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Abstract. GOST 28147-89 is a well-known block cipher and the of-
ficial encryption standard of the Russian Federation. A 256-bit block
cipher considered as an alternative for AES-256 and triple DES, hav-
ing an amazingly low implementation cost and is becoming increasingly
popular [?,15]. Until 2010 researchers unanimously agreed that: “despite
considerable cryptanalytic efforts spent in the past 20 years, GOST is
still not broken”, see [26] and in 2010 it was submitted to ISO 18033 to
become a worldwide industrial encryption standard. In 2011 it was sud-
denly discovered that GOST can be broken and is insecure on more than
one account. There is a substantial variety of recent attacks on GOST [5,
10,16, 8,6, 7, 11]. We have reflection attacks [16, 10], attacks with double
reflection [10], self-similarity guess then determine attacks which do not
use any reflections [10,5] and advanced differential attacks [28,8,6,7].
The final key recovery step in various attacks is in many cases a software
algebraic attack [10, 5], frequently also a Meet-In-The-Middle attack [16,
10,11] and in differential attacks key bits are guessed and confirmed by
the differential properties [28, 8, 6, 7].

In this paper we consider some recent differential attacks on GOST [28,
8,6, 7] and show how to further improve them. We present a new single-
key attack against full 32-round 256-bit GOST with time complexity of
2179 which is substantially faster than any previous single key attack on
GOST.

Key Words: Block ciphers, GOST, differential cryptanalysis, sets of differ-
entials, aggregated differentials, truncated differentials.
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1 Outline and Main Stages
This paper describes essentially one advanced differential attack on GOST.

1.1 Key Schedule in GOST

The key structural property of GOST which makes it suitable for cryptanalytic
attacks of the specific kind and specific form, is that the last 8 rounds are identical
to the fist 8 rounds run in the opposite direction (however this symmetry does
not follow for more inner rounds).

rounds|1 8|9 16
keys ko kl kz k3 k4 k5 k‘(; k7 k() kl kz k’3 k4 k5 kg ]C7
rounds|17 2425 32
keys ko kl kg kg k’4 k5 /ﬂs k7 k7 k’ﬁ k5 /ﬂ4 k3 kQ kl ko

Fig. 1. Key schedule in GOST

This property has a big impact on security of GOST and is already exploited
in [6,7]. Because 32 bits of the whole key, a fairly small proportion, is used in
one round, and for every 32 bits guessed we can remove two full outer rounds,
instead of 1 round for a similar cipher without a weak key scheduling. Thus for
example if we guess 192 key bits, we can remove 12 full rounds of GOST and
still get an attack faster than brute force, see [6].

In this paper we will exploit this symmetry even further: we will look at
differential which are a member of a certain set of differentials which is totally
symmetric for the first 8 rounds and the last 8 rounds. Our key guesses will be
far more precise than guessing keys for full rounds and specially adapted to this
highly symmetric situation, in order to maximize the number of cases which can
be safely discarded due to these guesses.
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1.2 Preliminary Remarks

In our attack we will split GOST into three parts with 6+20+6 rounds. Previ-
ous advanced differential attacks were based on a statistical distinguisher which
exploited a number of differential propagations to distinguish up to 20 rounds
of GOST from a random permutation [6, 7] and needed to guess complete 32-bit
keys for several outer rounds in order to fully reconstruct these internal differ-
entials.

We will guess only some well-chosen key bits which will be used to filter
P/C (Plaintext,Ciphertext) pairs used later in the attack. As in [6] the attack
runs through many stages with great many filtering/guessing steps, where at
each step we reduce the number of cases to consider (the plaintext space, some
key bits already guessed and pre-computed relations between all these) and only
after this reduction of number of cases we make additional guesses. In contrast to
the attack presented in [7] our attack will use symmetric differential sets, which
is dictated by the symmetry in the key schedule.

Large parts of this whole process can be viewed as an adaptive Depth-First-
Search (DFS) attack on a tree of possibilities which is constructed adaptively
depending on the assumptions currently considered as valid. This type of process
is very widely used in cryptanalysis.

There is a substantial difficulty in differential attacks where the key size is
much larger than the block size as in GOST: there are false positives, differentials
which do not propagate but occur naturally, by accident. The key point is that
for a very long time the false positives are not eliminated in a differential attack
on GOST. In fact, for a long time we are just dealing with assumptions on
internal difference bits in GOST, their consequences and relations between these
assumptions but for a long time, none of the steps of the attack is able to see if
the inner 20 rounds are 20 rounds of GOST, more rounds of GOST, or maybe
just a random permutation. This can only be seen at a later stage of the attack.
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2 The Structure of GOST

We will only study, by far most popular set of GOST S-boxes known as the
7 GostR3411.94_TestParamSet” in [15] which was published as early as in 1994
and which according to Schneier [29] is actually the version used by the Central
Bank of the Russian Federation. This is exactly what most researchers call just
“the GOST cipher” (without any additional mention) in the cryptographic lit-
erature. This choice of S-boxes greatly affects all the differential probabilities we
use in this paper.

Note: It is possible to see that similar attacks exist for other variants of
GOST maybe also on those which might appear much stronger at the first sight,
see [27].

2.1 Notation

In this paper we consider the traditional “Twisted” representation of GOST
where each round of GOST looks exactly the same:

(LvR) = (RvL D fk(R))

2.2 Internal Connections in GOST

We number the inputs of the S-box Si for ¢ = 1,2, ..., 8 by integers from 4i+1 to
4i+44 out of 1..32 and its outputs are numbered according to their final positions
after the rotation by 11 positions: for example the inputs of S6 are 20, 21,22, 23
and the outputs are 32, 1,2, 3.

