Gamma_{5}\left(\mathbb{F}_{q}, n, l\right)$: We no longer only consider the extracted affine function parameters as token outputs; now they are.
$\Gamma_{6}\left(\mathbb{F}_{q}, n, l\right)$: We make the player stronger. We let him learn the first $l-1$ token inputs and let him choose the last $n-l$ token inputs. Thus only the stage l, which is the only stage in which Game_{l-1} differs from Game_{l}, stays out of control of the player.
$\Gamma_{7}\left(\mathbb{F}_{q}, n, l\right):$ We just exploit that several variables have become obsolete, and get rid of them.
$\Gamma_{8}\left(\mathbb{F}_{q}, n, l\right)$: We get rid of the challenge matrix C. The player must now exactly forecast token outputs rather than only linear projections.
$\Gamma_{9}\left(\mathbb{F}_{q}, n, l\right)$: We make it explicit that w.l.o.g. the player follows a deterministic strategy, solely depending on what he learns during the game run. This is the final version of our indistinguishability game.

We give now a detailed description of our indistinguishability game (Figure 17) and its relation to Game $_{l-1}$ and Game ${ }_{l}$ (Lemma 15). Then we successively transform it and show how this affects the winning probability.

Game $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$

Parametrized by a finite vector space \mathbb{F}_{q}^{k} and some $n, l \in \mathbb{N}_{>0}$ with $l \leq n$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. The player \mathcal{K} is computationally unbounded.

1. For each $i \in\{1, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tau_{i}: \mathcal{U}^{i} \rightarrow \mathbb{F}_{q}^{4 k \times k}$.
2. The player \mathcal{K} learns n random vectors $h_{1}, \ldots, h_{n} \stackrel{\mathbb{V}}{\leftarrow} \mathcal{H}$, a random matrix $C \stackrel{\mathbb{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$ and some $G \in \mathbb{F}_{q}^{k \times 4 k}$ complementary to C.
3. A challenge bit $d \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}$ is chosen secretly.
4. For $i=1, \ldots, l-d$:
(a) The player \mathcal{K} chooses some $\tilde{r}_{i} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{i} \in \mathbb{F}_{q}^{3 k \times k}, \tilde{a}_{i}, \tilde{b}_{i} \in \mathbb{F}_{q}^{k}$ and $x_{i} \in \mathbb{F}_{q}$.
(b) Let $w_{i}:=z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\right\}$, chosen secretly.
(c) If $C \cdot \tau_{j}\left(w_{1}, \ldots, w_{j}\right) \neq \tilde{r}_{j} w_{j}+\tilde{S}_{j}$ for any $j \leq i$, the player \mathcal{K} learns $y_{i}:=0 \in \mathbb{F}_{q}^{k}$. Otherwise, \mathcal{K} learns $y_{i}:=G \cdot \tau_{i}\left(w_{1}, \ldots, w_{i}\right) \cdot h_{i}+\tilde{a}_{i} x_{i}+\tilde{b}_{i}$.
5. For $i=l-d+1, \ldots, n$:
(a) The player \mathcal{K} chooses some $\tilde{r}_{i} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{i} \in \mathbb{F}_{q}^{3 k \times k}, \tilde{a}_{i}, \tilde{b}_{i} \in \mathbb{F}_{q}^{k}$ and $x_{i} \in \mathbb{F}_{q}$.
(b) Let $w_{i}:=u_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$, chosen secretly.
(c) If $C \cdot \tau_{j}\left(w_{1}, \ldots, w_{j}\right) \neq \tilde{r}_{j} w_{j}+\tilde{S}_{j}$ for any $j \leq i$, the player \mathcal{K} learns $y_{i}:=0 \in \mathbb{F}_{q}^{k}$.

Otherwise, a random vector $v_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{v} \in \mathcal{U} \mid C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=\tilde{r}_{i} \tilde{v}+\tilde{S}_{i}\right\}$ is chosen secretly. Then, if $v_{i}=w_{i}$ or any row of the matrix $\tau_{i}\left(w_{1}, \ldots, w_{i}\right)-\tau_{i}\left(w_{1}, \ldots, w_{i-1}, v_{i}\right)$ is linearly independent of $w_{i}-v_{i}$, the player \mathcal{K} receives a special message (\star, i) and the game is aborted in the sense that step 6 follows next; else \mathcal{K} learns $y_{i}:=\left(\tilde{a}_{i}+G r_{i}\right) x_{i}+\tilde{b}_{i}+G S_{i} h_{i}$, where $r_{i} \in \mathbb{F}_{q}^{4 k}$ is the unique vector with $\tau_{i}\left(w_{1}, \ldots, w_{i}\right)-\tau_{i}\left(w_{1}, \ldots, w_{i-1}, v_{i}\right)=r\left(w_{i}-v_{i}\right)$, and $S_{i}:=\tau_{i}\left(w_{1}, \ldots, w_{i}\right)-r_{i} w_{i}$.
6. The player \mathcal{K} computes and outputs a guess bit $\tilde{d} \in\{0,1\}$. He wins the game, if $\tilde{d}=d$.

Figure 17: Definition of a stand-alone indistinguishability game that captures the difference between the hybrid games Game_{l-1} and Game_{l}. The player's view in the indistinguishability game $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$ corresponds straightforwardly to the environment's view in the hybrid game Game_{l-d}, where d is the secret challenge bit from step 3 of $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$. Thus, the statistical distance between the environment's view in Game ${ }_{l-1}$ and its view in Game ${ }_{l}$ is upper bounded by 2δ, where $\frac{1}{2}+\delta$ is the maximum winning probability in the indistinguishability game $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$.

Lemma 15. Let $\frac{1}{2}+\delta$ be the maximal winning probability in the game $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$. Then the statistical distance between the environment's view in Game_{l-1} and its view in Game_{l}, both parametrized with the finite vector space \mathbb{F}_{q}^{k} and runtime bound n, is upper bounded by 2δ.

Proof. The proof is absolutely straightforward. Basically, we just have to show how the player \mathcal{K} in $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$ can perfectly emulate the hybrid game Game $_{l-d}$ for an environment \mathcal{Z}, where d is the secret challenge bit that \mathcal{K} finally tries to guess. Our player \mathcal{K} just works as follows:

- Setup a simulated version of the given environment \mathcal{Z} and the complete hybrid game Game ${ }_{l}$.
- As soon as in the game Game_{l} the token \mathcal{T} is fixed, specify the mappings $\tau_{1}, \ldots, \tau_{n}$ such that the token functionality in the i-th choice phase on input history $\left(w_{1}, 1\right), \ldots,\left(w_{i-1}, i-1\right)$ implements the function $\left(w_{i}, i\right) \mapsto \tau_{i}\left(w_{1}, \ldots, w_{i}\right)$. This is step 1 of $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$.
- Always overwrite the simulated David's random choices of $C, G, h_{1}, \ldots, h_{n}$ by the respective values learned in step 2 of $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$.
- Whenever some $\tilde{r}_{i}, \tilde{S}_{i}, \tilde{a}_{i}, \tilde{b}_{i}$ are to be chosen in step 4 a or step 5 a of $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$, just take the respective values from the simulated David's view. Analogously take x_{i} from the view of the simulated functionality \mathcal{F}^{\prime}.
- Whenever the simulated functionality \mathcal{F}^{\prime} outputs some $\left(y_{i}, i\right)$, overwrite y_{i} by the respective value learned in step 4 c or step 5 c of $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$ respectively.
- Upon receiving a special message (\star, i), just forward it to the simulated environment \mathcal{Z} and stop the simulated hybrid game.

It is straightforward to see that this way the player \mathcal{K} perfectly emulates a view of \mathcal{Z} in the hybrid game Game_{l-d}; this is just how we constructed the game $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$.

Now, let the random variable $\operatorname{view}_{\mathcal{Z}}$ denote this emulated view of \mathcal{Z}, and let the random variable d denote the secret challenge bit that \mathcal{K} tries to guess in step 6 of $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$. Since by assumption the player \mathcal{K} wins the game $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$ at most with probability $\frac{1}{2}+\delta$, it must hold for every predicate P that $\mathbb{P}\left[P\left(\boldsymbol{v i e w}_{\mathcal{Z}}\right)=0 \wedge \mathbf{d}=0\right]+\mathbb{P}\left[P\left(\boldsymbol{v i e w}_{\mathcal{Z}}\right)=1 \wedge \mathbf{d}=1\right] \leq \frac{1}{2}+\delta$. Furthermore, note that there does exist a predicate P such that we can write the statistical distance dist t_{l} between the views of \mathcal{Z} in Game_{l-1} and Game_{l} as follows:

$$
d i s t_{l}=\overbrace{\mathbb{P}\left[P\left(\mathbf{v i e w}_{\mathcal{Z}}\right)=1 \mid \mathbf{d}=1\right]}^{=\mathbb{P}\left[P\left(\text { view of } \mathcal{Z} \text { in Game }{ }_{l-1}\right)=1\right]}-\overbrace{\mathbb{P}\left[P\left(\mathbf{v i e w}_{\mathcal{Z}}\right)=1 \mid \mathbf{d}=0\right]}^{=\mathbb{P}\left[P\left(\text { view of } \mathcal{Z} \text { in Game }{ }_{l}\right)=1\right]}
$$

Thus we can conclude:

$$
\operatorname{dist}_{l}=\underbrace{\mathbb{P}\left[P\left(\boldsymbol{v i e w}_{\mathcal{Z}}\right)=1 \mid \mathbf{d}=1\right]}_{=2 \cdot \mathbb{P}\left[P\left(\boldsymbol{v i e w}_{\mathcal{Z}}\right)=1 \wedge \mathbf{d}=1\right]}-(1-\underbrace{\mathbb{P}\left[P\left(\boldsymbol{v i e w}_{\mathcal{Z}}\right)=0 \mid \mathbf{d}=0\right]}_{=2 \cdot \mathbb{P}\left[P\left(\boldsymbol{v i e w}_{\mathcal{Z}}\right)=0 \wedge \mathbf{d}=0\right]}) \leq 2 \delta
$$

$$
\text { Game } \Gamma_{1}\left(\mathbb{F}_{q}^{k}, n, l\right)
$$

Parametrized by a finite vector space \mathbb{F}_{q}^{k} and some $n, l \in \mathbb{N}_{>0}$ with $l \leq n$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. The player \mathcal{K} is computationally unbounded.

