
Formal verification of secure ad-hoc

network routing protocols using

deductive model-checking∗

Ta Vinh Thong
thong@crysys.hu

Budapest University of Technology and Economics,
Department of Telecommunications,

Laboratory of Cryptography and System Security (CrySyS)

TECHNICAL REPORT

Copyright c©Ta Vinh Thong, CrySyS Lab.

2012

∗This report is the extended and revised version of the 6 pages conference paper [9]

1

Contents

1 Introduction 4

2 Some attacks against secure routing protocols 5
2.1 Relay attacks . 6
2.2 An attack against the SRP protocol 6
2.3 An attack against the Ariadne protocol 8
2.4 Summary . 9

3 Motivation and Related works 9

4 The sr-calculus 11
4.1 Type system of the sr-calculus 12
4.2 Basic definitions and terminology 12
4.3 Simple type system for the applied π-calculus 12
4.4 Syntax and informal semantics of the sr-calculus 15
4.5 Semantics . 19

4.5.1 The Structural Equivalence(≡) 19
4.5.2 Reduction relation (→) 21

4.5.3 Labeled transition system (
α−→) 22

4.6 Equational Theory . 23
4.7 Examples . 23

4.7.1 Example for broadcasting and message loss 23
4.7.2 Example for multiple broadcast send and receive 24
4.7.3 Example for mobility . 25

4.8 Attacker knowledge base, static equivalence, labeled bisimilarity . 26
4.9 Example on modelling the attacker knowledge base 28
4.10 Example on labeled bisimilarity (≈Nl) 29

5 Attacker’s ability and knowledge 30

6 Application of the calculus 31
6.1 Modelling the SRP protocol and the attack 32

7 Weaker definition of security: up to barb ⇓ ACCEPT 39

8 A systematic proof technique based on backward deduction 39
8.1 General specification of on-demand source routing protocols . . . 42
8.2 The backward deduction algorithm 43

9 Automating the verification 47
9.1 The concept of the verification method 48
9.2 From the calculus to Horn clauses 48
9.3 Generating protocol clauses . 50
9.4 Initial knowledge and computation ability of an attacker node . . 52
9.5 Deductive algorithm . 53

2

9.5.1 Derivability and derivation diagram 64
9.5.2 Reasoning about the attacker activity 66

10 Application of our automatic verification method 72
10.1 Verifying the SRP protocol . 72

11 Conclusion and future work 80

3

Abstract

Ad-hoc networks do not rely on a pre-installed infrastructure, but they
are formed by end-user devices in a self-organized manner. A consequence
of this principle is that end-user devices must also perform routing func-
tions. However, end-user devices can easily be compromised, and they
may not follow the routing protocol faithfully. Such compromised and
misbehaving nodes can disrupt routing, and hence, disable the operation
of the network. In order to cope with this problem, several secured rout-
ing protocols have been proposed for ad-hoc networks. However, many of
them have design flaws that still make them vulnerable to attacks mounted
by compromised nodes. In this paper, we propose a formal verification
method for secure ad-hoc network routing protocols that helps increas-
ing the confidence in a protocol by providing an analysis framework that
is more systematic, and hence, less error-prone than the informal analy-
sis. Our approach is based on a new process algebra that we specifically
developed for secure ad-hoc network routing protocols and a deductive
proof technique. The novelty of this approach is that contrary to prior
attempts to formal verification of secure ad-hoc network routing proto-
cols, our verification method can be made fully automated, and provides
expressiveness for explicitly modelling cryptographic privitives.

1 Introduction

In the recent past, the idea of ad-hoc networks have created a lot of interest in the
research community, and it is now starting to materialize in practice in various
forms, ranging from static sensor networks through opportunistic interactions
between personal communication devices to vehicular networks with increased
mobility. A common property of these systems is that they have sporadic access,
if at all, to fixed, pre-installed communication infrastructures. Hence, it is
usually assumed that the devices in ad-hoc networks play multiple roles: they
are terminals and network nodes at the same time.

In their role as network nodes, the devices in ad-hoc networks perform basic
networking functions, most notably routing. At the same time, in their role
as terminals, they are in the hand of end-users, or they are installed in phys-
ically easily accessible places. In any case, they can be easily compromised
and re-programmed such that they do not follow the routing protocol faithfully.
The motivations for such re-programming could range from malicious objectives
(e.g., to disrupt the operation of the network) to selfishness (e.g., to save precious
resources such as battery power). The problem is that such compromised and
misbehaving routers may have a profound negative effect on the performance of
the network.

In order to mitigate the effect of misbehaving routers on network perfor-
mance, a number of secured routing protocols have been proposed for ad-hoc
networks (see e.g., [15] for a survey). These protocols use various mechanisms,
such as cryptographic coding, multi-path routing, and anomaly detection tech-
niques, to increase the resistance of the protocol against attacks. Unfortunately,

4

the design of secure routing protocols is an error-prone activity, and indeed, most
of the proposed secure ad-hoc network routing protocols turned out to be still
vulnerable to attacks. This fact implies that the design of secure ad-hoc network
routing protocols should be based on a systematic approach that minimizes the
number of mistakes made in the design.

As an important step towards this goal, in this paper, we propose a formal
method to verify the correctness of secure ad-hoc network routing protocols.
The examples presented in this paper mainly consider secure on-demand source
routing protocols, however, the general idea and methodology can be used to
reasoning of other routing protocols as well. Our approach is based on a new
process algebra that we specifically developed for modeling the operation of
secure ad-hoc network routing protocols, and a proof technique based on de-
ductive model checking. The systematic nature of our method and its well-
founded semantics ensure that one can have much more confidence in a security
proof obtained with our method than in a ”proof” based on informal arguments.
In addition, compared to previous approaches that attempted to formalize the
verification process of secure ad-hoc network routing protocols [10, 2, 3, 4], the
novelty of our approach is that it can be fully automated.

The organization of the paper is the following: In Section 2 we give an
overview of the SRP protocol [19] and the Ariadne protocol [16] and the attacks
that have been found against them. In these attacks the attacker node creates an
incorrect routing state by modifying control messages during the route discovery
phase so that the incorrect route is accepted as if it is correct. In this work
we focus on modelling and verifying the occurence of this kind of attacks. In
Section 3, we provide the discussion on the most important related works and
emphasizing the difference between them and our work. In Section 4, we give
the detailed discussion of the syntax as well as the semantics of our process
algebra. In Section 6, we demonstrate the expressive power of our algebra by
modelling the operation of SRP and a known security flaw in SRP. In Section 6
we demonstrate the application of the sr-calculus by modelling the SRP protocol
and an attack on it. In Section 9, we discuss how the verification process can
be automated and describe our deductive proof technique. In Section 10 we
demonstrate the application of our automatic verification method by detecting
an attack on the SRP protocol. Finally, in Section 11, we conclude the paper
and discuss our planned future work on this topic.

2 Some attacks against secure routing protocols

Several ”secure” routing protocols have been proposed in the recent past for
wireless ad hoc networks. However, later most of them are turned out to be
vulnerable to various attacks. In this section, we introduce some of these attacks
that serves as the motivation of our work. First, we discuss the attack called as
relay attack, which has already been modelled in the previous works [18, 5, 12].
Afterwards we give an overview of more subtle attacks against the SRP and
the Ariadne protocols [10, 3]. We emphasize that these kinds of attacks cannot

5

be modelled directly and conveniently in the previous works [18, 12, 23]. Our
emphasis is deliberately on modelling and verifying these kinds of attacks.

2.1 Relay attacks

Relay attacks are such kind of attacks in which the attacker node forwards the
received message unchaged. A typical relay attack scenario against on-demand
source routing protocols is shown in the Figure 1. In this scenario the attacker
node A receives the request message that includes the route specified by the list
of node IDs [. . . , N]. At this point, node A should append its own identifier to
the ID list above and forwards the request containing the ID list [. . . , N,A] to
the node M . However, instead the attacker forwards the message unchanged to
M . Then, node M appends it own identifier to the ID list and forwards it. This
procedure continues until the request message reached the destination node.
At this point after making verification steps the destination node sends back
a reply message. The reply message propagates backward along the route in
the request message. After a while the reply reaches node M and is forwarded
”backward”. Due to the wireless environment and the fact that the attacker
node is within the transmission range of node M , the reply is intercepted by
the attacker. When the attacker node receives the reply message it forwards it
unchanged. At the end, the source node accepts the route [. . . , N,M, . . .] which
does not exist in the current topology.

N A M

[…,N] […,N]

[…,N,M,…][…,N,M,…]

Figure 1: A typical relay attack scenario against on-demand source routing
protocols.

2.2 An attack against the SRP protocol

SRP is a secure on-demand source routing protocol for ad-hoc networks pro-
posed in [19]. The design of the protocol is inspired by the DSR protocol [17],
however, DSR has no security mechanisms at all. Thus, SRP can be viewed as a
secure variant of DSR. SRP tries to cope with attacks by using a cryptographic
checksum in the routing control messages (route requests and route replies).
This checksum is computed with the help of a key shared by the initiator and
the target of the route discovery process; hence, SRP assumes only shared keys
between communicating pairs.

In SRP, the initiator of the route discovery generates a route request message
and broadcasts it to its neighbors. The integrity of this route request is protected
by a Message Authentication Code (MAC) that is computed with a key shared
by the initiator and the target of the discovery. Each intermediate node that

6

receives the route request for the first time appends its identifier to the request
and re-broadcasts it. The MAC in the request is not updated by the intermediate
nodes, as by assumption, they do not necessarily share a key with the target.
When the route request reaches the target of the route discovery, it contains the
list of identifiers of the intermediate nodes that passed the request on. This list
is considered as a route found between the initiator and the target.

The target verifies the MAC of the initiator in the request. If the verification
is successful, then it generates a route reply and sends it back to the initiator
via the reverse of the route obtained from the route request. The route reply
contains the route obtained from the route request, and its integrity is protected
by another MAC generated by the target with a key shared by the target and
the initiator. Each intermediate node passes the route reply to the next node
on the route (towards the initiator) without modifying it. When the initiator
receives the reply it verifies the MAC of the target, and if this verification is
successful, then it accepts the route returned in the reply.

The basic problem in SRP is that the intermediate nodes cannot check the
MAC in the routing control messages. Hence, compromised intermediate nodes
can manipulate control messages, such that the other intermediate nodes do not
detect such manipulations. Furthermore, the accumulated node list in the route
request is not protected by the MAC in the request, hence it can be manipulated
without the target detecting such manipulations.

Figure 2: An attack scenario against the SRP protocol.

In order to illustrate a known attack on SRP, let us consider the network
topology shown in Figure 2. Let us further assume that node N1 initiates a
route discovery to node N3.

The attacker node A can manipulate the accumulated list of node identifiers
in the route request such that N3 receives the request with the list (N2, λ,N4),
where λ is an arbitrary sequence of fake identifiers. This manipulation remains
undetected, because the MAC computed by N1 does not protect the accumu-
lated node list in the route request, and intermediate nodes do not authenticate
the request. When the target N3 sends the route reply, A forwards it without
modification to N1 in the name of N2. As the route reply is not modified, the
MAC of the target N3 verifies correctly at N1, and thus, N1 accepts the route
(N1, N2, λ, N4, N3). However, this is a mistake, because there is no route via
nodes N2, λ, N4.

7

2.3 An attack against the Ariadne protocol

In this subsection, we show the attack has been found in [10] against the Ariadne
secure routing protocol.

Ariadne has been proposed in [16] as a secure on-demand source routing pro-
tocol for ad hoc networks. Ariadne comes in three different flavors corresponding
to three different techniques for data authentication. More specifically, authen-
tication of routing messages in Ariadne can be based on TESLA [20], on digital
signatures, or on MACs. We discuss Ariadne with digital signatures.

There are two main differences between Ariadne and SRP. First, in Ari-
adne not only the initiator and the target authenticate the protocol messages,
but intermediate nodes too insert their own digital signatures in route requests.
Second, Ariadne uses per-hop hashing to prevent removal of identifiers from the
accumulated route in the route request. The initiator of the route discovery
generates a route request message and broadcasts it to its neighbors. The route
discovery message contains the identifiers of the initiator and the target, a ran-
domly generated request identifier, and a MAC computed over these elements
with a key shared by the initiator and the target. This MAC is hashed itera-
tively by each intermediate node together with its own identifier using a publicly
known one-way hash function. The hash values computed in this way are called
per-hop hash values. Each intermediate node that receives the request for the
first time re-computes the per-hop hash value, appends its identifier to the list
of identifiers accumulated in the request, and generates a digital signature on
the updated request. Finally, the signature is appended to a signature list in the
request, and the request is re-broadcast. When the target receives the request,
it verifies the perhop hash by re-computing the initiators MAC and the perhop
hash value of each intermediate node. Then it verifies all the digital signatures
in the request. If all these verifications are successful, then the target generates
a route reply and sends it back to the initiator via the reverse of the route
obtained from the route request. The route reply contains the identifiers of the
target and the initiator, the route and the list of digital signatures obtained
from the request, and the digital signature of the target on all these elements.
Each intermediate node passes the reply to the next node on the route (towards
the initiator) without any modifications. When the initiator receives the reply,
it verifies the digital signature of the target and the digital signatures of the
intermediate nodes (for this it needs to reconstruct the requests that the inter-
mediate nodes signed). If the verifications are successful, then it accepts the
route returned in the reply.

Let us consider Figure 3, which illustrates part of a configuration where the
discovered attack is possible. The attacker is denoted by A. Let us assume that
S sends a route request towards D. The request reaches V that re-broadcasts it.
Thus, A receives the following route request message:

reqV = (rreq, S, D, ID, hV , (V), (sigV))

where ID is the random request identifier, hV is the per-hop hash value gener-
ated by V , and sigV is the signature of V .

8

Figure 3: A subtle attack against Ariadne. The figure on the left shows the
communication during the route discovery, while the figure on the right illus-
trates that at the end of the route discovery phase, the source node accepts the
route S, V,W,A,D, which is not valid because the link between W and A does
not exist.

After receiving reqV the attacker waits for an another route request from X:

reqX = (rreq, S, D, ID, hX , (V ,W ,X),(sigV , sigW , sigX)).

From reqX , A knows thatW is a neighbor of V . A computes hA =H(A,H(W,hV)),
where hV is obtained from req1, and H is the publicly known hash function used
in the protocol. A obtains the signatures sigV , sigW from req2. Then, A gen-
erates and broadcasts the following request:

reqA = (rreq, S, D, ID, hA, (V ,W ,A) (sigV , sigW , sigA))

Later, D generates the following route reply and sends it back towards S:

rep = (rreq, D, S, (V ,W ,A), (sigV , sigW , sigA), sigD).

When A receives this route reply, it forwards it to V in the name of W . Finally,
S will output the route (S,V ,W , A, D), which is a non-existent route.

2.4 Summary

To sum up this section, we note that the modelling of the relay attacks has been
addressed in some related works [12, 18]. However, relay attacks are mainly con-
cerned in neighbor discovery [21] instead of route discovery. In contrast, in our
work we primarily focus on formal verification of the attacks concerning routing,
such as the attack against the SRP and Ariadne protocols we shown above. We
note that modelling the attacks against the SRP and Ariadne protocols is more
difficult than modelling relay attacks because they required the modelling of
more complex attackers.

3 Motivation and Related works

As we can see, the discussed attacks are very subtle, thus, it is hard to detect
and reasoning about them manually. In addition, reasoning in the hand and
pencil manner is error-prone, therefore a systematic and automatic method is
required.

9

Our purpose in this paper is to provide a formal modelling of secure on-
demand source routing protocols and a systematic and automatic method for
detecting attacks similar to the attacks we introduced in the previous section.
Till now, there are only few works address directly this problem. Each method
proposed in the most important related works [12, 13, 23, 5, 18, 10, 3, 24, 22]
has numerous drawbacks that we will discuss in the following:

In works [10, 3] the authors model the operation of the protocol participants
by interactive and probabilistic Turing machines, where the interaction is real-
ized via common tapes. This model enables us to be concerned with arbitrary
feasible attacks. The security objective function is applied to the output of this
model (i.e., the final state of the system) in order to decide whether the protocol
functions correctly or not. Once the model is defined, the goal is to prove that
for any adversary, the probability that the security objective function is not
satisfied is negligible.

The main drawback of this method is that the proof is not systematic and
automated, and the framework is not well-suited for detecting attack scenarios
once the proof fails.

In this paper we aim at improving these works by adding automated verifi-
cation method based on deductive model-checking.

In order to give a formal and precise mathematical reasoning of the operation
of routing protocol for mobile ad-hoc networks several process calculi have been
proposed in the recent years. Among them the two works [12, 23] are closest to
our work.

In the work [12] the author proposes the process algebra that is called as
CMAN for formal modelling of mobile ad-hoc networks. The advantage of this
method is that it provide the modelling of cryptographic primitives and it is
focused mainly on modelling mobilily nature of mobile ad-hoc networks. The
drawback of this method is that it cannot be directly used for modelling such
attacks as the attacks scenario against the Ariadne or SRP protocols we showed
in the Section 2. In the attack scenario against the Ariadne protocol the attacker
node waits, collects information it intercepts from the neighbor nodes and use
them to construct an message that contains an incorrect route. CMAN does not
provide syntax and semantics for modelling a knowledge base of the attacker
node. In order to directly model these kind of attacks we propose the notion of
the active substitution with range in the sr-calculus.

In the work [23] the authors propose the process algebra that is called as the
ω-calculus. The main advantage of this calculus is that it provides the direct
modelling of broadcast communication and mobility. The main drawback of
this method that it does not provide the syntax and semantics for modelling
cryptographic primitives and attacker’s knowledge base. In contrast to this
our calculus provides the modelling of cryptographic primitives and attacker
accumulated knowledge.

The advantage of these process algebras is that the operation of mobile ad-
hoc networks and several properties such as loop-freedom and security properties
can be precisely and systematically described with them, however, the drawback
of them is that the proofs and reasoning are still performed manually by hand.

10

Several works in the literature address the problem of automatic verification
of routing protocols. In the works [24, 22] the authors investigate the problem
of verifying loop freedom property of routing protocols. In [24] the LUNAR
protocol is verified using the SPIN, and UPPAAL model-checkers; in [24] the
authors verified the DYMO protocol using graph transformation. In contrast
to these works we proposed an automatic verification method focuses on veri-
fying security properties of ”secure” routing protocols instead of loop freedom
property.

The two works that are most related to our work are [5, 18]. In the work
[5], and [18] the authors address the problem of verification security properties
of secure routing protocols using the SPIN model-checker and CPAL-ES tools,
respectively.

The main drawbacks of these methods are that they suffer from expres-
siveness limitation. In particular, they cannot directly model cryptographic
primitives and boadcast communications, instead they simulate cryptographic
primites with a series of bytes [5] and broadcast communication with a sequence
of unicast communication. In contrast to these works, our automatic verification
method provides a direct modelling of cryptographic primitives and neighbor-
hood.

4 The sr-calculus

In this section we define the proposed calculus: its syntax and informal seman-
tics, as well as its operational semantics. We call this calculus as sr-calculus,
where the prefix sr refers to the words secure routing.

The advantage of the sr-calculus is that it provides expressiveness for mod-
elling broadcast communication, neighborhood, mobility, and transmission range
like in CMAN [12] and the ω-calculus [23], and the explicit modelling of cryp-
tographic primitives like in the applied π-calculus [11], however, compared to
them it includes the novel definition of active substitution with range that en-
ables us to model attacker knowledge and attacks in the context of ad-hoc mobile
networks.

CMAN cannot be used to directly model the attacks we found against the
well-known SRP and Ariadne protocols [10, 3]. In these attacks the attacker can
receive information from several paths, the attacker node then collects and store
these information and construct a message that contains an incorrect route.

The ω-calculus lacks of modelling cryptographic primitives, such as digital
signature and hashing, and has been used for modelling loop-freedom properties
of AODV. Hence, it also lacks sytax and semantics for modelling attacker’s
knowledge set. In addition, neighbor nodes is organized into groups. However,
it is not easy to determine groups in the topology.

Finally, the applied pi-calculus [11] provides active substitution that can
be used to model actual attacker’s knowledge. However, it lacks syntax and
semantics for broadcasting, neighbors and deals with Dolev-Yao attacker model,
which is not true in case of MANET.

11

We combine the advantage of each in order to provide a calculus with which
we can directly and conveniently modelling and proving security properties and
reasoning about attacks discussed in Section 2.

4.1 Type system of the sr-calculus

In this subsection we provide a basic type system for the proposed calculus.
The main purpose of the type system is to reduce the number of the possible
cases to be examined during the formal security proofs. Based on the type
system we are capable of capturing errors such as arity mismatch and errounous
binding/substitution of terms. We adopt the type system proposed for the
applied π-calculus, discussed in the chapter 4 of [8], which have been shown to
be sound and complete. This type system includes a syntax and a semantics
part, which discuss the declaration of the types and the rules for typing, for
example, the type preserved property of transitions. In this paper, we only
provide a brief overview of the type system in the chapter 4 of [8].