GOST has 32 rounds such as the one described on Fig. 2 below.
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On our picture below the H denotes the addition modulo 232. On this pic-
ture we do NOT represent the final circular shift by 11 positions modulo 32
which occurs in GOST after the S-boxes. It is represented in a different way,
by numbering the output bits of the S-boxes, to see directly where they are
connected.

sS4 9-12 8-11| 88 29-32
S31 s-8 || 4-7 | 87 25-28
S20 14 32.1-3 86 21-24
S1 jz=-32|| 28-31 S5 17-20
S8 |25-28 6%-27 S 13-16
S7 |21-24 20-23| 53 9-12
S6(17-20 16-19 S2 5-8
S5 (13-10 12-14 S1 1-4

54| o-12 ><&/<Y

Fig. 2. One Round of GOST And Connections in The Following Round

Given the key scheduling on Fig. 1 we have a complete description of GOST.

At the left margin on Fig. 2 we also show S-box numbers in the next round,
which is very helpful, to see which bits are successfully determined in our attacks
on GOST. A more detailed explanation of how these bits in the next round
depend on the bits in the previous round will be developed later on Fig. 8.

2.3 Aggregated and Truncated Differentials in GOST

We consider differences with respect to the popular bitwise XOR operation.
Following previous work on this topic [6,7] we define an aggregated differential
A, B as the transition where any non-zero difference a € A will produce an
arbitrary non-zero difference b € B with a certain probability.

In particular we consider the case when A is a set of all possible non-zero
differentials contained within a certain mask. This can also be studied as a special
case of “Truncated Differentials” [23] which are defined as fixing the difference
not on all but a subset of data bits. However it is possible to see that all stable
difference bits in our “Truncated Differentials” are zero differences. This is a
very peculiar case and we need to explicitly exclude all-zero differentials from
our set, so it is not exactly a pure “Truncated Differential” in the sense of [23]
because we need to exclude the all-zero differential.

For example for

A = 0280700700
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we obtain a set of all differences on 32 bits with between 1 and 7 active bits (but
not 0) and where the active bits are contained within the mask 0x80700700.
Similarly, the set denoted by (A, A) is a set of difference on 64 bits with up to
14 active bits, where any non-zero difference is allowed, including also differences
where the difference is zero on one half. There are 2'* — 1 differences in this set
and we have |A| = |B| =2 — 1.

The following fact was established in [8, 6, 7]:

Fact 2.3.1 The aggregated differential (A, A) with uniform sampling of all dif-
ferences it allows, produces an element of the same aggregated differential set
(A, A) after 4 rounds of GOST with probability about 2~13-% on average over all
possible keys.

For 6 rounds the probability is on average over all possible keys.

For 8 rounds the probability is 2720 on average over all possible keys.

2718.7

Now we look at a one particular differential set, which we have noticed,
arrives with a particularly large probability:

Fact 2.3.2 The set (0280700700, 0280700700) produces a differential of the form
(0200000700, 0280780000) with probability of 2-22:19 for 7 rounds of GOST.

This was obtained by a computer simulation.

3 Propagation of Differentials in GOST

It is possible to see that among differentials of the form (0280700700, 0280700700)
there exist several interesting non-trivial classes. On Fig 3 we denote these classes
by 6-letter abbreviations for example (0200000700, 0280700000) would be abbre-
viated as _787). It is the possible to see that not all transitions are possible.
This leads to a certain particular graph of possible transitions which can be used
to find efficient differential attacks on GOST, see Fig 3.
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Fig. 3. Some Important Sets of Differentials Which Occur in GOST
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3.1 On Important Classes of Aggregated Differentials in GOST

It is possible to see that many very good differential attacks on GOST are related
to the important structure which exists within GOST. Basically, half of GOST
S-boxes are very closely connected, and loosely connected with the other half,
which is shown on Fig. 4.

In this respect some very good attacks on GOST known to us can be classified
in several major categories which we call 840, 541, and 3+3.

Differential Attacks of Type 34 3: The meaning of 3+3 is that the attack
uses ONLY 3 fixed S-boxes from Fig. 4, for example S3,56,58, and another fixed
3 S-boxes from the complement of Fig. 4, and no other S-boxes. Moreover all
these S-boxes are connected in a cyclical structure such that non-zero differences
circulate within the structure, and do not leave it. The structure must be closed
and circular because the GOST S-boxes are bijective and non-zero differentials
cannot be canceled totally. The key interesting differentials which we exploit in
this paper are of the type 3+3.

Other non-trivial interesting classes of differentials exist in GOST. We give
one example of a differential set of type 1+5. It is as follows:
0x07070008,0x08007070. This set of 2'4 — 1 single differentials propagates for 8
rounds with an average probability of 2726-% for 8 rounds of GOST. Here active
S-boxes are, just one S-box S7 on one Fig. 4 and on the other copy of Fig. 4,
and in order of connections S-boxes S14725.

Discussion: The key point we want to make here is that these classes of
differentials do NOT depend that much on the S-boxes, they depend much more
on the structure of the cipher and the exact connections inside. This is especially
true for sets which include many differentials such as studied in this paper where
individual very strong differentials will matter less.