1. For each $i \in\{1, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tau_{i}: \mathcal{U}^{i} \rightarrow \mathbb{F}_{q}^{4 k \times k}$.
2. The player \mathcal{K} learns n random vectors $h_{1}, \ldots, h_{n} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}$ and a random matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$.
3. A challenge bit $d \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}$ is chosen secretly.
4. For $i=1, \ldots, l-d$:
(a) The player \mathcal{K} chooses some $\tilde{r}_{i} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{i} \in \mathbb{F}_{q}^{3 k \times k}, x_{i} \in \mathbb{F}_{q}$.
(b) Let $w_{i}:=z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\right\}$, chosen secretly.
(c) If $C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i}\right) \neq \tilde{r}_{i} w_{i}+\tilde{S}_{i}$, the player \mathcal{K} receives a special message (\perp, i) and the game is aborted in the sense that step 6 follows next.
Otherwise, the player \mathcal{K} learns $\tau_{i}\left(w_{1}, \ldots, w_{i}\right) \cdot h_{i}$.
5. For $i=l-d+1, \ldots, n$:
(a) The player \mathcal{K} chooses some $\tilde{r}_{i} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{i} \in \mathbb{F}_{q}^{3 k \times k}, x_{i} \in \mathbb{F}_{q}$.
(b) Let $w_{i}:=u_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$, chosen secretly.
(c) If $C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i}\right) \neq \tilde{r}_{i} w_{i}+\tilde{S}_{i}$, the player \mathcal{K} receives a special message (\perp, i) and the game is aborted in the sense that step 6 follows next.
Otherwise, a random vector $v_{i} \underset{\leftarrow}{\leftarrow}\left\{\tilde{v} \in \mathcal{U} \mid C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=\tilde{r}_{i} \tilde{v}+\tilde{S}_{i}\right\}$ is chosen secretly. Then, if $v_{i}=w_{i}$ or any row of the matrix $\tau_{i}\left(w_{1}, \ldots, w_{i}\right)-\tau_{i}\left(w_{1}, \ldots, w_{i-1}, v_{i}\right)$ is linearly independent of $w_{i}-v_{i}$, the player \mathcal{K} receives a special message (\star, i) and the game is aborted in the sense that step 6 follows next; else \mathcal{K} learns $r_{i} x_{i}+S_{i} h_{i}$, where $r_{i} \in \mathbb{F}_{q}^{4 k}$ is the unique vector with $\tau_{i}\left(w_{1}, \ldots, w_{i}\right)-\tau_{i}\left(w_{1}, \ldots, w_{i-1}, v_{i}\right)=r\left(w_{i}-v_{i}\right)$, and $S_{i}:=\tau_{i}\left(w_{1}, \ldots, w_{i}\right)-r_{i} w_{i}$.
6. The player \mathcal{K} computes and outputs a guess bit $\tilde{d} \in\{0,1\}$. He wins the game, if $\tilde{d}=d$.

Figure 18: First transformation of our stand-alone indistinguishability game. There are two differences to the game $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$. Firstly, where $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$ in step 4 c or step 5 c switched to a mode such that the player \mathcal{K} henceforth only receives all-zero outputs, now \mathcal{K} is notified about that by a special message (\perp, i) and the game is aborted. Secondly, \mathcal{K} now directly learns $\tau_{i}\left(w_{1}, \ldots, w_{i}\right) \cdot h_{i}$ in step 4 c and $r_{i} x_{i}+S_{i} h_{i}$ in step 5 c instead of the corresponding image of $\vartheta \mapsto G \vartheta+\tilde{a}_{i} x_{i}+\tilde{b}_{i}$. These game modifications just make \mathcal{K} strictly stronger and $G,\left(\tilde{a}_{1}, \tilde{b}_{1}\right), \ldots,\left(\tilde{a}_{n}, \tilde{b}_{n}\right)$ obsolete.

Lemma 16. The maximum winning probability in the game $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$ is upper bounded by the maximum winning probability in the game $\Gamma_{1}\left(\mathbb{F}_{q}^{k}, n, l\right)$.

Proof. This holds trivially, since the player in $\Gamma_{1}\left(\mathbb{F}_{q}^{k}, n, l\right)$ is strictly stronger than in $\Gamma_{0}\left(\mathbb{F}_{q}^{k}, n, l\right)$.

Lemma 17. The probability that the game $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is aborted in step $4 d$, is upper bounded by:

$$
n \cdot\left(q^{1-(1 / 3-\varepsilon) k}+q^{1-k}+q^{2-k}\right)+\sqrt{\exp \left(n \cdot q^{2-k}\right)-1}
$$

$$
\text { Game } \Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)
$$

Parametrized by a finite vector space \mathbb{F}_{q}^{k}, some $n, l \in \mathbb{N}_{>0}$ with $l \leq n$, and $\varepsilon \in \mathbb{R}_{>0}$ such that $q^{(2 / 3+\varepsilon) k} \geq q$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. The player \mathcal{K} is computationally unbounded.

1. For each $i \in\{1, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tau_{i}: \mathcal{U}^{i} \rightarrow \mathbb{F}_{q}^{4 k \times k}$.
2. The player \mathcal{K} learns n random vectors $h_{1}, \ldots, h_{n} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}$ and a random matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$.
3. A challenge bit $d \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}$ is chosen secretly.
4. For $i=1, \ldots, n$:
(a) The player \mathcal{K} chooses some $\tilde{r}_{i} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{i} \in \mathbb{F}_{q}^{3 k \times k}, x_{i} \in \mathbb{F}_{q}$.
(b) If $i \leq l-d$, let $w_{i}:=z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\right\}$, else let $w_{i}:=u_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$, chosen secretly.
(c) If $C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i}\right) \neq \tilde{r}_{i} w_{i}+\tilde{S}_{i}$, the player \mathcal{K} receives a special message (\perp, i) and the game is aborted in the sense that step 5 follows next.
(d) In the following cases the player \mathcal{K} receives a special message (\star, i) and the game is aborted in the sense that step 5 follows next:
i. $C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i}\right)=\tilde{r}_{i} w_{i}+\tilde{S}_{i}$ and $\#\left\{\tilde{v} \in \mathcal{U} \mid C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=\tilde{r}_{i} \tilde{v}+\tilde{S}_{i}\right\} \leq q^{(2 / 3+\varepsilon) k}$.
ii. There exist some $W, W^{\prime} \in \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \mathcal{U}\right)$, such that $\operatorname{rank}\left(C W-C W^{\prime}\right) \leq 1$ and $\operatorname{rank}\left(W-W^{\prime}\right)>\operatorname{rank}\left(C W-C W^{\prime}\right)$.
Otherwise, \mathcal{K} learns $r_{i} x_{i}+S_{i} h_{i}$, where $\left(r_{i}, S_{i}\right) \in \mathbb{F}_{q}^{4 k} \times \mathbb{F}_{q}^{4 k \times k}$ is the unique tuple such that $\tau_{i}\left(w_{1}, \ldots, w_{i-1}, v\right)=r_{i} v+S_{i}$ for all $v \in\left\{\tilde{v} \in \mathcal{U} \mid C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=\tilde{r}_{i} \tilde{v}+\tilde{S}_{i}\right\}$.
5. The player \mathcal{K} computes and outputs a guess bit $\tilde{d} \in\{0,1\}$. He wins the game, if $\tilde{d}=d$.

Figure 19: Second transformation of our stand-alone indistinguishability game. The difference to the game $\Gamma_{1}\left(\mathbb{F}_{q}^{k}, n, l\right)$ is the now uniform way to compute outputs for \mathcal{K}. Note that the tuple $\left(r_{i}, S_{i}\right)$ in step 4 d is well-defined by Lemma 7 .

Proof. Let some arbitrary player \mathcal{K} be given and let the random variables $\mathbf{C}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ represent the same-named values in the game $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$. It is straightforward to see that for each stage $i \in\{1, \ldots, n\}$ the case $4(\mathrm{~d}) \mathrm{i}$ occurs at most with probability $p:=q^{(2 / 3+\varepsilon) k} / q^{k-1}$. Further, for each stage $i \in\{1, \ldots, n\}$ we have by Lemma 8 that the case 4(d)ii occurs at most with probability $p^{\prime}:=\left(q^{1-3 k}+q^{2-3 k}\right) \cdot|\mathcal{U}|^{2}$, if \mathbf{C} and $\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{i-1}\right)$ are statistically independent. Thus, by the Union Bound we can estimate the overall probability that the game $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is aborted in $\operatorname{step} 4 \mathrm{~d}$ by $n \cdot\left(p+p^{\prime}\right)+\iota\left(\mathbf{C},\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right)\right)$. Estimating $\iota\left(\mathbf{C},\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right)\right)$ by Corollary 6 yields:

$$
n \cdot\left(p+p^{\prime}\right)+\iota\left(\mathbf{C},\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right)\right)<n \cdot\left(q^{1-(1 / 3-\varepsilon) k}+q^{1-k}+q^{2-k}\right)+\sqrt{\exp \left(n \cdot q^{2-k}\right)-1}
$$

Lemma 18. The statistical distance between \mathcal{K} 's view in the game $\Gamma_{1}\left(\mathbb{F}_{q}^{k}, n, l\right)$ and \mathcal{K} 's view in the game $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is upper bounded by:

$$
n \cdot\left(q^{-(2 / 3+\varepsilon) k}+q^{1-(1 / 3-\varepsilon) k}+q^{1-k}+q^{2-k}\right)+\sqrt{\exp \left(n \cdot q^{2-k}\right)-1}
$$

Proof. Let some arbitrary player \mathcal{K} for the game $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ be given. Note that the only difference to the game $\Gamma_{1}\left(\mathbb{F}_{q}^{k}, n, l\right)$ is the computation of \mathcal{K} 's output in step 4 d , which is now the

Game $\Gamma_{3}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$

Parametrized by a finite vector space \mathbb{F}_{q}^{k}, some $n, l \in \mathbb{N}_{>0}$ with $l \leq n$, and $\varepsilon \in \mathbb{R}_{>0}$ such that $q^{(2 / 3+\varepsilon) k} \geq q$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. The player \mathcal{K} is computationally unbounded.

1. For each $i \in\{1, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tau_{i}: \mathcal{U}^{i} \rightarrow \mathbb{F}_{q}^{4 k \times k}$.
2. The player \mathcal{K} learns n random vectors $h_{1}, \ldots, h_{n} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}$ and a random matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$.
3. A challenge bit $d \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}$ is chosen secretly.
4. For $i=1, \ldots, n$:
(a) The player \mathcal{K} chooses some $\tilde{r}_{i} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{i} \in \mathbb{F}_{q}^{3 k \times k}, x_{i} \in \mathbb{F}_{q}$.
(b) If $i \leq l-d$, let $w_{i}:=z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\right\}$, else let $w_{i}:=u_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$, chosen secretly.
(c) In the following cases the player \mathcal{K} receives a special message (\perp, i) and the game is aborted in the sense that step 5 follows next:
i. It holds that $C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i}\right) \neq \tilde{r}_{i} w_{i}+\tilde{S}_{i}$.
ii. It holds that $\#\left\{\tilde{v} \in \mathcal{U} \mid C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=\tilde{r}_{i} \tilde{v}+\tilde{S}_{i}\right\} \leq q^{(2 / 3+\varepsilon) k}$.
iii. There exist some $W, W^{\prime} \in \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \mathcal{U}\right)$, such that $\operatorname{rank}\left(C W-C W^{\prime}\right) \leq 1$ and $\operatorname{rank}\left(W-W^{\prime}\right)>\operatorname{rank}\left(C W-C W^{\prime}\right)$.
Otherwise, \mathcal{K} learns $r_{i} x_{i}+S_{i} h_{i}$, where $\left(r_{i}, S_{i}\right) \in \mathbb{F}_{q}^{4 k} \times \mathbb{F}_{q}^{4 k \times k}$ is the unique tuple such that $\tau_{i}\left(w_{1}, \ldots, w_{i-1}, v\right)=r_{i} v+S_{i}$ for all $v \in\left\{\tilde{v} \in \mathcal{U} \mid C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=\tilde{r}_{i} \tilde{v}+\tilde{S}_{i}\right\}$.
5. The player \mathcal{K} computes and outputs a guess bit $\tilde{d} \in\{0,1\}$. He wins the game, if $\tilde{d}=d$.

