
An Improved Differential Attack on Full GOST

Nicolas T. Courtois

University College London, Gower Street, London, UK,
n.courtois@cs.ucl.ac.uk

Abstract

GOST 28147-89 is a well-known block cipher and the official en-
cryption standard of the Russian Federation. A 256-bit block cipher
considered as an alternative for AES-256 and triple DES, having an
amazingly low implementation cost and is becoming increasingly pop-
ular [17, 13]. Until 2010 researchers unanimously agreed that: “despite
considerable cryptanalytic efforts spent in the past 20 years, GOST is
still not broken”, see [17] and in 2010 it was submitted to ISO 18033
to become a worldwide industrial encryption standard. In 2011 it was
suddenly discovered that GOST can be broken and is insecure on more
than one account. There is a substantial variety of recent attacks on
GOST [3, 8, 14, 6, 4, 5]. We have reflection attacks [14, 8], attacks
with double reflection [8], self-similarity guess then determine attacks
which do not use any reflections [8, 3] and advanced differential attacks
[18, 6, 4, 5]. The final key recovery step in various attacks is in many
cases a software algebraic attack [8, 3], frequently also a Meet-In-The-
Middle attack [14, 8, 9] and in differential attacks key bits are guessed
and confirmed by the differential properties [18, 6, 4, 5].

Ignoring the very large data complexity of most of these attacks,
and comparing only the time, until October 2011 the fastest attacks on
GOST were two attacks by Courtois with the same complexity of 2216

[8]. Then Shamir et al presented an improved alternative final step
for one of these attacks and obtained an attack on GOST with overall
time complexity of about 2192, cf. FSE 2012 [9]. However arguably,
the best attack on full GOST when used in encryption with random
keys is another attack in 2185 described in Appendix L of [8].

In this paper we consider some recent differential attacks on GOST
[18, 6, 4, 5] and show how to further improve them. We present a new
single-key attack against full 32-round 256-bit GOST with time com-
plexity of 2178 which is substantially faster than any previous result.

Key Words: Block ciphers, GOST, differential cryptanalysis, sets of
differentials, aggregated differentials, iterative differentials

1

1 Outline and Main Stages

This paper describes essentially one advanced differential attack on GOST.

1.1 Key Schedule in GOST

The key structural property of GOST which makes it suitable for cryptana-
lytic attacks of the specific kind and specific form, is that the last 8 rounds
are identical to the fist 8 rounds run in the opposite direction (however this
symmetry does not follow for more inner rounds).

rounds 1 8 9 16
keys k0 k1 k2 k3 k4 k5 k6 k7 k0 k1 k2 k3 k4 k5 k6 k7

rounds 17 24 25 32
keys k0 k1 k2 k3 k4 k5 k6 k7 k7 k6 k5 k4 k3 k2 k1 k0

Figure 1: Key schedule in GOST

This property has a big impact on security of GOST and is already
exploited in [4, 5]. Because 32 bits of the whole key, a fairly small proportion,
is used in one round, and for every 32 bits guessed we can remove two full
outer rounds, instead of 1 round for a similar cipher without a weak key
scheduling. Thus for example if we guess 192 key bits, we can remove 12
full rounds of GOST and still get an attack faster than brute force, see [4].

In this paper we will exploit this symmetry even further: we will look
at differential which are a member of a certain set of differentials which is
totally symmetric for the first 8 rounds and the last 8 rounds. Our key
guesses will be far more precise than guessing keys for full rounds and spe-
cially adapted to this highly symmetric situation, in order to maximize the
number of cases which can be safely discarded due to these guesses.

2

1.2 Preliminary Remarks

In our attack we will split GOST into three parts with 6+20+6 rounds. Pre-
vious advanced differential attacks were based on a statistical distinguisher
which exploited a number of differential propagations to distinguish up to
20 rounds of GOST from a random permutation [4, 5] and needed to guess
complete 32-bit keys for several outer rounds in order to fully reconstruct
these internal differentials.

We will guess only some well-chosen key bits which will be used to fil-
ter P/C (Plaintext,Ciphertext) pairs used later in the attack. As in [4] the
attack runs through many stages with great many filtering/guessing steps,
where at each step we reduce the number of cases to consider (the plaintext
space, some key bits already guessed and pre-computed relations between
all these) and only after this reduction of number of cases we make addi-
tional guesses. In contrast to the attack presented in [5] our attack will use
symmetric differential sets, which is dictated by the symmetry in the key
schedule.

Large parts of this whole process can be viewed as an adaptive Depth-
First-Search (DFS) attack on a tree of possibilities which is constructed
adaptively depending on the assumptions currently considered as valid. This
type of process is very widely used in cryptanalysis.

There is a substantial difficulty in differential attacks where the key size
is much larger than the block size as in GOST: there are false positives,
differentials which do not propagate but occur naturally, by accident. The
key point is that for a very long time the false positives are not eliminated
in a differential attack on GOST. In fact, for a long time we are just dealing
with assumptions on internal difference bits in GOST, their consequences
and relations between these assumptions but for a long time, none of the
steps of the attack is able to see if the inner 20 rounds are 20 rounds of
GOST, more rounds of GOST, or maybe just a random permutation. This
can only be seen at a later stage of the attack.

3

2 The Structure of GOST

We will only study, by far most popular set of GOST S-boxes known as
the ”GostR3411 94 TestParamSet” in [13] which was published as early as
in 1994 and which according to Schneier [19] is actually the version used
by the Central Bank of the Russian Federation. This is exactly what most
researchers call just “the GOST cipher” (without any additional mention)
in the cryptographic literature. This choice of S-boxes greatly affects all the
differential probabilities we use in this paper.