A common misconception is that that the security of a cipher such as GOST
against differential cryptanalysis (DC) depends extensively on the S-boxes, and
some ”optimal” S-boxes would make it more secure, see [24,26]. Researchers
in the academia study S-boxes in isolation [24] and propose new ciphers [24,
26] but when S-boxes are connected together, everything changes. We are not
certain if it is possible at all to make a cipher such as GOST secure against
differential cryptanalysis by changing only the S-boxes [24,26], which idea was
discussed during the ISO standardization process of GOST. The question of how
far one can go with advanced differential attacks such as studied in this paper
remains widely open, see [27]. We conjecture that the security of GOST against
advanced forms of DC depends ”essentially” on the connections on the cipher,
and though some S-boxes make it weaker against DC, none will make it really
very strong.

3.2 Affine Sets

We take another look at our example of alternative differential set of type 1+5

which is 0x07070008,0x08007070. It had 2'* — 1 single differentials propagates

for 8 rounds with an average probability of 27260 for 8 rounds of GOST.
Interestingly, this set can be seen as a linear space of dimension 14 without

the zero point. Quite remarkably, if shift this set by a constant, so that it becomes
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an affine set with a shift of 0x00000002,0x00000000 (where we need to exclude
another point which is still 0) we obtain an affine iterative set of differentials
which also contains 2'* — 1 single differentials and yet it propagates for 8 rounds
with an average probability of 27249 for 8 rounds of GOST instead of 2726:0,
and which is strictly better than for our “traditional” 3+3 set from Fact 2.3.1.

3.3 Order From Chaos

The propagation of differentials can be seen as a system in which the initial low
entropy differential pattern slowly dissipates. However it does NOT have to be
so if we consider the output entropy relative to specific output differentials. Our
experiments show that the output entropy will almost always be substantially
lower then expected. For example the exact distribution of the 2 — 1 output
single differentials in Fact 2.3.1 is going to be far from uniform which reduced
the entropy. We have even observed something truly remarkable which is like
order emerging from chaos. We give here one example. As in Fact 2.3.1 we
consider the input differential (A, A) and the output differential (A, A) after 6
rounds. On average over possible 2'4 — 1 input differentials it propagates with
probability 27186, This probability however hides the fact that among the 2 —
1 input differentials there are few for which the propagation is much easier,
because some S-boxes are going to be inactive, for example differentials of form
0280000700, 0200700000. Therefore it is interesting to look at the “hardest”
case, which is the majority of the 2'* — 1 cases, where we specifically forbid the
difference under any of 8’s and 7’s to be non-zero. In this case the propagation
for 6 round occurs with probability 27238 instead of 27186,

Now the amazing property we have observed that out of these 2723® cases
with differences on 14 bits, an unexpectedly large proportion of cases, about 40%,
or 27259 has only 3 active bits out of 14, and falls within 0200000000, 0200000700
after 6 rounds. We have done everything to obtain input differences as chaotic
possible, and the the output we have seen they they are either totally random,
or nearly constant.
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Fig. 4. Connections between half of S-boxes in 4 consecutive rounds
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4 TImproved Differential Attacks On GOST

Our goal is to design an attack on the full 32-round GOST. We will use the
same methodology as in [6, 7] guess some key bits and use a distinguisher and
we also design a distinguisher for 20 rounds. However our new distinguisher is
symmetric and the attack is more complicated.

The key question is how a differential attack on GOST can cope with false
positives. There are differentials which occur due to propagation of small Ham-
ming weight differentials for 20 rounds of GOST, and other which occur “by
accident” for an arbitrary permutation on 64 bis. In addition we also need to
quantify precisely the interaction between these two sets, which is essential in
we want to reliably distinguish between 20 rounds of GOST and some other
permutation. We have:

Fact 4.0.1 We look at the combination of a non-zero input difference of type
(0280780000, 02:00000700) and a non-zero output difference of type
(0200000700, 02:80780000).

For a typical permutation on 64-bits (does NOT have to be a random permu-
tation, can be GOST with more rounds) we expect that there are 2'° pairs P;, P;
with such differences. The distribution of this number can be approximated by a
Gaussian with a standard deviation of 27-°.

For 20 rounds of GOST and for a given random GOST key, there exists two
disjoint sets of 215 + 2139 such pairs P;, P;.

RP_GQOST

21% 91549139

Fig. 5. Signal vs. Noise Differential Distinguisher for 20 Rounds of GOST

These are two entirely disjoint sets of pairs, which can be distinguished by
the fact that 2139 pairs will have the difference 0280700700, 0280700700 after 6
rounds from the beginning AND 6 rounds from the end, and none of the 2> will
have such internal differences.

The distribution of the sum can be approximated by a Gaussian with an av-
erage of about 2™ + 2139 and the standard deviation of 278.



12 Nicolas T. Courtois, 2012, last updated 11 December 2012

Justification: For any permutation, we observe that every single combination of
an input differential on 64 bits, and on an output differential on 64 bits, is ex-
pected to occur about 0.5 times on average. Indeed we have 2'27 pairs and about
2128 possible sets of two differentials. Now we have (28 — 1)(28 — 1) possibilities
within the internal 20 rounds: (0280780000, 0200000700) — (02200000700, 02:80780000).
Overall we expect to obtain 0.5 - 2878 = 21° pairs P;, P; for a given GOST key,
with any of these 28 — 23 + 1 differences.