Figure 20: Third transformation of our stand-alone indistinguishability game. The only difference to the game $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is that the abort message (\star, i) was replaced by (\perp, i).
same for $i \leq l-d$ and $i>l-d$. Since by Lemma 17 we already have an estimation for the abort probability in step 4d, it suffices to consider the case that \mathcal{K} actually learns $r_{i} x_{i}+S_{i} h_{i}$. If $i \leq l-d$, we can just argue that $r_{i} x_{i}+S_{i} h_{i}=\left(r_{i} w_{i}+S_{i}\right) h_{i}=\tau_{i}\left(w_{1}, \ldots, w_{i}\right) \cdot h_{i}$ by construction, and thus the player \mathcal{K} receives exactly the same as he would have received in step 4 c of $\Gamma_{1}\left(\mathbb{F}_{q}^{k}, n, l\right)$. For $i>l-d$, we exploit the following facts:

- If the game is not aborted afore, in step 4 d of $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ the player \mathcal{K} learns $r_{i} x_{i}+S_{i} h_{i}$, where $\left(r_{i}, S_{i}\right) \in \mathbb{F}_{q}^{4 k} \times \mathbb{F}_{q}^{4 k \times k}$ is the unique tuple such that $\tau_{i}\left(w_{1}, \ldots, w_{i-1}, v\right)=r_{i} v+S_{i}$ for all $v \in\left\{\tilde{v} \in \mathcal{U} \mid C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=\tilde{r}_{i} \tilde{v}+\tilde{S}_{i}\right\}$.
- Thus, for every $v \in\left\{\tilde{v} \in \mathcal{U} \mid C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=\tilde{r}_{i} \tilde{v}+\tilde{S}_{i}\right\}$ either $v=w_{i}$, or r_{i} is the unique vector with $\tau_{i}\left(w_{1}, \ldots, w_{i}\right)-\tau_{i}\left(w_{1}, \ldots, w_{i-1}, v_{i}\right)=r\left(w_{i}-v_{i}\right)$ and it holds that $S_{i}=\tau_{i}\left(w_{1}, \ldots, w_{i}\right)-r_{i} w_{i}$.
- Moreover, since $\#\left\{\tilde{v} \in \mathcal{U} \mid C \cdot \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=\tilde{r}_{i} \tilde{v}+\tilde{S}_{i}\right\}>q^{(2 / 3+\varepsilon) k}$ for non-aborted stages, a uniformly random v may equal w_{i} with probability less than $q^{-(2 / 3+\varepsilon) k}$.

Putting these three observations together, we can conclude that with probability higher than $q^{-(2 / 3+\varepsilon) k}$ in step 5 c of $\Gamma_{1}\left(\mathbb{F}_{q}^{k}, n, l\right)$ the same tuple $\left(r_{i}, S_{i}\right)$ and hence the same output $r_{i} x_{i}+S_{i} h_{i}$ would be generated as in step 4 d of $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$. Thus, conditioned to the event that $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$

$$
\text { Game } \Gamma_{4}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)
$$

Parametrized by a finite vector space \mathbb{F}_{q}^{k}, some $n, l \in \mathbb{N}_{>0}$ with $l \leq n$, and $\varepsilon \in \mathbb{R}_{>0}$ such that $q^{(2 / 3+\varepsilon) k} \geq q$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. The player \mathcal{K} is computationally unbounded.

1. For each $i \in\{1, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tau_{i}: \mathcal{U}^{i} \rightarrow \mathbb{F}_{q}^{4 k \times k}$.
2. The player \mathcal{K} learns n random vectors $h_{1}, \ldots, h_{n} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}$ and a random matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$.
3. A challenge bit $d \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}$ is chosen secretly.
4. For $i=1, \ldots, n$:
(a) The player \mathcal{K} chooses some $\tilde{r}_{i} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{i} \in \mathbb{F}_{q}^{3 k \times k}, x_{i} \in \mathbb{F}_{q}$.
(b) If $i \leq l-d$, let $w_{i}:=z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\right\}$, else let $w_{i}:=u_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$, chosen secretly.
(c) If there exists a unique tuple $\left(r_{i}, S_{i}\right) \in \mathbb{F}_{q}^{4 k} \times \mathbb{F}_{q}^{4 k \times k}$ such that $\tau_{i}\left(w_{1}, \ldots, w_{i}\right)=r_{i} w_{i}+S_{i}$ and $\#\left\{\tilde{v} \in \mathcal{U} \mid \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=r_{i} \tilde{v}+S_{i}\right\}>q^{(2 / 3+\varepsilon) k}$, and for this unique tuple it holds that $\left(C r_{i}, C S_{i}\right)=\left(\tilde{r}_{i}, \tilde{S}_{i}\right)$, then \mathcal{K} learns $r_{i} x_{i}+S_{i} h_{i}$.
Otherwise, \mathcal{K} receives a special message (\perp, i) and the game is aborted in the sense that step 5 follows next.
5. The player \mathcal{K} computes and outputs a guess bit $\tilde{d} \in\{0,1\}$. He wins the game, if $\tilde{d}=d$.

Figure 21: Fourth transformation of our stand-alone indistinguishability game. The only difference to $\Gamma_{3}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is the way the tuple $\left(r_{i}, S_{i}\right)$ is computed in step 4 c .
is not aborted in step 4 d , the statistical distance between \mathcal{K} 's view in $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ and \mathcal{K} 's view in $\Gamma_{1}\left(\mathbb{F}_{q}^{k}, n, l\right)$ is upper bounded by $n \cdot q^{-(2 / 3+\varepsilon) k}$. Finally, we just have to add the estimation from Lemma 17 to get the claimed upper bound for the statistical distance between \mathcal{K} 's view in $\Gamma_{1}\left(\mathbb{F}_{q}^{k}, n, l\right)$ and \mathcal{K} 's view in $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ without any conditions.

Corollary 19. The statistical distance between \mathcal{K} 's view in the game $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ and \mathcal{K} 's view in the game $\Gamma_{3}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is upper bounded by:

$$
n \cdot\left(q^{1-(1 / 3-\varepsilon) k}+q^{1-k}+q^{2-k}\right)+\sqrt{\exp \left(n \cdot q^{2-k}\right)-1}
$$

Proof. The only difference between $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ and $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is that the abort message (\star, i) in step 4 d of $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ was replaced by (\perp, i). Thus, the statistical distance between \mathcal{K} 's respective views is just the probability that the game $\Gamma_{2}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is aborted in step 4 d . We already estimated this abort probability by the claimed term in Lemma 17 .

Lemma 20. The statistical distance between \mathcal{K} 's view in the game $\Gamma_{3}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ and \mathcal{K} 's view in the game $\Gamma_{4}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is upper bounded by $n \cdot q^{1-k / 3}$, if $q^{k} \geq 2^{1 / \varepsilon}$.

Proof. The only difference between $\Gamma_{4}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ and $\Gamma_{3}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is in the computation of the tuple $\left(r_{i}, S_{i}\right)$. It is straightforward to verify (see also Lemma 7) that by construction in step 4 c of $\Gamma_{3}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ it always holds: Either the game is aborted, or $\tau_{i}\left(w_{1}, \ldots, w_{i}\right)=r_{i} w_{i}+S_{i}$ and

Game $\Gamma_{5}\left(\mathbb{F}_{q}^{k}, n, l\right)$

Parametrized by a finite vector space \mathbb{F}_{q}^{k} and some $n, l \in \mathbb{N}_{>0}$ with $l \leq n$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. The player \mathcal{K} is computationally unbounded.

1. For each $i \in\{1, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tilde{\tau}_{i}: \mathcal{U}^{i} \rightarrow \mathbb{F}_{q}^{4 k \times(1+k)} \cup\{\perp\}$.
2. The player \mathcal{K} learns n random vectors $h_{1}, \ldots, h_{n} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}$ and a random matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$.
3. A challenge bit $d \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}$ is chosen secretly.
4. For $i=1, \ldots, n$:
(a) The player \mathcal{K} chooses some $\tilde{r}_{i} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{i} \in \mathbb{F}_{q}^{3 k \times k}, x_{i} \in \mathbb{F}_{q}$.
(b) If $i \leq l-d$, let $w_{i}:=z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\right\}$, else let $w_{i}:=u_{i} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$, chosen secretly.
(c) If $C \cdot \tilde{\tau}_{i}\left(w_{1}, \ldots, w_{i}\right)=\left(\tilde{r}_{i}, \tilde{S}_{i}\right)$, then \mathcal{K} learns $\left(r_{i}, S_{i}\right):=\tilde{\tau}_{i}\left(w_{1}, \ldots, w_{i}\right)$. Otherwise, \mathcal{K} receives a special message (\perp, i) and the game is aborted in the sense that step 5 follows next.
5. The player \mathcal{K} computes and outputs a guess bit $\tilde{d} \in\{0,1\}$. He wins the game, if $\tilde{d}=d$.

Figure 22: Fifth transformation of our stand-alone indistinguishability game. There are two differences to the game $\Gamma_{4}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$, which just make the player \mathcal{K} strictly stronger. Firstly, the player \mathcal{K} directly learns $\left(r_{i}, S_{i}\right)$ instead of only $r_{i} x_{i}+S_{i} h_{i}$ in step 4c. Secondly, the tuple $\left(r_{i}, S_{i}\right)$ in step 4 c is no longer generated deterministically from τ_{i} and w_{1}, \ldots, w_{i} by the game, but the player \mathcal{K} may specify an arbitrary mapping $\tilde{\tau}_{i}$ instead that directly generates $\left(r_{i}, S_{i}\right)$ from w_{1}, \ldots, w_{i}.
$\#\left\{\tilde{v} \in \mathcal{U} \mid \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=r_{i} \tilde{v}+S_{i}\right\}>q^{(2 / 3+\varepsilon) k}$ and $\left(C r_{i}, C S_{i}\right)=\left(\tilde{r}_{i}, \tilde{S}_{i}\right)$. Thus, we just have to estimate the probability that there exists some other tuple $\left(r^{\prime}, S^{\prime}\right) \in \mathbb{F}_{q}^{4 k} \times \mathbb{F}_{q}^{4 k \times k} \backslash\left\{\left(r_{i}, S_{i}\right)\right\}$ with $\tau_{i}\left(w_{1}, \ldots, w_{i}\right)=r^{\prime} w_{i}+S^{\prime}$ and $\#\left\{\tilde{v} \in \mathcal{U} \mid \tau_{i}\left(w_{1}, \ldots, w_{i-1}, \tilde{v}\right)=r^{\prime} \tilde{v}+S^{\prime}\right\}>q^{(2 / 3+\varepsilon) k}$. Now given that $q^{k} \geq 2^{1 / \varepsilon}$, we have by Lemma 9 that only for less than $q^{2 k / 3}$ different choices of w_{i} there may exist such a second tuple $\left(r^{\prime}, S^{\prime}\right)$. For each stage $i \in\{1, \ldots, n\}$, since w_{i} is chosen uniformly random with support size q^{k-1} or larger, we can hence upper bound the probability that such a second tuple (r^{\prime}, S^{\prime}) exists by $q^{2 k / 3} / q^{k-1}$. Thus, our lemma follows by the Union bound.

Lemma 21. The maximum winning probability in the game $\Gamma_{4}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ is upper bounded by the maximum winning probability in the game $\Gamma_{5}\left(\mathbb{F}_{q}^{k}, n, l\right)$.
Proof. This holds trivially, since the player in $\Gamma_{5}\left(\mathbb{F}_{q}^{k}, n, l\right)$ is strictly stronger than in $\Gamma_{4}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$.

Lemma 22. The maximum winning probability in the game $\Gamma_{5}\left(\mathbb{F}_{q}^{k}, n, l\right)$ is upper bounded by the maximum winning probability in the game $\Gamma_{6}\left(\mathbb{F}_{q}^{k}, n, l\right)$.
Proof. This holds trivially, since the player in $\Gamma_{6}\left(\mathbb{F}_{q}^{k}, n, l\right)$ is strictly stronger than in $\Gamma_{5}\left(\mathbb{F}_{q}^{k}, n, l\right)$.
Lemma 23. The games $\Gamma_{6}\left(\mathbb{F}_{q}^{k}, n, l\right)$ and $\Gamma_{7}\left(\mathbb{F}_{q}^{k}, n, l\right)$ have the same maximum winning probability.
Proof. This holds trivially, since the changes from $\Gamma_{6}\left(\mathbb{F}_{q}^{k}, n, l\right)$ to $\Gamma_{7}\left(\mathbb{F}_{q}^{k}, n, l\right)$ are just cosmetic.