Note: It is possible to see that similar attacks exist for other variants
of GOST.

2.1 Notation

In this paper we consider the traditional “Twisted” representation of GOST
where each round of GOST looks exactly the same:

(L,R) 7→ (R, L⊕ fk(R))
We number the inputs of the S-box Si for i = 1, 2, . . . , 8 by integers from

4i+1 to 4i+4 out of 1..32 and its outputs are numbered by numbers between
(11 + 4i mod 32) + 1 and (11 + 4i + 3 mod 32) + 1. For example the inputs
of S6 are 20, 21, 22, 23 and the outputs are 32, 1, 2, 3.

On our picture below (Fig. 2) the ¢ denotes the addition modulo 232.
On this picture we do NOT represent the final circular shift by 11 positions
modulo 32 which occurs in GOST after the S-boxes. It is represented in a
different way, by numbering the output bits of S-boxes, to see directly where
they are connected.

GOST has 32 rounds such as one described on Fig. 2.

4

Figure 2: One Round of GOST And Connections in The Following Round

Given the key scheduling on Fig. 1 we have a complete description of
GOST.

At the left margin on Fig. 2 we also show S-box numbers in the next
round, which is very helpful, to see which bits are successfully determined
in our attacks on GOST. A more detailed explanation of how these bits in
the next round depend on the bits in the previous round will be developed
later on Fig. 7.

5

2.2 Aggregated Differentials in GOST

For a detailed history, vocabulary discussion and literature survey on the
development of advanced differential attacks on GOST we refer to [4, 5]. In
this paper we start with some advanced properties previously identified by
researchers.

We define an aggregated differential A,B as the transition where any non-
zero difference a ∈ A will produce an arbitrary non-zero difference b ∈ B
with a certain probability. In particular we consider the case when A is a
set of all possible non-zero differentials contain within a certain mask. For
example for

∆ = 0x80700700

we obtain a set of all differences with between 1 and 7 active bits (but not
0) and where the active bits are contained within the mask 0x80700700.
Similarly, the set denoted by (∆, ∆) is a set of 14 active bits, where any
non-zero difference is allowed, including also differences where the difference
is zero on one half. There are 214 − 1 differences in this set and we have
|A| = |B| = 214 − 1. The following fact was established in [6]:

Fact 2.2.1 The aggregated differential (∆, ∆) with uniform sampling of all
differences it allows, produces an element of the same aggregated differential
set (∆, ∆) after 4 rounds of GOST with probability about 2−13.6 on average
over all possible keys.

For 6 rounds the probability is 2−18.7 on average over all possible keys.

Now we look at a one particular differential set, which we have noticed,
arrives with a particularly large probability:

Fact 2.2.2 The set (0x80700700, 0x80700700) produces a differential of the
form (0x00000700, 0x80780000) with probability of 2−22.19 for 7 rounds of
GOST.

This was obtained by a computer simulation.

3 Propagation of Differentials in GOST

It is possible to see that among differentials of the form (0x80700700, 0x80700700)
there exist several interesting non-trivial classes. On Fig 3 we denote these
classes by 6-letter abbreviations for example (0x00000700, 0x80700000) would
be abbreviated as 787). It is the possible to see that not all transitions
are possible. This leads to a certain particular graph of possible transitions
which can be used to find efficient differential attacks on GOST, see Fig 3.

6

Figure 3: Some Important Sets of Differentials Which Occur in GOST

7

3.1 On Important Classes of Aggregated Differentials in GOST

It is possible to see that many very good differential attacks on GOST are
related to the important structure which exists within GOST. Basically, half
of GOST S-boxes are very closely connected, and loosely connected with the
other half, which is shown on Fig. 4.

In this respect some very good attacks on GOST known to us can be
classified in several major categories which we call 8+0, 5+1, and 3+3.

Differential Attacks of Type 3+3: The meaning of 3+3 is that the
attack uses ONLY 3 fixed S-boxes from Fig. 4, for example S3,S6,S8, and
another fixed 3 S-boxes from the complement of Fig. 4, and no other S-
boxes. Moreover all these S-boxes are connected in a cyclical structure such
that non-zero differences circulate within the structure, and do not leave
it. The structure must be closed and circular because the GOST S-boxes
are bijective and non-zero differentials cannot be canceled totaly. Many
interesting differentials we exploit in this paper are of the type 3+3.

Other non-trivial interesting classes of differentials exist in GOST. We
give one example of a differential set of type 1+5. It is as follows:
0x07070008,0x08007070. This set of 214 − 1 single differentials propagates
for 8 rounds with an average probability of 2−26.0 for 8 rounds of GOST.

Discussion: The key point we want to make here is that these classes of
differentials do NOT depend that much on the S-boxes, they depend much
more on the structure of the cipher and the exact connections inside. This
is especially true for sets which include many differentials such as studied in
this paper where individual very strong differentials will matter less.

A common misconception is that that the security of a cipher such as
GOST against differential cryptanalysis (DC) depends extensively on the S-
boxes, and some ”optimal” S-boxes would make it more secure, see [16, 17].
Researchers in the academia study S-boxes in isolation [16] and propose
new ciphers [16, 17] but when S-boxes are connected together, everything
changes. We are not certain if it is possible at all to make a cipher
such as GOST secure against differential cryptanalysis by changing only
the S-boxes [16, 17], which idea was discussed during the ISO standardiza-
tion process of GOST. The question of how far one can go with advanced
differential attacks such as studied in this paper remains widely open.

We conjecture that the security of GOST against advanced forms of DC
depends ”essentially” on the connections on the cipher, and though some
S-boxes make it weaker against DC, none will make it really very strong.