For 20 rounds the situation is more complex. We need to distinguish between
pairs which occur “by accident” and those which occur due to “propagation”.
We are going to develop a precise argument showing that both sets are entirely
disjoint and their numbers can be added. In order to do this we are going to give
a precise meaning to the word “propagation” in this precise 20 rounds case: we
say that the differential ” propagates” if it goes through two additional differences
in the middle as follows:

0x80780000 0x00000700
(7 Rounds)

0x80700700 0x80700700
(6 Rounds)

0x80700700 0x80700700
(7 Rounds)

0x00000700 0x80780000
Fig. 6. ”Propagation” For 20 rounds With Specific Middle Differentials

Following Fact 2.3.1 and given 26414~ pairs with the initial difference, we

have 277~18:7 — 2583 pairg for the middle 6 rounds.

Then following Fact 2.3.2 the propagation in the next 7 rounds occurs with
probability 27222 on average over GOST keys. Since this is a permutation, the
same propagation can be applied backwards in the preceding 7 rounds. Overall,
we expect that 2083444 = 2139 pairg survive.

Now we are going to show that typically, none of these pairs P;, P; is
a member of the set of 2'° established beforehand. This can be established as
follows: for any of the 2'® cases which occur naturally at random, we have a
non-zero input differential (0280780000, 02:00000700). Then a computer simula-
tion shows that a differential of type (0280700700, 0280700700) CAN occur at
7 rounds from the beginning (as on Fig. 6 which is 647 rounds from the begin-
ning in GOST) but only with probability of 2762, Similarly it can also occur
7 rounds from the end, but only with probability of 2762, Overall we expect
that only about 215716:2716:2 — 9=17 pairg Py, P; on average will have the “prop-
agation” characteristics according to Fig. 6. Therefore the two sets are entirely
disjoint with a very high probability.

To summarize, we expect to get always a mix of 2% + 2!39 cases, which are
unlikely have an intersection, just subject to the standard deviation for each
set. Because we are dealing with a sum of a very large number of almost totally
independent events, and exactly in the same way as in [6,7], and due to the
Central Limit Theorem [30] these numbers are expected to follow a Gaussian

213.9
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distribution and the standard deviation is expected to be equal exactly to the
square root of their expected average number which will be about 2!5-55 for 20
rounds and about 2" for other permutations.

Related Research. We can compare this result to a distinguisher which
is used in [7]: where the input difference is (0280000000, 0200000000), and the
output difference is of the form (0200000100, 0280600200). In the case of the
actual 20 rounds of GOST we expect to get 2* + 2° such differences, while 24
would occur naturally at random for some other permutation.
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4.1 Extending with Additional Weakly Constrained Rounds

This property can be extended with a “weakly constrained” differential prop-
agation which occurs with quite a high probability for 6 more rounds on each
side. More generally, we can look at combination of 6 rounds of GOST, some
permutation, and 6 rounds of GOST with the same keys in the backwards direc-
tion, as in GOST. This could be just the full 32-round GOST with 20 rounds in
the middle. But it could also be a different situation which we wrongly assumed
to be the full 32-round GOST.

Definition 4.1.1 (Alpha Property) We say that a pair of encryptions for
the full 32-round GOST (or for a combination of 6 rounds of GOST, some
permutation, and 6 rounds of GOST with reversed keys) has the Alpha Property
if the following whole configuration of sets of differentials simultaneously holds:

<plaintext> = -—————————————————— >
OxFFFFFFFF OxFFFFFFFF | 0x00000700 0x80780000
(1 Round) | (1 Round)
OxFFFFFFFF OxFFFFFFFF | 0x80780000 0xF0000787
(1 Round) | (1 Round)
OxFFFFFFFF OxFFFF8787 (20 Rounds) 0xF0000787 0x807FFF80
(1 Round) (or RP) (1 Round)
OxFFFF8787 0x807FFF80 (or other) 0x807FFF80 OxFFFF8787
(1 Round) | (1 Round)
0x807FFF80 0xF0000787 /\ O0xFFFF8787 OxFFFFFFFF
(1 Round) | (1 Round)
0xF0000787 0x80780000 | OxFFFFFFFF OxFFFFFFFF
(1 Round) | (1 Round)
0x80780000 0x00000700 | OxFFFFFFFF OxFFFFFFFF
| | <ciphertext>

Fig. 7. The Alpha Property

We note that this property is perfectly symmetric.
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4.2 Alpha Property: GOST vs. Random Permutation

In a similar way as before, a key problem in our distinguisher is that unhappily
the Alpha property can occur also ”by accident”, not at all for the reasons we
expect. This question needs to be formulated more precisely, as this property
is about differentials also inside GOST, and therefore we cannot just compare
GOST to a random permutation. The right question which we need to ask is as
follows: in our composition of 6 rounds of GOST, some permutation and then the
same 6 rounds in the decryption mode, can we have a fully consistent situation
with all the differences which we have in the property Alpha on the outer 2x6
rounds, exactly like on Fig. 77
We have the following result:

Fact 4.2.1 For the full 32-round GOST and on average over the GOST keys,
there exists 2130+ 219 distinct pairs of plaintexts P; # P; which have the Alpha
property.

If we replace the inner 20 rounds by a random permutation or with GOST
with more rounds, we expect only about 2130 distinct pairs with a standard de-
viation of 262,

Justification: We apply Fact 4.0.1 and obtain 2!% + 213-9 pairs for the inner 20
rounds with two disjoint sets as explained before. Then it is easy to verify, by
a computer simulation, that this provokes the 6 difference sets in the following
6 rounds, simultaneously, with probability as large as 27998 which is due to
slow diffusion in GOST. The same applies in the first 6 rounds. Overall we
obtain about 2139720 &~ 2119 pairs with propagation, and a disjoint set (because
subsets of disjoint sets from Fact 4.0.1) with 215720 ~ 213:0 pairs which occur
by accident.