The type system catches the errors such as arity errors and matching of
terms of different type. The type system does not include recursive types, so
the type of processes such as c〈c〉.P is not defined.

4.2 Basic definitions and terminology

Definition 1. Type assignment is an assignment v : T (or u : T) of a type T
to v (or u) that can be a name, a constant, a node ID or a variable.

Definition 2. A well-formed type environment Γ is a finite set of type assign-
ments where all names and variables are distinct. The domain of Γ is dom(Γ)
= { v | ∃ T .{ v : T} ∈ Γ }

Definition 3. Let Γ and ∆ type environments. We say that Γ extends ∆ if the
following holds:

• dom(Γ) ⊆ dom(∆)

• if v ∈ dom(∆) such that {v : T} ∈ ∆, then {v : T} ∈ Γ.

If ∆ = {v1 : T1,. . . , vn : Tn } and Γ = {u1 : T1,. . . , un : Tn } and dom(Γ) ∩
dom(∆) = ∅, then ∆ can be extended with Γ by taking their union, denoted by
∆] Γ.

4.3 Simple type system for the applied π-calculus

The set of types is divided into the sets of term types and process/behavior
types. Within the term types we distinguish among channel types, broadcast
types, name types, variable types, constant types, and node ID types.

Given a term type Tt, channel and broadcast channel types are constructed
by the unary type constructors ch(Tt) and bch(Tt), which are the types that is
allowed to carry data with term type.

12

Let Γ be a type environment and Λ an expression which may be either a
term, a process, or an extended process. A type judgment Γ ` Λ : T is an
assertion that the expression Λ has type T under the assumptions given in Γ.
In particular, Γ ` Λ : T , asserts the following depending on Λ. If Λ is a term,
then T is term type Tt. Thus Γ ` t : Tt asserts that t has term type under the
assumptions of Γ. The so called behavior type, denoted by Tproc, is introduced
for processes. Γ ` P : Tproc asserts that process P respects the type assertions
in Γ. The judgment (` Γ well-formed) means that Γ is a well-formed type
environment.

The types for the sr-calculus are generated by the grammar:

S, T ::= Tt | Tproc (Types)
Tt ::= Tch | Tbr | Tstr (Term Types)
Tstr ::= Tname | Tvar | Tf | Tconst (String Types)

Tname ::= tn1 | . . . | tnn (Name Types)
Tvar ::= tv1 | . . . | tvn (Variable Types)
Tf ::= f(T 1

str, . . . , T
n
str) (Function Types)

Tconst ::= Treq/rep | tconst i (Constant Types)
Tch ::= ch(T 1

str, . . . , T
n
str) (Channel Types)

Tbr ::= bch(T 1
str, . . . , T

n
str) (Broadcast Channel Types)

Tid ::= tl1 | . . . | tln (Node ID Types)
Tproc ::= tp1 | . . . | tpn (Process/Behavior Types)

where tn, tv, tl and tp are name, variable, node ID, and process types, respec-
tively. The abbreviation of x1 : T1,. . . , xn : Tn is defined by ~x : ~T . Of course, if
a term t has a string type Tstr then it also has a term type Tt, and if t has been
assigned to one of the type Tname, Tvar, Tf , Tconst then it implicitly has a type
Tstr. The reverse direction is not always true, hence, to avoid type conflict the
most narrow type should be assigned in the declaration. Note that within the
set of term type the channel types are distinguished from the remaining string
types because to reasoning about routing protocols we do not need to send chan-
nels, or need not to define a function that includes channel arguments. Within
the constant type we define Treq/rep as the type for the special constants rreq
and rrep which are the parts of the routing messages.

Within a function types we distinguish types of each crypto function, such
as, digital signature type, Tsig, one-way hash type, Thash, MAC function type,
Tmac. We also define types of secret key, Tskey, public key Tpkey, and symmetric
shared key Tshkey. In this paper we only use these three crypto functions, but
of course any function types can be defined in the similar way. With these types
we can ease the security verification, and reducing the number of possibilities.

Tskey ::= sk(Tid) (Secret Key Types)
Tpkey ::= pk(Tid) (Public Key Types)
Tshkey ::= k(Tid, Tid) (Shared Key Types)
Tsig ::= sign(Tstr, Tskey) (Digital Signature Types)

13

Thash ::= hash(Tstr) (One-Way Hash Types)
Tmac ::= mac(Tstr, Tkey) (MAC Types)

The syntax, reduction rules and trasition rules for the typed applied π-
calculus remains unchanged from the one for the untyped applied π-calculus.

In order to ensure that structural equivalence preserves well-typedness, we
require that the type system assigns equal types to terms that are equated by
the equational theory.

Definition 4. (Well formed environment)

• ` ∅ well-formed

• If (` Γ well-formed) and u /∈ dom(Γ), then (` Γ] u well-formed).

Definition 5. (Type rules for terms) Let t ∈ T be a term, T a type, and Γ a
well-formed type environment. Then the type judgment Γ `T t : T holds if it
can be derived by application of one of the following rules.

• If ` Γ well-formed and u : T ∈ Γ then Γ `T u : Tstr

• If Γ `T t1 : T 1
str . . . Γ `T tn : Tnstr, and the arity of f is n, then Γ `T

f(T 1
str, . . . , T

n
str) : Tstr, for each function name f .

Definition 6. (Type rules for processes) Let P ∈ P be a process, Γ a well-
formed type environment, and Tproc the behavior type. Then the judgment Γ `P
P : Tproc holds if it can be derived by application of one of the following rules.

• If (` Γ well-formed) then (Γ `P nil : Tproc)

• If (Γ `P P : Tproc) and (Γ `P Q : Tproc), then Γ `T P | Q : Tproc.

• If (Γ `P P : Tproc) then If (Γ `P !P : Tproc)

• If (Γ] {u : Tstr} `P P : Tproc) then (Γ `P νu.P : Tproc)

• If (Γ `T t1 : Tstr), (Γ `T t2 : Tstr), (Γ `P P : Tproc), (Γ `P Q : Tproc)
then (Γ `P [t1 = t2] P else Q : Tproc), and also (Γ `P [t1 = t2] P : Tproc
).

• If (Γ `T l : Tid), (Γ `T σ : Tid), (Γ `P P : Tproc), (Γ `P Q : Tproc)
then (Γ `P [l ∈ σ] P else Q : Tproc), and also (Γ `P [l ∈ σ] P : Tproc).

• If (Γ] {~x : ~Tstr} `P P : Tproc) and (Γ `T c : ch(~Tstr)) then (Γ `P
c(~x).P : Tproc).

• If (Γ `T ~t : ~Tstr) and (Γ `T c : ch(~Tstr)) and (Γ `P P : Tproc) then (Γ
`P c〈~t 〉.P : Tproc).

• If (Γ] {~x : ~Tstr} `P P : Tproc) and (Γ `T br : bch(~Tstr)) then (Γ `P
br(~x).P : bch(~Tstr)).

14

• If (Γ `T ~t : ~Tstr) and (Γ `T br : bch(~Tstr)) and (Γ `P P : Tproc) then
(Γ `P br〈~t 〉.P : Tproc). In the rest of the paper to represent broadcast
sending/receiving we simply use 〈~t〉.P , and (x).P by removing br from the
beginning.

• If (Γ `T t : Tstr) and (Γ `T x : Tstr) then (Γ `P {t/x} : Tproc).

4.4 Syntax and informal semantics of the sr-calculus

We assume an infinite set of names N and variables V, where N ∩ V = ∅.
Further, we define a set of node identifiers (node ID) L, where N ∩L = ∅. Each
node identifier uniquely identifies a node, that is, no any node pair shares the
same identifier.

We define a set of terms as

t ::= req | rep | true | ACCEPT | c, n,m, k | li, la | x, y, z, v, w | f(t1, . . . , tk)

• req and rep are unique constants that represent the req and rep tags in
route request and reply messages;

• true is a special constant that models the logical value 1;

• ACCEPT is a special constant. The source node outputs ACCEPT when
it receives the reply message and all the verifications it makes on the reply
are successful.

• c models communication channel;

• n, m and k are names and are used to model some data (e.g., a random
nonce, a secret key);

• li, i can be numbers or letters not equal to a, and la are node IDs of the
honest and the attacker node, respectively;

• x, y, z, v and w are variables that can represent any term, that is, any
term can be bound to variables.

• Finally, f is a constructor function with arity k and is used to construct
terms and to model cryptographic primitives, route request and reply
messages. For instance, digital signature is modelled by the function
sign(t1, t2), where t1 models the message to be signed and t2 models the
secret key. Route request and reply messages are modelled by the function
tuple of k terms: tuple(t1,. . . ,tk), which we abbreviate as (t1,. . . ,tk).

We note that, this definition of term is new compared to CMAN, ω-calculus,
and the applied pi-cacluclus in that it includes constants rep, req for modelling
route discovery protocols, and process [l ∈ σ]P for examining the neighborhood.

The internal operation of nodes is modelled by processes. Processes can be
specified with the following syntax, and inductive definition:

15

P , Q, R ::= processes
c〈t〉.P unicast send
c(x).P unicast receive
〈t〉.P broadcast send
(x).P broadcast receive
P |Q composition
νn.P restriction
!P replication
[ti = tj]P if
[l ∈ σ]P in
0 nil
let (x = t) in P let

We note that, this definition of processes is novel compared to ω-calculus in
that it includes constructor and destructor applications. Constructor/destructor
application is used to model cryptographic primitives. Compared to CMAN it
includes also the posibility of unicast. Finally, it differs from the applied pi-
calculus in that it includes broadcast send and receive actions.

• The processes c〈t〉.P represents the sending of message t on channel c
followed by the execution of P , and c(x).P represents the receiving of
some message and binds it to x in P . For example, the communication
between c〈t〉.P and c(x).P can be described as the reduction step of the
parallel composition, namely, c〈t〉.P | c(x).P −→ P | P{t/x}. These two
process model the unicast receive actions.

• The two processes 〈t〉.P , and (x).P represent the broadcast send and re-
ceive. Compared to the unicast case they does not contain the channel,
which intends to model the fact that there is no any specified target.

• A composition P |Q behaves as processes P and Q running in parallel.
Each may interact with the other on channels known to both, or with
the outside world, independently of the other. Given a family of pro-
cesses P1, P2, . . . Pk, we write

∏
i∈1...k Pi, or

∏
i∈{1...k} Pi for their parallel

composition P1|P2| . . . |Pk.

• A restriction νn.P is a process that makes a new, private name n, and
then behaves as P .

• A replication !P behaves as an infinite number of copies of P running in
parallel.

• Processes [ti = tj]P and [l ∈ σ]P mean that if t1 = t2 and l ∈ σ, respec-
tively, then process P is ”activated”, else they get stuck and stay idle.

• The nil process 0 does nothing.

16

• Finally, let (x = t) in P means that the procedure of binding t to free
occurrences of x in process P .

A ”physical” node is defined as bP cσl , which represents a node with identifier l
behaves as P and its transmission range covers nodes with the identifiers in the
set σ. Two nodes are neighbors if they are in each other’s range. We note that σ
can be empty, denoted as bP cl, which means that the node has no connections.

A networks, denoted as N , can be an empty network with no nodes: 0N ;
a singleton network with one node: bP cl; the parallel composition of nodes:
bP1cσ1

l1
| bP2cσ2

l2
, where σ1 and σ2 may include l2 and l1 respectively; a network

with name restriction, and the parallel composition of networks: N1 | N2.

N ::= 0N | bP cl | (bP1cσ1

l1
| bP2cσ2

l2
) | νn.N | (N1 | N2)

Note that, bP cl2l1 and bQcl1l2 means the node l1 and node l2 are bidirectionally
connected.

We stress that we use the form bP cσl that is already proposed in CMAN,
and not the definition of groups (where neighbor nodes is organized to the same
group) as in ω-calculus because we found that the topology of Mobile Ad-hoc Net-
works is usually represented as graph and given in an adjacency matrix, thus,
using the groups method in ω-calculus an algorithm can be required which ex-
tracts the cliques in the graph. Moreover, there can be redundant groups that
should be handle properly for efficiency purpose. Finally, we prefer the bP cσl
form because it gives us a possibility to model uni-directional links, which is not
the case in ω-calculus. However, we note that CMAN does not include syntax
and semantics for uni-directional links.

νn.N represents the creation of new name n, such as secret keys, a nonce
and only N knows it.

In order to modelling attacker’s knowledge base and make modelling the
attacks, where attacker waits, collects and stores information feasible and more
convenient, we extend the definition of networks with the substitution with range
and the restriction on variables. Additionally, we adapt the the notion of active
substitution for modelling the attacker’s actual knowledge.

Again, we emphasize that the notion of active substitution and static equiv-
alence have been used in the applied pi-calculus, however, it models the knowl-
edge of a Dolev-Yao attacker who eavesdrops every message that has been sent
by communicating partners without considering the attacker model in wireless
ad-hoc networks.

Our contribution results in slightly modifying the notion active substitution
to model such an adversary who can only intercept messages sent by its neigh-
bors. More precisely, the intercepting of broadcasted information is restricted to
only nodes in the broadcast range. Furthermore, we adapt the concept of active
substitution for modelling the attacker’s knowledge set, which can continuesly
change during the protocol. Finally, we emphasize that this is novel compared
to all of the three calculi: CMAN, ω-calculus, and applied pi-calculus.

17

The definition of the extended network is as follows:

E ::= extended network
N plain network
Ei|Ej parallel composition
νn.E name restriction
νx.E variable restriction
b{t/x}σcactive substitution with range

• N is a plain network we already discussed above.

• Ei|Ej is a parallel composition of two extended networks.

• νn.E is a restriction of the name n to E.

• νx.E is a restriction of the variable x to E.

• b{t/x}σc, which is abbreviated as {t/x}σ in the rest of the paper: {t/x}σ
means that the substitution {t/x} is applied to any node that is in par-
allel composition with {t/x} and its identifier is in the set σ. Intu-
itively, we can say that σ is the range of the substitution {t/x}. For-
mally, we can explain the notion of active substitution with range by
νx.
(
{t/x}σ |

∏
li∈σ bQic

σi
li

)
. This formula in turn can be defined as νx. ({t/x} |Aσ),

where Aσ is the extended process (the notion of extended process A is pre-
sented in the applied π-calculus) that only includes the internal behavior
of nodes in σ, and {t/x} is the active substitution known in the applied
π-calculus.

We write fv(E), bv(E), fn(E), and bn(E) for the sets of free and bound
variables and free and bound names of E, respectively. These sets are defined
as follow:

fv({t/x}σ)
def
= fv(t) ∪ {x}, fn({t/x}σ)

def
= fn(t) ∪ {node IDs ∈ σ}

bv({t/x}σ)
def
= ∅, bn({t/x}σ)

def
= bn(t)

An extended network is closed when every variable is either bound or defined
by an active substitution with range.

In the applied π-calculus, a frame is an extended process built up from 0 and
active substitutions of the form {t/x} by parallel composition and restriction.
Analogously, we follow this concept and we let the frame of network, denoted
by ϕN , be an extended network built up from 0N and active substitutions with
range, b{t/x}σc (or simply {t/x}σ). Every extended network E can be mapped
to a frame ϕN (E) by replacing every plain network embedded in E with empty
network 0N . We distinguish the notations frame of network (ϕN) and frame of
processes (ϕ) also known in case of the applied π-calculus.

For example, the frame of process E, where

E = {t1/x1}σ1 | {t2/x2}σ2 |. . . | {tk/xk}σk |
∏
i bQic

σi
li

18

is ϕN (E) = {t1/x1}σ1 | {t2/x2}σ2 |. . . | {tk/xk}σk .
The frame ϕN (E) can be viewed as an approximation of the behavior of E

that accounts for the static knowledge exposed by E to its environment, but
not for E’s dynamic behavior.

In the next section we give the semantics of the calculus in order to reason
about secure on-demand source routing protocols.

4.5 Semantics

First we define the strutural equivalence relation which is used to simplify a
process of large size to a smaller one that is the is equivalent to the original
one. This relation is very important in proofs. We say that two processes are
structurally equivelence, if they are identical up to structure.

4.5.1 The Structural Equivalence(≡)

In particular, structural equivalence relation is defined as the least equivalence
relation satisfying bound name, bound variable conversion (also called as α-
conversion) and the following rules:

(Rules for Processes:)
(Struct P-α) P ≡x←y Q; P ≡n1←n2 Q
(Struct P-Par1) P |0 ≡ P
(Struct P-Par2) P1|P2 ≡ P2|P1

(Struct P-Par3) (P1|P2)|P3 ≡ P1|(P2|P3)
(Struct P-Switch) νn1.νn2.P≡ νn2.νn1.P
(Struct P-Repl) !P ≡ P |!P
(Struct P-Drop) νn.0≡ 0
(Struct P-Extr) νn.(P |Q)≡ P |νn.Q if n /∈ fn(P)
(Struct P-Let) let x = t in P ≡ P{t/x}
(Struct P-If1) [t = t]P ≡ P
(Struct P-If2) [ti = tj]P≡ 0 (if ti 6= tj)
(Struct P-In1) [l ∈ σ]P ≡ P (if l ∈ σ)
(Struct P-In2) [l ∈ σ]P ≡ 0 (if l is not in σ)

The meaning of each rule is the following:

• Struct P-α: P and Q are stuctural equivalent if Q can be obtained from P
by renaming one or more bound names/variables in P, or vice versa. For
instance, processes (x).P and (y).P are structural equivalent by renaming
y to x. This is denoted by ≡x←y.

• Struct P-Par1: The parallel composition with the nil process does not
change anything, the result is the same as the original parallel composition.

• Struct P-Par2: The parallel composition is commutative.

19

• Struct P-Par3: The parallel composition is associative.

• Struct P-Switch: The restriction is commutative.

• Struct P-Drop: Restriction does not affect the nil process, thus, we can
drop it.

• Struct P-Extrusion: We can drop the restriction from process P when P
does not contain the restricted name as free name, that is, the restricted
name does not occur in P .

• Struct P-Let: Both sides represent the binding of the term t to variable x
in P.

• Struct P-If1, P-If2: if the two terms are the same then the execution of P
begins, while if they are distinct then the process gets stuck.

• Struct P-In1, P-In2: If the node identifier l is in the set σ then the execu-
tion of P begins, otherwise the process P gets stuck and stays idle.

The next additional rules are valid to structural equivalence:

P ≡ Q,Q ≡ R
P ≡ R

P ≡ P ′

P |Q ≡ P ′|Q
P ≡ P ′

νn.P ≡ νn.P ′

The first one means structural equivelence relation is transitive: if P ≡ Q and
Q ≡ R then P ≡ R; the second and third rules show that structural equivalence
closed to replication and restriction. Similarly the rules for network can be
defined:

(Rules for Networks:)
(Struct N-Par1) N |0N≡N
(Struct N-Par2) N1|N2 ≡N2|N1

(Struct N-Par3) (N1|N2)|N3 ≡N1|(N2|N3)
(Struct N-Switch) νn1n2.N ≡ νn2n1.N
(Struct N-Extr) (νn.N1)|N2 ≡ νn.(N1|N2) (if n /∈ fn(N2) ∪ id(N1))
(Struct N-Node) bP cσl ≡ bQc

σ
l (if P ≡ Q)

(Struct N-Rest) bνn.P cσl ≡ νn. bP c
σ
l

fn(N), id(N) represents the set of free names of N , the set of free varibles of
N , and the set of node identifiers in N , respectively. The first five rules are
standard, the only rules require some words to mention is the (Struct N-Node)
and (Struct N-Rest). The first means that two networks are strutural equivalent
if it contains nodes with the same internal operation and they have the same
identifier with same neighbors. The second rule says that a name restriction on
process can be seen as a restriction on a node.

Finally the rules for the extended network E are defined as follows:

Again, we emphasize that this part is new compared to CMAN, and the ω-
calculus in that it enables us to model the knowledge base of the attacker node.

20

The knowledge of the attacker can improve after series of communication steps.
Also it is novel compared to the applied π-calculus in that active substitution has
range for modelling neighborhood.