Game $\Gamma_{6}\left(\mathbb{F}_{q}^{k}, n, l\right)$

Parametrized by a finite vector space \mathbb{F}_{q}^{k} and some $n, l \in \mathbb{N}_{>0}$ with $l \leq n$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. The player \mathcal{K} is computationally unbounded.

1. (a) For each $i \in\{l, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tilde{\tau}_{i}: \mathcal{U}^{i} \rightarrow \mathbb{F}_{q}^{4 k \times(1+k)} \cup\{\perp\}$.
(b) For each $i \in\{l+1, \ldots, n\}$ the player \mathcal{K} chooses some $u_{i} \in \mathcal{U}$.
2. The player \mathcal{K} learns n random vectors $h_{1}, \ldots, h_{n} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}$ and a random matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$.
3. For $i=1, \ldots, l-1$: The player \mathcal{K} chooses some $x_{i} \in \mathbb{F}_{q}$ and learns $w_{i}:=z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\right\}$.
4. (a) A challenge bit $d \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}$ is chosen secretly, and \mathcal{K} chooses some $\tilde{r}_{l} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{l} \in \mathbb{F}_{q}^{3 k \times k}, x_{l} \in \mathbb{F}_{q}$.
(b) If $d=0$, let $w_{l}:=z_{l} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{l}=x_{l}\right\}$, else let $w_{l}:=u_{l} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$, chosen secretly.
(c) If $C \cdot \tilde{\tau}_{l}\left(w_{1}, \ldots, w_{l}\right)=\left(\tilde{r}_{l}, \tilde{S}_{l}\right)$, then \mathcal{K} learns $\left(r_{l}, S_{l}\right):=\tilde{\tau}_{l}\left(w_{1}, \ldots, w_{l}\right)$.

Otherwise, \mathcal{K} receives a special message (\perp, l) and the game is aborted in the sense that step 6 follows next.
5. For $i=l+1, \ldots, n$:
(a) The player \mathcal{K} chooses some $\tilde{r}_{i} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{i} \in \mathbb{F}_{q}^{3 k \times k}$. Let $w_{i}:=u_{i}$.
(b) If $C \cdot \tilde{\tau}_{i}\left(w_{1}, \ldots, w_{i}\right)=\left(\tilde{r}_{i}, \tilde{S}_{i}\right)$, then \mathcal{K} learns $\left(r_{i}, S_{i}\right):=\tilde{\tau}_{i}\left(w_{1}, \ldots, w_{i}\right)$. Otherwise, \mathcal{K} receives a special message (\perp, i) and the game is aborted in the sense that step 6 follows next.
6. The player \mathcal{K} computes and outputs a guess bit $\tilde{d} \in\{0,1\}$. He wins the game, if $\tilde{d}=d$.

Figure 23: Sixth transformation of our stand-alone indistinguishability game. There are two differences to the game $\Gamma_{5}\left(\mathbb{F}_{q}^{k}, n, l\right)$, which just make the player \mathcal{K} strictly stronger. Firstly, the last $n-l$ "token inputs" w_{l+1}, \ldots, w_{n} are no longer chosen uniformly at random, but the player \mathcal{K} may choose them at the start of the game in step 1 b . Secondly, in the first $l-1$ stages the game may no longer be aborted, and the player \mathcal{K} directly learns w_{i} instead of only $\tilde{\tau}_{i}\left(w_{1}, \ldots, w_{i}\right)$, which makes the mappings $\tilde{\tau}_{1}, \ldots, \tilde{\tau}_{l-1}$ obsolete.

Lemma 24. The maximum winning probability in the game $\Gamma_{7}\left(\mathbb{F}_{q}^{k}, n, l\right)$ and the maximum winning probability in the game $\Gamma_{8}\left(\mathbb{F}_{q}^{k}, n, l\right)$ differ at most by:

$$
n \cdot q^{1-k}+\sqrt{\exp \left(n \cdot q^{2-k}\right)-1}
$$

Proof. Let some arbitrary player \mathcal{K} be given and let the random variables $\mathbf{C}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{l}$ denote the same-named values in the game $\Gamma_{7}\left(\mathbb{F}_{q}^{k}, n, l\right)$. First of all, we just arbitrarily fix the random coins of \mathcal{K} and hence get some fixed mappings $\tilde{\tau}_{l}, \ldots, \tilde{\tau}_{n}: \mathcal{U}^{l} \rightarrow \mathbb{F}_{q}^{4 k \times(1+k)} \cup\{\perp\}$ in step 1$]$ of $\Gamma_{7}\left(\mathbb{F}_{q}^{k}, n, l\right)$. Now note that, if $\mathbf{C} M \neq \mathbf{C} M^{\prime}$ for all distinct $M, M^{\prime} \in \tilde{\tau}_{i}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l-1}, \mathcal{U}\right)$, then $\tilde{\tau}_{i}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}\right)$ is completely determined by $\left(\mathbf{C}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{l-1}, \mathbf{C} \cdot \tilde{\tau}_{i}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l}\right)\right)$ and the specification of $\tilde{\tau}_{i}$. Thus, conditioned to the event that $\mathbf{C M} \neq \mathbf{C} M^{\prime}$ for all distinct $M, M^{\prime} \in \tilde{\tau}_{i}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l-1}, \mathcal{U}\right)$ for all $i \in\{l, \ldots, n\}$ in both games $\Gamma_{7}\left(\mathbb{F}_{q}^{k}, n, l\right)$ and $\Gamma_{8}\left(\mathbb{F}_{q}^{k}, n, l\right)$, we can straightforwardly transform a player for $\Gamma_{7}\left(\mathbb{F}_{q}^{k}, n, l\right)$ into a player for $\Gamma_{8}\left(\mathbb{F}_{q}^{k}, n, l\right)$ with exactly the same winning probability. In other words, the maximum winning probability in the game $\Gamma_{7}\left(\mathbb{F}_{q}^{k}, n, l\right)$ may differ from the

Game $\Gamma_{7}\left(\mathbb{F}_{q}^{k}, n, l\right)$

Parametrized by a finite vector space \mathbb{F}_{q}^{k} and some $n, l \in \mathbb{N}_{>0}$ with $l \leq n$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. The player \mathcal{K} is computationally unbounded.

1. For each $i \in\{l, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tilde{\tau}_{i}: \mathcal{U}^{l} \rightarrow \mathbb{F}_{q}^{4 k \times(1+k)} \cup\{\perp\}$.
2. The player \mathcal{K} learns l random vectors $h_{1}, \ldots, h_{l} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}$ and a random matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$.
3. For $i=1, \ldots, l-1$: The player \mathcal{K} chooses some $x_{i} \in \mathbb{F}_{q}$ and learns $w_{i}:=z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\right\}$.
4. (a) A challenge bit $d \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}$ is chosen secretly, and \mathcal{K} chooses some $x_{l} \in \mathbb{F}_{q}$.
(b) If $d=0$, let $w_{l}:=z_{l} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{l}=x_{l}\right\}$, else let $w_{l}:=u_{l} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$, chosen secretly.

5 . For $i=l, \ldots, n$:
(a) The player \mathcal{K} chooses some $\tilde{r}_{i} \in \mathbb{F}_{q}^{3 k}, \tilde{S}_{i} \in \mathbb{F}_{q}^{3 k \times k}$.
(b) If $C \cdot \tilde{\tau}_{i}\left(w_{1}, \ldots, w_{l}\right)=\left(\tilde{r}_{i}, \tilde{S}_{i}\right)$, then \mathcal{K} learns $\left(r_{i}, S_{i}\right):=\tilde{\tau}_{i}\left(w_{1}, \ldots, w_{l}\right)$.

Otherwise, \mathcal{K} receives a special message (\perp, i) and the game is aborted in the sense that step 6 follows next.
6. The player \mathcal{K} computes and outputs a guess bit $\tilde{d} \in\{0,1\}$. He wins the game, if $\tilde{d}=d$.

Figure 24: Seventh transformation of our stand-alone indistinguishability game. This is just a "cleaned" version of $\Gamma_{6}\left(\mathbb{F}_{q}^{k}, n, l\right)$. Firstly, instead of letting the player \mathcal{K} choose the last $n-l$ "token inputs" w_{l+1}, \ldots, w_{n} at the start of the game explicitly, they are now implicitly hard-coded. Secondly, the meanwhile obsolete random vectors h_{l+1}, \ldots, h_{n} are omitted. Thirdly, we moved \mathcal{K} 's choice of $\left(\tilde{r}_{l}, \tilde{S}_{l}\right)$ and the subsequent output generation from step 4 to step 5 .
maximum winning probability in the game $\Gamma_{8}\left(\mathbb{F}_{q}^{k}, n, l\right)$ at most by the probability that $\mathbf{C} M=\mathbf{C} M^{\prime}$ for some distinct $M, M^{\prime} \in \tilde{\tau}_{i}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l-1}, \mathcal{U}\right)$ with $i \in\{l, \ldots, n\}$. However, by Lemma 8 and the Union Bound we can estimate this probability by $(n-l+1) \cdot q^{1-3 k} \cdot|\mathcal{U}|^{2}+\iota\left(\mathbf{C},\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l-1}\right)\right)$. Further, by Corollary $\left[6\right.$ we have that $\iota\left(\mathbf{C},\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{l-1}\right)\right)<\sqrt{\exp \left((l-1) q^{2-k}\right)-1}$. Together this yields the claimed estimation.

Lemma 25. The games $\Gamma_{8}\left(\mathbb{F}_{q}^{k}, n, l\right)$ and $\Gamma_{9}\left(\mathbb{F}_{q}^{k}, n, l\right)$ have the same maximum winning probability.
Proof. This holds trivially, since w.l.o.g. we only need to consider deterministic players.
Lemma 26. The maximum winning probability in the game $\Gamma_{9}\left(\mathbb{F}_{q}^{k}, n, l\right)$ is upper bounded by:

$$
\frac{1}{2}+n \cdot\left(2 q^{(4-k) / 3}+q \cdot \sqrt{\exp \left(n \cdot q^{2-k}\right)-1}\right)
$$

Proof. W.l.o.g. we consider a deterministic player \mathcal{K}, i.e. the mappings $\tilde{\tau}_{i}, x_{i}, \tilde{\sigma}_{i}$ are all fixed. Let the random variables $\mathbf{h}_{1}, \ldots, \mathbf{h}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{l-1}, \mathbf{w}, \mathbf{d}$ represent the same-named random values in the game $\Gamma_{9}\left(\mathbb{F}_{q}^{k}, n\right)$, i.e. it holds:

$$
\mathbf{d} \stackrel{\mathrm{r}}{\leftarrow}\{0,1\} \quad \mathbf{h}_{1}, \ldots, \mathbf{h}_{l} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H} \quad \mathbf{z}_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{z \in \mathcal{U} \mid z \mathbf{h}_{i}=x_{i}\left(\mathbf{h}_{1}, \ldots, \mathbf{h}_{l}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{i-1}\right)\right\}
$$

Game $\Gamma_{8}\left(\mathbb{F}_{q}^{k}, n, l\right)$

Parametrized by a finite vector space \mathbb{F}_{q}^{k} and some $n, l \in \mathbb{N}_{>0}$ with $l \leq n$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. The player \mathcal{K} is computationally unbounded.