Again, because we are dealing with a sum of many almost totally independent
events, as in [6,7] and due to the Central Limit Theorem [30], the standard
deviation is expected to be exactly the square root of 213:0.

)
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5 Guess Then Determine Attacks on GOST

In this section we explain how to compute output bits for a certain round of
GOST with incomplete knowledge of all the key bits on which this bit depends
in this and previous rounds. We have the following basic fact:

Fact 5.0.2 The input on 4 bits of any particular S-box in GOST can be com-
puted as: a = x + k + ¢ mod 16 where k are the 4 key bits at this S-boz, c is a
single carry bit with c =1 < 2’ + k' + ¢ > 16 where 2’ and k' are the data and
the key at the previous S-box, and ¢’ is the previous carry bit. E.q.

54
Wr(i-2)
24
23 12
53
o TWr(i-3)
20 9

round r-4

Fig. 8. Computation of the Input Of One S-box With A Carry Bit

In our attack we exploit the weakness of carry propagation in the addition
modulo 232, It is possible to see that carry bits such as ¢ can be guessed with a
surprisingly high accuracy. We observe that:
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1. We define Wr (i) by the equation Wr(i)—1 = (i—1) mod 8. This corresponds
to the number of S-box within 1..8 with wrap-around.

2. The input of each S-box Si in round r + 1 is

a=2x+k+cmod 16

and depends on (i) the 4 key bits k at the entry of this Si and (ii) = obtained
from the outputs of two S-boxes in round r with numbers Wr(i — 2) and
Wr(i — 3) XORred with the appropriate bits after round r — 2 (this part
does not change in round r — 1), and (iii) one carry bit c.

3. The carry bit ¢ is such that

c=1a2'+kK+d>16

where x’ and k" are the data and the key at the previous S-box, and ¢’ is the
previous carry bit.

4. The previous carry bit influences the result with low probability which will
be quantified below.

From here we easily obtain that:

Fact 5.0.3 Let i > 1 (with SI there is no carry entering as on Fig 8.

We assume that the attacker knows the whole 64-bit output of round r — 2,
the input of one S-box Si at round r + 1, and the key k at the same Si in round
r+ 1, and the state of Wr(i — 2) and Wr(i — 3) in round r.

Let k' be the unknown key at S-box i-1 in round r + 1 (cf. Fig 8).

Then we have the following results:

1. Let d, e be respectively the most significant bits of k' and z’.

The bit d is obtained from 1 lower bit from Wr(i — 3) XORed with the
appropriate state from round r — 2, which is bit 20 on our example at Fig.
87

If d=e =1, we have c = 1 with probability 1 and we can compute a.

If d = e =0, we have ¢ = 0 with probability 1 and we can compute a.

If d+e =1, we have c = 0 or ¢ = 1 which are more or less equally likely.
Here we get exactly two possibilities for a.

On average we obtain 2 x 1/4 x 1+ 1/2 x 2 = 1.5 = 2°-¢ possibilities for a.
These possibilities for a are computed using only 5 bits of the key and the
state of only 2 S-bozes in the previous round.

2. If the attacker knows the whole 4-bit ' he can compute k'+z’ with an interval
of incertitude of 8 instead of 16 previously. Thus only with probability 1/4
there will be two answers. Thus on average we obtain 1/4 x 2 +3/4 x 1 =
1.25 = 293 possibilities for a.

3. The same happens if the attacker knows the whole 4-bit k' but not z’.

4. If the attacker knows k' AND the whole state of Wr(i — 4) in round r, he
can compute ¢ correctly with probability of roughly about 1 — 274,

Justification: The first result is straightforward and we will derive the second
result. Each of these probabilities can be established by a discrete simulation
checking all the possible cases.

The top bit b of &’ is known due to Wr(i — 3), therefore the expected value
of 2/ is about ¥’ ~ 8 % b + 4, and the whole &’ is known. It is easy to see
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that the expected approximation error (computed as average over 8x8 cases) is
|' — 8 b+ 4| = 1.31.

We decide that ¢ =1 & 8xb+4+ k' + ¢’ > 16. This will be accurate unless
24+ k"+c <16 AND 8xb+4+k"+ ¢ > 16 or the vice versa with the difference
between these two numbers being on average 1.31. Each of these 2 cases occurs
with probability of very roughly about 1.3/16 ~ 2=%. Overall we expect that
with probability 1 — 273 our computation of ¢ is correct.

In the similar way we derived the other results.

Important Remark: The intention of this theorem is not that is some
cases the computations done in our attack will be incorrect and therefore we
might miss some cases and the attack would fail. We can handle it in a very
different way. Each time we will determine if ¢ = 1, by checking ' + k' +¢ > 16
with more or less exact approximations of ' and k' and ¢/, we know exactly the
margin of error and know exactly when there will be two possibilities for c. In
all these cases we are simply going to include in our enumeration two cases, one
with ¢ = 0 and one with ¢ = 1, which is going to change the 4 outputs of the
affected S-box.
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An Improved Differential Attack on GOST

For the ease of reading we split our attack in 5 stages. All the stages should be
seen as a part of the same Depth First Search procedure, where we guess key
bits, reject some cases, then guess more key bits, reject again, etc, and where
as we advance in the attack tree the time complexity may increase or decreases,
and the probability to arrive at this level for a particular set of choices decreases
with many early aborts: tree branches which do need to be explored only with
very low probability.