(Rules for Extended Networks:)
(Struct E-Par1) E|0N ≡ E
(Struct E-Par2) E1|E2 ≡ E2|E1

(Struct E-Par3) (E1|E2)|E3 ≡ E1|(E2|E3)
(Struct E-Extr) (νn.E1)|E2≡ νn.(E1|E2) (if n /∈ fn(E2) ∪ fv(E2) ∪ id(E1))
(Struct E-Switch) νn1n2.E ≡ νn2n1.E
(Struct E-Intro) νx.{t/x}σ≡ 0N
(Struct E-Try) {t/x}σ|E≡ {t/x}σ|E{t/x}σ
(Struct E-Rewrite) {t1/x}σ≡ {t2/x}σ (if t1 = t2)

fn(E), fv(E) and id(E) represents the set of free names of E, the set of free
varibles of E, and the set of node identifiers in E, respectively. The first five rules
is similar and come straightforward from the rules on networks and processes.
Rule (Intro) is used to introduce any active substitutions. The rule (Struct E-
Rewrite) say that two active subtitutions with the same range σ, and terms are
stucturally equivalent. Rule (Try) represents the trying to apply substitution
{t/x}σ to the extended network E: For example, let E be

E = νñ({t1/x1}σ1 |. . . | {tk/xk}σk | bQicσili |. . . | bQjc
σj
lj

)

where ñ is a collection of non-duplicated names. Then E{t/x}σ, where ñ /∈
fn(t) ∪ fv(t) ∪ id(E), is

νx.νñ.({t1/x1}σ1 |. . . | {tk/xk}σk | bQicσili {t/x}
σ | . . . | bQjc

σj
lj
{t/x}σ)

Intuitively, this means that the substitution is applied on every plain network.
However, this substitution successes at bQicσili only in case location li ∈ σ,
otherwise, it has no effect. This is formally defined by the rules (E-Try) and
(E-Subst):

(Struct E-Try-1) bQicσili {t/x}
σ ≡li∈σ bQi{t/x}c

σi
li

(Struct E-Try-2) bQicσili {t/x}
σ ≡li /∈σ bQic

σi
li

(Struct E-Subst-1) {t/x}σ| bQicσili ≡li∈σ {t/x}
σ| bQi{t/x}cσili

(Struct E-Subst-2) {t/x}σ| bQicσili ≡li /∈σ {t/x}
σ| bQicσili

In the next subsection we introdude the reduction relation that are used to
model the internal operation/computation of nodes, and to model a reduction
step in case of networks.

4.5.2 Reduction relation (→)

(Internal reduction rules for processes:)
(Red P-Let) let x = t in P → P{t/x}

21

(Red P-If1) [t = t]P → P
(Red P-If2) [ti = tj]P → 0 (if ti 6= tj)
(Red P-In1) [l ∈ σ]P → P (if l ∈ σ)
(Red P-In2) [l ∈ σ]P → 0 (if l is not in σ)

The operations (i) binding a variable to a term in a process; (ii) checking the
equality of two terms; (iii) checking the presence of a node identifier in a set
of node identifier; and (iv) destructor computations such as checking digital
signatures, are all internal operations of nodes. Next we introduce the internal
reduction steps in a network. Internal or silent steps that can be performed by
nodes are connecting and disconnecting that concern the mobility:

(Reduction relations for mobility:)

(Red Connect) bP cσ1

l1
| bQcσ2

l2
→{l1• l2} bP c

σ1l2
l1
| bQcσ2

l2
, where l2 is not in σ1.

(Red Disconnect) bP cσ1l2
l1
| bQcσ2

l2
→{l1◦ l2} bP c

σ1

l1
| bQcσ2

l2
, where l2 is not in σ1.

The Reduction relation (Red Connect) model the scenario in which the node
l2 gets into the transmission range of the node l1. This reduction relation is
denoted as→{l1• l2}. Its counterpart is the reduction relation (Red Disconnect)
is denoted as →{l1◦ l2} and says that node l2 get out of the transmission range
of the node l1.

We note that although we have defined the rules for mobility, we will not use
them in our proofs because we are only considering the analysis of the attacks
discussed in Secition 2. Hence, we always assume that the topology does not
change during the attack.

In order to reason about secure on-demand source routing protocols, and
describe the operation semantics of the sr-calculus we introduce the labeled
transition system of the calculus in the following subsection. Labelled transi-
tion system is very important in proofs, and captures such activities made by
nodes that can be observed by the environment. This activity , for instance, is
broadcast sending.

4.5.3 Labeled transition system (
α−→)

We note that broadcast and unicast sending are non-deterministically executed,
while receiving actions can take place at the same time.

The traditional operation semantics for processes is defined as a labeled
transition system (P,G,→) where P represents a set of processes, G is a set of
labels, and → ⊆ P × G × P. In our case it is the ternary relation (N ,G,→)
where N represents a set of extended networks, G is a set of labels, and → ⊆
N × G × N . The following labeled transitions are specified in this transition
system in the sr-calculus.

(Labeled transition rules for networks)

(Ext BroadSend1) νñ. b〈t〉.P cσl
νx.〈x〉:l{σ}−→ νñ. ({t/x}σ| bP cσl)

(Ext BroadSend2) b〈t〉.P cσl
νx.〈x〉:lσ−→ ({t/x}σ| bP cσl)

22

(Ext BroadRecv1) b(x).Qcσ2

l

(t)σ:{l∈σ}−→ bQ{t/x}cσ2

l

(Ext BroadRecv2) νñ. b(x).Qcσ2

l

(t)σ:{l∈σ}−→ νñ. bQ{t/x}cσ2

l

New names ñ typically represent some secret key or nonce in secure on-demand
source routing protocols. The rules (Ext BroadSend1-2) say that the node l has
broadcast term t, hence, it is now available for nodes in its range, σ. This is
modelled by {t/x}σ and νx, which restricts the substitution to nodes within the
range. The rules (Ext BroadRecv1-2) say that if the listening node l is within
σ (which is the range of the node that sent t, denoted by (t)σ) then it obtains t.

4.6 Equational Theory

The destructor applications (e.g., proposed in the spi-calculus), which basically
is the inverse of functions, and are used to model verification computations on
messages. Formally, it is the process let (x = g(t1, . . . , tn)) in P else Q, which
tries to evaluate g(t1, . . . , tn) if this succeeds, x is bound to the result and P is
executed, otherwise, Q is executed. For instance, a typical destructor can be
verification of digital signature as checksign(sign(x, sk(y)), pk(sk(y))), where the
constructor pk(sk(y)) represents the public key generated from the given secret
key.

To make the proofs and the system specification be more simpler, instead of
using destructor applications, we use the notion of equational theory proposed
in the applied π-calculus. An equational theory Eq is defined over the set
of function symbols

∑
. It contains a set of equations of the form t1 = t2,

where terms t1, t2 are defined in
∑

. Like the destructor application it allows
us to capture relationships between terms defined in

∑
. Equality modulo the

equational theory, written =Eq, is defined as the smallest equivalence relation
on terms, that contains Eq and is closed under application of function symbols,
substitution of terms for variables and bijective renaming of names [11]. For
instance, dec(enc(x, y),y) = x and checksign(sign(x, y),pk(y)) = true for a
special constant true. Note that we write = instead of =Eq for simplicity because
in our case it is clear from the context.

4.7 Examples

Next we show the application of active substitution with range and the defined
labeled transition system on two example networks. The first example network
illustrated in the Figure 4 includes three nodes.

4.7.1 Example for broadcasting and message loss

In this simple network node P is assigned the identifier l1 node Q has identifier
l2 and node R is at l3. Node P and node Q are neighbors, but node P and R
are not. Thus, when P broadcasts message t, only Q receives t. The followong
labeled transitions model the procedure in which P broadcast t, and only Q
received this.

23

Q P R

t t

Figure 4: An example network

(
b〈t〉.P1cl2l1 | b(y).Q1cl1l2 | b(z).R1cl3

)
νx.〈x〉:l1{l2}−→(

{t/x}{l1,l2}| bP1cl2l1 | b(y).Q1cl1l2 | b(z).R1cl3
)

(t){l1,l2}:{l2∈{l1,l2}}−→(
{t/x}{l1,l2}| bP1cl2l1 | bQ1{t/x}cl1l2 | b(z).R1cl3

)
.

This example includes only one broadcast step. There is no replication. First
the rule (Ext BroadSend2) is applied, then, the rule (Ext BroadRecv1) is ap-
plied, which models Q receives t, because l2 ∈ {l1, l2}.

4.7.2 Example for multiple broadcast send and receive

The next example is a bit more complicated that includes replication and mul-
tiple broadcasts. The network can be seen in the Figure 5. Here, both nodes
P and Q are the neighbors of R. First P broadcasts t1 then Q broadcasts t2.
Node R is under replication which intuitively means that it repeatedly listens
for messages.

P R Q

t1 t2

Figure 5: Another example network(
b〈t1〉.P c{l3}l1

| b〈t2〉.Qc{l3}l2
| b!(y).Rc{l1,l2}l3

)
νx.〈x〉:l1{l3}−→(

{t1/x}{l1,l3}| bP c{l3}l1
| b〈t2〉.Qc{l3}l2

| b!(y).Rc{l1,l2}l3

)
(t1)

{l1,l3}:{l3∈{l1,l3}}−→(
{t1/x}{l1,l3}| bP c{l3}l1

| b〈t2〉.Qc{l3}l2
| bR{t1/x} | !(y).Rc{l1,l2}l3

)
νz.〈z〉:l2{l3}−→(

{t1/x}{l1,l3}|{t2/z}{l2,l3}| bP c{l3}l1
| bQc{l3}l2

| bR{t1/x} | !(y).Rc{l1,l2}l3

)
(t2)

{l2,l3}:{l3∈{l2,l3}}−→(
{t1/x}{l1,l3}|{t2/z}{l2,l3}| bP c{l3}l1

| bQc{l3}l2
| bR{t2/z}| R{t1/x} | !(y).Rc{l1,l2}l3

)
.

Each labeled transition step is similar as in the previous example with the only
difference that each rule is applied twice due to the two broadcast communica-
tions.

24

4.7.3 Example for mobility

The next example illustrate the mobility issue and message loss when the mes-
sage sent by a node N1 is not received by an another node N2 because N2 moved
out of the transmission range of N1. The scenario can be seen in the Figure 6.
In this scenario, at first two nodes N1 and N2 have no connection after that
the node N2 gets into the transmission range of the node N1. After this the
message t broadcasted by N1 is received by N2. In the next reduction step N2

moves out of the transmission range of N1, and then the message t sent by N1

is not intercepted by N2, thus, t is lost.

Figure 6: Example for mobility and message loss.

We let N1 and N2 be b!〈t〉.P1cl1 , and b!(x).P2cl2 , respectively. At first, they are
not connected. After the reduction relation→{l1•l2} the node N2 moves into the
transmission range of the node N1. Then node N1 broadcasts t, which is then

received by N2. These steps are modelled by the labeled transitions
νx.〈x〉:l1{l2}−→

and
(t){l1,l2}:{l2∈{l1,l2}}−→ . After these labeled transition steps the operation of

nodes N1 and N2 get into the states P1 and P2{t/x}, respectively. As the next
step, node N2 moved out of the transmission range of N1. This modelled by the
reduction relation →{l1◦l2}. At this time, node N1 against broadcasts t, which
now is not intercepted by N2.

(
b!〈t〉.P1cl1 | b!(x).P2cl2

)
→{l1•l2}

(
b!〈t〉.P1cl2l1 | b!(x).P2cl2

)
νx.〈x〉:l1{l2}−→(

{t/x}{l1,l2} | bP1 | !〈t〉.P1cl2l1 | b!(x).P2cl2
)

(t){l1,l2}:{l2∈{l1,l2}}−→(
{t/x}{l1,l2} | bP1 | !〈t〉.P1cl2l1 | bP2{t/x} | !(x).P2cl2

)
→{l1◦l2}(

{t/x}{l1,l2} | bP1 | !〈t〉.P1cl1 | bP2{t/x} | !(x).P2cl2
) νy.〈y〉:l1{l2}−→(

{t/y}{l1} | {t/x}{l1,l2} | bP1 | !〈t〉.P1cl1 | bP2{t/x} | !(x).P2cl2
)
.

In the next subsection we introduce the static equivalent and labeled bisimilarity
in the new context, in particular, on Mobile Ad-hoc Networks. We can use them
to prove security properties of secure on-demand source routing protocols, as
well as reasoning about attacks.

25

4.8 Attacker knowledge base, static equivalence, labeled
bisimilarity

We let L(N) be the set of identifier li’s in the network N , again we recall that
each li is a unique name in the network, and identify each node of the network.
Then we let connectj(L(N)) ∈ C(N) be a set of all links in the j-th topology of
the network N . C(N) is the set of all possible topologies of N .

Recall that an extended network is composed of active substitution with
range and plain networks as follow:

E=νñ. ({t1 /x1
}σ1 | {t2 /x2

}σ2 | . . . | {tm /xm}
σm |N1| . . . |Nr)

The output of the extended network E is defined by a frame ϕ, which is com-
posed of name restrictions and a parallel composition of all active substitutions:
ϕ = νñ. ({t1 /x1

} | {t2 /x2
} | . . . | {tm /xm}). We note that in ϕ the ranges σ1, . . . ,

σn are removed from active substitutions with range.

Intuitively, the frame represents the output of the network. We note that while
the attacker node knows only the messages sent by its neighbors the wireless
environment knows all of the sent messages. By hearing everything the wireless
environment can distinguish the operation of two networks. When an attack
(against a routing protocol) is executed successfuly on a specific topology the
wireless environment will be aware of it, because it can distinguish the correct
from the incorrect operations.

Taking into account that in our adversary model the attacker is weaker than
the Dolev-Yao attacker in the sense that he cannot eavesdrop all the messages
sent in the network but only messages from its neighbors. On the other hand,
the attacker can perform numerous computation steps based on its knowledge.
Adapting the notion of frame, the accumulated knowledge base of the
attacker is defined as the frame with the identifier la as parameter: ϕ(la). The
frame ϕ(la) can be seen as the ”subset” of the frame ϕ, because it contains only
such active substitution(s) {ti /xi}

σi (i∈{1, . . . ,m}) where la ∈ σi. That is,

ϕ(la)=νñ.
(
{ti /xi}

σi |
{
tj /xj

}σj | . . . | {tk /xk}σk),
where la ∈ σi, la ∈ σj ,. . . , la ∈ σk, and {i, j, . . . , k} ⊆ {1, 2 . . . , n}.

Definition 7. Two terms t1 and t2 are equal in a frame ϕ, and write [t1 = t2]ϕ,
if and only if ϕ ≡ νñ.ω, t1ω = t2ω, and {ñ} ∩ (fn(t1) ∪ fn(t2)) = ∅ for some
names ñ and substitution ω.

Definition 8. Two closed frames ϕ and ψ are statically equivalent, and write
ϕ ≈s ψ, when dom(ϕ) = dom(ψ) and when, for all terms t1 and t2, we have
[t1 = t2]ϕ if and only if [t1 = t2]ψ.

We say that two closed extended networks are statically equivalent, and write
E1 ≈s E2, when their frames are statically equivalent.

Lemma 1. Static equivalence is closed by structural equivalence, by reduction,
and by application of closing evaluation contexts C[-].

26

Proof. Due to the definition of frame we use in static equivalent is the same as
in the applied π-calculus. The proof is also the same as in [11].

The advantage of the static equivalence is that it does not depend on the
arbitrary environment of processes. Instead in order to check the validity of the
equivalent it is enough to verify the frames we already know.

Unlike the spi-calculus [1], which is designed for reasoning about security
protocols, where one has to define the relation < that pairs two processes be-
tween which he wants to prove observational equivalence. Furthermore, one has
to define the cipher environment and takes care about the attacker’s (process R
that comes into contact with the two processes as a parallel composition) condi-
tion after each relation step, that is, one has to prove that secret key materials
still not be obtained by the attacker (that is, names represents secret keys not
become a free name of R).

Finally, we define the labeled bisimilarity in the context of Mobile Ad-Hoc
Network. The advantage of the labeled bisimilarity is that it does not depend
on an arbitrary context but only on the frames which is well-known after each
transition step.

In order to make the definition be intuitive in the context of Mobile Ad-Hoc
Networks, in the next definition without corrupting the correctness we assume
that

E1 consists of one plain network N1, and E2 consists of one plain network
N2. Again, we note that we are considering only the reasoning about the attacks
discussed in Section 2, hence, we assume that the topology remains unchanged
during attacks

Definition 9. Labeled bisimilarity (≈Nl) is the largest symmetric relation <
on closed extended networks such that E1 < E2 implies: L(N1) = L(N2) and
connecti(L(N1)) = connectj(L(N2)), and

1. E1 ≈s E2;

2. if E1 −→ E′1, then E2 −→∗ E′2 and E′1 < E′2 for some E′2; (This is the
induction based on internal reductions);

3. if E1
α−→ E′1 and fv(α) ⊆ dom(E1) and bn(α) ∩ fn(E2) = ∅; then

E2 −→∗
α−→−→∗ E′2 and E′1 < E′2 for some E′2. (This is the induction

based on labeled relations). Here α can be a broadcast, an unicast, or a
receive action.

Intuitively, this means that the outputs of the two networks of same topology
cannot be distinguished during their operation. In particular, the first point
means that at first E1 and E2 are statically equivalent; the second point says
that E1 and E2 remains statically equivalent after internal reduction steps.
Finally, the third point says that if the node l in E1 outputs (inputs) something
then the node l in E2 outputs (inputs) the same thing, and the ”states” E′1
and E′2 they reach after that remain statically equivalent. Here, →∗ models the

27

sequential execution of some internal reductions, or more formally, a transitive
and reflexive closure of →.

Definition 10. Given E1 and E2 such that L(N1) = L(N2). We say that E1

and E2 are labeled bisimilar if they are labeled bisimilar in every same topology.
That is, ∀connecti ∈ C(N1), ∀connectj ∈ C(N2), such that connecti(L(N1)) =
connectj(L(N2)) : E1 ≈Nl E2.

4.9 Example on modelling the attacker knowledge base

Let us consider the example topologies in the Figure 7. Next we demonstrate
how to model that the attacker node collects information, namely, how the
attacker builds its knowledge base during the route discovery phase.

Figure 7: On the left is the topology in which an attack is found against the SRP
protocol: Node N1 initiates the route discovery towards node N3, and node NA
is the attacker node. On the right is the topology in which an attack is found
against the Ariadne protocol: Node NS initiates the route discovery towards
node ND, and node NA is the attacker node.

First, we consider the scenario on the left. Let N1 be bP1c{l2,la}l1
, N2 be

bP2c{l1,la}l2
, N3 be bP3c{la,l4}l3

, N4 be bP4c{la,l3}l4
, and NA be bPAc{l1,l2,l3,l4}la

. Then
the topology on the left of the Figure 7 is specified as:

netw1
def
= bP1c{l2,la}l1

| bP2c{l1,la}l2
| bPAc{l1,l2,l3,l4}la

| bP3c{la,l4}l3
| bP4c{la,l3}l4

After the broadcasting of the request req1 by node N1 netw1 gets into the state
netw′1.

netw1
νx.〈x〉:l1{l2,la}−→ netw′1, where

netw′1
def
= {req1 /x}{l2,la} | bP ′1c

{l2,la}
l1

| bP2c{l1,la}l2
| bPAc{l1,l2,l3,l4}la

|
bP3c{la,l4}l3

| bP4c{la,l3}l4

The active substitution with range {req1 /x}{l2,la} means that the attacker node
intercepts the request req1 because la∈ {l2, la}. Thus, at this time the knowledge
base of the attacker node is increased with req1. The process P ′1 is the process
we reach from P1 after broadcasting req1.

Then, after N2 broadcasts req2 the network netw′1 reaches the state netw′′1 :

28

netw′1
νy.〈y〉:l2{l1,la}−→ netw′′1 , where

netw′′1
def
= {req2 /y}{l1,la} | {req1 /x}{l2,la} | bP ′1c

{l2,la}
l1

| bP ′2c
{l1,la}
l2

|
bPAc{l1,l2,l3,l4}la

| bP3c{la,l4}l3
| bP4c{la,l3}l4

The active substitution with range {req2 /y}{l1,la} means that the attacker node
intercepts the request req2 because la∈ {l1, la}. Hence, at this point the knowl-
edge of the attacker node has been extended with req1 and req2. Formally, let
us assume that the initial knowledge of the attacker is zero, then we have ϕ(la)
= {req2 /y} | {req1 /x}.

The scenario on the right side in the Figure 7 can be described in the same
manner as in the scenario on the left side.

We note that this ability of the sr-calculus is novel compared to CMAN and the
ω-calculus. With this ability the sr-calculus can be used to directly modelling the
attacks found against the SRP and Ariadne protocols, which is not the case in
CMAN and the ω-calculus.

4.10 Example on labeled bisimilarity (≈N
l)

Let us consider the example network and scenario netw1 in the Figure 8 that is
similar to the case in the Figure 5. In addition, let us consider the another net-
work netw2, which has the same topology (node identifiers and neighborhood)
as netw1. However, in netw2 the first node has the internal operation 〈t3〉.P ′ in
which the message t3 is broadcast instead of t1 as in the case of 〈t1〉.P , where
t1 6= t3.