1. For each $i \in\{l, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tilde{\tau}_{i}: \mathcal{U}^{l} \rightarrow \mathbb{F}_{q}^{4 k \times(1+k)} \cup\{\perp\}$.
2. The player \mathcal{K} learns l random vectors $h_{1}, \ldots, h_{l} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}$ and a random matrix $C \stackrel{\mathrm{r}}{\leftarrow} \mathbb{F}_{q}^{3 k \times 4 k}$.
3. For $i=1, \ldots, l-1$: The player \mathcal{K} chooses some $x_{i} \in \mathbb{F}_{q}$ and learns $w_{i}:=z_{i} \stackrel{\mathfrak{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\right\}$.
4. (a) A challenge bit $d \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}$ is chosen secretly, and \mathcal{K} chooses some $x_{l} \in \mathbb{F}_{q}$.
(b) If $d=0$, let $w_{l}:=z_{l} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\right\}$, else let $w_{l}:=u_{l} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$, chosen secretly.
5. For $i=l, \ldots, n$:
(a) The player \mathcal{K} chooses some $r_{i} \in \mathbb{F}_{q}^{4 k}, S_{i} \in \mathbb{F}_{q}^{4 k \times k}$.
(b) If $\tilde{\tau}_{i}\left(w_{1}, \ldots, w_{l}\right)=\left(r_{i}, S_{i}\right)$, then \mathcal{K} is notified about that by a special message (\top, i). Otherwise, \mathcal{K} receives a special message (\perp, i) and the game is aborted in the sense that step 6 follows next.
6. The player \mathcal{K} computes and outputs a guess bit $\tilde{d} \in\{0,1\}$. He wins the game, if $\tilde{d}=d$.

Figure 25: Eighth transformation of our stand-alone indistinguishability game. The only difference to $\Gamma_{7}\left(\mathbb{F}_{q}, n, l\right)$ is that in step 5 b the player \mathcal{K} now must exactly forecast $\tilde{\tau}_{i}\left(w_{1}, \ldots, w_{l}\right)$ rather than only the linear projection $C \cdot \tilde{\tau}_{i}\left(w_{1}, \ldots, w_{l}\right)$.

For convenience we set:

$$
\mathbf{H}:=\left(\mathbf{h}_{1}, \ldots, \mathbf{h}_{l}\right) \quad \mathbf{H}^{\prime}:=\left(\mathbf{h}_{1}, \ldots, \mathbf{h}_{l-1}\right) \quad \mathbf{T}:=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{l-1}, \mathbf{w}\right) \quad \mathbf{T}^{\prime}:=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{l-1}\right)
$$

Further, let the random variable $\mathbf{m} \in\{l-1, \ldots, n\}$ represent the index of the latest stage where the game is not aborted; i.e. $\tilde{\tau}_{i}(\mathbf{T})=\tilde{\sigma}_{i}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)$ for all $i \in\{l, \ldots, \mathbf{m}\}$, and $\tilde{\tau}_{\mathbf{m}+1}(\mathbf{T}) \neq \tilde{\sigma}_{\mathbf{m}+1}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)$ if not $\mathbf{m}=n$. Note that \mathcal{K} 's complete view can be deterministically reconstructed from $\left(\mathbf{H}, \mathbf{T}^{\prime}, \mathbf{m}\right)$ and \mathcal{K} 's program code. Thus, with the random variable $\tilde{\mathbf{d}} \in\{0,1\}$ representing \mathcal{K} 's final guess, we have:

$$
\begin{align*}
& \mathbb{P}[\tilde{\mathbf{d}}=\mathbf{d}] \\
& =\mathbb{P}[\tilde{\mathbf{d}}=0 \mid \mathbf{d}=0] \cdot \mathbb{P}[\mathbf{d}=0]+\mathbb{P}[\tilde{\mathbf{d}}=1 \mid \mathbf{d}=1] \cdot \mathbb{P}[\mathbf{d}=1] \\
& =\frac{1}{2}(\mathbb{P}[\tilde{\mathbf{d}}=0 \mid \mathbf{d}=0]+\mathbb{P}[\tilde{\mathbf{d}}=1 \mid \mathbf{d}=1]) \\
& =\frac{1}{2}(\mathbb{P}[\tilde{\mathbf{d}}=0 \mid \mathbf{d}=0]+1-\mathbb{P}[\tilde{\mathbf{d}}=0 \mid \mathbf{d}=1]) \\
& \leq \frac{1}{2}+\frac{1}{2}|\mathbb{P}[\tilde{\mathbf{d}}=0 \mid \mathbf{d}=0]-\mathbb{P}[\tilde{\mathbf{d}}=0 \mid \mathbf{d}=1]| \\
& \leq \frac{1}{2}+\frac{1}{2} \sum_{H, T^{\prime}, m}\left|\mathbb{P}\left[\left(\mathbf{H}, \mathbf{T}^{\prime}, \mathbf{m}\right)=\left(H, T^{\prime}, m\right) \mid \mathbf{d}=0\right]-\mathbb{P}\left[\left(\mathbf{H}, \mathbf{T}^{\prime}, \mathbf{m}\right)=\left(H, T^{\prime}, m\right) \mid \mathbf{d}=1\right]\right| \tag{1}
\end{align*}
$$

Now, for $H \in \mathcal{H}^{l}, T^{\prime} \in \mathcal{U}^{l-1}, m \in\{l-1, \ldots, n\}$ we define the following sets:

$$
\begin{aligned}
& A_{m}\left(H, T^{\prime}\right):=\left\{\tilde{v} \in \mathcal{U} \mid \forall j \in\{l, \ldots, m\}: \tilde{\tau}_{j}\left(T^{\prime}, \tilde{v}\right)=\tilde{\sigma}_{j}\left(H, T^{\prime}\right)\right\} \\
& \bar{A}_{m}\left(H, T^{\prime}\right):=A_{m} \backslash A_{m+1} \quad \text { with the convention that } A_{n+1}\left(H, T^{\prime}\right)=\emptyset
\end{aligned}
$$

Game $\Gamma_{9}\left(\mathbb{F}_{q}^{k}, n, l\right)$

Parametrized by a finite vector space \mathbb{F}_{q}^{k} and some $n, l \in \mathbb{N}_{>0}$ with $l \leq n$. Let $\mathcal{U}:=\mathbb{F}_{q}^{1 \times k}$ and $\mathcal{H}:=\mathbb{F}_{q}^{k} \backslash\{0\}$. The player \mathcal{K} is computationally unbounded.

1. (a) For each $i \in\{1, \ldots, l\}$ the player \mathcal{K} specifies some mapping $x_{i}: \mathcal{H}^{l} \times \mathcal{U}^{i-1} \rightarrow \mathbb{F}_{q}$.
(b) For each $i \in\{l, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tilde{\tau}_{i}: \mathcal{U}^{l} \rightarrow \mathbb{F}_{q}^{4 k \times(1+k)} \cup\{\perp\}$.
(c) For each $i \in\{l, \ldots, n\}$ the player \mathcal{K} specifies some mapping $\tilde{\sigma}_{i}: \mathcal{H}^{l} \times \mathcal{U}^{l-1} \rightarrow \mathbb{F}_{q}^{4 k \times(1+k)}$.
2. The player \mathcal{K} learns l random vectors $h_{1}, \ldots, h_{l} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{H}$.
3. For $i=1, \ldots, l-1$: The player \mathcal{K} learns $z_{i} \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{i}=x_{i}\left(h_{1}, \ldots, h_{l}, z_{1}, \ldots, z_{i-1}\right)\right\}$.
4. (a) A challenge bit $d \stackrel{\mathrm{r}}{\leftarrow}\{0,1\}$ is chosen secretly.
(b) If $d=0$, let $w \stackrel{\mathrm{r}}{\leftarrow}\left\{\tilde{z} \in \mathcal{U} \mid \tilde{z} h_{l}=x_{l}\left(h_{1}, \ldots, h_{n}, z_{1}, \ldots, z_{l-1}\right)\right\}$, else let $w \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$, chosen secretly.
5. For $i=l, \ldots, n$: If $\tilde{\tau}_{i}\left(z_{1}, \ldots, z_{l-1}, w\right)=\tilde{\sigma}_{i}\left(h_{1}, \ldots, h_{l}, z_{1}, \ldots, z_{l-1}\right)$, then \mathcal{K} is notified about that by a special message (T, i); else \mathcal{K} receives a special message (\perp, i) and the game is aborted in the sense that step 6 follows next.
6. The player \mathcal{K} computes and outputs a guess bit $\tilde{d} \in\{0,1\}$. He wins the game, if $\tilde{d}=d$.

Figure 26: Final transformation of our stand-alone indistinguishability game. The difference to the game $\Gamma_{8}\left(\mathbb{F}_{q}^{k}, n, l\right)$ is that the player \mathcal{K} must specify in step 1 how all his future choices will depend on the information gathered so far, and the meanwhile obsolete random matrix C is omitted.

The intuition behind this is that $A_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)$ consists of all token inputs for stage l, such that the game is not aborted before stage m. Accordingly, $\bar{A}_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)$ consists of all token inputs for stage l, such that stage m is the latest non-aborted stage. In other words, it holds:

$$
\begin{aligned}
& A_{m}\left(H, T^{\prime}\right)=\left\{w \in \mathcal{U} \mid\left(\mathbf{H}, \mathbf{T}^{\prime}, \mathbf{w}\right)=\left(H, T^{\prime}, w\right) \Rightarrow \mathbf{m} \geq m\right\} \\
& \bar{A}_{m}\left(H, T^{\prime}\right)=\left\{w \in \mathcal{U} \mid\left(\mathbf{H}, \mathbf{T}^{\prime}, \mathbf{w}\right)=\left(H, T^{\prime}, w\right) \Rightarrow \mathbf{m}=m\right\}
\end{aligned}
$$

Further, for all $h \in \mathcal{H}, \alpha \in \mathbb{F}_{q}$ we define:

$$
Z_{\alpha}(h):=\{\tilde{z} \in \mathcal{U} \mid z h=\alpha\}
$$

Note that $\mathbf{w} \stackrel{\mathrm{r}}{\leftarrow} Z_{x_{l}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)}\left(\mathbf{h}_{l}\right)$ if $\mathbf{d}=0$, and $\mathbf{w} \stackrel{\mathrm{r}}{\leftarrow} \mathcal{U}$ if $\mathbf{d}=1$. Hence, given $H:=\left(h_{1}, \ldots, h_{l}\right) \in \mathcal{H}^{l}$, $T^{\prime} \in \mathcal{U}^{l-1}, m \in\{l-1, \ldots, n\}$, we can compute:

$$
\begin{aligned}
& \left|\mathbb{P}\left[\mathbf{m}=m \mid\left(\mathbf{d}, \mathbf{H}, \mathbf{T}^{\prime}\right)=\left(0, H, T^{\prime}\right)\right]-\mathbb{P}\left[\mathbf{m}=m \mid\left(\mathbf{d}, \mathbf{H}, \mathbf{T}^{\prime}\right)=\left(1, H, T^{\prime}\right)\right]\right| \\
& =\left|\mathbb{P}\left[\mathbf{w} \in \bar{A}_{m}\left(H, T^{\prime}\right) \mid\left(\mathbf{d}, \mathbf{H}, \mathbf{T}^{\prime}\right)=\left(0, H, T^{\prime}\right)\right]-\mathbb{P}\left[\mathbf{w} \in \bar{A}_{m}\left(H, T^{\prime}\right) \mid\left(\mathbf{d}, \mathbf{H}, \mathbf{T}^{\prime}\right)=\left(1, H, T^{\prime}\right)\right]\right| \\
& =\left|\frac{\left|Z_{x_{l}\left(H, T^{\prime}\right)}\left(h_{l}\right) \cap \bar{A}_{m}\left(H, T^{\prime}\right)\right|}{\left|Z_{x_{l}\left(H, T^{\prime}\right)}\left(h_{l}\right)\right|}-\frac{\left|\bar{A}_{m}\left(H, T^{\prime}\right)\right|}{|\mathcal{U}|}\right| \\
& =q^{1-k} \cdot| | Z_{x_{l}\left(H, T^{\prime}\right)}\left(h_{l}\right) \cap \bar{A}_{m}\left(H, T^{\prime}\right)\left|-\frac{1}{q}\right| \bar{A}_{m}\left(H, T^{\prime}\right)| |
\end{aligned}
$$