6.1 Attack Stage 1
We proceed as follows:

1.
2.

We are given 24 KP which are assumed to be stored in a database.

We have the Alpha property which holds 2!3 4 2119 times for the full
32=6+2046 rounds.

First we are going to reduce the total number of pairs from 2'?7 to a lower
number, by a birthday-like approach which avoids the enumeration of all
possible pairs.

Given an assumption on a certain number of key bits, we define as inactive
bit a bit where P; and P; collide (the difference is 0) at a certain bit location
inside the cipher, if our assumption about the key is correct.

Our attack will have many steps in which we are going progressively guess
some key bits, then reduce the space of pairs considered due to our differ-
entials, which will make it feasible to guess additional key bits at a later
stage.

We want to write constraints which describe the following events which occur
in the first 5 (and last 5) rounds in our property Alpha.

— The output after the addition of the output of S7 and S1 after round 2
gives 8 inactive bits at 0 which are 3-6,11-14. This is implied by the set
0z F FFF8787 which occurs after round 2.

— The output after the addition of the output of S4,55,56,S7 after round 3
gives 15 (and not 16) inactive bits at 0 which are 24-31,1-7, but not 32.
This is implied by the set 0z807F F F'80 which occurs after round 3.

We consider and try to guess the following key bits: all key bits at rounds
1,2,3 and 20 key bits for S-boxes S12345 in round 4.

We observe that for any guess of these 96 + 20 = 116 key bits, we get
8+15+13=36 cancelations after rounds 1-4 as explained above, and 36 more
cancelations on exactly the same S-boxes with the same keys after round 29
going backwards.

This can be seen as a collision on 36+36=72 bits, computed as a function
of type fr(P;) where k represents 116 bits of the key and 4 is one of the 264
KP cases.

For each 116 possible guesses for our selected key bits we compute possi-
ble strings on 72 bits for each P;. Only a proportion of one out of 28 values on
72 bits are taken. For any given case i the probability that there is another
j for which the 72 bits collide is 278.

264
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Then we can enumerate in time of maybe 4-254 CPU clocks some 264—8 = 256
possible i or j with 2°6/2 = 255 distinct pairs 4, j which collide on these 72
bits.

Another way of looking at this is as follows: there are (we do NOT ever
enumerate all of them) about 2'27 pairs P;, P; and there are about 2127
differences fi(P;)— fx(P;) on 72 bits. Some 2127-72 = 255 of these differences
will have all the 72 bits at 0.

These 2%° pairs per key assumption can be enumerated efficiently. A sim-
plified method is as follows: We make a hash table where at address which
a hash of fi(P;) on 72 bits, and we store i as well. Each time the value is
already taken we output a collision. We will output a list of 25° pairs P;, P;.
Memory required is roughly about 270 bytes.

The total time spent in these steps of the attack should not exceed 211664
times the cost of computing roughly speaking 1 round of GOST.

It is not needed to do as much work as computing 2'6 times 4 first rounds of
GOST and 4 last rounds of GOST. Basically the cost of computing the first
three and the last three rounds of GOST can be neglected. More precisely it
will be amortized in 22° sub-cases of the 2% cases, in which we just need to
evaluate 4 S-boxes in round 3 and 4 S-boxes in round 30, which is roughly
feasible to do in most an equivalent of 1 round of GOST.

Therefore we estimate that we need only about 2!16764.8 CPU clocks, which
could be seen as an equivalent of roughly about 27 GOST encryptions.

To summarize, we can thus in total overall time equivalent to about 2!74

GOST encryptions and with memory of about 27 bytes, enumerate 2'7! =

2116+55

cases of type k116,14, 7. We get on average 2°° possible pairs 4, j for each

key assumption on 116 bits.

On Fig. 9 we summarize all the current and further steps of our attack.
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6.2 Attack Stage 2

Fig. 9. Summary of Major Steps In Our Attack on GOST

Now we are going to work on additional key assumptions with the objective to
decrease the number of pairs per key from 2°° to a much lower number so that
we can apply the distinguisher given by Fact 4.2.1, which will be done at the

Stage 4.

1. Now we look at the difference 0280780000 obtained after round 5, where
outputs of S-boxes S8, S1 and S2 are 'newly’ inactive which is a cancelation
on 12 bits in round 5.
First we will work on S8, then on S1, then on S2.

2. First we guess some additional 4+4 key bits. The situation is the same as on
Fig. 8 with boxes S78 at round 5 depending mostly on boxes S456 at round

4

We guess 4 bits at S-box S6 in round 4, needed only to compute the bit 31
entering S8 at round 5, and the 4 key bits at S8 in round 5, and an approx-
imation on the 4-key bits at S7 in round 5, which together with outputs of
S4 and 1 bit from S5 in round 4, can be used to compute the carry entering
S-box S8 at round 5 with probability of about 1 — 274 (cf. Fact 5.0.3).
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. Now we have an enumeration of
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. More over and quite importantly we do not allow any errors in our computa-

tions. In rare cases where there is an ambiguity about the carry, because for
example we have 15 and the carry added from S6 in round 5 could matter,
we simply check both cases. This leads to a negligible increase in the total
number of cases checked from about 217112 to about (1 + 274)2171 412 gee
Fact 5.0.3.3. For simplicity we ignore these additional numbers which are
negligible compared to other numbers in this attack.