Figure 8: The two networks netw1 and netw2 have the same topology but the
operations of the leftmost nodes differ (P and P’).

netw1
def
=
(
b〈t1〉.P c{l3}l1

| b〈t2〉.Qc{l3}l2
| b!(y).Rc{l1,l2}l3

)
νx.〈x〉:l1{l3}−→(

{t1/x}{l3}| bP c{l3}l1
| b〈t2〉.Qc{l3}l2

| b!(y).Rc{l1,l2}l3

)
(t1)

{l3}:{l2∈{l3}}−→(
{t1/x}{l3}| bP c{l3}l1

| b〈t2〉.Qc{l3}l2
| bR{t1/x} | !(y).Rc{l1,l2}l3

)
νz.〈z〉:l2{l3}−→(

{t1/x}{l3}|{t2/z}{l3}| bP c{l3}l1
| bQc{l3}l2

| bR{t1/x} | !(y).Rc{l1,l2}l3

)
(t2)

{l3}:{l2∈{l3}}−→(
{t1/x}{l3}|{t2/z}{l3}| bP c{l3}l1

| bQc{l3}l2
| bR{t2/z}| R{t1/x} | !(y).Rc{l1,l2}l3

)
.

29

netw2
def
=
(
b〈t3〉.P ′c{l3}l1

| b〈t2〉.Qc{l3}l2
| b!(y).Rc{l1,l2}l3

)
νx.〈x〉:l1{l3}−→(

{t3/x}{l3}| bP ′c{l3}l1
| b〈t2〉.Qc{l3}l2

| b!(y).Rc{l1,l2}l3

)
(t3)

{l3}:{l2∈{l3}}−→(
{t3/x}{l3}| bP ′c{l3}l1

| b〈t2〉.Qc{l3}l2
| bR{t1/x} | !(y).Rc{l1,l2}l3

)
νz.〈z〉:l2{l3}−→(

{t3/x}{l3}|{t2/z}{l3}| bP ′c{l3}l1
| bQc{l3}l2

| bR{t1/x} | !(y).Rc{l1,l2}l3

)
(t2)

{l3}:{l2∈{l3}}−→(
{t3/x}{l3}|{t2/z}{l3}| bP ′c{l3}l1

| bQc{l3}l2
| bR{t2/z}| R{t1/x} | !(y).Rc{l1,l2}l3

)
.

It is easy to see that netw1 and netw2 are not labeled bisimilar, because their
outputs, that is their frames {t1/x}|{t2/z} and {t3/x}|{t2/z} can be distin-
guished because t1 6= t3.

5 Attacker’s ability and knowledge

The computation ability of the attacker is an unchanged set, denoted by Ac, of
constructor functions such as computing encryption, hash, and digital signature,
compose a message tuple etc. The knowledge of the attacker is composed of
initial knowledge (denoted by Kinit) and gained knowledge (denoted by Kgain).
Typically, Kinit often contains the node IDs of the neighborhood of the attacker,
and pre-shared keys. Hence, formally, when modeling the initial knowledge
we initiate the frame ϕ(la) with the substitution (with the range {la}, hence,
not available for the honest nodes) of the initial knowledge on new variables.
Thereafter, the frame ϕ(la) is periodically extended with new knowledge (i.e.,
Kgain), and whenever the attacker compute a message for his purpose it can use
its whole knowledge and computation ability.

The computation ability of the attacker node is the set B of functions such as
encrypt(t,k), hash(t), mac(t,k), sign(t,k), etc. To capture the attacker’s ability
for message verification, set B also contains equations from

∑
, such as dec(enc(x,

y),y) = x and checksign(sign(x, y),pk(y)) = true for a special constant true. In
the processes of the attacker, the parameters of these functions and equations
can only those that appear in ϕ(la).

To make the behavior of the attacker systematic, we assume that the attacker
tries all the possible moves (selecting possible functions, equations with the
available parameters). To reduce the number of possibilities we can explicitly
add the type-respect binding of the parameters to functions and equations. For
instance, in sign(t,k), from ϕ(la) only the terms of type DATA can be bound to
t, and only terms of type PRIVATEKEY can be bound to k. Moreover, in case
of source routing protocols, usually, the patterns (skeletons) of the accepted
reply and request are known. Hence, by reasoning in a backward manner that
which kind of message parts the attacker need to have in order to compose
the reply or request that includes an invalid route but fullfils the pattern of
accepted message, we can systematically make the analysis and greatly reducing
the number of possibilities.

30

6 Application of the calculus

In this section we demonstrate the usability of the sr-calculus by modelling the
SRP protocol and the attack scenario we discussed in Section 2.

In order to model secure on-demand source routing protocols for mobile
ad-hoc networks we introduce the following required constructor functions and
destructor applications.

We start with the discussion of the construction function tuple and the next
and previous functions related to tuple, then we discuss the MAC function.
tuple : The constructor function tuple models a tuple of n terms t1, t2,. . . , tn.
We write the function as

tuple(t1, t2, . . . , tn)

We abbreviate it simply as (t1, t2, . . . , tn) in the rest of the paper.
We introduce the destructor functions i that returns the i-th element of a

tuple of n elements, where i ∈ {1, . . . , n}:

i(t1, t2, . . . , tn) = ti

list : The constructor function list models a list of n terms t1, t2,. . . , tn. We
write the function as

list(t1, t2, . . . , tn)

We abbreviate it as [t1, t2, . . . , tn] in the rest of the paper. We note that a list
can be empty, that is n = 0, and we denote the empty list as [].

Then the destructor applications next and prev are introduced for mod-
elling the next and the previous element of a particular element in the list. Each
function has two arguments, a first is a list and the second is the term of which
we want to know its next and previous element in the given list. If there is no
such element in the list or it has no next or previous element then it returns a
constant symbol undefined . The sort system may enforce that next and prev
are applied only to list.

next([t1, . . . , ti, ti+1, . . . tn] , ti) = ti+1,
next([t1, . . . , tn] , tn) = undefined
next([t1, . . . , tn] , ti) = undefined, if ti does not occur in the list,
prev([t1, . . . , ti−1, ti, . . . tn] , ti) = ti−1,
prev([t1, . . . , tn] , t1) = undefined
prev([t1, . . . , tn] , ti) = undefined, if ti does not occur in the list.

We also introduce the functions toendlist and toheadlist that model the
list with n+ 1 elements by appending an element t to the end (to the head) of
a list tlist of n elements with same sort as t, respectively.

toendlist ([t1, . . . , tn], t) = [t1, . . . , tn, t]
toheadlist (t, [t1, . . . , tn]) = [t, t1, . . . , tn].

31

In the rest of the paper for convenient presentation we write [t1, . . . , tn, t] instead
of toendlist ([t1, . . . , tn], t). With the function toendlist we can model lists as
follows: [l1, l2,. . . , ln] = toendlist(. . . toendlist(toendlist([], l1), l2) . . . ln).

Functions first, and last represents the first, and the last element of List,
respectively.

first([t1, . . . , tn]) = t1
last([t1, . . . , tn]) = tn.

Finally we model the keyed hash or MAC function with symmetric key k
with the binary function mac. The

mac(t1, t2).

function that computes the message authentication code of message t1 using
secret key t2. The shared key between node li and lj is modelled by function
k(li, lj).

6.1 Modelling the SRP protocol and the attack

The scenario in Section 2 is modelled by the extended network defined as:

netw
def
= (bP1c{l2,la}l1

| bP2c{l1,la}l2
| b!PAc{l1,l2l3,l4}la

| b!P3c{la,l4}l3
| bP4c{la,l3}l4

).

whereN1=bP1c{l2,la}l1
, N2=bP2c{l1,la}l2

, A=b!PAc{l1,l2,l3,l4}la
, N3=b!P3c{la,l4}l3

, N4=bP4clal3l4
.

Processes P1,P2,!P3,P4 model the operation of honest nodes while process A
model the operation of the attacker node as follows:

P1
def
= let MAC13 = mac ((l1, l3), k(l1, l3)) in ReqInit.

ReqInit
def
= 〈(req, l1, l3,MAC13, [])〉.!WaitRep1.

WaitRep1
def
= (xrep).[1(xrep) = l1] [2(xrep) = rep] [3(xrep) = l1]

[4(xrep) = l3][first(5(xrep)) ∈ {l2la}]
[mac ((l1, l3, 5(xrep)) , k(l1, l3)) = 6(xrep)]
〈ACCEPT〉.

Intuitively, the node l1 generates the route request message that includes the
ID of source and target nodes, and the message authentication code MAC13

computed using the shared key, broadcasts it and waits for the reply. When it
receives a message, it checks whether (i) it is the addressee, (ii) the message is
a reply, (iii) the ID of the source and the target nodes, and (iv) the message
authentication code using its shared key. If all are correct then it signals term
ACCEPT. The process P2 models the operation of the node N2 and is specified
as follow:

P2
def
= (yreq) .[1(yreq) = req].
〈(1(yreq), 2(yreq), 3(yreq), 4(yreq), [5(yreq), l2])〉
!WaitRep2.

32

WaitRep2
def
= (yrep) .[1(yrep) = l2][2(yrep) = rep]

[next (5(yrep), l2) ∈ {l1la}]
in 〈(l1, 2(yrep), 3(yrep), 4(yrep), 5(yrep), 6(yrep))〉.

Intuitively, on receiving a message it checks if it is a request, then appends its
ID l2 to the end of the list, re-broadcasts it and waits for a reply. When it
receives the reply message it checks if the message is intended to it, it is a reply,
the next ID in the list corresponds to neighbors and forwards the message to
the destination node l1. The process P4 models the operation of the node N4

and is specified as follow:

P4
def
= (zreq) .[1(zreq) = req].
〈(1(zreq), 2(zreq), 3(zreq), 4(zreq), [5(zreq), l4])〉
!WaitRep4.

WaitRep4
def
= (zrep) .[1(zrep) = l2][2(zrep) = rep]

[prev (5(zrep, l4)) ∈ {lal3}]
let tidList = 5(zrep) in let lprev = prev (tidList, l4)
in 〈(lprev, 2(zrep), 3(zrep), 4(zrep), 5(zrep), 6(zrep))〉.

Intuitively, on receiving a message node N4 checks if it is a request, then appends
its identifier l4 to the end of the list, re-broadcasts it and waits for a reply. When
it receives the reply message it checks if the message is intended to it, it is a
reply, the previous and next ID in the list corresponds to neighbors and forwards
the message to the previous node lprev in the list. The process P4 models the
operation of the node N4 and is specified as follow:

Finally, the operation of the destination node N3, the process P3, is modelled
as:

P3
def
= (wreq) .[1(wreq) = req][3(wreq) = l3].

[mac (〈2(wreq), 3(wreq)〉, k(l1, l3)) = 4(wreq)] let MAC31=
mac((1(wreq), 2(wreq), 3(wreq), 5(wreq)) , k(l1, l3)) in
let lprev = last (5(wreq)) in
〈(lprev, rep, 2(wreq), 3(wreq), 5(wreq),MAC31)〉.

Intuitively, on receiving the a message it checks if the message is a request, and
it is the destination, and verifies the MAC embedded in the request using its
shared key with l1. If so then it creates a reply message and forwards it to the
last node in the list.

Next we specify the model (MA) of the attacker node as follows: we as-
sume that the attacker cannot forge message authentication codes MAC13 and
MAC31 without possessing keys. Initially, the attacker node knows the IDs of its
neighbors {l1, l2, l3, l4}. The attacker can creates new data n, and can append
elements of {l1, l2, l3, l4}, and n to the end of an ID list it receives. Finally, it
can broadcast and unicast its message to honest nodes.

The attacker overhears only messages sent by its neighbors. Let frame ϕ(la)
be {ti /xi} |

{
tj /xj

}
| . . . | {tk /xk}. This represents the attacker’s knowledge he

33

accumulates during the route discovery phase by eavesdropping. He combines
this accumulated knowledge and initial knowledge to construct an attack. Let
Tlp be a tuple that consists of the elements in {l1, l2, l3, l4}.

Formally, the operation of the attacker node is defined as follows: PA
def
=

(x̃) .νn.〈f (x̃, Tlp , n)〉, where x̃ is a tuple (x1,. . . ,xn) of variables, νn means the
attacker creates new data n. The function f (x̃, Tlp , n) represents the message
the attacker generates from the eavesdropped messages that it receives by bind-
ing them to x̃, its initial knowledge and the newly generated data n, respectively.
At first, x̃ is a single variable xa.

As the next step, we define an ideal model of netw, written as netwspec. The
definition of netwspec is the same as netw except that the desription of N1 is

bP spec1 c{l2la}l1
.

Process P spec1 models the ideal operation of the source node N1 in the sense
that although the source node does not know the route to the destination it
is equipped with a special function consistent(List) that informs it about the
correctness of the returned route. We define this ideal source node as follow:

P spec1

def
= let MAC13 = mac ((l1, l3), k(l1, l3)) in ReqInitspec.

ReqInitspec
def
= 〈(req, l1, l3,MAC13, [])〉.!WaitRepspec.

WaitRepspec
def
= (xrep).[1(xrep) = l1] [2(xrep) = rep][3(xrep) = l1]

[4(xrep) = l3][first(5(xrep)) ∈ {l2la}]
[mac ((l1, l3, 5(xrep)) , k(l1, l3)) = 6(xrep)]
[consistent (5(xrep)) = true].〈ACCEPT〉.

Intuitively, in the ideal model, every route reply that contains a non-existent
route is caught and filtered out by the initiator of the route discovery. Next we
give the definition of secure routing based on labeled bisimilarity:

Definition 11. A routing protocol is said to be secure if for all extended net-
works E and its corresponding ideal network Espec, which includes an arbitrary
attacker node, we have: E ≈Nl Espec.

Theorem 1. The SRP protocol is insecure.

Proof. We will show that netw ≈Nl netwspec does not hold besides the attacker
MA because the third point of the Definition 9 is violated. In order to do this we
will show that there exist a sequence of labeled transitions and internal reduction
relations that can be performed in case of netw but can not be performed in
case of netwspec. Formally, this means that the frames of netw and netwspec can
be distinguished.

Let us see the following sequence of labeled transitions and reduction re-
lations that netw can perform: First the source node l1 broadcast the route
request message (req, l1, l3,MAC13, []) to initiates the discovery of the route
towards the node l3.(
bP1c{l2,la}l1

| bP2c{l1,la}l2
| b!PAc{l1,l2,l3,l4}la

| b!P3c{la,l4}l3
| bP4c{la,l3}l4

)
νx.〈x〉:l1{l2,la}−→

34

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} | bP ′1c{l2,la}l1
| bP2c{l1,la}l2

| b!PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP4c{la,l3}l4
) (→ ×2 (EXT BroadRecv1))

The active substitution with range
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la}
means that

after l1 broadcasts the message (req, l1, l3,MAC13, []) it is available for itself
and its neighbors, the nodes l1 and la. The process P ′1 is !WaitRep1. After ap-
plying two times the rule (EXT BroadRecv1) netw reaches the following state:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} | b!WaitRep1c
{l2,la}
l1

|
⌊
P2

{
(req,l1,l3,MAC13,[]) /x

}⌋{l1,la}
l2

|
⌊
PA
{
(req,l1,l3,MAC13,[]) /x

}
| !PA

⌋{l1,l2,l3,l4}
la

| b!P3c{la,l4}l3
| bP4c{la,l3}l4

) (→ ×2 (Red P-Let))

Intuitively, this means that node l2 and the attacker node la receive the broad-
casted message. After broadcasting the message (req, l1, l3,MAC13, []) node l1
reaches to the state !WaitRep1 and after receiving the route request message
the nodes l2 and la are going to broadcast their message. The node l2 is going
to broadcast the request message (req, l1, l3,MAC13, [l2]) and the attacker node
(req, l1, l3,MAC13, [l2, n, l4]). (→ ×2 (Red P-Let)) means the application of the
reduction relation rule (Red P-Let) twice.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} | b!WaitRep1c
{l2,la}
l1

| b〈1(x), 2(x), 3(x), 4(x), [5(x), l2]〉.!WaitRep2c
{l1,la}
l2

| b〈1(x), 2(x), 3(x), 4(x), [l2, n, l4]〉 | !PAc{l1,l2,l3,l4}la

| b!P3c{la,l4}l3
| bP4c{la,l3}l4

)
νy.〈y〉:la{l1,l2,l3,l4}−→

As we mentioned earlier the broadcast sends are choosed non-deterministically
they are going to executed at the same time. We assume that in this labeled
transition trace the attacker node outputs its message before node l2. After
broadcasting (req, l1, l3,MAC13, [l2, n, l4]) netw reaches the following state:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

| b!WaitRep1c
{l2,la}
l1

| b〈1(x), 2(x), 3(x), 4(x), [5(x), l2]〉.!WaitRep2c
{l1,la}
l2

| b0 | !PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP4c{la,l3}l4
) ≡Struct P−Par1

(→ ×4 (EXT BroadRecv1))

We note that at this time the frame of netw is (
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la}
|
{
(req,l1,l3,MAC13,[l2,n,l4]) /y

}{la,l1,l2,l3,l4}
, which represents the output messages

so far. After applying the rules (Struct P-Par1) and 4 times the rule (EXT
BroadRecv1) netw reaches the following state:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

35

|
⌊
WaitRep1

{
(req,l1,l3,MAC13,[l2,n,l4]) /y

}
| !WaitRep1

⌋{l2,la}
l1

|
⌊
P ′2
{
(req,l1,l3,MAC13,[l2,n,l4]) /y

}⌋{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

|
⌊
P3

{
(req,l1,l3,MAC13,[l2,n,l4]) /y

}⌋{la,l4}
l3

|
⌊
P4

{
(req,l1,l3,MAC13,[l2,n,l4]) /y

}⌋{la,l3}
l4

) →∗

Here the process P ′2 is 〈1(x), 2(x), 3(x), 4(x), [5(x), l2]〉.!WaitRep2. After receiv-
ing the message (req, l1, l3,MAC13, [l2, n, l4]) broadcasted by the attacker node,
nodes l1 and l2 drops it since the verification they make on it fails. This is
modelled by the nil process.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

| b0 | !WaitRep1c
{l2,la}
l1

| bP ′2c
{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b〈l4, rep, 2(y), 3(y), 5(y),MAC31〉 | !P3c{la,l4}l3

| b〈1(y), 2(y), 3(y), 4(y), [5(y), l4]〉.!WaitRep4c
{la,l3}
l4

)

−→∗, ≡Struct P−Par1 ×2,
νx′.〈x′〉:l2{l1,la}−→

After applying a sequence of reduction relations that models the verification
made on the message and applying the rule (Struct P-Par1) twice the nil pro-

cesses are eliminated, and applying the labeled transition
νx′.〈x′〉:l2{l1la}−→ , we have

that netw reaches the following state:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} | b!WaitRep1c
{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b!PAcl1l2l3l4la
| b〈l4, rep, 2(y), 3(y), 5(y),MAC31〉 | !P3c{la,l4}l3

| b〈1(y), 2(y), 3(y), 4(y), [5(y), l4]〉.!WaitRep4c
{la,l3}
l4

)

νz.〈z〉:l3{la,l4}−→

After applying a sequence of reduction relations that models the verification
made on the message and applying the rule (Struct P-Par1) twice the nil pro-

cesses are eliminated, and applying the labeled transition
νz.〈z〉:l3{lal4}−→ , which

models that the destination node l3 accepts the message sent by the attacker
node and sends back a reply message. Again, we assume that in this transition
trace node l3 sends its message before node l4:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

| b!WaitRep1c
{l2,la}
l1

| bP ′2c
{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b0 | !P3c{la,l4}l3

| b〈1(y), 2(y), 3(y), 4(y), [5(y), l4]〉.!WaitRep4c
{la,l3}
l4

)

36

≡StructP−Par1, (→ ×2 (EXT BroadRecv1))

The frame of netw at this time is{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} | {(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

. After
applying the rules (Struct P-Par1) and (EXT BroadRecv1) twice we have:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

| b!WaitRep1c
{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

|
⌊
PA
{
(l4,rep,l1,l3,[l2,n,l4],MAC31) /z

}
| !PA

⌋l1l2l3l4
la

| b!P3c{la,l4}l3
|
⌊
P ′4
{
(l4,rep,l1,l3,[l2,n,l4],MAC31) /z

}⌋{la,l3}
l4

) ≡

Here P ′4 is 〈1(y), 2(y), 3(y), 4(y), [5(y), l4]〉.!WaitRep4. At this point, after receiv-
ing the reply message (l4, rep, l1, l3, [l2, n, l4],MAC31) node l4 drops it because
l4 still has not output the request corresponding to this reply. However, the
attacker node intercepts the reply.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

| b!WaitRep1c
{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b〈l1, 2(z), 3(z), 4(z), 5(z), 6(z)〉 | !PAc{l1,l2,l3,l4}la

| b!P3c{la,l4}l3
| bP ′4c

{la,l3}
l4

)
νw.〈w〉:la{l1l2l3l4}−→

Then the attacker node la forwards the reply message (l1, rep, l1, l3, [l2, n, l4],MAC31)
to node l1 in the name of node l2. This message can be overheared by the neigh-
bors of the node la.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

|
{
(l1,rep,l1,l3,[l2,n,l4],MAC31) /w

}{la,l1,l2,l3,l4}
| b!WaitRep1c

{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b0 | !PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP ′4c
{la,l3}
l4

) ≡PAR-0, →∗

The sent reply message (l1, rep, l1, l3, [l2, n, l4],MAC31) is then overheared by
nodes l1, l2, l3, and l4. However, nodes l2, l3, and l4 drops it because they are
not the addressee but node l1.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

37

|
{
(l1,rep,l1,l3,[l2,n,l4],MAC31) /w

}{la,l1,l2,l3,l4}
|
⌊
WaitRep1

{
(l1,rep,l1,l3,[l2,n,l4],MAC31) /w

}
| !WaitRep1

⌋{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP ′4c
{la,l3}
l4

) →∗

After receiving the message (l1, rep, l1, l3, [l2, n, l4],MAC31) the source node l1
makes verification steps on it. According to the operation of the protocol all
verification steps made by l1 pass and thus the term ACCEPT is being to output.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

|
{
(l1,rep,l1,l3,[l2,n,l4],MAC31) /w

}{la,l1,l2,l3,l4}
| b〈ACCEPT〉 | !WaitRep1c

{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP ′4c
{la,l3}
l4

)
νv.〈v〉:l1{l2la}−→

After the source node l1 receives the rely message sent by the attacker it sees
that it is the addressee. Hence, it makes verification steps. All verification steps
pass so that it outputs the special term ACCEPT.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

|
{
(l1,rep,l1,l3,[l2,n,l4],MAC31) /w

}{la,l1,l2,l3,l4} | {ACCEPT /v}l1l2la
| b0 | !WaitRep1c

{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP ′4c
{la,l3}
l4

).