Plugging this into (1), we get:

$$
\mathbb{P}[\tilde{\mathbf{d}}=\mathbf{d}] \leq \frac{1}{2}+\frac{q^{1-k}}{2} \sum_{m=l-1}^{n} \mathbb{E}| | Z_{x_{l}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)}\left(\mathbf{h}_{l}\right) \cap \bar{A}_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)\left|-\frac{1}{q}\right| \bar{A}_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)| |
$$

Now we exploit that $\left|\bar{A}_{m}\left(H, T^{\prime}\right)\right|=\left|A_{m}\left(H, T^{\prime}\right) \backslash A_{m-1}\left(H, T^{\prime}\right)\right|=\left|A_{m}\left(H, T^{\prime}\right)\right|-\left|A_{m-1}\left(H, T^{\prime}\right)\right|$ by construction and analogously $\left|Z \cap \bar{A}_{m}\left(H, T^{\prime}\right)\right|=\left|Z \cap A_{m}\left(H, T^{\prime}\right)\right|-\left|Z \cap A_{m-1}\left(H, T^{\prime}\right)\right|$ for every $Z \subseteq \mathcal{U}$. Using this and the Triangle Inequality, we can derive:

$$
\mathbb{P}[\tilde{\mathbf{d}}=\mathbf{d}] \leq \frac{1}{2}+q^{1-k} \sum_{m=l-1}^{n+1} \mathbb{E}| | Z_{x_{l}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)}\left(\mathbf{h}_{l}\right) \cap A_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)\left|-\frac{1}{q}\right| A_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)| |
$$

I.e., we just lost the factor $\frac{1}{2}$ in front of the big sum and in return could replace each \bar{A}_{m} by A_{m}. Moreover, since always $A_{l-1}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)=\mathbb{F}_{q}^{1 \times k}$ and $A_{n+1}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)=\emptyset$ by definition, the first and last summand of the expression above are always zero and can be discarded; i.e. it holds:

$$
\begin{equation*}
\mathbb{P}[\tilde{\mathbf{d}}=\mathbf{d}] \leq \frac{1}{2}+q^{1-k} \sum_{m=l}^{n} \mathbb{E}| | Z_{x_{l}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)}\left(\mathbf{h}_{l}\right) \cap A_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)\left|-\frac{1}{q}\right| A_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)| | \tag{2}
\end{equation*}
$$

Now we exploit that $\left\{A_{m}\left(H, T^{\prime}\right)\right\}_{H \in \mathcal{H}^{l}}$ can be considered as a disjoint decomposition of some subset of $\mathbb{F}_{q}^{1 \times k}$, since by construction we have:

$$
A_{m}\left(H_{1}, T^{\prime}\right) \neq A_{m}\left(H_{2}, T^{\prime}\right) \quad \Rightarrow \quad A_{m}\left(H_{1}, T^{\prime}\right) \cap A_{m}\left(H_{2}, T^{\prime}\right)=\emptyset
$$

Thus, for arbitrary $\gamma \in \mathbb{R}_{>0}$ by Corollary 12 follows:

$$
\mathbb{P}\left[\exists \alpha \in \mathbb{F}_{q}, H \in \mathcal{H}^{l}:\left|\left|Z_{\alpha}\left(\mathbf{h}_{l}\right) \cap A_{m}\left(H, \mathbf{T}^{\prime}\right)\right|-\frac{1}{q}\right| A_{m}\left(H, \mathbf{T}^{\prime}\right)| |>\gamma\right] \leq \frac{q^{k+1 / 2}}{\gamma^{3 / 2}}+\iota\left(\mathbf{h}_{l}, \mathbf{T}^{\prime}\right)
$$

We instantiate α in this inequality by $x_{l}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)$ and H by \mathbf{H}, which yields:

$$
\mathbb{P}\left[\left|\left|Z_{x_{l}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)}\left(\mathbf{h}_{l}\right) \cap A_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)\right|-\frac{1}{q}\right| A_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)| |>\gamma\right] \leq \frac{q^{k+1 / 2}}{\gamma^{3 / 2}}+\iota\left(\mathbf{h}_{l}, \mathbf{T}^{\prime}\right)
$$

Since $\mathbb{E}(\mathbf{x})=\int_{0}^{\infty} \mathbb{P}[\mathbf{x}>\gamma] \mathrm{d} \gamma$ for every real-valued random variable $\mathbf{x} \in \mathbb{R}_{\geq 0}$, this directly implies:

$$
\begin{aligned}
& \mathbb{E}\left|\left|Z_{x_{l}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)}\left(\mathbf{h}_{l}\right) \cap A_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)\right|-\frac{1}{q}\right| A_{m}\left(\mathbf{H}, \mathbf{T}^{\prime}\right)| | \leq \int_{0}^{q^{k}} \min \left\{1, \frac{q^{k+1 / 2}}{\gamma^{3 / 2}}\right\}+\iota\left(\mathbf{h}_{l}, \mathbf{T}^{\prime}\right) \mathrm{d} \gamma \\
& =q^{(2 k+1) / 3}+\int_{q^{(2 k+1) / 3}}^{q^{k}} \frac{q^{k+1 / 2}}{\gamma^{3 / 2}} \mathrm{~d} \gamma+q^{k} \cdot \iota\left(\mathbf{h}_{l}, \mathbf{T}^{\prime}\right)=2 q^{(2 k+1) / 3}-q^{(k+1) / 2}+q^{k} \cdot \iota\left(\mathbf{h}_{l}, \mathbf{T}^{\prime}\right)
\end{aligned}
$$

Moreover, by Corollary 6 we have that $\iota\left(\mathbf{h}_{l}, \mathbf{T}^{\prime}\right)<\sqrt{\exp \left((l-1) q^{2-k}\right)-1}$. Using 24 , we conclude:

$$
\begin{aligned}
\mathbb{P}[\tilde{\mathbf{d}}=\mathbf{d}] & <\frac{1}{2}+q^{1-k} \cdot(n-l+1) \cdot\left(2 q^{(2 k+1) / 3}-q^{(k+1) / 2}+q^{k} \cdot \sqrt{\exp \left((l-1) \cdot q^{2-k}\right)-1}\right) \\
& <\frac{1}{2}+n \cdot\left(2 q^{(4-k) / 3}+q \cdot \sqrt{\exp \left(n \cdot q^{2-k}\right)-1}\right)
\end{aligned}
$$

4.3.8 Concluding the security proof

We can now finally conclude our security proof by just putting things together. We first sum up what we know so far about successive hybrid games; then we conclude this whole section with our final security theorem.

Corollary 27. For any $l \in\{1, \ldots, n\}$, the hybrid games Game $_{l-1}$ and Game_{l} are statistically indistinguishable, if $k \geq 5$. More particular, the statistical distance between the environment's respective views is negligible in the security parameter $\lambda:=k \log q$, if only $k \geq 5$.

Proof. For $i=0, \ldots, 9$, let δ_{i} denote the player's advantage in the respective indistinguishability game; i.e. the maximum winning probability in the game $\Gamma_{i}\left(\mathbb{F}_{q}^{k}, n, l\right)$, or $\Gamma_{i}\left(\mathbb{F}_{q}^{k}, n, l, \varepsilon\right)$ respectively, is $\frac{1}{2}+\delta_{i}$. By Lemma 15, the statistical distance between the environment's views in Game_{l-1} and Game_{l} is upper bounded by $2 \delta_{0}$. Furthermore, given any $\varepsilon \in \mathbb{R}_{>0}$ with $q^{(2 / 3+\varepsilon) k} \geq q$, it holds:

$$
\begin{array}{ll}
\delta_{0} \leq \delta_{1} & \\
\text { by Lemma } 16 \\
\delta_{1} \leq \delta_{2}+n \cdot\left(q^{-(2 / 3+\varepsilon) k}+q^{1-(1 / 3-\varepsilon) k}+q^{1-k}+q^{2-k}\right)+\sqrt{\exp \left(n \cdot q^{2-k}\right)-1} & \\
\text { by Lemma } 18 \\
\delta_{2} \leq \delta_{3}+n \cdot\left(q^{1-(1 / 3-\varepsilon) k}+q^{1-k}+q^{2-k}\right)+\sqrt{\exp \left(n \cdot q^{2-k}\right)-1} & \\
\delta_{3} \leq \delta_{4}+n \cdot q^{1-k / 3}, \quad \text { if } q^{k} \geq 2^{1 / \varepsilon} & \text { by Corollary } 19 \\
\delta_{4} \leq \delta_{5} & \\
\delta_{5} \leq \delta_{6} & \text { by Lemma } 20 \\
\delta_{6}=\delta_{7} & \text { by Lemma } 21 \\
\delta_{7} \leq \delta_{8}+n \cdot q^{1-k}+\sqrt{\exp \left(n \cdot q^{2-k}\right)-1} & \text { by Lemma } 23 \\
\delta_{8}=\delta_{9} & \\
\delta_{9} \leq n \cdot\left(2 q^{(4-k) / 3}+q \cdot \sqrt{\exp \left(n \cdot q^{2-k}\right)-1}\right) & \text { by Lemma Lemma } 24 \\
& \\
\text { by Lemma } 26
\end{array}
$$

Now, let $\varepsilon:=\frac{1}{12}$ and let $k \geq 5$, which especially yields that $q^{(2 / 3+\varepsilon) k} \geq q$ and allows us to estimate:

$$
q^{-(2 / 3+\varepsilon) k}, q^{1-(1 / 3-\varepsilon) k}, q^{1-k}, q^{2-k}, q^{1-(1 / 3-\varepsilon) k}, q^{1-k / 3}, q^{(4-k) / 3} \leq q^{-k / 5}
$$

Further let $q^{k} \geq n^{25 / 3}$. This, together with $k \geq 5$, allows us to estimate:

$$
q \cdot \sqrt{\exp \left(n \cdot q^{2-k}\right)-1} \leq q \cdot \sqrt{\exp \left(q^{2-22 k / 25}\right)-1}<q \cdot \sqrt{4 q^{2-22 k / 25}}=2 q^{2-11 k / 25} \leq 2 q^{-k / 5}
$$

Putting things together, we have shown that the statistical distance between the environment's views in the hybrid games Game_{l-1} and Game_{l} is upper bounded by $(13 n+3) \cdot \exp (-\lambda / 5)$, where $\lambda:=k \log q$ is the security parameter and we need that $\exp (\lambda) \geq \max \left(2^{12}, n^{25 / 3}\right)$.

Theorem 28. Let some arbitrary environment \mathcal{Z} be given and some adversary \mathcal{A} that corrupts the sender Goliath. Then the view of \mathcal{Z} in the ideal model with ideal functionality $\mathcal{F}_{\mathrm{OAFE}}^{\text {seq-ot }}$ and simulator $\mathcal{S}^{\text {Goliath }}(\mathcal{A})$ is statistically indistinguishable (with security parameter $\lambda:=k \log q$) from the view of \mathcal{Z} in the real model with protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ and adversary \mathcal{A}, if only $k \geq 5$.