Later during the attack, when the key at S6 and early S-boxes becomes
known, these additional cases will be eliminated instantly. In fact we can
also leave these additional cases, everything we do later in our attack can
tolerate a small proportion of additional incorrect cases.

. With these 12 new key bits, we can enumerate 217112 cases k1164 12,1, /. In

each cases with probability 274 the 4 bits XORed to the output of S-box
S8 become inactive at round 4, and with probability 27# they also become
inactive at round 29.

. Accordingly in time of about 2177 computations of 2/32 full GOST, which is

about 27 GOST computations, (assuming one takes 2° CPU clocks). We
reject most cases except 2171H1274=4 — 9175 cages kyog, 1, j.

. This, is 27 cases per key.
. Now we guess 8 more key bits. These are 4 bits at S-box S7 in round 4 which

output 3 is needed to compute the input of S1 in round 5 (there is no carry
entering S1). We also guess 4 key bits at S1 in round 5.

217548 cases ki3, 1,7, where we now have
136 key bits. In this list with probability 2=# the 4 bits XORed to the output
of S-box S1 become inactive at round 4, and with probability 27% they also
become inactive at round 29.

. Accordingly in time of about 2175+ computations of 2/32 full GOST, which

is about 2'™ GOST computations, we have an enumeration 2175+8-4-4 =
2175 cases kisg, i, 7.

Now we guess 8 more key bits. These are 4 bits at S-box S8 in round 4 which
outputs are 8-11 and which are needed to compute the input of S-box S2 in
round 5 (the carry entering S2 is already known for S1 in round 5 above).
We also guess 4 key bits at S2 in round 5.

Thus we consider the enumeration of 2'7°+8 cases k44,1, j, where we now
have 144 key bits. In this list with probability 2% the 4 bits XORed to the
output of S-box S2 become inactive at round 4, and with probability 274
they also become inactive at round 29.

Accordingly in time of about 2!75+® computations of 2/32 full GOST, which
= 2175 cases

231 pairs i, j on average for each key assumption on

144 bits which will be the cases which we will check in later steps of our attack.

211.9

For the right key assumption we will also obtain the cases which have

the property Alpha for the correct GOST key
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6.3 Attack Stage 3

We will continue the process of guessing additional key bits and decreasing the
number of cases per key assumption.

1. At this stage, in each case, we know all key bits in rounds 1,4 and key bits
S-boxes S1278 in round 5, for a total of 144 key bits.

2. Now in round 6 we have the difference 0xF0000787 which becomes 0x00000700.

The S-box outputs which are going to become inactive are: 3 outputs of S5

with numbers 29,30,31, the whole of S6 with numbers 32,1-3, and one lower

bit of S8 with number 8.

We will first work on S5, then on S6, and later on S8.

4. First we guess 9 key bits: for S3 at round 5, and for S5 at round 6 and just
one most significant bit for S4 at round 6. We have 3 inactive bits 29-31.
Following Fact 5.0.3. this allows to determine exactly the carry bit ¢ with
probability 1/2, and the attacker knows in which case it is (when d = e, cf.
Fact 5.0.3.1.), and otherwise we have two cases to include (when d # e, cf.
Fact 5.0.3.1.).

Overall on average we have (1 + 2)/2 ~ 2°¢ more cases to check and we
compute the output of S5 at round 6 about 2175+9+0-6 — 2177 tjmes.

5. In addition we also need to compute the output of S5 at round 27 in each of
these cases. In the same way sometimes this generates 1 or 2 cases to check,
and overall we get another factor of 206,

6. Accordingly in time of about 217°+9+0-6+0-6 computations of 2/32 full GOST,
which is about 21762 GOST computations, we obtain a list of 2175 +9+1.2=3-3 —
21792 cases kyss, 4, j. This is 2262 cases per key.

7. Then we guess 8 more key bits: for S4 at round 5, and for S6 at round 6. We
have 4 inactive bits 32,1-3.

8. Accordingly in time of about 2'79-2+8 computations of 2/32 full GOST, which
is about 21782 GOST computations, we obtain a list of
9179.248-4-4 _ 91792 cageq ko1 4, ]

9. This is only 282 cases per key on 161 bits which is within reach of our
distinguisher attacks.

10. The total time spent in all the above steps is is about 278> GOST compu-
tations, and probably only half of this number on average is needed.

@

6.4 Attack Stage 4
Now we are going to be able to see if 161 key bits are right or wrong.

We recall Fact 4.2.1. For the full 32-round GOST and on average over the
GOST keys, there exists two disjoint sets with 2'3 4+ 2119 distinct pairs of plain-
texts P; # P; which have the Alpha property.

We have 282 cases per key, which for the right key on 161 bits contains
these correct 213 4 2119 cases. All these cases come from the fact that we have
independently in the first 6 and the last 6 rounds, checked if certain set of twice
55 differences are at 0, which gives 2'7 pairs surviving. We have also produced
an overhead of some 22 additional cases which result from incertitude due to
further unknown key bits which gives 282 pairs total.
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As before, It is clear that these 2'8-2 pairs obtained in the specific case of the
right 161-bit key, occur at random due to the random intersection between cases
which may occur at the beginning of GOST, and at the end of GOST, without
correlation between these events.

It is easy to see that 2'82 such pairs on average, with an expected standard
deviation of about 2!, are still going to occur if we explicitly exclude about
204+14=1 « 2127 cases where a difference of type (0280700700, 0280700700) oc-
curs after 6+7 rounds AND at 6+7 rounds from the end, which as explained
for Fact 4.0.1 occurs with very low probability of about 27324 and in fact less,
because in our case it is not yet certain that the difference is as expected after
round 7.