We note that in this section we intend to demonstrate the applicability of the
sr-calculus for reasoning about secure routing protocols and for shorter pre-
sentation purpose the proof illustrates the following attack scenario: When the
attacker node receives the request message (req, l1, l3, MAC13,[]) from node
l1, it creates some new fake node indentifier n, then adds l2, n and the identifier
of N4, l4 to the list [], and re-broadcasts (req, l1,l3,MAC13,[l2, n, l4]). When
this message reaches the target node l3 it passes all the verifications makes by
l3. Then, node l3 generates the reply (l4, rep, l1, l3,MAC31) and sends back to
l4. The attacker node overhears this message and forwards it to the source l1 in
the name of l2. As the result, in netw node l1 accepts the returned invalid route

[l2, n, l4] and outputs ACCEPT by the
l1{l2la}−→ transition relation. However, in

netwspec node l1 does not accept the returned route, thus, ACCEPT is not out-

put. Formally, at this point netwspec cannot perform the transition
νv.〈v〉:l1{l2la}−→ ,

which violates the third point of Definition 9. In this proof netwspec, which is the
ideal version of netw, can perform the same labeled transitions and reduction

relations as netw except the last transition
νv.〈v〉:l1{l2la}−→ .

38

Finally, we note that we can easily extend the proof so that it illustrates
the scenario in which the attacker receives the request message (req, l1, l3,
MAC13,[l2]) from node l2, it creates some new fake node indentifier n, then
adds n and the identifier of N4, l4 to the list [], and re-broadcasts (req,
l1,l3,MAC13,[l2, n, l4]). The rest part of the attack scenario is the same as
the scenario above.

7 Weaker definition of security: up to barb ⇓
ACCEPT

One can feel that the notion of labeled bisimilarity may be too strict for defining
security because it requires the existence of same outputs in the two networks.
In fact, we only need that for the same topology and attacker behavior trace
the real and specification networks always do the same with respect to the barb
ACCEPT . Namely, if the specification can/cannot emit the term ACCEPT
then so do the real system, and vice versa. Then this must be true for all the
possible topologies and attackers.

We note that this kind of definition is not necessarily weaker than the labeled
bisimilarity. It depends on the definition of the specification version, and how
much it differs from the real system.

8 A systematic proof technique based on back-
ward deduction

The proof shown in Section 6.1 is based on a forward search/reasoning, namely,
we specify a certain network topology and “simulate” the operation of the pro-
tocol on this topology. The main drawback of this proof technique is that we
need to take into account a huge number of possible behavior scenarios as well
as many possible network topologies.

We develope a more systematic proof technique, that enables us to reason
about the security of routing protocols in a more efficient way. This proof
technique is based on backward reasoning, namely, we start with the assumption
that the source has accepted an invalid route, and based on the definition of the
protocol we reason backward step-by-step to find out how could this happen.
In case we get a contradiction it means that the starting assumption could not
be valid, and the protocol is secure. Like in the forward search technique, this
proof technique is also based on Definition 9 but with backward reasoning.

For this backward reasoning method, we define an ideal and a real system
a bit differently. First of all, the source node in both systems will output the
function term accept(tlist), instead of outputting the constant term ACCEPT.
This means that the source has accepted the returned list tlist.

The procedure of the backward reasoning (backward deduction) is performed
by following the protocol, we step back node-by-node from the destination to

39

the source through some route, which can either be the route represented by tlist
in accept(tlist) or an another route. Formally, let us denote the state when the
source has accepted the list tlist by the network Eaccept(tlist), and the state when
the source initiates a request by Ereqinit. The backward deduction is based on
performing labelled transitions backward from Eaccept(tlist) to Ereqinit. We use

the upper index real (Erealreqinit, E
real
accept(tlist)

) and ideal (Eidealreqinit, E
ideal
accept(tlist)

) to
denote the corresponding network states in the real and ideal systems, respec-
tively.

Eaccept(tlist)
∗ ←− α1←− ∗ ←− . . . ∗ ←− αn←−∗ ←− Ereqinit,

where α1,. . . , αn can be a broadcast, an unicast, or a receive action. For
instance, the following backward deduction trace

EdstsentREP
νz.〈z〉: ldst{ lint,... }←− ∗ ←− EdstrecvdREQ

(treq)
σ2:{ldst∈σ2}←− EintsentREQ

νy.〈y〉: lint{ ldst,lsrc, ... }←− ∗ ←− EintrecvdREQ
(treqinit)

σ1:{lint∈σ1}←− EsrcsentREQINIT
νx.〈x〉: lsrc{ lint,... }←− ∗ ←− Esrcreqinit,

where the frame of EdstsentREP contains the substitution {trep/z}, and the
frames of EintsentREQ and EintsentREQINIT contain {treq/y} and {treqinit/x},
respectively. σ1 and σ2 are the neighborhood of lint and ldst, respectively.
Intuitively, the trace

EdstsentREP
νz.〈z〉: ldst{ lint,... }←− ∗ ←− EdstrecvdREQ

(treq)
σ2:{ldst∈σ2}←− EintsentREQ

says that in order to ldst can send the reply trep it should have received the
request treq from lint. The trace

EintsentREQ
νy.〈y〉: lint{ ldst,lsrc, ... }←− ∗ ←− EintrecvdREQ

(treqinit)
σ1:{lint∈σ1}←− EsrcsentREQINIT

says that in order to node lint can send the request treq it should have received
the request treqinit from lsrc. Finally, the trace

EsrcsentREQINIT

νx.〈x〉: lsrc{ lint,... }←− ∗ ←− Esrcreqinit

says that in order to node lsrc can send the request treqinit it should have been
able to composed this request.

This trace corresponds to the following scenario: On the route lsrc − lint −
ldst,

1. lsrc broadcasts treqinit;

2. lint received treqinit, performs calculations, and broadcasts treq;

3. ldst received treq, performs verifications, and returns trep.

40

In particular, the backward deduction is as follows:

1. At the beginning, we assume that the source node has accepted the list
tlist, which means that the function term accept(tlist) has been output by
lsrc. Formally, at first the frames of both Erealaccept(tlist)

and Eidealaccept(tlist)

contain only the substitution

{accept(tlist) / xaccept},

During the remaining deduction steps, we will reason about how the pres-
ence of this substitution could happen. Based on the protocol specification
and the message format of the request and reply, we analyze which mes-
sages should have been sent by which nodes that eventually leads to the
acceptance of tlist. At some point during the backward reasoning proce-
dure, if we found that a message tmsg should have been sent, then the
frame at that point will be extended with the substitution {tmsg / xmsg}.

2. The backward deduction terminates through a given route [lsrc, . . . , ldst]
if by stepping back node-by-node in this list, we successfully get back
to Ereqinit (i.e., the initial request is output by the source lsrc). More
precisely, this means that the frame of Ereqinit is extended with the sub-
stitution {treqinit / xreqinit}, where treqinit is the request sent by the
source.

Basically, the backward deduction always terminates, because for every ID list
tlist in accept(tlist), we can get back to the state Ereqinit, by assuming that
tlist is an existing route and we step backward on this route. However, to
detect an attack we focus on the case when tlist is not a valid route, and we
reason about how could this invalid route be accepted (if this is the case). Let
us assume that tlist in accept(tlist) represents an invalid route. In case the
backward reasoning procedure terminates through the route other than tlist,
it means that the routing protocol is insecure because the attacker can achieve
that the invalid route tlist is accepted, while if the deduction procedure can only
terminate through the route tlist then we get a contradiction since tlist cannot
be invalid, otherwise, we could not traverse back through it. Hence, in the latter
case the protocol is secure.

In this backward deduction procedure, in order to perform a systematic proof
based on Definition 9, we distinguish the ideal system and the real system in the
following way: In the ideal system, the source always can check the correctness
of the returned route tlist by using the special function consistent(tlist), and only
outputs accept(tlist) if tlist is a correct route from the source to the destination.
Hence, we define the ideal system such that the backward deduction can only
terminate through the route tlist, and the deduction based on the other routes
will be forbidden to perform the last transition representing the broadcast of
the initial request:

EsrcsentREQINIT
νx.〈x〉: lsrcσ←− ∗ ←− Esrcreqinit (last-TRANS)

41

Intuitively, this means that in the ideal system every accepted route must be
a valid route. However, this is not the case in the real system, where the
attacker(s) can achieve that an invalid route will be accepted. We model this
by allowing the possibility for the deduction to terminate (i.e., allowing the last
transition) either through the route tlist or any other routes.

To prove the security of on-demand source routing protocols based on back-
ward deduction we apply the Definition 9 in reverse direction, specifically:

Lemma 2. Let Erealaccept(tlist)
and Eidealaccept(tlist)

be the real and the ideal specifica-

tion variants of a (on-demand source) routing protocol Prot in the sr-calculus.
The protocol Prot is said to be secure if for all the possible routes represented by
the list tlist, the following holds:

1. Erealaccept(tlist)
≈s Eidealaccept(tlist)

;

2. if Erealaccept(tlist)
←− Erealprvaccept(tlist)

, then Eidealaccept(tlist)
∗ ←− Eidealprvaccept(tlist)

and

Erealprvaccept(tlist)
< Eidealprvaccept(tlist)

for some Eidealprvaccept(tlist)
;

3. if Erealaccept(tlist)

α←− Erealprvaccept(tlist)
and fv(α) ⊆ dom(Erealprvaccept(tlist)

) and bn(α)∩
fn(Eidealaccept(tlist)

) = ∅; then Eidealaccept(tlist)
∗ ←− α←− ∗ ←− Eidealprvaccept(tlist)

and

Erealprvaccept(tlist)
< Eidealprvaccept(tlist)

for some Eidealprvaccept(tlist)
, where α can be a broad-

cast, an unicast, or a receive action.

Intuitively, Lemma 2 says that starting from the states Erealaccept(tlist)
and Eidealaccept(tlist)

,
if the two backward deduction procedures cannot be distinguished from each
other then the routing protocol is secure. In other words, the deduction of the
ideal system can simulate every deduction trace of the real system. The ratio-
nality behind this Lemma is based on the fact that the backward deduction of
the ideal and the real systems differ only at the last transition (last-TRANS),
which is allowed in the ideal case only when the deduction trace (so far) con-
forms with the list tlist, while it is allowed in the real case for every possible
trace. Hence, the deduction of the ideal system, Eidealaccept(tlist)

, can simulate the

deduction of Erealaccept(tlist)
if in both cases (last-TRANS) can only be performed

when the deduction trace confoms with tlist. This means that tlist, which is
accepted at the end of the route discovery, must be valid. The ideal system is
defined such that the accepted list tlist must always be valid, and if we deduce
that this is also true for the real system, then the routing protocol is secure.

8.1 General specification of on-demand source routing pro-
tocols

In this subsection, a general and simplified specification of the on-demand source
routing protocols is given, which is well-suited for the backward deduction tech-
nique. The specification is based on the sr-calculus, but instead of defining
specific network topologies, we provide a general specificaion that includes the

42

specification of a source, a destination, and some intermediate nodes, regardless
of the topology.

On-demand source routing protocols have an important flavour that each
node usually has the same uniform internal operation: during route discovery
each node can play a role of a source node, or an intermediate node, or a
destination node. Leveraging this beneficial characteristic, we need to specify
only the operation of three nodes instead of all of the nodes in the network,
which is more comfortable.

Erouting
def
= b!Psrccσsrclsrc

|
∏
i∈1,...,n

⌊
!P iint

⌋σiint
liint
| b!Pdstcσdstldst

.

where Nsrc = b!Psrccσsrclsrc
, N i

int, N
i
int =

⌊
!P iint

⌋σiint
liint

, represents the i-th interme-

diate node, and
∏
i∈1,...,n

⌊
!P iint

⌋σiint
liint

represents the parallel composition of n

intermediate nodes
⌊
!P iint

⌋σiint
liint

, for i ∈ {1, . . . , n}, Ndst=b!Pdstcσdstldst
. Processes

Psrc, Pint, Pdst model the operation of honest nodes. We do not need to include
explicitly the behavior of the attacker node(s). The attackers is modelled by
the wireless environment in an implicit way, which can be seen as a cooperation
of several attackers. In case an attack scenario is detected, the specific place
of the attacker(s) is determined based on the messages it (they) intercepts or
sends during the scenario. The number of the intermediate nodes, n, is also
determined based on the specific detected attack scenario.

We note that the specific structure of each process depends on the specific
routing protocol.

8.2 The backward deduction algorithm

At the beginning, a reply including an invalid route tlist = [l1,. . . , ln] is assumed
to be accepted by the source. Afterwards, we follow the way of this reply in a
backward manner. The possible paths of this reply is investigated by reasoning
about the nodes and edges through which this reply and the corresponding
request should have traversed during the route discovery. On searching for the
possible paths of the reply and request backward, whenever the attacker node
is reached, it means that the reply or request has been forwarded (and may be
modified) by the attacker node. If this is the case, at this point we are aware
of the information of what message should the attacker forward to be accepted
later, that is, what messages should the attacker generate in order to perform
a successful attack. This is then followed by examining how the attacker can
generate these messages.

The attacker is able to compose a reply or request message using its compu-
tational ability and knowledge base. We note that while the computation ability
of the attacker is fix, its knowledge base is continually updated during the route
discovery. Hence, by backward reasoning we mean the reasoning about three
issues: (i) Can the attacker generate each part of the message based only on
its computational ability and initial knowledge? (ii) Which messages should

43

the attack node intercept in case it cannot set up a whole reply/request based
solely on its computational ability and initial knowledge? (iii) How the topol-
ogy should be formed such that the attacker is able to intercept the required
message parts?

Figure 9: The figure illustrates the main phases of the backward deduction pro-
cedure. The circles and asterisks represent the states of the deduction. Each
state statei is a network Eireq/rep, which we get from Eaccept(tlist) after perform-
ing a series of transitions. The asterisks represent the terminal states, which is
Ereqinit. Each phase may contain one or several states. After state Ehon2req/rep we
can get into the phases Ph-A and Ph-H2 again, because there can be several
attacker nodes or the attacker can take place in an interleaving route discovery
session.

In phase Ph-H1 we investigate how the request and reply propagate. The
rightmost branch involve the interference of the attacker, and examines how
the reply traverses from the attacker to the source. The backward deduction
may not involve the attacker, and considers the scenario when the reply and
request messages are sent only by honest nodes. This latter case is illustrated
by the leftmost branch. The asterisk represents the last state Ereqinit, where the
deduction terminates. Not that during a backward reasoning only one branch
is chosen, until we reach Ereqinit.

The reasoning about how the attacker could generate an incorrect reply Rep
or request Req which leads to a successful attack, takes place in phase Ph-A.
In Ph-A. we examine how the attacker could generate the Req/Rep message
that leads to a successful attack. In particular, how the attacker can obtain
or compute all the parts of the request or reply messages. The attacker(s) can

44

obtain each part of a request/reply by either computes it based on the available
information and the computation ability, or receives/intercepts a message that
contains this part. In the latter case, the deduction procedure is continued with
the phase Ph-H2, where we check how the attackers could receives/intercepts
those messages. Similar to Ph-H1, in Ph-H2 the remaining derivation may
or may not involve more attacker’s interference in the rightmost and lefmost
branches, respectively. The phase Ph-Rec represents a recursive application of
the attacker phase Ph-A. Typically, if N = 2 then there is one attacker and we
are considering its interference behavior in both the reply and request parts. The
case of N > 2 is for analysing the possibility of several attackers and interleaving
attacks.

In the “honest” phases Ph-H1, Ph-H2 the request and reply messages are
forwarded by only the honest nodes. These phases include labelled transitions
that models the broadcast send and receive actions by honest nodes, as well
as the silent transitions for the (not the visible) verification steps made on the
received message. Every step during the backward deduction in Ph-H1 and
Ph-H2 is based on the specification of the honest nodes Nsrc, N

i
int and Ndst.

The attacker phase Ph-A: In the attacker phase Ph-A, if we found that
the attacker must have sent the reply tattrep or the request tattreq to be suc-
cessful, then in the rest steps we deduce how this message could have been
composed. This phase include labelled transitions that applies when the at-
tacker receives/intercepts or sends a message, and silent transitions that models
the computations that are performed by the attacker.

An attack scenario is found when the deduction terminates (i.e., the state
Ereqinit is reached) through an route differ from tlist.

We let both tattrep and tattreq have the form (head; v1; . . . ; [List]; . . . ; vk),
which is true in most source routing protocols. The head part, head, is the
tuple (rreq/rrep : Treq/rep, s : Tstr, d : Tstr, sID : Tstr), where the first
element has REQ/REP type, the remaining three elements have string type.
The reason for giving the string type instead of node ID type or name type is
that we want to give mode possibility to the attackers to replace these elements
with some data of other types. The list [List] is also given a string type, while v1,
. . . , vn are additional protocol specific parts, which typically are some (crypto)
functions computed on one portion of the message. For instance, in case of the
SRP protocol we have one function part which is the MAC, while the Ariadne
protocol includes hash and digital signature functions.

During the backward reasoning we attempt to find attacks with minimal
number of transition steps.

1. First of all, we examines whether the attack could be performed if the
attacker has forwarded the request/reply treq/rep unchanged. This means
that in the Figure 9, the networks (or states) Eatt1req/rep and Eattnreq/rep are the

same, and basically, the phase Ph-A contains only one state Eattreq/rep. If
with this condition, the deduction terminates through an route differ from
tlist, then an attack scenario is detected. In particular, when an attack
scenario is detected we successfully prove the violation of Lemma 2.

45

2. Otherwise, if the deduction in the first point can terminate only through
tlist, we return to examine how the attacker can obtain or compute each
part of treq/rep, where treq/rep = (head; v1; . . . ; [List]; . . . ; vk). An attack
scenario is detected only when every elements of treq/rep can be com-
puted/obtained by the attacker(s).

We define priority/weight on terms of different types. We distinguish three
classes of priority. The keyed crypto functions such as digital signatures,
MAC function, public and symmetric key encryption have the highest
priority. The next highest priority in line is assigned to keyless crypto
functions such as one-way hash function. The lowest priority is given to
non-crypto functions and data construct such as list and node IDs. Within
the same priority terms are classified by weight, which specifies the number
of variables and constants in them. The more subterms (names, variables,
functions) are included the larger the weight is.

Let W be a set that contains the terms to be examined whether they can
be computed or obtained by the attackers.

(I.) First, treq/rep is decomposed and the resulted parts head, v1, . . . ,
[List], vk are put into W .

(II.) If there still are unexamined terms in W we choose one of the highest
priority group of terms, and within this group we start with the term that
has highest weight that has not been examined before.

(III.) For the name/constant terms tn, we check whether they belong to
the attacker’s knowledge base, namely, tn ∈ KA. For each function term
tf we examine if can the attacker compute it using the current knowledge
base KA (e.g., keys for crypto functions). If there is a term tn/f in W that
the attacker cannot compute/obtain based on its current knowledge base
then we go on with step (IV.).

(IV.) For each term tn/f cannot compute by the attacker, we analyse how
the attacker can intercept/receive this term from either a honest node or an
another attacker node. In particular, we replace (in a type conform way)
some part of (head; v1; . . . ; [List]; . . . ; vk) with tn/f , then we reason about
how this modified message could propagate during the route discovery. If
for every tn/f the deduction can terminate only through tlist, then the
protocol is secure, otherwise, an attack scenario is found.