8

Figure 4: Connections between half of S-boxes in 4 consecutive rounds

9

4 Improved Differential Attacks On GOST

Our goal is to design an attack on the full 32-round GOST. We will use the
same methodology as in [4, 5] guess some key bits and use a distinguisher and
we also design a distinguisher for 20 rounds. However our new distinguisher
is symmetric and the attack is more complicated.

The key question is how a differential attack on GOST can cope with false
positives. There are differentials which occur due to propagation of small
Hamming weight differentials for 20 rounds of GOST, and other which occur
“by accident” for an arbitrary permutation on 64 bis. In addition we also
need to quantify precisely the interaction between these two sets, which is
essential in we want to reliably distinguish between 20 rounds of GOST and
some other permutation. We have:

Fact 4.0.1 We look at the combination of a non-zero input difference of
type (0x80780000, 0x00000700) and a non-zero output difference of type
(0x00000700, 0x80780000).

For a typical permutation on 64-bits (does NOT have to be a random
permutation, can be GOST with more rounds) we expect that there are 215

pairs Pi, Pj with such differences. The distribution of this number can be
approximated by a Gaussian with a standard deviation of 27.5.

For 20 rounds of GOST and for a given random GOST key, there exists
two disjoint sets of 215 + 213.9 such pairs Pi, Pj.

These are two entirely disjoint sets of pairs, which can be distinguished
by the fact that 213.9 pairs will have the difference 0x80700700, 0x80700700
after 6 rounds from the beginning AND 6 rounds from the end, and none of
the 215 will have such internal differences.

The distribution of the sum can be approximated by a Gaussian with an
average of about 215 + 213.9 and the standard deviation of 27.8.
Justification: For any permutation, we observe that every single combination
of an input differential on 64 bits, and on an output differential on 64 bits, is
expected to occur about 0.5 times on average. Indeed we have 2127 pairs and
about 2128 possible sets of two differentials. Now we have (28 − 1)(28 − 1)
possibilities within the internal 20 rounds: (0x80780000, 0x00000700) →
(0x00000700, 0x80780000). Overall we expect to obtain 0.5 · 28+8 = 215

pairs Pi, Pj for a given GOST key, with any of these 28 − 23 + 1 differences.
For 20 rounds the situation is more complex. We need to distinguish

between pairs which occur “by accident” and those which occur due to
“propagation”. We are going to develop a precise argument showing that
both sets are entirely disjoint and their numbers can be added. In order to
do this we are going to give a precise meaning to the word “propagation”

10

in this precise 20 rounds case: we say that the differential ”propagates” if it
goes through two additional differences in the middle as follows:

0x80780000 0x00000700

(7 Rounds)

0x80700700 0x80700700

(6 Rounds)

0x80700700 0x80700700

(7 Rounds)

0x00000700 0x80780000

Figure 5: ”Propagation” For 20 rounds With Specific Middle Differentials

Following Fact 2.2.1 and given 264+14−1 pairs with the initial difference,
we have 277−18.7 = 258.3 pairs for the middle 6 rounds.

Then following Fact 2.2.2 the propagation in the next 7 rounds occurs
with probability 2−22.2 on average over GOST keys. Since this is a permu-
tation, the same propagation can be applied backwards in the preceding 7
rounds. Overall, we expect that 258.3−44.4 = 213.9 pairs survive.

Now we are going to show that typically, none of these 213.9 pairs Pi, Pj

is a member of the set of 215 established beforehand. This can be established
as follows: for any of the 215 cases which occur naturally at random, we have
a non-zero input differential (0x80780000, 0x00000700). Then a computer
simulation shows that a differential of type (0x80700700, 0x80700700) CAN
occur at 7 rounds from the beginning (as on Fig. 5 which is 6+7 rounds from
the beginning in GOST) but only with probability of 2−16.2. Similarly it can
also occur 7 rounds from the end, but only with probability of 2−16.2. Overall
we expect that only about 215−16.2−16.2 = 2−17 pairs Pi, Pj on average will
have the “propagation” characteristics according to Fig. 5. Therefore the
two sets are entirely disjoint with a very high probability.

To summarize, we expect to get always a mix of 215 + 213.9 cases, which
are unlikely have an intersection, just subject to the standard deviation for
each set. Because we are dealing with a sum of a very large number of
almost totally independent events, and exactly in the same way as in [4, 5],
and due to the Central Limit Theorem [20] these numbers are expected to
follow a Gaussian distribution and the standard deviation is expected to be
equal exactly to the square root of their expected average number which will
be about 215.55 for 20 rounds and about 215.0 for other permutations.

Related Research We can compare this result to a distinguisher which
is used in [5]: where the input difference is (0x80000000, 0x00000000), and
the output difference is of the form (0x00000100, 0x80600200). In the case
of the actual 20 rounds of GOST we expect to get 24 + 25 such differences,
while 24 would occur naturally at random for some other permutation.

11

4.1 Extending with Additional Weakly Constrained Rounds

This property can be extended with a “weakly constrained” differential prop-
agation which occurs with quite a high probability for 6 more rounds on each
side. More generally, we can look at combination of 6 rounds of GOST, some
permutation, and 6 rounds of GOST with the same keys in the backwards
direction, as in GOST. This could be just the full 32-round GOST with 20
rounds in the middle. But it could also be a different situation which we
wrongly assumed to be the full 32-round GOST.