Proof. By Corollary 27 we have that the statistical distance between the environment's views in successive hybrid games $\mathrm{Game}_{l-1}, \mathrm{Game}_{l}$ is negligible in the security parameter λ, if only $k \geq 5$. By the Union Bound, we can conclude that the statistical distance between the environment's views in Game_{0} and Game_{n} may be at most by a factor n bigger, and hence is still negligible. Finally, by Corollary 14 we have that Game_{0} is statistical indistinguishable from the ideal model, and Game ${ }_{n}$ is perfectly indistinguishable from the real model. Thus, the ideal ideal model and the real model must be statistical indistinguishable.

5 No-go arguments \& conclusion

In this section we conclude our work by a short summery of what we achieved so far, what further improvement opportunities are left open and which drawbacks of our work seem unavoidable (or at least hard to circumvent). We start with the negative aspects; they highlight that our results are quite close to optimal. Though, we give rather intuitive arguments than full formal proofs.

5.1 Impossibility of unlimited token reuse without computational assumptions

Our first negative result is that tokens with a limited amount of entropy can only be used to implement a limited number of statistically secure OTs. To show this we will only consider passively secure protocols and show stronger statements. Namely, given a token that can store ℓ bits of randomness, we cannot hope to instantiate more than $\ell / 2$ bit-OTs between David and Goliath using this token. For passive security this is optimal. Given that the token behaves honestly, we can implement bit-OT from Goliath to David by using the token as a selective decrypter: Goliath one-time-pad encrypts his OT-inputs, sends them to David, and David can ask the token for one of the keys and decrypt his output. The correctness and privacy properties of this protocol follow immediately.

Now, for our impossibility argumentation assume we were given k bit-OTs between Goliath and David. In the semi-honest setting, implementing k-bit string-OT is then trivial: David just inputs the same choice-bit into each bit-OT. We thus only need to show that there is no protocol Π that implements a single k-bit string-OT using a token with at most ℓ bits of randomness, when k is significantly larger than $\ell / 2$. With the above said, we can also conclude that there exists no protocol realizing k bit-OTs using a token with significantly less than $2 k$ bits of randomness.

Assume we were given a correct and statistically receiver-private protocol Π that implements k-bit string-OT in the $\mathcal{F}_{\text {wrap }}^{\text {stateful }}$-hybrid model, where the sender of the OT is also the sender of the token. We first provide an extractor $\operatorname{Ext}_{c}(\tau, \sigma)$ which computes the most likely David output, given David's choice bit c, a transcript τ of all messages between David and Goliath, and the token random tape σ. Notice that τ only contains the messages sent and received by David, not his complete view. Our extractor does the following. It iterates through all possible random tapes r for David, of which there are at most $2^{\text {poly }(k)}$, since we require an honest David to be efficient. For each such random tape $r, \operatorname{Ext}_{c}(\tau, \sigma)$ checks if r is consistent with the message transcrip τ and the token random tape σ. More precisely, $\operatorname{Ext}_{c}(\tau, \sigma)$ simulates David with input c and random tape r, and a token with random tape σ. For each message m sent by this simulated David to Goliath, $\operatorname{Ext}_{c}(\tau, \sigma)$ checks whether m appears in the transcript τ at the appropriate position. If for any message m this is not the case, the random tape r is discarded. If m is identical to the message in τ, then $\operatorname{Ext}_{c}(\tau, \sigma)$ answers the message by the simulated David with the next message of Goliath
in τ. In the end, the simulated David will produce an output s. $\operatorname{Ext}_{c}(\tau, \sigma)$ stores these David outputs in a list. After all possible random tapes r are iterated, $\operatorname{Ext}_{c}(\tau, \sigma)$ checks which output s appears most frequently in the list of David outputs and then outputs this s. By the correctness property of Π it must hold with overwhelming probability that $\operatorname{Ext}_{c}(\tau, \sigma)=s_{c}$, where σ and τ are generated by a real run of Π with Goliath input $\left(s_{0}, s_{1}\right)$, David input c, and fresh random tapes for both of them.

However, it must also hold with overwhelming probability that $\operatorname{Ext}_{1-c}(\tau, \sigma)=s_{1-c}$, as otherwise an unbounded Goliath could simply compute $\left(\operatorname{Ext}_{0}(\tau, \sigma), \operatorname{Ext}_{1}(\tau, \sigma)\right)$, compare it with $\left(s_{0}, s_{1}\right)$ and thereby learn David's choice bit c. Thus, for real runs of Π it holds with overwhelming probability that $\left(s_{0}, s_{1}\right)=\left(\operatorname{Ext}_{0}(\tau, \sigma), \operatorname{Ext}_{1}(\tau, \sigma)\right)$, regardless of Goliath's input distribution. In other words, the Shannon entropy $\mathbb{H}_{1}\left(s_{0}, s_{1} \mid \tau, \sigma\right)=: \nu$ is always negligible.

Now we turn to show that a transcript τ alone may contain only negligible information about Goliath's input (s_{0}, s_{1}). This will conclude our argumentation, since together with the negligibility of $\mathbb{H}_{1}\left(s_{0}, s_{1} \mid \tau, \sigma\right)$ it will yield that σ may have only negligibly less entropy than $\left(s_{0}, s_{1}\right)$. Assume that Π is also statistically sender-private and consider protocol runs with uniformly random Goliath input $\left(s_{0}, s_{1}\right)$. If we set $c=0$, it must hold that $\mathbb{H}_{1}\left(s_{1} \mid \tau, s_{0}\right) \geq k-\mu$ for some negligible μ, because of the sender-privacy property of Π. Especially, in the case of $c=0$ it must hold that $\mathbb{H}_{1}\left(s_{1} \mid \tau\right) \geq k-\mu$. Analogously, in the case of $c=1$ it must hold that $\mathbb{H}_{1}\left(s_{0} \mid \tau\right) \geq \mathbb{H}_{1}\left(s_{0} \mid \tau, s_{1}\right) \geq k-\mu^{\prime}$ for some negligible μ^{\prime}. However, as an unbounded Goliath can compute $\mathbb{H}_{1}\left(s_{0} \mid \tau=\tilde{\tau}\right)$ and $\mathbb{H}_{1}\left(s_{1} \mid \tau=\tilde{\tau}\right)$ for any actually observed message transcript $\tilde{\tau}$, it must just hold that $\mathbb{H}_{1}\left(s_{0} \mid \tau\right)$ and $\mathbb{H}_{1}\left(s_{1} \mid \tau\right)$ are negligibly close to k in either case; otherwise Goliath could distinguish both cases and the receiverprivacy of Π would be broken. Say $\mathbb{H}_{1}\left(s_{0} \mid \tau\right) \geq k-\mu^{\prime \prime}$ and $\mathbb{H}_{1}\left(s_{1} \mid \tau\right) \geq k-\mu^{\prime \prime \prime}$ in both cases. Thus, if $c=0$, we can estimate:

$$
\mathbb{H}_{1}\left(s_{0}, s_{1} \mid \tau\right)=\mathbb{H}_{1}\left(s_{1} \mid \tau, s_{0}\right)+\mathbb{H}_{1}\left(s_{0} \mid \tau\right) \geq(k-\mu)+\left(k-\mu^{\prime \prime}\right)=2 k-\left(\mu+\mu^{\prime \prime}\right)
$$

Analogously, if $c=1$, we can estimate:

$$
\mathbb{H}_{1}\left(s_{0}, s_{1} \mid \tau\right)=\mathbb{H}_{1}\left(s_{0} \mid \tau, s_{1}\right)+\mathbb{H}_{1}\left(s_{1} \mid \tau\right) \geq\left(k-\mu^{\prime}\right)+\left(k-\mu^{\prime \prime \prime}\right)=2 k-\left(\mu^{\prime}+\mu^{\prime \prime \prime}\right)
$$

Hence, we find some negligible ν^{\prime}, such that $\mathbb{H}_{1}\left(s_{0}, s_{1} \mid \tau\right) \geq 2 k-\nu^{\prime}$ for any distribution of David's input c. Remember that we assumed Goliath's input $\left(s_{0}, s_{1}\right)$ to be uniformly random. Since $\mathbb{H}_{1}\left(s_{0}, s_{1} \mid \tau, \sigma\right) \geq \mathbb{H}_{1}\left(s_{0}, s_{1} \mid \tau\right)-\mathbb{H}_{1}(\sigma)$, we can conclude:

$$
\ell=\mathbb{H}_{1}(\sigma) \geq \mathbb{H}_{1}\left(s_{0}, s_{1} \mid \tau\right)-\mathbb{H}_{1}\left(s_{0}, s_{1} \mid \tau, \sigma\right) \geq 2 k-\nu^{\prime}-\nu
$$

I.e., since ν and ν^{\prime} are negligible, there cannot exist a correct and statistically secure protocol Π that implements k-bit string-OT using a token with at most ℓ bits of randomness, when k is significantly larger than $\ell / 2$.

5.2 Lower bounds for David's communication overhead

Even our refined construction for l-bit string-OT (q.v. Section 3.2.3) needs that David inputs $\Theta(l)$ bits into the token. One could wonder, if it is possible to implement multiple instances of OT from reusable tamper-proof tokens, such that for each implemented instance of OT the communication complexity for the receiver party David is constant. We argue that this seems very improbable. The main argument is that a corrupted sender Goliath can correctly guess David's token inputs for
the first OT instances with some constant probability. Thus, he can maliciously create the tokens so that they immediately shut down, if David's first token inputs do not match Goliath's guess. Thereby, when Goliath learns that the protocol was not aborted, he can reconstruct David's first OT input. Such a protocol cannot be UC-secure, since in the ideal model the abort probability may not depend on Davids inputs. Moreover, the whole argumentation still seems valid, even if we allow that David inputs polylogarithmically many bits per OT into the tokens.

5.3 Impossibility of polynomially bounded simulation runtime

The running time of our simulator $\mathcal{S}^{\text {Goliath }}(\mathcal{A})$ for a corrupted sender is not a priori polynomially bounded (cf. Section 4.3). Instead, we have only a polynomial bound for the expected running time (cf. Lemma 13). The same problem occurred in MS08] and they stated it as an open problem to find a protocol with strict polynomial-time simulation. We argue that such a protocol seems very hard to find, unless computational assumptions are used.

Since information-theoretically secure OT cannot be realized from stateless tokens, as shown by [GIMS10], it suffices to consider stateful solutions. However, simulatability is only possible if a corrupted sender's inputs can be extracted from his messages sent to the receiver party and the program code of the token(s). The straightforward approach of extraction is to rewind the token, but as the token may act honestly only on some fraction of inputs, the simulator will have to rewind the token repeatedly. In particular, a corrupted token issuer can choose some arbitrary probability p, such that the token acts honestly only with this probability p. Unless p is negligible, this will necessitate a simulator that can rewind the token for about $\frac{1}{p}$ times. Since p may be effectively chosen by the adversary (and thus by the environment) during runtime, strict polynomial-time simulation with repeated token rewinding seems impossible. Moreover, we are not aware of any information-theoretic approach (i.e. without computational assumptions) that would allow us to avoid repeated token rewinding.

5.4 Impossibility of random access solutions with a constant number of tokens

Via our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ one can implement sequentially queriable OTM tokens from a single piece of untrusted tamper-proof hardware (cf. Section 3.1 and Section 2.4). We discuss now, why it seems impossible to implement multiple OTMs that the token receiver can access in arbitrary order. The main argument is that a corrupted token issuer can try to let the token work only for the first OTM query and then shut down. This is not simulatable in the ideal model, since the simulator does not learn which OTM is queried first - the decision which OTM to query first even might be made not until the interactive part of the protocol is over.