During the deduction procedure, whenever we get into a loop, namely, we reach
the term that has already been examined before, then we finish that branch of
deduction to avoid infinite loop. During the backward deduction, we also keep
track of the topology Ttop, which is the topology belongs to an attack scenario
(if any). At first, Ttop does not contain any edges, and first state Eaccept(tlist) is

Eaccept(tlist)
def
= {accept(tlist)/xaccept}σsrc∪{la} | b!Psrccσsrclsrc

|
∏
i∈1,...,n⌊

!P iint
⌋σiint
liint
| b!Pdstcσdstldst

.

46

where σsrc, σ
i
int and σdst are empty. During the backward deduction, if at one

point we found that to make the source accepts tlist, the source lsrc should send
a message treq/rep to li, then we update Ttop with the new edge between lsrc
and li. Further, we add li to the neighborhood of lsrc, σsrc, and add lsrc to
σi (assuming bi-directional edges). {accept(tlist)/xaccept}σsrc∪{la} says that the
output accept(tlist) is available to the neghborhood of lsrc and the attacker. We
add la to each substitution, because by default we assume that the attacker
nodes can be everywhere in the network. The exact number and location of the
attackers depends on the deduction path. Similarly, the terminal state Ereqinit
is specified as follows:

Ereqinit
def
= {accept(tlist)/xaccept}σsrc∪{la}, . . . , {treqinit/xreqinit}σsrc∪{la} |⌊

!Psrc | P reqinitsrc

⌋σsrc
lsrc
|
∏
i∈1,...,n

⌊
!P iint

⌋σiint
liint
| b!Pdstcσdstldst

.

In Ereqinit, the frame is extended with the substitution {treqinit/xreqinit}σsrc∪{la},
and P reqinitsrc is the process we get after treqinit has been broadcast in Psrc.

9 Automating the verification

In this section, we present a novel automatic technique based on deductive
model-checking specifically for verifying secure routing protocols for wireless
ad-hoc networks.

There are numerous former works address the problem of verifying routing
protocols. Some of them use existing model-checking tools such as SPIN [14] and
Uppaal [6] to either verifying loop properties of routing protocols [24, 22, 23].
Other works apply the tools SPIN [14] and Uppaal [6] to verify the security
property of secure routing protocols [5]. However, using these tools to model
and verify secure routing protocols is very circumstancial due to they are not
directly designed specifically for this purpose. They cannot be used to directly
model cryptographic primitives and cryptographic operations, broadcast com-
munication, neighborhood, and attacker in wireless environment. For instance,
in [5, 18] broadcast communication is given as a series of uni-sends, or crypto-
graphic primitives are modelled as a series of bits.

In contrast to these works, our work focuses primarily on modelling and
verifying secure routing protocols for wireless ad-hoc networks in the presence
of compromised nodes. In particular, we propose an automatic verification
method based on logic and the deduction is based on resolution. In addition, our
method can model broadcast communication, neighborhood and cryptographic
primitives.

Our technique was inspired by the method used in the Proverif automatic
verification tool proposed for verifying security protocols [7], however, as op-
posed to [7] it is designed for verifying routing protocols and includes numerous
novelties such as the modelling of broadcast communications, neighborhood,
transmission range, and considers an attacker model specific to wireless ad hoc
networks instead of the Dolev-Yao attacker model.

47

One important difference between the modelling of secure routing protocols
and security protocols is that while in security protocols each communicating
entity can has different internal operation and structure, in case of secure routing
protocols each communication entity usually has the same uniform structure:
During the route discovery each node can be (i) source node, or (ii) intermediate
node, or (iii) destination node. Hence when using the Proverif tool to model
secure routing protocols, in case of the network including n nodes, the user has
to describe the operation of all n nodes despite the fact that they are the same
up to renaming variables and names. In contrast, in our method the user is
required to specify only the ”general” operation of nodes, which represents any
node.

9.1 The concept of the verification method

In the ProVerif verification tool [7] the input of the tool is the protocol descrip-
tion in the syntax of the applied π-calculus. The tool then translates this to
Prolog rules to make automatic reasoning.

Figure 10: The concept of our automatic verification method.

Following this concept, in our verification method the operation of routing pro-
tocols are specified in the syntax of processes in the sr-calculus. This is then
translated to Horn-clauses using translation rules. This set of clauses is called
as protocol rules. In addition, the current topology and the initial knowledge of
the attacker node are specified as a set of facts, while the computation ability of
the attacker node is specified as the set of Horn-clauses. The clauses that spec-
ify the attacker computation ability are called as attacker rules. The deductive
algorithm is based on the resolution steps over these clauses and facts.

9.2 From the calculus to Horn clauses

p ::= patterns
xp, yp, zp variables
lpi , i ∈ {1, . . . , k} honest node identifier
lpatt attacker node identifier
reqp, repp special tags

48

i, i ∈ {1, . . . ,m} session identifier
s, s ∈ {honest, advr} special pattern that is used in the fact accept(s)
n [p1, . . . , pk] data
f (p1, . . . , pt) constructor application

Variables x, y, z in the calculus are translated to patterns xp, yp, zp, re-
spectively. Node ID ln and latt are translated to lpn and lpatt, respectively. The
patterns correspond to terms req and rep are reqp and repp, respectively. We
note that lpn, lpatt, reqp, and repp are atomic values (i.e., constants). Different
session identifiers i are associated to each session of processes under replication.
Thanks to the session identifiers, we distinguish data created in different copies
of processes, so different names in the process calculus are represented by dif-
ferent patterns. s is a special variable that takes values from the set {honest,
advr}, where honest and advr are constants. Finally, data n and function f are
encoded as functions with arity k and t: n[p1, . . . , pk] and f(p1, . . . , pt), respec-
tively. We note that patterns lpi , lpatt, s, reqp and repp are novel compared with
the ProVerif tool.

The protocol and the computation ability of the attacker are modelled by the
implication rules (clauses) of the form F1 ∧. . .∧ Fn → C, where Fi i∈{1, . . . , n}
and C are facts that are defined as predicate application pred(p1,. . . ,pm). The
left side of the rule is called as hypothesis while the right side is called as
conclusion.

Similarly as the model proposed in [10], our method includes the notion of
wireless medium (wireless environment) that models the wireless environment.
The wireless medium eavesdrops all communication in the network. The at-
tacker node ables to catch only nodes sent by its neightbors. We model the
wireless medium, and the attacker by the predicates wm and att, respectively.
In particular, the facts wm(p) and att(p) which model that the wireless medium
and the attacker know the pattern p, respectively. The fact accept(s) is used
for signalling that the reply has been accepted by the source node. More pre-
cisely, the value of s can be accept(honest) or accept(advr). The derivation of
the fact accept(honest) during the deduction algorithm means that the request
and reply messages are forwarded only by honest nodes. The derivation of the
fact accept(advr) means that the request and reply messages are forwarded by
the attacker node who could modified them. The facts badreq and badrep are
the special facts for signalling that the messages created by attacker include
incorrect route. We will discuss them in detail later. Hence, the derivation of
the facts badreq or badrep (could be both) and accept(advr) at the same time
means that the source node accepts the route reply message containing an in-
correct route. In addition, the fact route(lpsrc, l

p
dest) is used to assign the source

node lpsrc and the target node lpdest for a given route discovery. Finally, the fact
nbr(lpi , l

p
j) says that node lpj is in the transmission range of node lpi .

The Horn-clauses use the following facts:

F ::= facts
wm(p) the wireless medium knows p
att(p) the compromised node knows p

49

accept(s) special fact for signalling the “state” of the returned route
route(lpsrc, l

p
dest) lpi is source, and lpj is a target

badreq, badrep signalling that the attacker has created incorrect msg-es
nbr(lpi , l

p
j) node lpj is a neighbor of node lpi

We stress that the predicates wm, route, nbr, the special facts badreq and
badrep are new compared to the Proverif tool.

9.3 Generating protocol clauses

First, we lay down that the generation of Horn-clauses that presents the proto-
col is differ from the algorithm used in the Proverif tool. We exploit the fact
that each node behaves in the same way in a route discovery phase of rout-
ing protocols. Hence, the operation of every node can be uniformly defined as
follows:

Pi
def
= !i1InitPi | !i2IntermPi | !i3DestPi

Every node can start a route discovery towards any other node, in this case the
Init process is invoked. Every node can be an intermediate node, in which case
its Interm process is invoked. Finally, every node can be a target node when the
Dest process is invoked. We note that the specified structure of each process
depends on the specified routing protocol. However, in general form Pi can be
modelled as:

InitPi
def
= cPi(xdest). Protinit.〈xmsgreq〉.!i4RepPiinit.

RepPiinit
def
= (xrep).Verifinit.〈ACCEPT〉.

IntermPi def
= (yreq).Protinterm.〈ymsgreq〉.!i5RepPiinterm.

RepPiinterm
def
= (yrep).Verifinterm.〈ymsgrep〉.

DestPi
def
= (zreq).Verifdest.〈zmsgrep〉.

Process InitPi receives on the channel cPi the ID of the destination node to
which it starts the route discovery. Then Pi goes through a protocol dependent
processing part Protinit, followed by broadcasting the request xmsgreq and then
it waits for the reply at the end.

On receiving a reply xrep, process RepPiinit does verification steps in a pro-
tocol dependent manner and then signals the term ACCEPT if xrep passes all
verifications.

Process IntermPi describes the case when Pi is an intermediate node and says
that when Pi receives some request yreq it goes through a protocol dependent
processing part Protinterm, and re-broadcasts the request ymsgreq. Finally, it
waits for the reply.

On receiving a reply yrep, process RepPiinterm does verification steps in a
protocol dependent manner and then forwards the (may be modified) reply
ymsgrep.

50

Process DestPi describes the case when Pi is a destination node and says that
when Pi receives some request zreq it does verification steps and then sends back
the reply zmsgrep.

We assume that the reply messages xrep, yrep, ymsgrep, and zmsgrep include
the information of the addressee. Hence, when a node receives a reply it can
check whether the reply is intended to it.

The exclamation mark !i models replication, where i is a session identifier to
distinguish different process instances in replication. Session identifier further
is used to track attack traces.

Process Pi is then translated to the protocol rules. A routing protocol mod-
elled by Pi is specified in the following clauses that serve as a template of the
correct operation of the routing protocol:

(Protocol rules: Template of the correct operation) ::=
Rreq1 . route(xpsrc, x

p
dest) −→ wm((xpmsgreq, honest))

Rrep1 . wm((xprep, s)) ∧ nbr(xpfrom, l
p
src) ∧ Veriffactsinit

p,i2−→ accept(s).

Rreq2 . wm((ypreq, s)) ∧ nbr(ypfrom, y
p
to) ∧ Veriffactsintermreq

p,i3−→ wm((ypmsgreq, s)).

Rrep2 . wm((yprep, s)) ∧ nbr(ypfrom, y
p
to) ∧ Veriffactsintermrep

p,i4−→ wm((ypmsgrep, s)).

Rreq3 . wm((zpreq, s)) ∧ nbr(zpfrom, l
p
dest) ∧ Veriffactsdest

p,i5−→ wm((zpmsgrep, s))

When a message is received by an attacker node:

Ratt1 . wm((ypreq, s)) ∧ nbr(ypfrom, l
p
att)

p,i6−→ att((ypreq, s))

Ratt2 . wm((yprep, s)) ∧ nbr(ypfrom, l
p
att)

p,i7−→ att((yprep, s))

Ratt3 . wm((zpreq, s)) ∧ nbr(zpfrom, l
p
dest) ∧ nbr(l

p
dest, l

p
att) ∧ Veriffactsdest

p,i6−→ att((zpmsgrep, s))

We note that these rules represent the protocol independent form, however,
in specified protocols such as SRP the translation will take into account the
Verif and ProtDep parts. This may yield additional rules, and hypotheses. See
Section 10.1 for examples. Veriffactsinit , Veriffactsinterm and Veriffactsdest are set up by a
conjunction of fact(s).

We assume that the route request and reply messages xprep, y
p
req, y

p
rep and

zpreq include identifiers of the nodes from which they are received. The identifiers
are specified by the patterns xpfrom, ypfrom, and zpfrom.

Rules Rreq1 and Rrep1 model the operation of the source node. In particular,
rule Rreq1 says that the source node xpsrc generates the request message xpmsgreq
and then broadcasts it. The initial value of s is honest, which means that
initially the request is broadcasted by a honest node. Rule Rrep1 says that if the
source node receives a reply message and if all verification steps the source node
made on the reply pass then the returned route is accepted, this is modelled by
the derivation of the fact accept(s). The variable s is a flag that takes its value
from the set {honest, advr}, and is used to determine whether the attacker node
intercepts a request/reply message (when s=advr) during the route discovery or
not (when s=honest). More precisely, the derivation of the fact accept(honest)
means that the request or reply are modified by honest nodes only, while when
accept(advr) is derived the messages are manipulated by the attacker node.

51

The variable s is appended after each request and reply messages forming the
tuples (xpreq, s), (ypreq, s), (ypmsgreq, s), (zpreq, s), (xprep, s), (yprep, s), (ypmsgrep, s),
and (zpmsgrep, honest).

Rules Rreq2 and Rrep2 model the operation of intermediate nodes. In par-
ticular, rule Rreq2 says that if the node ypto is in the transmission range of the
ypfrom then node ypto receives the request ypreq sent by ypfrom. The value of s
is forwarded unchanged. The messages ypreq and ypmsgreq could be the same
depending on the specified protocol. After processing the request ypreq node
ypto re-broadcasts it. Rule Rrep2 says that if an intermediate node receives the
message tuple (yprep, s) then it makes verification steps. If all verifications pass
it appends s unchanged to the reply ypmsgrep then forwards the message tuple
(ypmsgrep, s). Again, the messages yprep and ypmsgrep could be the same depending
on the specified protocol.

The rule Rreq3 models the operation of the destination node and says that
if the destination node lpdest is the neighbor of some honest intermediate node
zpfrom then the destination receives the request zpreq. If all the verifications
made by the destination pass it generates a reply zpmsgrep and adds the flag s
unchanged. Finally, it sends back the tuple (zpmsgrep, s).

Rules Ratt1 and Ratt2 concern the case when the attacker node lpatt intercepts
the request ypreq and reply yprep because it is a neighbor of some honest node
ypfrom. Rule Ratt3 concerns the case when the attacker node is a neighbor of the

destination node but not a neighbor of node ypfrom, in addition, the destination

node is a neighbor of node ypfrom. Rule Ratt3 says that the attacker node over-

hears the reply message sent back to ypfrom by the destination node. Veriffactsdest

is composed of a conjunction of facts and represents the verification steps made
by the destination after receiving the request zpreq broadcasted by ypfrom.

The labelled arrow
p,i−→ is the implication that is labelled by the pair (p, i),

where p is the broadcasted message by nodes xpfrom, ypfrom, zpfrom and i is the
session identifier to identify that in which session the particular communication
step happens. This pair is used for tracking the attack at the end when an
attack is found by the algorithm. We note that these protocol rules are novel
compared with the ProVerif tool.

9.4 Initial knowledge and computation ability of an at-
tacker node

The ability of a compromised node is represented in the following rules. These
rules represent the strongest actions that can be performed by any lpatt compro-
mised node.

(Init. knowl.) ::= ∀lpn neighbors of lpatt:
I1. att(lpatt), att(lpn); I2. att(k(latt, l

p
n)); I3. nbr(latt, l

p
n).

I1 means that initially the attacker knows its own ID and the ID of its honest
neighbors, I2 means that the attacker possesses all the keys it shares with the
honest nodes. Finally, I3 means that the attacker is aware of its neighborhood.

52

In addition, we define a strong computation ability for the attacker node as
follows:

(Computation ability - protocol independent) ::=
C1. att(i)→ att(n[i])
C2. For each public function f of n-arity

att(xp1) ∧ . . . att(xpn)→ att(f(xp1, . . . , x
p
n))

C3. For each public function g that
g(f(xp1, . . . , x

p
n), yp)→ xp:

att(f(xp1, . . . , x
p
n)) ∧ att(yp)→ att(xp)

C1
4 . att((ypreq, s)) ∧ nbr(lpatt, y

p
to) ∧ Veriffactsatt

p,i8−→ wm((ypmsgreq, advr)).

C2
4 . att((yprep, s)) ∧ nbr(lpatt, y

p
to) ∧ Veriffactsatt

p,i9−→ wm((ypmsgrep, advr)).

C3
4 . att((zpreq, s)) ∧ nbr(lpatt, l

p
dest) ∧ nbr(lpdest, l

p
att) ∧ Veriffactsatt

p,i10−→ att((zpmsgrep, s)).

C4
4 . att((xprep, s)) ∧ nbr(lpatt, l

p
src) ∧ Veriffactsatt

p,i11−→ accept(advr).

Rule C1 means that the attacker node can create arbitrary new data n such as
fake identifiers, where i is a session ID to identify that the data is created in
which protocol run. Rule C2 means that the attacker can generate arbitrary
messages based on its actual knowledge. Rule C3 means that the attacker can
perform computation on function f . For instance, if f is a digital signature
sign then its corresponding ”inverse” function g, which is checksign can be
performed to verify the signature. The set of functions depends on the protocol
we are examining.

The rules C1
4 , C2

4 , C3
4 and C4

4 say that the attacker can broadcast the mes-
sages it has. Rule C1

4 describes the case in which the attacker broadcasts the
request ypreq that is received by its neighbor ypto who then outputs some message

ypmsgreq if all verifications it made on ypreq (modelled by Veriffactsatt) pass. The
value of the flag s is advr signalling that the request is forwarded by the attacker.
Rule C2

4 says that the reply ypreq forwarded by the attacker is overheared by its
neighbor ypto who then forwards the reply with the flag advr signalling that the
reply is forwarded by the attacker. Rule C3

4 concerns the scenario when the
destination node lpdest and the attacker lpatt are neighbor of each other and says
that if the request zpreq broadcasted by lpatt passes all the required verifications
then the destination sends back a reply message along with the flag honest sig-
nalling that the reply is just generated and has not be seen by the attacker.
Finally, rule C4

4 concerns the scenario when the source node lpsrc is a neighbor of
the attacker lpatt and says that if the reply zprep forwarded by lpatt passes all the
required verifications made by lpsrc then the reply is accepted. The implication
p,i−→ includes the message and session ID that required for tracking attacks.

We note that the I1, I3 of the initial knowledge, and the last four rules of
the computation ability are novel compared with the ProVerif tool.

9.5 Deductive algorithm

The operation of the protocol is modelled by rerolution steps, defined as the
following:

53

Definition 12. Given two rules r1=H1 → C1, and r2= F ∧ H2 → C2, where
F is any hypotheses of r2, and F is unifiable with C1 with the most general
unifier σ, then the resolution r1 ◦F r2 of them yields a new rule H1σ ∧ H2σ →
C2σ.

Here H1 and H2 hypotheseses are multiset of facts, which means that the order
of the facts in the hypotheses are irrelevant. For instance, if r1=route(lp1, l

p
2)

and r2=route(xsrc, xdest)
p,i1−→ wm(xpmsgreq) then r1◦F r2= wm(xpmsgreq)σ, where

F=route(xsrc, xdest), and σ = {xsrc ← lp1, xdest ← lp2}.
In addition, let us recall the example in Figure 2. The resolution of route(lp1, l

p
3)

and the rule Rreq1 with p=(req, xsrc, xdest, ID, MAC) yields the fact wm(req, lp1,
lp3, ID, MAC) with the unifier {xpsrc←l

p
1, xpdest←l

p
3}, and F= route(xpsrc, x

p
dest).

This resolution step models the broadcasting of the route request message gen-
erated by the node lp1 .

The algorithm composed of two phases. In the first phase the route request
message wanders from the source towards the attacker node. At first, the at-
tacker node owns only its initial knowledge and stays in the idle state waiting
for route request messages. After the attacker receives a message, based on the
available information and its computation ability it tries to generate messages
that includes an incorrect route and are accepted by at least one honest neigh-
bor. Formally this means that the created message by the attacker is unifiable
with the hypotheses of rules C1

4 , C2
4 , C3

4 and C4
4 .

Algorithm 1: Main()

Inputs: T0 = T req0 ∪ T rep0 , {Nlpi }, {Nlpatt}, route(lpsrc, l
p
dest), K, A.