Definition 4.1.1 (Alpha Property) We say that a pair of encryptions
for the full 32-round GOST (or for a combination of 6 rounds of GOST,
some permutation, and 6 rounds of GOST with reversed keys) has the Alpha
Property if the following whole configuration of sets of differentials simulta-
neously holds:

<plaintext> ------------------->

0xFFFFFFFF 0xFFFFFFFF | 0x00000700 0x80780000

(1 Round) | (1 Round)

0xFFFFFFFF 0xFFFFFFFF | 0x80780000 0xF0000787

(1 Round) | (1 Round)

0xFFFFFFFF 0xFFFF8787 (20 Rounds) 0xF0000787 0x807FFF80

(1 Round) (or RP) (1 Round)

0xFFFF8787 0x807FFF80 (or other) 0x807FFF80 0xFFFF8787

(1 Round) | (1 Round)

0x807FFF80 0xF0000787 / \ 0xFFFF8787 0xFFFFFFFF

(1 Round) | (1 Round)

0xF0000787 0x80780000 | 0xFFFFFFFF 0xFFFFFFFF

(1 Round) | (1 Round)

0x80780000 0x00000700 | 0xFFFFFFFF 0xFFFFFFFF

|___________________| <ciphertext>

Figure 6: The Alpha Property

We note that this property is perfectly symmetric.

12

4.2 Alpha Property: GOST vs. Random Permutation

In a similar way as before, a key problem in our distinguisher is that un-
happily the Alpha property can occur also ”by accident”, not at all for the
reasons we expect. This question needs to be formulated more precisely,
as this property is about differentials also inside GOST, and therefore we
cannot just compare GOST to a random permutation. The right question
which we need to ask is as follows: in our composition of 6 rounds of GOST,
some permutation and then the same 6 rounds in the decryption mode, can
we have a fully consistent situation with all the differences which we have
in the property Alpha on the outer 2x6 rounds, exactly like on Fig. 6?

We have the following result:

Fact 4.2.1 For the full 32-round GOST and on average over the GOST
keys, there exists 213.0 +211.9 distinct pairs of plaintexts Pi 6= Pj which have
the Alpha property.

If we replace the inner 20 rounds by a random permutation or with GOST
with more rounds, we expect only about 213.0 distinct pairs with a standard
deviation of 26.5.

Justification: We apply Fact 4.0.1 and obtain 215 + 213.9 pairs for the inner
20 rounds with two disjoint sets as explained before. Then it is easy to
verify, by a computer simulation, that this provokes the 6 difference sets in
the following 6 rounds, simultaneously, with probability as large as 2−0.98,
which is due to slow diffusion in GOST. The same applies in the first 6
rounds. Overall we obtain about 213.9−2.0 ≈ 211.9 pairs with propagation,
and a disjoint set (because subsets of disjoint sets from Fact 4.0.1) with
215−2.0 ≈ 213.0 pairs which occur by accident.

Again, because we are dealing with a sum of many almost totally inde-
pendent events, as in [4, 5] and due to the Central Limit Theorem [20], the
standard deviation is expected to be exactly the square root of 213.0,

13

5 Guess Then Determine Attacks on GOST

In this section we explain how to compute output bits for a certain round
of GOST with incomplete knowledge of all the key bits on which this bit
depends in this and previous rounds. We have the following basic fact:

Fact 5.0.2 The input on 4 bits of any particular S-box in GOST can be
computed as: a = x + k + c mod 16 where k are the 4 key bits at this S-box,
c is a single carry bit with c = 1 ⇔ x′ + k′ + c′ ≥ 16 where x′ and k′ are the
data and the key at the previous S-box, and c′ is the previous carry bit. E.g.

Figure 7: Computation of the Input Of One S-box With A Carry Bit

In our attack we exploit the weakness of carry propagation in the addi-
tion modulo 232. It is possible to see that carry bits such as c can be guessed
with a surprisingly high accuracy. We observe that:

14

1. We define Wr(i) by the equation Wr(i) − 1 = (i − 1) mod 8. This
corresponds to the number of S-box within 1..8 with wrap-around.

2. The input of each S-box Si in round r + 1 is

a = x + k + c mod 16

and depends on (i) the 4 key bits k at the entry of this Si and (ii)
x obtained from the outputs of two S-boxes in round r with numbers
Wr(i−2) and Wr(i−3) XORred with the appropriate bits after round
r − 2 (this part does not change in round r − 1), and (iii) one carry
bit c.

3. The carry bit c is such that

c = 1 ⇔ x′ + k′ + c′ ≥ 16

where x′ and k′ are the data and the key at the previous S-box, and
c′ is the previous carry bit.

4. The previous carry bit influences the result with low probability which
will be quantified below.

From here we easily obtain that:

Fact 5.0.3 Let i > 1 (with S1 there is no carry entering as on Fig 7.
We assume that the attacker knows the whole 64-bit output of round r−2,

the input of one S-box Si at round r + 1, and the key k at the same Si in
round r + 1, and the state of Wr(i− 2) and Wr(i− 3) in round r.

Let k′ be the unknown key at S-box i-1 in round r + 1 (cf. Fig 7).
Then we have the following results:

1. Let d be the bit he obtained from 1 lower bit from Wr(i − 3) XORed
with the appropriate state from round r − 2, which is bit 20 on our
example at Fig. 7,

Assume that the attacker knows one most significant bit of k′ which
we call e.

If d = e = 1, we have c = 1 with probability 1.

If d = e = 0, we have c = 0 with probability 1.

If d + e = 1, we have c = 0 or c = 1 which are more or less equally
likely.

2. If the attacker knows the whole 4-bit k′ he can compute c correctly with
probability of about 3/4 = 1− 2−2.

15

3. If the attacker knows k′ AND the state of Wr(i − 4) in round r, he
can compute c correctly with probability of roughly about 1− 2−4.

Justification: The first result is straightforward and we will derive the second
result. Each of these probabilities can be established by a discrete simulation
checking all the possible cases.