In particular, the attack idea is as follows. Given any hypothetical protocol for random access OTMs from a single token, let b denote a lower bound of token queries that are needed for the first OTM access and let B denote an upper bound. W.l.o.g., b and B are polynomially bounded in the security parameter. The corrupted token issuer randomly picks $j \stackrel{\mathrm{r}}{\leftarrow}\{b, \ldots, B\}$ and programs the token such that it shuts down after the j-th query. Now, with probability $\frac{1}{B-b+1}$ the receiver party will be able to access only the very OTM that is queried first. Note that this probability is independent of the access order to the implemented OTMs. Further note that by this attack it cannot happen that the OTM accessed first is malformed and any other is not. For the simulator this means an unsolvable dilemma. With non-negligible probability, all but one of the sent OTMs must be malformed and the non-malformed OTM must always be that one that will be accessed first.

5.5 Conclusion \& improvement opportunities

In this paper, we showed that a single untrusted tamper-proof hardware token is sufficient for non-interactive (or to be more precise, semi-interactive), composable, information-theoretically secure computation. Our approach is the first to implement several widely used primitives (namely string-commitments, string-OT and sequentially queriable OTMs) at optimal rates. Moreover, our constructions have remarkably low computation complexity, way more efficient than any other construction in the literature. As a drawback, our information-theoretically secure protocols have only limited token reusability, but can be transformed straightforwardly into computationally secure protocols with unlimited token reusability. The computational assumption needed is the weakest standard assumption in cryptography, namely the existence of a pseudorandom number generator, and beyond that we only need the receiver party David to be computationally bounded. After all, we consider our work a substantial gain towards practical two-party computation, but still want to point out some issues that in our view need some further improvement.

Smaller constants for better practicability. Even though we achieve asymptotically optimal communication complexity, there are some nasty constants left that might make our protocols somewhat slow in practice. In particular, for every l-bit string-OT (or l-bit OTM respectively) the token has to compute and output an $\mathbb{F}_{2^{l}}^{20 \times 5}$-matrix, i.e. we have a blow-up factor of 100 . This enormous factor results from two technical artifacts. Firstly, we were only able to prove that our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ securely realizes \mathbb{F}_{q}^{k}-OAFE, if $k \geq 5$ (cf. Section 4). In contrast, we only need $\mathbb{F}_{2^{l}}^{2}$-OAFE for our optimal l-bit string-OT protocol (cf. Section 3.2.3) and are not aware of any potential attack against $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ with $k=2$. Secondly, for technical reasons we need that David chooses a check matrix C of dimension $3 k \times 4 k$ in step ii of the setup phase (q.v. Figure 6) and later computes a check value $C W_{i}$ from the i-th token output W_{i}, i.e. we especially need that W_{i} has dimension $4 k \times k$. However, we are not aware of any potential attack, if only $C \in \mathbb{F}_{q}^{\alpha k \times(1+\alpha) k}$ with constant $\alpha>0$. Now, if we choose $\alpha=\frac{1}{2}$ and $k=2$, this means that David chooses a check matrix C of dimension 1×3 and the token just needs to compute and output $\mathbb{F}_{2^{l}}^{3 \times 2}$-matrices. In other words, we believe that the blow-up factor can be reduced from 100 to 6 just by more sophisticated proof techniques and a slight modification of the protocol.

Less interaction. Our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ (q.v. Figure 6 in Section 3.1) is semi-interactive in the sense that it consists of send and choice phases, such that communication between the sender party Goliath and the receiver party David does only take place in the send phases, whereas Goliath is not involved in the choice phases at all. Moreover, even if Goliath learns all of David's send phase messages in advance (but not before the token is transmitted!), the protocol stays secure. Thus, as David's send phase messages only consist of randomness, we can go with a total of only one single message from David to Goliath, which is sent during the initialization phase of the protocol (cf. Section 3.2.1). However, this approach comes along with two drawbacks. Firstly, the single message from David to Goliath will be quite large. Secondly, David needs to know an upper bound for the number of upcoming send phases, what clearly rules out unlimited token reusability. As a solution for both drawbacks we suggest that David just sends a random seed of a pseudorandom number generator. We believe (but were not able to prove) that this does not breach security, as long as Goliath and the token are computationally bounded.
More realistic hardware assumptions. For security of our protocol $\Pi_{\mathrm{OAFE}}^{\text {semi-int }}$ (q.v. Figure 6 in Section 3.1) against a corrupted sender party Goliath we need that the tamper-proof token in

David's hands and the token issuer Goliath are perfectly isolated from each other. This assumption is questionable, since one cannot prevent Goliath from placing a very powerful communication device near David's lab. At least, this will enable Goliath to send some messages to the token. However, we hold the view that the token's transmitting power can be reliably bounded by its weight and size, so that it cannot send any messages back to Goliath. Still, even a unidirectional channel from Goliath to the token suffices to break our protocols.

Therefore, we propose a two-token solution (namely that of Section 3.2 .6), where one token just plays Goliath's role of the original protocol. As long as neither token can send any message, the tokens are mutually isolated and everything seems well except for one subtle issue: Goliath can change the behavior of the tokens during runtime und thus change his OAFE inputs without being noticed. However, this may be considered unavoidable in real world applications, since a very similar attack could also be mounted if adversarially issued tokens contain clocks.

Closing the gap between primitives and general two-party computation. By our approach we implement OT (and OTMs respectively) via some quite general \mathbb{F}_{q}^{k}-OAFE functionality (cf. Section 2.4). However, \mathbb{F}_{q}^{k}-OAFE is strictly stronger than OT in the sense that in general many OT instances and a quite sophisticated protocol are needed to implement \mathbb{F}_{q}^{k}-OAFE, whereas lbit string-OT can be implemented rather straightforwardly from a single instance of \mathbb{F}_{2}^{l}-OAFE or $\mathbb{F}_{2^{l}}^{2}$-OAFE (cf. also Section 3.2.3). This raises the question, whether one could base general two-party computation directly on \mathbb{F}_{q}^{k}-OAFE rather than OT, e.g. via (garbled) arithmetic circuits Cle91, CFIK03, AIK11, and thereby possibly reduce the computational overhead. More generally, one could also try to implement other sorts of functions directly on the tamper-proof hardware.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge University Press, 2009.
[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In Rafail Ostrovsky, editor, Proceedings of FOCS 2011, pages 120-129. IEEE, 2011.
[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries. In Salil P. Vadhan, editor, Theory of Cryptography, Proceedings of TCC 2007, volume 4392 of Lecture Notes in Computer Science, pages 137-156. Springer, 2007.
[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public discussion. SIAM J. Comput., 17(2):210-229, 1988.
[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In Proceedings of STOC 1996, pages 479-488. ACM, 1996.
[BKMN09] Julien Brouchier, Tom Kean, Carol Marsh, and David Naccache. Temperature attacks. IEEE Security \& Privacy, 7(2):79-82, 2009.
[BOGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive proofs: How to remove intractability assumptions. In Proceedings of STOC 1988, pages 113-131. ACM, 1988.
[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings of FOCS 2001, pages 136-145, 2001. Revised version online available at http://eprint.iacr.org/2000/067.
[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with global setup. In Salil P. Vadhan, editor, Theory of Cryptography, Proceedings of TCC 2007, volume 4392 of Lecture Notes in Computer Science, pages 61-85. Springer, 2007.
[CFIK03] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-party computation over rings. In Eli Biham, editor, Advances in Cryptology, Proceedings of EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 596-613. Springer, 2003.
[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC secure computation using tamper-proof hardware. In Nigel P. Smart, editor, Advances in Cryptology, Proceedings of EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 545-562. Springer, 2008.
[CKS ${ }^{+} 11$ Seung Geol Choi, Jonathan Katz, Dominique Schröder, Arkady Yerukhimovich, and Hong-Sheng Zhou. (Efficient) universally composable two-party computation using a minimal number of stateless tokens. IACR Cryptology ePrint Archive, 2011:689, 2011.
[Cle91] Richard Cleve. Towards optimal simulations of formulas by bounded-width programs. Computational Complexity, 1:91-105, 1991.
[DKMQ11] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Unconditional and composable security using a single stateful tamper-proof hardware token. In Yuval Ishai, editor, Theory of Cryptography, Proceedings of TCC 2011, volume 6597 of Lecture Notes in Computer Science, pages 164-181. Springer, 2011.
[DKMQ12] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Statistically secure linear-rate dimension extension for oblivious affine function evaluation. In Adam Smith, editor, Information Theoretic Security, Proceedings of ICITS 2012, volume 7412 of Lecture Notes in Computer Science, pages 111-128. Springer, 2012.
[DNW08] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Isolated proofs of knowledge and isolated zero knowledge. In Nigel P. Smart, editor, Advances in Cryptology, Proceedings of EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 509-526. Springer, 2008.
[DNW09] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Universally composable multiparty computation with partially isolated parties. In Omer Reingold, editor,

Theory of Cryptography, Proceedings of TCC 2009, volume 5444 of Lecture Notes in Computer Science, pages 315-331. Springer, 2009.
[FPS ${ }^{+}$11] Marc Fischlin, Benny Pinkas, Ahmad-Reza Sadeghi, Thomas Schneider, and Ivan Visconti. Secure set intersection with untrusted hardware tokens. In Proceedings of the 11th international conference on Topics in cryptology: CT-RSA 2011, CTRSA'11, pages 1-16, Berlin, Heidelberg, 2011. Springer-Verlag.
[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM, 33(4):792-807, 1986.
[GIMS10] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive locking, zero-knowledge PCPs, and unconditional cryptography. In Tal Rabin, editor, Advances in Cryptology, Proceedings of CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 173-190. Springer, 2010.
[GIS $\left.{ }^{+} 10\right] \quad$ Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia. Founding cryptography on tamper-proof hardware tokens. In Daniele Micciancio, editor, Theory of Cryptography, Proceedings of TCC 2010, volume 5978 of Lecture Notes in Computer Science, pages 308-326. Springer, 2010.
[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In David Wagner, editor, Advances in Cryptology, Proceedings of CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 39-56. Springer, 2008.
[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams. J. ACM, 43(3):431-473, 1996.
[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from any one-way function. SIAM J. Comput., 28(4):1364-1396, 1999.
[HMQU05] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Universally composable zero-knowledge arguments and commitments from signature cards. In Proceedings of the 5th Central European Conference on Cryptology MoraviaCrypt 2005, 2005.
[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-way functions (extended abstract). In Proceedings of STOC 1989, pages 12-24. ACM, 1989.
[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently. In David Wagner, editor, Advances in Cryptology, Proceedings of CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 572-591. Springer, 2008.
[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof hardware. In Moni Naor, editor, Advances in Cryptology, Proceedings of EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 115-128. Springer, 2007.
[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of STOC 1988, pages 20-31. ACM, 1988.
[Kol10] Vladimir Kolesnikov. Truly efficient string oblivious transfer using resettable tamperproof tokens. In Daniele Micciancio, editor, Theory of Cryptography, Proceedings of TCC 2010, volume 5978 of Lecture Notes in Computer Science, pages 327-342. Springer, 2010.
[MS08] Tal Moran and Gil Segev. David and Goliath commitments: UC computation for asymmetric parties using tamper-proof hardware. In Nigel P. Smart, editor, Advances in Cryptology, Proceedings of EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 527-544. Springer, 2008.
[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical report, Aiken Computation Laboratory, Harvard University, 1981.
[Wul07] Jürg Wullschleger. Oblivious-transfer amplification. In Moni Naor, editor, Advances in Cryptology, Proceedings of EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 555-572. Springer, 2007.
[WW06] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In Serge Vaudenay, editor, Advances in Cryptology, Proceedings of EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 222-232. Springer, 2006.

[^0]: ${ }^{1}$ The authors of BOGKW88 mention that the provers in their protocol might be implemented as bank-cards.