H = empty; Hatt = empty; Nvisited = {nbr(xp, lpsrc)};
1. P := route(lpsrc, l

p
dest) ◦route(xpsrc,xpdest) R

req
1 ,

where σ = {xpsrc ← lpsrc, x
p
dest ← lpdest};

2. H ′ := add σRrep1 to H; T req0 ∪ {Rreq3 ← σRreq3 };
call function resolution1(P,Rreq2 , H ′);
call function resolution2(P,Ratt1 , H ′);

54

Function resolution1(P,Rreq2 , H)

1. Temp := P ◦wm((y
p
req,s))

Rreq2 , where the unifier is some σ1;

loc := σ1ypfrom;

2. for ∀ fact Fj ∈ Nloc do
Pj := Fj ◦nbr(loc,ypto) Temp with some unifier σ2

j ;

for ∀ fact fk ∈ Nvisited do
if σ2

jnbr(loc, ypto) and fk are unifiable then choose next Fj .;
endfor

if Qj := res(Pj ,Veriffactsintermreq) succeeds with some unifier σ̃ then{
H ′ := add σ1σ2

j σ̃R
rep
2 to the end of H;

Nvisited := Nvisited ∪ {σ2
jnbr(xp, ypto)};

call function resolution1(Qj , R
req
2 , H ′);

call function resolution2(Qj , R
att
1 , H ′);

call function resolution3(Qj , R
req
3 , H ′);

call function resolution4(Qj , R
att
3);

}
endfor

Function resolution2(P,Ratt1 , H)

1. Temp := P ◦wm((y
p
req,s))

Ratt1 , where the unifier is some σ1;

loc := σ1ypfrom;

2. if nbr(loc, lpatt) ∈ Nloc then {
P := nbr(loc, lpatt) ◦nbr(loc,lpatt) Temp, with {loc ← loc, lpatt←l

p
att};

K := K ∪ {P}; Add H to the end of Hatt;
call function Attackerreq(K,A, H);
}

Function resolution3(P,Rreq3 , H)

1. Temp := P ◦wm((z
p
req,s))

Rreq3 , where the unifier is some σ1;

loc := σ1zpfrom;

2. if nbr(loc, lpdest) ∈ Nloc then {
P := nbr(loc, lpdest) ◦nbr(loc,lpdest) Temp, with {loc ← loc, lpdest←l

p
dest};

if Q := res(P,Veriffactsdest) succeeds with some unifier σ̃ then{
call function resolution5(Q,H);
}

}

55

Function resolution4(P,Ratt3)

1. Temp := P ◦wm((z
p
req,s))

Ratt3 , where the unifier is some σ1;

loc := σ1zpfrom;

2. if nbr(loc, lpdest) ∈ Nloc then {
/* lpdest = σ1x

p
dest, where σ1 is in Main(). */

P := nbr(loc, lpdest) ◦nbr(loc,lpdest) Temp, with {loc ← loc, lpdest←l
p
dest};

if nbr(lpdest, l
p
att) ∈ Nlp

dest
and

Q := nbr(lpdest, l
p
att) ◦nbr(lp

dest
,l
p
att)

P , with {lpdest←l
p
dest, l

p
att←l

p
att} and

F := res(Q,Veriffactsdest) succeeds with some unifier σ̃ then{
K := K ∪ {F};
call function Attackerrep(K,A);

}
}

Function resolution5(P,H)

h := last element of H;
if h is an instance of Rrep2 then {
1. Temp := P ◦wm(σclose(y

p
rep,s))

h, where the unifier is some σ1;

2. if nbr(σclosey
p
from, σclosey

p
to) ∈ Nσcloseypfrom then {

P := nbr(σclosey
p
from, σclosey

p
to) ◦nbr(σcloseypfrom,σcloseypto) Temp,

with {σcloseypfrom ← σclosey
p
from, σclosey

p
to ← σclosey

p
to};

if Q := res(P,Veriffactsintermrep) succeeds with some unifier σ̃ then{
H ′ := remove h from the end of H;
call function resolution5(Q,H ′);
call function resolution6(Q,Ratt2);
}

}
} else
if h is an instance of Rrep1 then {
3. Temp := P ◦wm(σclose(x

p
rep,s))

h, where the unifier is some σ1;

4. if nbr(σclosey
p
from, l

p
src) ∈ Nσcloseypfrom then {

P := nbr(σclosey
p
from, l

p
src) ◦nbr(σcloseypfrom, lpsrc) Temp,

with {σcloseypfrom ← σclosey
p
from, lpsrc ← lpsrc};

if Q := res(P,Veriffactsinit) succeeds with some unifier σ̃ then{
return Q;
}

}
}

56

Function resolution6(P,Ratt2)

1. Temp := P ◦wm(σclosed(y
p
rep,s))

Ratt2 , where the unifier is some σ1;

2. if nbr(σclosey
p
from, l

p
att) ∈ Nσcloseypfrom then {

P := nbr(σclosey
p
from, l

p
att) ◦nbr(σcloseypfrom, lpatt) Temp,

with {σcloseypfrom ← σclosey
p
from, lpatt ← lpatt};

K := K ∪ {P}; call function Attackerrep(K,A);
}

Function Attackerreq(K,A, H)

badReq := computeBadReq(K, {C1, C2, C3}), where the unifier is some σ1;
call function resolution7(badReq, C1

4 , H);
call function resolution8(badReq, C3

4 , H);

Function resolution7(badReq, C1
4 , H)

1. Temp := badReq ◦att((ypreq,s)) C
1
4 , where the unifier is some σ1;

2. for ∀ fact Fj ∈ Nlpatt do

Pj := Fj ◦nbr(lpatt,ypto) Temp with some unifier σ2
j ;

for ∀ fact fk ∈ Nvisited do
if σ2

jnbr(lpatt, y
p
to) and fk are unifiable then choose next Fj ;

endfor

if Qj := res(Pj ,Veriffactsatt) succeeds with some unifier σ̃ then{
Nvisited := Nvisited ∪ {σ2

jnbr(xp, ypto)};
call function resolution1(Qj , R

req
2 , H);

call function resolution3(Qj , R
req
3 , H);

}
endfor

Function resolution8(badReq, C3
4 , H)

1. Temp := badReq ◦att((zpreq,s)) C
3
4 , where the unifier is some σ1;

2. if nbr(lpatt, l
p
dest) ∈ Nlpatt then {

P := nbr(lpatt, l
p
dest) ◦nbr(lpatt,lpdest) Temp, with {lpatt ← lpatt, l

p
dest←l

p
dest};

if nbr(lpdest, l
p
att) ∈ Nlp

dest
and

Q := nbr(lpdest, l
p
att) ◦nbr(lp

dest
,l
p
att)

P , with {lpdest←l
p
dest, l

p
att←l

p
att} and

F := res(Q,Veriffactsatt) succeeds with some unifier σ̃ then{
K := K ∪ {F};
call function Attackerrep(K,A);

}
}

Function Attackerrep(K,A)

badRep := computeBadRep(K, {C1, C2, C3}), where the unifier is some σ1;
call function resolution9(badRep,C2

4);
call function resolution10(badRep,C4

4);

57

Function resolution9(badRep,C2
4)

for ∀Hi ∈ Hatt do
hi := last element of Hi;
1. Temp := badRep ◦att(σclose(yprep,s)) hi, where the unifier is some σ1;

2. if nbr(lpatt, σclosey
p
to) ∈ Nlpatt then {

P := nbr(lpatt, σclosey
p
to) ◦nbr(lpatt, σcloseypto) Temp,

with {lpatt ← lpatt, σclosey
p
to ← σclosey

p
to};

if Q := res(P,Veriffactsatt) succeeds with some unifier σ̃ then{
H ′i := remove hi from the end of Hi;
call function resolution5(Q,H ′i);
}
}

endfor

Function resolution10(badRep,C4
4)

hi := 1st element of Hi for some Hi ∈ Hatt; /* hi is an instance of Rrep1 */
1. Temp := P ◦att(σclose(xprep,s)) hi, where the unifier is some σ1;

2. if nbr(lpatt, l
p
src) ∈ Nlpatt then {

P := nbr(lpatt, l
p
src) ◦nbr(lpatt, lpsrc) Temp,

with {lpatt ← lpatt, l
p
src ← lpsrc};

if Q := res(P,Veriffactsatt) succeeds with some unifier σ̃ then{
return Q;
}

}

Algorithm 1. Intuitively, the algorithm uses breadth-first search to reach the
destination node lpdest from the source node lpsrc. Each node broadcasts its mes-
sage to neighbors. This is modelled by two resolution steps at each intermediate
node. Next we will discuss each step of the algorithm for better understanding
purpose:

The input of the algorithm is the tuple (T0, {Nlpi }, {Nlpatt}, route(lpsrc, l
p
dest),

K, A) : T0 is the set of protocol rules; the two sets {Nlpi } and {Nlpatt} specify the

neighborhood of the honest node lpi and the attacker node lpatt which are given by
the set of facts nbr(lpi , l

p
j) and nbr(lpatt, l

p
j), respectively; the fact route(lpsrc, l

p
dest)

specifies the source and target nodes for a given route discovery; A and K are
the sets of attacker computation rules and the knowledge base of the attacker,
respectively.

H is a record of rules that is used to store the expected reply messages
of each node on a given route, which correspond to the request it has broadcasted
or forwarded. Formally, these reply can be obtained by updating the proper rules
Rrep1 and Rrep2 . The update is done by applying the unifier of the resolutions
involving the corresponding “request” rules Rreq1 and Rreq2 to the “reply” rules
Rrep1 and Rrep2 . For instance, let us recall route(lp1, l

p
3)◦route(xpsrc,xpdest)R

req
1 where

the unifier σ is {xpsrc←l
p
1, xpdest←l

p
3}. This resolution models the broadcasting of

the initial request by the source node. After this resolution step the corresponding

58

“reply” rule of Rreq1 , Rrep1 is updated by applying σ to Rrep1 : σRrep1 . Intuitively,
this means that after broadcasting the route request the source node lp1 waits for
the corresponding reply. Hatt is a record of records Hs and is used to store the
reply of each node lying on the routes between the source node and the attacker
node that not contains the destination node.

The sets S1, S and S ′ are used to store the facts resulted from resolution
steps; Tempi is used to store the rules resulted from resolution steps; loci is used
to store node IDs; set Nvisited is used to store the facts nbr(lpi , l

p
j) in which node

lpj has already accepted a route request, so that it will drops the same copies of
the request it receives later.

At the begining, H is empty; Hatt is empty; Nvisited = {nbr(xp, lpsrc)}, that
is, at first the source node is marked as visited so that after it broadcasts the
initial request it will drop any further copy of this request; T0 = {Rreq1 , Rreq2 ,
Rrep1 , Rrep2 , Rreq3 , Ratt1 , Ratt2 , Ratt3 }. This set of rules is then organized into two
disjunct sets T req0 that models the receiving and broadcasting of route request
message: {Rreq1 , Rreq2 , Rreq3 , Ratt1 , Ratt3 }, and the T rep0 which models the phase
of waiting for route reply message: {Rrep1 , Rrep2 , Ratt2 }.

The algorithm ends when no more resolution steps can be executed. This can
happen when

• When the route discovery phase succeeded: the facts in T rep do not contain
any variable, so that fixpoint is reached and no further resolution step can
be made.

• When the route discovery phase fails (there is no route between the source
and the destination nodes) the fixpoint is reached, and no more change
can be done on the set T rep.

1. Funtion Main(): As the first step, the algorithm computes the resolution P

:= route(lpsrc, l
p
dest) ◦route(xpsrc,xpdest) R

req
1 , where Rreq1 = route(xpsrc, x

p
dest)

−→ wm((xpmsgreq, honest)). The resolution is successful with the unifier σ:
{xpsrc ← lpsrc, x

p
dest ← lpdest}. As a result we have P = wm((σxpmsgreq, honest)).

Intuitively, this means that the source node lpsrc starts the route discovery
towards node lpdest by creating the initial route request message and broad-
casts it. Figure 11 illustrates this step. After the resolution happens the
unifier σ is also applied to Rrep1 because it belongs to the same process
as Rreq1 . Hence, the updated rule Rrep1 is added to the record H; and the
rule Rreq3 is also updated by bounding the ID of the source and destination
node in it: T req0 := T req0 ∪ {Rreq3 ← σ1R

req
3 }, that is, Rreq3 is replaced

by σ1R
req
3 in T req0 . Finally, the functions resolution1(P,Rreq2 , H ′) and

resolution2(P,Ratt1 , H ′) are called. Function resolution1(P,Rreq2 , H ′) de-
scribes the propagation of the request between intermediate nodes, while
resolution2(P,Ratt1 , H ′) describes the scenario in which the attacker node
intercepts a request.

2. In the second step, after receiving the request the neighbors of the source
node lpsrc process the request and re-broadcast it. This is modelled by the

59

……….. ………..

ls

ld

la

lk

li

lj

lt

ln

lm

...

.

.

.

.
..

...

.

.

. .
.
.

.

.

.

..

.

.
..

...

..
.

lp

lh

lz
req

req

req

STEP1

Figure 11: The scenario in which the source node broadcasts the initial request
message. In this scenario the ID of the source node and destination node are
lpsrc and lpdest, respectively. The ID of the attacker node is lpatt.

functions resolution1(P,Rreq2 , H) and resolution2(P,Ratt1 , H). The first
function represents the case when a honest node receives the request broad-
casted by the source node, while the second function represents the case
when the attacker node receives the request broadcasted by the source node.

(i). In the function resolution1(P,Rreq2 , H), first the resolution P ◦wm((ypreq,s))

Rreq2 is computed. The unifier σ1 of this resolution is {ypfrom ← lpsrc, y
p
req ←

σxpmsgreq, s ← honest}. Then, loc is computed by binding the variable
ypfrom with a node ID lpsrc. Formally, this means that the substitution σ1

is applied to ypfrom: σ1ypfrom. We assume that each resolution step be-
tween honest nodes is successful because honest nodes follow the protocol
and send correct messages. Thus, we have:

Temp = nbr(lpsrc, y
p
to) ∧ Veriffactsintermreq

p,i3−→ wm((σ1ypmsgreq, honest)),

the first fact wm((σ1x
p
msgreq, honest)) on the left side is eliminated from

Rreq2 . (Figure 12 illustrates this step.)

Then, the resolution of Temp and all the facts in the set Nlpsrc , which
specify all the neighbors of the source node lpsrc, is computed. This models
the receiving of the request by all the neighbors of lpsrc. We note that at
this point σ1 is {ypfrom ← lpsrc}, and loc is lpsrc.

∀ fact Fj ∈ Nlpsrc : Pj := Fj ◦nbr(lpsrc,ypto) Temp,

where the unifiers σ2
j of these resolutions are {ypto ← lpj }, ∀l

p
j ∈ Nlpsrc .

Hence, we have |Nlpsrc | number of new facts:

60

∀lpj ∈ Nlpsrc : Pj = Veriffactsintermreq

p,i3−→ wm(σ1σ2
j (ypmsgreq, honest)),

because nbr(lpsrc, l
p
j) is eliminated from Temp as the result of the res-

olutions. In the next for cycle, the algorithm checks if the node ypto
has already received the request: At this point, we have σ2

jnbr(loc, ypto)

= nbr(lpsrc, σ
2
j y
p
to) and fk = nbr(xp, lpsrc). These two facts are not unifi-

able due to lpsrc cannot be unified with σ2
j y
p
to. As the next step the algo-

rithm makes the resolution steps using Pj and the facts in Veriffactsintermreq

(res(Pj ,Veriffactsintermreq)). If the resolution steps made by the algorithm are
all successful with the unifier σ̃ then the resulted fact Qj is:

Qj = wm((σ1σ2
j y
p
msgreq, honest)).

This intuitively means that node lpj has processed (and possibly has mod-

ified) and re-broadcasts the request message σ1σ2
j y
p
msgreq embedded in the

tuple (σ1σ2
j y
p
msgreq, honest). Afterwards, node ypto is marked as visited,

that is, Nvisited := Nvisited ∪ {nbr(xp, ypto)}.
Finally, the updated instance of Rrep2 , σ1σ2

j σ̃R
rep
2 are added to H, and the

four functions are called with the resulted fact Qj and updated H.

……….. ………..

ls

ld

la

lk

li

lj

lt

ln

lm

.

.

.

. .
.
.

.

.

.

..

.

.
..

...

..
.

lp

lh

lz
req

req

req

STEP2

req

req

req

req

req

req

Figure 12: This figure illustrates the case when the neighbors of the source node
lps process the received request and broadcast it.

(ii). In the function resolution2(P,Ratt1 , H), first P ◦wm((ypreq,s)) R
att
1 is

computed. As the result we have

Temp = nbr(loc, lpatt)
p,i6−→ att((σ1ypreq, honest)).

Afterwards, the algorithm checks if nbr(loc, lpatt) ∈ Nloc, that is, the at-
tacker node is a neighbor of node loc. If so then the resolution nbr(loc, lpatt)
◦nbr(loc,lpatt) Temp is computed, with the unifier {loc ← loc, lpatt←l

p
att},

61

which is an “identity”’. As the result we have P = att((σ1ypreq, honest)),
which intuitively means that the attacker node has intercepted the request
σ1ypreq broadcasted by node loc. The knowledge base of the attacker is im-
poved by P , that is, K := K ∪ {P}; and the record H is added to Hatt.
Finally, the function Attackerreq(K,A, H) is called, which describe the
behavior of the attacker node after intercepting a request.

3. The behavior of the further intermediate nodes (which are not a neighbor
of the source lpsrc) is similar to the point 2 above. The only difference is
that now the destination node can be reached. This scenario happens when
the function resolution3(P,Rreq3 , H) is called.

In the function resolution3(P,Rreq3 , H), first the resolution P ◦wm((zpreq,s))

Rreq3 is computed which yields

Temp = nbr(loc, lpdest) ∧ Veriffactsdest

p,i5−→ wm((σ1zpmsgrep, σ
1s)).

Then the algorithm checks whether the destination node lpdest is a neighbor
of node loc. If so then the destination node makes verification steps on
the request. These are described by the series of resolutions

P := nbr(loc, lpdest) ◦nbr(loc,lpdest) Temp, if nbr(loc, lpdest) ∈ Nloc.

with the unifier {loc ← loc, lpdest←l
p
dest}. As the result we have P =

wm((σ1zpmsgrep, σ
1s)), which intuitively means that in case all the verifi-

cation that the destination made on the request are ok then it generates
the reply message and sends it back to the node from which it received
the request. Thereafter, a series of resolutions that includes the resulted
rule/fact P and the facts in Veriffactsdest is computed, which is defined by

the function res(P,Veriffactsdest). Intuitively, res(P,Veriffactsdest) describes the
verification that the destination node makes on the received request. The
fact Q is the result of this series of resoultions. At the end, the function
resolution5(Q,H) is called, which specifies how the reply propagates back-
ward. The record H includes the rules/facts that model the reply messages
which the nodes in the route are waiting for. We note that the reply sent
back by the destination node is overheared by the nodes which are within
the its transmission range. However, we focus only on the case when the
attacker node intercepts the reply, because the honest nodes will drop the
replies which are not intended to it.

4. The function resolution4(P,Ratt3) specifies the scenario in which the at-
tacker node overhears the reply sent by the destination. First, the resolu-
tion P ◦wm((zpreq,s)) R

att
3 is computed, which yields

Temp := nbr(zpfrom, l
p
dest) ∧ nbr(l

p
dest, l

p
att) ∧ Veriffactsdest

p,i6−→
att((zpmsgrep, s)).

62

with the unifier σ1. Afterwards, the algorithm checks if the destination
node lpdest is a neighbor of node loc that broadcasted the request, then it
checks if the attacker node lpatt is a neighbor of the destination node lpdest
that sent the reply. These are desribed by the two resolutions:

P := nbr(loc, lpdest) ◦nbr(loc,lpdest) Temp, if nbr(loc, lpdest) ∈ Nloc, and

Q := nbr(lpdest, l
p
att) ◦nbr(lpdest,lpatt) P , if nbr(lpdest, l

p
att) ∈ Nlpdest .

Afterwards, res(Q,Veriffactsdest) is called, which represents the verification
made by the destination on the request it received from node loc. If all res-
olution steps (i.e, verification step) are successful the resulted fact F rep-
resents the reply sent by the destination. F is added to the knowledge base
of the attacker: K := K ∪ {F}. Finally, the function Attackerrep(K,A)
which describes the behaviour of the attacker node after overhearing the
reply.

5. In resolution5(P,H), first the last element h of H is examined if it is an in-

stance of Rrep2 or Rrep1 . If h is is an instance of Rrep2 (i.e., h = σcloseR
rep
2),

which means that the previous node in the route is an intermediate node,
first P ◦wm(σclose(y

p
rep,s)) h is computed. Here wm(σclose(y

p
rep, s)) is a fact

in the hypotheses of h. The substitution σclose is applied to (yprep, s) which
represents that some variables in (yprep, s) is bound to a constant value
during the resolutions maded in the request phase. The resolution P
◦wm(σclose(y

p
rep,s)) h yields

Temp := nbr(σclosey
p
from, σclosey

p
to) ∧ σcloseVeriffactsintermrep

p,i4−→
wm((σclosey

p
msgrep, σcloses)).