The top bit b of x′ is known due to Wr(i − 3), therefore the expected
value of x′ is about x′ ≈ 8 ∗ b + 4, and the whole k′ is known. It is easy to
see that the expected approximation error (computed as average over 8x8
cases) is |x′ − 8 ∗ b + 4| = 1.31.

We decide that c = 1 ⇔ 8 ∗ b + 4 + k′ + c′ ≥ 16. This will be accurate
unless x′+k′+c′ < 16 AND 8∗ b+4+k′+c′ ≥ 16 or the vice versa with the
difference between these two numbers being on average 1.31. Each of these
2 cases occurs with probability of very roughly about 1.3/16 ≈ 2−4. Overall
we expect that with probability 1− 2−3 our computation of c is correct.

In the similar way we derived the other results.
Important Remark: The intention of this theorem is not that is some

cases the computations done in our attack will be incorrect and therefore
we might miss some cases and the attack would fail. We can handle it in
a very different way. Each time we will determine if c = 1, by checking
x′ + k′ + c′ ≥ 16 with more or less exact approximations of x′ and k′ and
c′, we know exactly the margin of error and know exactly when there will
be two possibilities for c. In all these cases we are simply going to include
in our enumeration two cases, one with c = 0 and one with c = 1, which is
going to change the 4 outputs of the affected S-box.

16

6 An Improved Differential Attack on GOST

For the ease of reading we split our attack in 5 stages. All the stages should
be seen as a part of the same Depth First Search procedure, where we
guess key bits, reject some cases, then guess more key bits, reject again, etc,
and where as we advance in the attack tree the time complexity decreases,
however the probability to arrive at this level for a particular set of choices
also decrease with many early aborts.

6.1 Attack Stage 1

We proceed as follows:

1. We are given 264 KP which are assumed to be stored in a database.

2. We have the Alpha property which holds 213 + 211.9 times for the full
32=6+20+6 rounds.

3. First we are going to reduce the total number of pairs from 2127 to a
lower number, by a birthday-like approach which avoids the enumera-
tion of all possible pairs.

4. Given an assumption on a certain number of key bits, we define as
inactive bit a bit where Pi and Pj collide (the difference is 0) at a
certain bit location inside the cipher, if our assumption about the key
is correct.

5. Our attack will have many steps in which we are going progressively
guess some key bits, then reduce the space of pairs considered due to
our differentials, which will make it feasible to guess additional key
bits at a later stage.

6. We want to write constraints which describe the following events which
occur in the first 5 (and last 5) rounds in our property Alpha.

• The output after the addition of the output of S7 and S1 after
round 2 gives 8 inactive bits at 0 which are 3-6,11-14. This is
implied by the set 0xFFFF8787 which occurs after round 2.

• The output after the addition of the output of S4,S5,S6,S7 after
round 3 gives 15 (and not 16) inactive bits at 0 which are 24-
31,1-7, but not 32. This is implied by the set 0x807FFF80 which
occurs after round 3.

17

7. We consider and try to guess the following key bits: all key bits at
rounds 1,2,3 and 20 key bits for S-boxes S12345 in round 4.

8. We observe that for any guess of these 96 + 20 = 116 key bits, we get
8+15+13=36 cancelations after rounds 1-4 as explained above, and
36 more cancelations on exactly the same S-boxes with the same keys
after round 29 going backwards.

This can be seen as a collision on 36+36=72 bits, computed as a
function of type fk(Pi) where k represents 116 bits of the key and i is
one of the 264 KP cases.

9. For each 116 possible guesses for our selected key bits we compute 264

possible strings on 72 bits for each Pi. Only a proportion of one out
of 28 values on 72 bits are taken. For any given case i the probability
that there is another j for which the 72 bits collide is 2−8.

10. Then we can enumerate in time of maybe 4 · 264 CPU clocks some
264−8 = 256 possible i or j with 256/2 = 255 distinct pairs i, j which
collide on these 72 bits.

Another way of looking at this is as follows: there are (we do NOT
ever enumerate all of them) about 2127 pairs Pi, Pj and there are about
2127 differences fk(Pi)−fk(Pj) on 72 bits. Some 2127−72 = 255 of these
differences will have all the 72 bits at 0.

11. These 255 pairs per key assumption can be enumerated efficiently. A
simplified method is as follows: We make a hash table where at address
which a hash of fk(Pi) on 72 bits, and we store i as well. Each time
the value is already taken we output a collision. We will output a list
of 255 pairs Pi, Pj .

Memory required is roughly about 270 bytes.

12. The total time spent in these steps of the attack should not exceed
2116·64 times the cost of computing roughly speaking 1 round of GOST.

It is not need to do as much work as computing 2116 times 4 first rounds
of GOST and 4 last rounds of GOST. Basically the cost of computing
the first three and the last three rounds of GOST can be neglected.
More precisely it will be amortized in 220 sub-cases of the 296 cases,
in which we just need to evaluate 4 S-boxes in round 3 and 4 S-boxes
in round 30, which is roughly feasible to do in most an equivalent of 1
round of GOST.

18

Therefore we estimate that we need only about 2116+64 ·8 CPU clocks,
which could be seen as an equivalent of roughly about 2174 GOST
encryptions.

To summarize, we can thus in total overall time equivalent to about
2174 GOST encryptions and with memory of about 270 bytes, enumerate
2171 = 2116+55 cases of type k116, i, j. We get on average 255 possible pairs
i, j for each key assumption on 116 bits.

On Fig. 8 we summarize all the current and further steps of our attack.