However because the 2!1-? cases do ALL have differences of type
(0280700700, 02:80700700) after 6+7 rounds AND at 6+7 rounds from the end,
the two sets are disjoint. To summarize we obtain the following result:

Fact 6.4.1 After Stage 3 of our attack, if the 161 bits are wrong, most of the
time (this will be quantified below) we get about 2182 cases per key.

We assume that the attacker will decide that the key on 161 bits is correct if
he sees at least 2182 4+ 2115 cases for this key. Otherwise he will reject it.

The correct 161-bits key will be accepted with probability of 95%.

Incorrect 161 bits will be accepted with probability of about 2739,

Justification: A correct 161 bits should give about 2!8-2 4 2119 cases with stan-
dard deviation of 2% and will be rejected only if we are below 2!82 4 211.5
cases which is on one side of and outside of (211-9711:5)/29-1 = 2 standard devi-
ations. By applying the Gauss error function [30] we see that a correct key will
be accepted with probability of about 95%.

If the 161 bits are wrong, we are outside of and on one side of, 2115791 = 224
standard deviations. Here the Gauss error function [30] gives a probability only
about 2724,
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6.5 Attack Stage 5

We need to do some additional guessing and filtering. Up till now, with total time
of up to about 2785 GOST computations, we are able to enumerate 2179-2724 =
21952 cases kig1, 1, 7. Our 161 bits of the key are all the bits for the first 4 rounds,
and 24 bits at round 5 for S781234, and 9 bits at round 6 for S5,56 and one bit
at S4.

1. We guess the remaining 8 bits to complete round 5 with boxes S56. Then
we guess the key at boxes S7181 at round 6 and at S213 in round 7. This
is a total of 28 bits. For simplicity we guess all these bits (a more refined
approach is NOT needed because the total time spent in this step is small).

2. The output after S8 in round 6 needs to cancel on 1 bit which is number
8, and the output of S3 in round 7 needs to cancel on 4 bits which are 20-
23. This is implied by the sets 0z00000700 and 0280000000 in the Alpha
property obtained after round 6 and 7.

3. Accordingly in time of about 21%5-2+28 computations of 2/32 full GOST,
which is about 217 GOST computations, we reject most cases except 2152-2+28-5-5 —
2173'2 cases k‘lsg, ’L,j
This seems to be about 2716 per key on average, which comes from the fact
that only some 161-bit sub-keys are present in the keys on 189 bits. However
if we look only at 2'%° keys on 189 bits which are actually present, we have
282 cases per key.

4. We assume that the attacker will reject all cases where the count is less than
28.2 + 210.

5. Then it is easy to see that if the key is correct, it will be accepted with
probability very close to 1.

6. If the key is wrong, we observe that that 282 4 219 is outside 2°° standard
deviations. Here the Gauss error function [30] gives a figure much smaller
than 27256,

Summary: Thus given 254 KP and in an average time of about 2! GOST
computations, we are able to determine with certitude 189 bits of GOST key.
The remaining 66 bits can then be found by brute force. The attack was designed
to work for 95% of GOST keys.

Our attack was optimized for just one set of GOST S-boxes. The space of
possible variants ot this attack is very large and it is very much premature to
claim [27] that it would not work for certain other sets of S-boxes.
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7 Conclusion

GOST 28147-89 is a well-known block cipher and the official encryption standard
of the Russian Federation. Bruce Schneier has written on page 334 of his famous
book [29] that “Against differential and linear cryptanalysis, GOST is probably
stronger than DES”. In 2000 Russian researchers claimed that as few as 7 rounds
out of 32 are sufficient to protect GOST against differential cryptanalysis, see
[13,12]. In the same year Japanese researchers [28] show that more powerful
differential attacks exist, exploiting sets of differentials [28]which allow to break
about 13 rounds of GOST out of 32.

Many new attacks on GOST have been proposed since 2011 [5,10, 16, 8, 6,
7,11] including new better attacks which exploit multiple differentials. In 2011
Courtois and Misztal have found new differential sets for GOST [8] which can be
seen as “truncated” differential attacks [23]. If one exploits the key scheduling
one can break full GOST faster than brute force [6] which attack was further
refined in [7] to achieve about 2224,

In this paper we present a further improved advanced differential attack
on full 32-round GOST. Given 254 KP we can recover the full 256-bit key for
GOST within only about 2172 GOST computations on average for a success
probability of 95 %. The memory is about 27° bytes. This is the fastest single-
key attack on GOST found so far. The best previous single-key attack on
GOST was 2192 of [11] which could be improved to 2'°! in [10]. Our attack is
millions of times faster. At this moment our attack was optimized only for one
set of S-boxes. Our 2'7 is an approximative inexact result obtained assuming
independence of certain events. Further research is needed.

What’s New. In the most recent paper about advanced differential crypt-
analysis, in Section 1.1. page 3 of [1] we read: Truncated differentials, [...] in
some cases allow to push differential attacks one or two rounds further.

Our research on GOST shows that we can gain not two but much closer to 20
rounds compared to previous differential attacks [12, 13, 28].

Multiple-Key Attacks. In practice ciphers are NOT used with single keys.
If GOST is used with many different keys, there are new advanced differential-
black box reduction attacks on GOST, with only 232 of data per key instead of
264 which can recover some but not all GOST keys, at a total cost as low as
2101 GOST computations total to find one key, see [10].
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