Figure 8: Summary of Major Steps In Our Attack on GOST

19

6.2 Attack Stage 2

Now we are going to work on additional key assumptions with the objective
to decrease the number of pairs per key from 255 to a much lower number so
that we can apply the distinguisher given by Fact 4.2.1, which will be done
at the Stage 4.

1. Now we look at the difference 0x80780000 obtained after round 5,
where outputs of S-boxes S8, S1 and S2 are ’newly’ inactive which is
a cancelation on 12 bits in round 5.

First we will work on S8, then on S1, then on S2.

2. First we guess some additional 4+4 key bits. The situation is the same
as on Fig. 7 with boxes S78 at round 5 depending mostly on boxes
S456 at round 4.

We guess 4 bits at S-box S6 in round 4, needed only to compute the bit
31 entering S8 at round 5, and the 4 key bits at S8 in round 5, and an
approximation on the 4-key bits at S7 in round 5, which together with
outputs of S4 and 1 bit from S5 in round 4, can be used to compute the
carry entering S-box S8 at round 5 with probability of about 1− 2−4

(cf. Fact 5.0.3).

3. More over and quite importantly we do not allow any errors in our
computations. In rare cases where there is an ambiguity about the
carry, because for example we have 15 and the carry added from S6
in round 5 could matter, we simply check both cases. This leads to
a negligible increase in the total number of cases checked from about
2171+12 to about (1 + 2−4)2171+12, see Fact 5.0.3.3. For simplicity
we ignore these additional numbers which are negligible compared to
other numbers in this attack.

Later during the attack, when the key at S6 and early S-boxes becomes
known, these additional cases will be eliminated instantly. In fact we
can also leave these additional cases, everything we do later in our
attack can tolerate a small proportion of additional incorrect cases.

4. With these 12 new key bits, we can enumerate 2171+12 cases k116+12, i, j.
In each cases with probability 2−4 the 4 bits XORed to the output of
S-box S8 become inactive at round 4, and with probability 2−4 they
also become inactive at round 29.

5. Accordingly in time of about 2177 computations of 2/32 full GOST,
which is about 2179 GOST computations, (assuming one takes 29 CPU

20

clocks). We reject most cases except 2171+12−4−4 = 2175 cases k128, i, j.

6. This, is 247 cases per key.

7. Now we guess 8 more key bits. These are 4 bits at S-box S7 in round 4
which output 3 is needed to compute the input of S1 in round 5 (there
is no carry entering S1). We also guess 4 key bits at S1 in round 5.

8. Now we have an enumeration of 2175+8 cases k136, i, j, where we now
have 136 key bits. In this list with probability 2−4 the 4 bits XORed
to the output of S-box S1 become inactive at round 4, and with prob-
ability 2−4 they also become inactive at round 29.

9. Accordingly in time of about 2175+8 computations of 2/32 full GOST,
which is about 2174 GOST computations, we have an enumeration
2175+8−4−4 = 2175 cases k136, i, j.

10. Now we guess 8 more key bits. These are 4 bits at S-box S8 in round
4 which outputs are 8-11 and which are needed to compute the input
of S-box S2 in round 5 (the carry entering S2 is already known for S1
in round 5 above). We also guess 4 key bits at S2 in round 5.

11. Thus we consider the enumeration of 2175+8 cases k144, i, j, where we
now have 144 key bits. In this list with probability 2−4 the 4 bits
XORed to the output of S-box S2 become inactive at round 4, and
with probability 2−4 they also become inactive at round 29.

Accordingly in time of about 2175+8 computations of 2/32 full GOST,
which is about 2174 GOST computations, we enumerate about 2175+8−4−4 =
2175 cases k144, i, j. We are left with 231 pairs i, j on average for each key
assumption on 144 bits which will be the cases which we will check in later
steps of our attack.

For the right key assumption we will also obtain the 211.9 cases which
have the property Alpha for the correct GOST key

21

6.3 Attack Stage 3

We will continue the process of guessing additional key bits and decreasing
the number of cases per key assumption.

1. At this stage, in each case, we know all key bits in rounds 1,4 and key
bits S-boxes S1278 in round 5, for a total of 144 key bits.

2. Now in round 6 we have the difference 0xF0000787 which becomes
0x00000700. The S-box outputs which are going to become inactive
are: 3 outputs of S5 with numbers 29,30,31, the whole of S6 with
numbers 32,1-3, and one lower bit of S8 with number 8.

3. We will first work on S5, then on S6, and later on S8.

4. First we guess 9 key bits: for S3 at round 5, and for S5 at round 6
and just one most significant bit for S4 at round 6. We have 3 inactive
bits 29-31. Following Fact 5.0.3. this allows to determine exactly the
carry bit c with probability 1/2, and the attacker knows in which case
it is (when d = e, cf. Fact 5.0.3.1.), and otherwise we have two cases
to include (when d 6= e, cf. Fact 5.0.3.1.).

Overall on average we have (1 + 2)/2 ≈ 20.6 more cases to check and
we compute the output of S5 at round 6 about 2175+9+0.6 = 2177 times.

5. In addition we also need to compute the output of S5 at round 27 in
each of these cases. In the same way sometimes this generates 1 or 2
cases to check, and overall we get another factor of 20.6.

6. Accordingly in time of about 2175+9+0.6+0.6 computations of 2/32 full
GOST, which is about 2176.2 GOST computations, we obtain a list of
2175+9+1.2−3−3 = 2179.2 cases k153, i, j. This is 226.2 cases per key.

7. Then we guess 8 more key bits: for S4 at round 5, and for S6 at round
6. We have 4 inactive bits 32,1-3.

8. Accordingly in time of about 2179.2+8 computations of 2/32 full GOST,
which is about 2178.2 GOST computations, we obtain a list of
2179.2+8−4−4 = 2179.2 cases k161, i, j.

9. This is only 218.2 cases per key on 161 bits which is within reach of
our distinguisher attacks.

10. The total time spent in all the above steps is is about 2178.5 GOST
computations, and probably only half of this number on average is
needed.

22

6.4 Attack Stage 4

Now we are going to be able to see if 161 key bits are right or wrong.
We recall Fact 4.2.1. For the full 32-round GOST and on average over

the GOST keys, there exists two disjoint sets with 213 + 211.9 distinct pairs
of plaintexts Pi 6= Pj which have the Alpha property.

We have 218.2 cases per key, which for the right key on 161 bits contains
these correct 213 + 211.9 cases. All these cases come from the fact that we
have independently in the first 6 and the last 6 rounds, checked if certain
set of twice 55 differences are at 0, which gives 217 pairs surviving. We have
also produced an overhead of some 21.2 additional cases which result from
incertitude due to further unknown key bits which gives 218.2 pairs total.

As before, It is clear that these 218.2 pairs obtained in the specific case
of the right 161-bit key, occur at random due to the random intersection
between cases which may occur at the beginning of GOST, and at the end
of GOST, without correlation between these events.

It is easy to see that 218.2 such pairs on average, with an expected stan-
dard deviation of about 29.1, are still going to occur if we explicitly exclude
about 264+14−1 ¿ 2127 cases where a difference of type (0x80700700, 0x80700700)
occurs after 6+7 rounds AND at 6+7 rounds from the end, which as ex-
plained for Fact 4.0.1 occurs with very low probability of about 2−32.4 and
in fact less, because in our case it is not yet certain that the difference is as
expected after round 7.

However because the 211.9 cases do ALL have differences of type
(0x80700700, 0x80700700) after 6+7 rounds AND at 6+7 rounds from the
end, the two sets are disjoint. To summarize we obtain the following result:

Fact 6.4.1 After Stage 3 of our attack, if the 161 bits are wrong, most of
the time (this will be quantified below) we get about 218.2 cases per key.

We assume that the attacker will decide that the key on 161 bits is correct
if he sees at least 218.2 + 211.5 cases for this key. Otherwise he will reject it.

The correct 161-bits key will be accepted with probability of 95%.
Incorrect 161 bits will be accepted with probability of about 2−39.

Justification: A correct 161 bits should give about 218.2 + 211.9 cases with
standard deviation of 29.1 and will be rejected only if we are below 218.2+211.5

cases which is on one side of and outside of (211.9−11.5)/29.1 = 2 standard
deviations. By applying the Gauss error function [20] we see that a correct
key will be accepted with probability of about 95%.

If the 161 bits are wrong, we are outside of and on one side of, 211.5−9.1 =
22.4 standard deviations. Here the Gauss error function [20] gives a proba-
bility only about 2−24.

23

6.5 Attack Stage 5

We need to do some additional guessing and filtering.
Up till now, with total time of about 2178.5 GOST computations, we are

able to enumerate 2179.2−24 = 2155.2 cases k161, i, j.
Our 161 bits of the key are all the bits for the first 4 rounds, and 24 bits

at round 5 for S781234, and 9 bits at round 6 for S5,S6 and one bit at S4.

1. We guess the remaining 8 bits to complete round 5 with boxes S56.
Then we guess the key at boxes S7181 at round 6 and at S213 in round
7. This is a total of 28 bits. For simplicity we guess all these bits (a
more refined approach is NOT needed because the total time spent in
this step is small).

2. The output after S8 in round 6 needs to cancel on 1 bit which is number
8, and the output of S3 in round 7 needs to cancel on 4 bits which are
20-23.

This is implied by the sets 0x00000700 and 0x80000000 in the Alpha
property obtained after round 6 and 7.

3. Accordingly in time of about 2155.2+28 computations of 2/32 full GOST,
which is about 2175 GOST computations, we reject most cases except
2155.2+28−5−5 = 2173.2 cases k189, i, j.

This seems to be about 2−16 per key on average, which comes from
the fact that only some 161-bit sub-keys are present in the keys on
189 bits. However if we look only at 2165 keys on 189 bits which are
actually present, we have 28.2 cases per key.

4. We assume that the attacker will reject all cases where the count is
less than 28.2 + 210.

5. Then it is easy to see that if the key is correct, it will be accepted with
probability very close to 1.

6. If the key is wrong, we observe that that 28.2 + 210 is outside 25.9

standard deviations. Here the Gauss error function [20] gives a figure
much smaller than 2−256.

Summary: Thus given 264 KP and in an average time of about 2177.6

GOST computations, we are able to determine with certitude 189 bits of
GOST key. The remaining 66 bits can then be found by brute force.

The attack was designed to work for 95% of GOST keys.

24

7 Conclusion

Bruce Schneier has written on page 334 of his famous book (second edition
1996, cf. [19]) that “Against differential and linear cryptanalysis, GOST is
probably stronger than DES”. In 2000 Russian researchers claimed that as
few as 7 rounds out of 32 are sufficient to protect GOST against differential
cryptanalysis, see [11, 10]. In the same year Japanese researchers [18] show
that more powerful differential attacks exist, exploiting sets of differentials
[18], which allows to break about 13 rounds of GOST out of 32.

GOST has a substantially lower implementation cost than any other
comparable cipher at a similar security level, see [17] and until 2011, no
cryptographically significant attack on GOST used in encryption was found
[17]. Consequently, in 2010 GOST was submitted to ISO to become an
international encryption standard, see [3]. Over two decades less than 10
block ciphers were judged “good enough” to become a serious candidate for
ISO standardisation, as GOST has become in 2010, cf. [17].

Many new attacks on GOST have been proposed since 2011 [3, 8, 14, 6,
4, 5, 9] including new better attacks which exploit multiple differentials. In
2011 Courtois and Misztal have found new differential sets which allow for
much faster differential attacks on GOST [6] than expected [18]. Then if
one exploits the key scheduling of GOST, one can break full GOST within
time of 2254.6 GOST computations which is very slightly faster than brute
force [4] and which attack can be further refined by a more careful guessing
procedure in [5] to achieve about 2224.

In this paper we present a further improved and refined advanced dif-
ferential attack on full 32-round GOST. Given 264 KP we can recover the
full 256-bit key for GOST within only about 2178 GOST computations
on average for a success probability of 95 %. The memory required is about
270 bytes.

This is the fastest single-key attack on GOST found so far.
We can compare it to the most recent result by Shamir et al. with time
complexity of 2192 which is going to be presented at FSE 2012 in Washington
DC, on 19 March 2012. Our attack is several thousands of times faster.

25

References

[1] Eli Biham, Adi Shamir, Differential Cryptanalysis of DES-like Cryp-
tosystems, Journal of Cryptology, vol. 4, pp. 3-72, IACR, 1991.

[2] Nicolas Courtois: The Best Differential Characteristics and Subtleties
of the Biham-Shamir Attacks on DES, On eprint.iacr.org/2005/
202.

[3] Nicolas Courtois: Security Evaluation of GOST 28147-89 In View Of
International Standardisation, in Cryptologia, Volume 36, Issue 1, pp.
2-13, 2012. An earlier version which was officially submitted to ISO in
May 2011 can be found at http://eprint.iacr.org/2011/211/.

[4] Nicolas Courtois, MichaÃl Misztal: First Differential Attack On Full 32-
Round GOST, in ICICS’11, pp. 216-227, Springer LNCS 7043, 2011.

[5] Nicolas Courtois, MichaÃl Misztal: Differential Cryptanalysis of GOST,
In Cryptology ePrint Archive, Report 2011/312. 14 June 2011, http:
//eprint.iacr.org/2011/312.

[6] Nicolas Courtois, MichaÃl Misztal: Aggregated Differentials and Crypt-
analysis of PP-1 and GOST, In 11th Central European Conference on
Cryptology, post-proceedings in preparation.

[7] Nicolas Courtois, Gregory V. Bard: Algebraic Cryptanalysis of the
Data Encryption Standard, In Cryptography and Coding, 11-th IMA
Conference, pp. 152-169, LNCS 4887, Springer, 2007. Preprint available
at eprint.iacr.org/2006/402/. Also presented at ECRYPT work-
shop Tools for Cryptanalysis, Krakow, 24-25 September 2007.

[8] Nicolas Courtois: Algebraic Complexity Reduction and Cryptanalysis
of GOST, Preprint, 12 November 2011, available at http://eprint.
iacr.org/2011/626

[9] Itai Dinur, Orr Dunkelman and Adi Shamir: Improved Attacks on Full
GOST, 11 October 2011, At http://eprint.iacr.org/2011/558/. A
version of this paper will be presented at FSE 2012 in Washington DC,
on 19 March 2012.

[10] Vitaly V. Shorin, Vadim V. Jelezniakov and Ernst M. Gabidulin: Linear
and Differential Cryptanalysis of Russian GOST, Preprint submitted to
Elsevier Preprint, 4 April 2001

26

[11] V.V. Shorin, V.V. Jelezniakov, E.M. Gabidulin Security of algorithm
GOST 28147-89, (in Russian), In Abstracts of XLIII MIPT Science
Conference, December 8-9, 2000.

[12] I. A. Zabotin, G. P. Glazkov, V. B. Isaeva: Cryptographic Protec-
tion for Information Processing Systems, Government Standard of
the USSR, GOST 28147-89, Government Committee of the USSR
for Standards, 1989. An English translation can be found at http:
//www.autochthonous.org/crypto/gosthash.tar.gz

[13] A Russian reference implementation of GOST implementing Russian al-
gorithms as an extension of TLS v1.0. is available as a part of OpenSSL
library. The file gost89.c contains eight different sets of S-boxes and is
found in OpenSSL 0.9.8 and later: http://www.openssl.org/source/

[14] Takanori Isobe: A Single-Key Attack on the Full GOST Block Cipher,
In FSE 2011, pp. 290-305, Springer LNCS 6733, 2011.

[15] Orhun Kara: Reflection Cryptanalysis of Some Ciphers, In Indocrypt
2008, LNCS 5365, pp. 294-307, 2008.

[16] Gregor Leander, Axel Poschmann: On the Classification of 4 Bit S-
Boxes, In Proceedings of WAIFI’07, 1st international workshop on
Arithmetic of Finite Fields.

[17] Axel Poschmann, San Ling, and Huaxiong Wang: 256 Bit Standardized
Crypto for 650 GE GOST Revisited, In CHES 2010, LNCS 6225, pp.
219-233, 2010.

[18] Haruki Seki and Toshinobu Kaneko: Differential Cryptanalysis of Re-
duced Rounds of GOST. In SAC 2000, Selected Areas in Cryptography,
Douglas R. Stinson and Stafford E. Tavares, editors, LNCS 2012, pp.
315323, Springer, 2000.

[19] Bruce Schneier: Section 14.1 GOST, in Applied Cryptography, Second
Edition, John Wiley and Sons, 1996. ISBN 0-471-11709-9.

[20] Standard Deviation – wikipedia article, 13 June 2011, available at http:
//en.wikipedia.org/wiki/Standard_deviation.

27