Thereafter, it checks if node σclosey
p
to is a neighbor of node σclosey

p
to. If

so then res(P,Veriffactsintermrep) is called, which returns Q if all resolutions
are successful. Then h is removed from the end of record H yielding
H ′. Finally, the function resolution5(Q,H ′) is recursively called, and
resolution6(Q,Ratt2) is called as well.

If h is is an instance of Rrep1 (i.e., h = σcloseR
rep
1), which means that the

previous node in the route is the source node, first P ◦wm(σclose(x
p
rep,s)) h

is computed, which yields

Temp := nbr(σclosex
p
from, l

p
src) ∧ Veriffactsinit

p,i2−→ accept(σs).

Here σ is the substitution that binds s to honest or advr depends on the
previous resolution steps. Afterwards, the algorithm checks if the destina-
tion node is a neighbor of node σclosex

p
from which forwards the reply.

63

P := nbr(σclosey
p
from, l

p
src) ◦nbr(σcloseypfrom, lpsrc) Temp, if

nbr(σclosey
p
from, l

p
src) ∈ Nσcloseypfrom .

If so then res(P,Veriffactsinit) is called, which returns accept(σs) if all the

verification steps in res(P,Veriffactsinit) are successful.

6. The function resolution6(P,Ratt2) represents the scenario in which the at-
tacker overhears the reply message forwarded by intermediate nodes. First
the resolution P ◦wm(σclosed(y

p
rep,s)) R

att
2 is computed, which yields

Temp := nbr(σclosedy
p
from, l

p
att)

p,i7−→ att((σclosedy
p
rep, σcloseds)).

After that, the algorithm checks if the attacker node lpatt is within the
transmission range of node σclosedy

p
from which forwards the reply. This is

described by the following resolution

P := nbr(σclosey
p
from, l

p
att) ◦nbr(σcloseypfrom, lpatt) Temp, if

nbr(σclosey
p
from, l

p
att) ∈ Nσcloseypfrom .

If so then the resulted fact P is added to the knowledge base of the attacker:
K := K ∪ {P}. Finally, the function Attackerrep(K,A) is called, which
represents the behaviour of the attacker node after intercepting the reply.

7. Function resolution7(badReq, C1
4 , H) describes the scenario in which the

attacker node forwards “its” request to intermediate nodes.

resolution8(badReq, C3
4 , H) concerns the case when destination node is

a neighbor of the attacker node, thus, the attacker node forwards “its”
request to the destination.

Function resolution9(badRep,C2
4) concerns the case in which the attacker

node forwards “its” reply to intermediate nodes.

Finally, function resolution10(badRep,C4
4) describes the scenario in which

the source node is a neighbor of the attacker node and the attacker forwards
“its” reply to the source.

9.5.1 Derivability and derivation diagram

In order to give the definition of derivability and graphical representation of the
reasoning in the previous subsection we introduce the notion of derivation tree.

Definition 13. We say that F is a closed fact if it does not contain any variable.

For example accept(honest), accept(advr) and route(lpsrc, l
p
dest) are closed facts.

However, route(xpsrc, x
p
dest) is not closed.

Definition 14. Let F be a closed fact. Let C be a set of clauses. A derivation
tree of F from C is a finite tree defined as follows:

64

……….. ………..

ls

ld

la

lk

li

lj

lt

ln

lm
... ..

.
..
.

...

. ..

lp

lh

lz

Reach the target

reqA

req

req

Figure 13: The request reached the destination node.

……….. ………..

ls

ld

la

lk

li

lj

lt

ln

lm
... ..

.
..
.

...

. ..

lp

lh

lz

Send a reply back

repA

rep

rep

Figure 14: The reply message is generated and sent back by the destination
node.

1. Its nodes are labelled by the name of the rule that is applied in the reso-
lution. In our case these rules can be the protocol rules Rreq1 ,. . . , Rreq3 ,
Ratt1 , Ratt2 , or the attacker rules I1, I2, I3, C1, C2, C3, C1

4 , C2
4 , C3

4 , and
C4

4 . In addition, nodes can be captioned by the pair (p, i).

2. Its edges are labelled by the facts using in the resolution steps. Incomming
edges represent the hypotheses of the rule that is applied in the resolution
steps while the outgoing edge represents the conclusion of the rule.

If the tree contains a node such that:

(i) it is labelled by the rule R, where R = H ′1 ∧ . . .∧ H ′n
p,i−→ C ′, H ′i

(1 ≤ i ≤ n) and C ′ are not closed facts; (ii) it has the incoming edges
labelled by H1, H2,. . . , Hn and an outgoing edge C, where Hi (1 ≤ i ≤ n)

65

and C are closed facts.

Then the n resolutions Hi◦H′
i
R of the n facts Hi (1 ≤ i ≤ n) and the rule

R are successful with the unifiers σi (1 ≤ i ≤ n), and the result of the
resolutions is the conclusion C, where C = C ′σ1 . . . σn.

In short, this means that the closed fact C can be derived from H1, H2,. . . ,
Hn using rule R.

The right side of the Figure 15 shows the resolution route(lps , l
p
d)◦route(xps ,xpd)R,

where R is the rule route(xps , x
p
d)

p,i−→ wm(xps , x
p
msgreq).

Figure 15: On the left: The derivation of the closed fact C from H1, H2,. . . ,

Hn by using rule R, where R = H ′1 ∧ . . .∧ H ′n
p,i−→ C ′, H ′i (1 ≤ i ≤ n) and C ′

are not closed facts On the right: The derivation of the fact wm(xps , x
p
msgreq)σ,

where σ = {xps ← lps , x
p
d ← lpd}, from route(lps , l

p
d) using rule route(xps , x

p
d)

p,i−→
wm(xps , x

p
msgreq).

9.5.2 Reasoning about the attacker activity

The attacker node receives a route request message when the rule Ratt1 is used in
the resolution step, and the resolution step succeeds. For instance we consider
the scenario in the Figure 16. In this example, the attacker node lpa receives the
request from lph:
In this case the fact wm(req) resolvable with rule Ratt1 , where

Ratt1 = wm(yreq) ∧ nbr(ypfrom, l
p
a) ∧ p,i6−→ att(yreq).

The resolution yields the rule Tempatt, Tempatt = nbr(lph, l
p
a)

p,i6−→ att(req), where
the unifier σ is {ypfrom ← lph, yreq ← req}. Thereafter, the algorithm searches

for the fact nbr(lph, l
p
a) in the set Nlpa . If the fact is found then resolution

nbr(lph, l
p
a)◦nbr(lph,lpa) Tempatt. The fact att(req) is derived as the result of this

resolution, which intuitively means that the attacker node lpa intercepted the
message req.

66

……….. ………..

ls

ld

la

lk

li

lj

lt

ln

lm
... ..

.
..
.

...

. ..

...
..
.

lp

lh

lz

Attacker Process

req

req

reqA

reqA

Figure 16: A scenario in which the attacker node receives the route request
message req from node lh. The request reqA is broadcasted by the attacker
node.

After receiving the message req the attacker can use its initial knowledge
(rules I1, I2, I3) and computational ability (rules C1, C2, C3, C1

4 , C2
4 , C3

4 , C4
4)

to construct messages including an incorrect route.
We restrict the attacker ability to computes at most n new data to use in

constructing messages. The value of n varies depend on the system parameter
and specified protocols and scenarios.

We note that by restricting the attacker node to construct messages that
match the template messages (otherwise, the sent message will not be accepted
due to it is not resolvable with template rules Ri.) from its knowledge we
reduced a large amount of message space the attacker can construct.

Algorithm 2. The functions Attackerreq(K,A, H) and Attackerrep(K,A): In
this part we give the algorithm describes the behavior of the attacker node.
Again, we note that in this paper we consider the case of Active-1-1 attacker
only, which means that there is only one active attacker node in the network.

The attacker node maintains the set K of its knowledge. This set includes
closed facts of the form att(p1, . . . , pn), and the attacker accumulates the mes-
sages it intercepted in K. In addition, it maintains the set A of attacker rules
that represent its computational ability. At the beginning, K consists of the ini-
tial knowledge of the attacker, that is, K = {I1, I2, I3}, and A = { C1, C2,
C3, C1

4 , C2
4 , C3

4 , C4
4 }. K can be updated during the algorithm while A is fix.

We note that this discussion considers the general case, and a specified sets of
clauses depeding on the specified routing protocol.

When a new att(p1, . . . , pn) closed fact is derived during the route discov-
ery phase it is added to set K. The clause att(p1, . . . , pn) is the result of the
resolution step between closed fact wm(p1, . . . , pm) and one of the rules Ratti
is successful. Intuitively, this means that the attacker node receives a message
broadcasted by a honest node: wm(p1, . . . , pm).

67

……….. ………..

ls

ld

la

lk

li

lj

lt

ln

lm
... ..

.
..
.

...

. ..

...
..
.

lp

lh

lz

Attacker Process - reply

repA

repA

repA

rep

lc

Figure 17: A scenario in which the attacker node receives the route reply mes-
sage.

Then using this new information, combining with the other information in K
and using computational ability, that is, rules in A it tries to generate a message
(pi, . . . , pj) that is not equal to the correct message, which honest node should
create in his place. Formally this means, closed fact att((pi, . . . , pj)) is derived
from K ∪ A, and

att((pi, . . . , pj)) ∧ ¬unifiable
(
(pi, . . . , pj), (p

′
i, . . . , p

′
j)
)
−→ badreq (Req)

or
att((pi, . . . , pj)) ∧ ¬unifiable

(
(pi, . . . , pj), (p

′
i, . . . , p

′
j)
)
−→ badrep (Rep)

where closed pattern (p′i, . . . , p
′
j) is a correct message that honest node should

generates. The message (p′i, . . . , p
′
j) is depends on what is a specified proto-

col, and wich kind of attack we want to examine. For instance, in case of the
SRP protocol when the attacker node receive message (req, src, dest, ID, MAC,
l1,. . . , li) then the honest node should insert it ID to the end of the message, so
that the correct message is (req, src, dest, ID, MAC, l1,. . . , li, latt). An other
example is when we do not want to examine the relay attack, in which the at-
tacker just re-send the received message unchange, this case the correct message
is the message he received. The procedure of computing incorrect request and re-
ply messages are specified by the two functions computeBadReq(K, {C1, C2, C3})
and computeBadRep(K, {C1, C2, C3}), respectively. In these two functions if the
facts badreq and badrep are derived then the facts badReq and badRep of the
form att((pi, . . . , pj)) are returned, respectively.

After creating each such message successfully, the attacker node applies one
of the four rules C1

4 , C2
4 , C3

4 , C4
4 to forward the message to honest nodes. We

emphasize that the attacker tries to construct all possible incorrect message using
it accummulated knowledge and computation ability and broadcasts each incor-
rect message. By properly restricting the ability of the attacker we can examine
each possibility within a finite time. We illustrate this by detecting the attack
against the SRP protocol in the Section 10.1.

68

We note that in case of specified protocols such as SRP, Adriadne, or EndairA
and when we allow only one session of route request (no new interleaving route
request is allowed), for reducing a state space the attacker node is restricted to
modify only the mutable part of the message such as ID list, digital signature,
MAC. The first part of the message usually includes (rep|req, src, dest, ID)
tuple, which should not corrupt otherwise it will be dropped by the sorce.

Now we define the “bad” state that the attacker should not achieve:

Theorem 2. The route discovery from node lpsrc to node lpdest in a given topology
N is corrupted by the attacker node that behaves as in Algorithm 2 if the facts
accept(advr) and badreq or badrep (could be both) are derived from the set of
clauses {route(lpsrc, l

p
dest), R

req
1 , Rrep1 , Rreq2 , Rrep2 , Rreq3 , Ratt1 , Ratt2 , Ratt3 , {∀lpi :

Nlpi }, Nlpatt } ∪ K ∪ A.

Proof. First we lay down that in this work we concern such attacker node activ-
ity in which the attacker node idle and is activated only when it intercepts some
message during the route discovery phase. We do not concern the case when the
attacker node initiates the route discovery or when it is the destination node.
In addition we do not concern the case when the attacker node itself generates
messages and broadcast it.

Three cases can happen for a given tuple (lps , lpd, lpatt, N): In the first case
there is no route from lps to lpd that includes the attacker node lpatt. This case is
illustrated in the Figure 18.

...

...ls

ld

latt

Branchattacker

Figure 18: The scenario in which the attacker node is not in the route between
the source and the destination nodes.

Let us recall that the deductive algorithm restricts that only such the reply
messages can reach the source node lpsrc which are sent by the attacker node lpatt.
So that the fact accept(advr) is only derivable when the source node accepts
the reply sent by the attacker node. However, the algorithm allows request
messages sent by honest nodes propagate from the source to the destination
node (may be through the attacker node) freely, because we want to model
the attacker that collects several request messages it intercepts and computing
the message containing an incorrect route based on the collected information.
The reply messages forwarded by honest nodes are allowed to propagates until
they reach the attacker node. After that the algorithm considers only the reply
messages sent the attacker node.

According to the deductive algorithm. In the first phase, the request mes-
sage propagates from the source node to the attacker node. Then in the second

69

phase the function Attacker is called. Let us recall that the function Attacker is
called once a “new” request/reply message is intercepted by the attacker node.
In this scenario, the attacker node lpatt can construct the message containing an
incorrect route, that is, the facts badreq or badrep (could be both) is deriv-
able. The fact accept(advr) is derived only when the attacker node ables to
construct itself the reply message containing an incorrect route that is then
accepted by the algorithm.

In the second case the attacker node is in the route between the source node
lpsrc and the destination node lpdest. This scenario is illustrated the Figure 19.

...

...ls

ldlatt

Branchattacker

Figure 19: The scenario in which the attacker node is in the route between the
source and the destination nodes.

In this scenario beside receiving the request the attacker node also receives the
reply message sent by honest nodes. So the bad state happens when the attacker
can construct incorrect message(s) which is then accepted by lpsrc, that is, the
facts accept(advr) and badreq or badrep are derived.

Finally, in the third case there is no any route from the node lpsrc to the
attacker node lpatt. In this scenario the attacker node does not intercepts any
message, hence, the function Attacker is not called and the facts badreq and
badrep are not derived. The route discovery is then executed among honest
nodes only, which means that no attack is performed in this case.

Next we give the definition of security of routing protocols: The first definition
concern the security for a given network topology.

Definition 15. We say that a routing protocol is secure for a given topology N
within n computation steps (i.e., n resolution steps) of the attacker node if for
all possible tuples (lpsrc, l

p
dest, l

p
att) if the route discovery from node lpsrc to node

lpdest in N is not corrupted by the attacker node that behaves as in Algorithm 2.

and the stronger definition for all possible topology:

Definition 16. We say that a routing protocol is secure within n computation
steps of the attacker node (i.e., n resolution steps made by the algorithm) if
for all possible tuples (N , lpsrc, l

p
dest, l

p
att) if the route discovery from node lpsrc

to node lpdest in N is not corrupted by the attacker node that behaves as in
Algorithm 2.

Theorem 3. Let B be the finite computation steps (resolution steps) the at-
tacker MA can made. If MA can perform attacks against the routing protocol

70

for a given network topology N and tuple (lpsrc, l
p
dest, l

p
att) then the algorithm

will find an attack.

Proof. Again let us recall that in this work we concern such attacker node
activity in which the attacker node idle and is activated only when it intercepts
some message during the route discovery phase. We do not concern the case
when the attacker node initiates the route discovery or when it is the destination
node. In addition we do not concern the case when the attacker node itself
generates messages and broadcast it.

The tuple (lpsrc, l
p
dest, l

p
att) in our statement represents the identifier of the

source, the destination, the attacker node, and the ability of the attacker (knowl-
edge, and computation ability). That is, the attack is found for a given attacker
ability.

In addition, let us recall that the attacker tries to construct all (exhaustively)
possible incorrect message using its accummulated knowledge and computation
ability and then broadcasts each incorrect message.

Let us “indirectly” suppose that there is an attack in the scenario (lpsrc,
lpdest, latt, N) that the algorithm does not find. We will show that this leads to
a contradiction.

For a given scenario (lpsrc, l
p
dest, latt, N) there are three cases may happen

as discussed in the Theorem 2. The attack may be performed only in the first
two cases. In these scenarios an attack may happen when incorrect messages
are constructed by the attacker node that are then accepted by the source
node. However, according to the Theorem 2 the examining of these cases are
all performed by the deductive algorithm.

Theorem 4. Let us assume that Veriffactsinit , Veriffactsinterm and Veriffactsdest are
empty. The number of resolution steps made by the algorithm is upper bounded
by (D+ 2)(|N |+ |E|) +B, where |N |, |E| are the number of nodes and edges of
the topology; D is the total number of incorrect messages created by the attacker
during the algorithm that are accepted by its honest neighbors; and B is the total
number of the resolution steps (computation steps) made by the attacker during
the algorithm. For practical reasons both D and B are assumed to be finite.

Proof. (sketch) The propagation of a request from the source to the destination
can be seen as a breadth-first traversing in the graph. In case there is no
attacker in the network, the algorithm performs at most |N | + |E| resolution
steps. The same is true regarding the propagation of the reply. Note that
in most cases the reply is returned by unicast sending instead of broadcast,
thus, the number of resolution steps equals to the length of the route. Taking
into account the attacker node, whenever it intercepts a new request/reply it
attempts to compute incorrect messages that will be accepted by its honest
neighbors. These incorrect messages will propagate to the source/destination,
which takes at most D(|N |+ |E|) resolution steps. Finally, the total resolution
steps made by the attacker to construct incorrect messages is B.

We note that in case Veriffactsinit , Veriffactsinterm and Veriffactsdest are not empty, the
complexity depends on the maximal number and the type of the facts they

71

contain. In a general case the complexity can be exponential, however, by taking
into account the property of the specified protocols and properly restricting the
attacker ability this complexity can be reasonably reduced as in case the SRP
protocol.

Theorem 5. (Termination) The deductive algorithm terminates after finite
steps if the computation steps the attacker node performs is finite.

Proof. The deductive algorithm is based on guided resolution steps performing
a breadth first search. Due to the number of the nodes in the network is finite
the breadth first search is finite. This remains finite if the compuatation steps
performed by the attacker node is finite.

We note that by properly restricting the attacker’s computation ability, as in
case of the SRP protocol, the algorithm terminates after finite resolution steps.

10 Application of our automatic verification method

In this section we demonstrate how to apply our automatic verification technique
to detect the attack on the SRP protocol that we have analysed manually above.

10.1 Verifying the SRP protocol

As the first step we specify the SRP protocol by the process Pi as follows:

Pi
def
= !ReqInitPi(lx)| !IntermPi(lx) | !DestPi(lx)

The parameter lx is a variable for specifying the node identifier of the current
node of which the operation is described. It is a kind of reference to ”this” node.
When describing the operation of intermediate nodes we distinguish two cases:
(i) a given intermediate node is a neighbor of the source node, this scenario is
defined by the process ListenPi1 (lx) and (ii) a given intermediate node is not a
neighbor of the source node, this scenario is defined by the process ListenPi2 (lx).

Hence, we define the process IntermPi(lx) as ListenPi1 (lx) | ListenPi2 (lx).
Then, we give the definition of each process as follows:

ReqInitPi(lx)
def
=

cpi(xdst).νid (let MAC1 = mac ((req, lx, xdst, id), k(lx, xdst))
in 〈(req, lx, xdst, id,MAC1)〉.!WaitRepPireqinit).

This process is invoked when the node lx is the source node which initiates the
route discovery towards the destination. Formally, the node receives the iden-
tifier of the destination and creates the new message identifier id. Afterwards
it creates the message authentication code and includes it into the request mes-
sage. Finally it broadcasts the request message and waits for the reply. The
process WaitRepPireqinit is defined as:

WaitRepPireqinit
def
=

72

(= lx, (= rep,= lx,= xdst,= id,= [xnext, List],
= mac((rep, lx, xdst, id, [xnext,List])), k(lx, xdst))). 〈ACCEPT〉

The SRP protocol is described in the syntax of processes in the sr-calculus. In
order to shorten the length of the protocol description we add some syntactic
sugar similar to the syntactic sugar used in the case of the Proverif tool. In
particular, instead of writing for example (x).[x = t]P we write (= t).P . In-
tuitively, (= t).P means that if the input is equal to t then the process P is
executed otherwise it stucks. Hence, this process functionates as follows: If
some message is received verification steps are made and of all verificaion steps
pass then the special term ACCEPT is signalled. The process ListenPi1 (lx) is
invoked when the node lx is an intermediate node, and is defined as follows:

ListenPi1 (lx)
def
=

((= req, ysrc, ysrc, yid, ymac)).
〈(req, ysrc, ydst, yid, ymac, [lx])〉.!WaitRepPilisten.

Intuitively, this means that if some message is received by the node then it
checks whether it is the request meassage. If so then it appends its identifier
to the message it received and broadcasts it and then waits for the reply message:

WaitRepPilisten
def
=

(= lx, (= rep,= ysrc,= ydst,= yid,= [lx, ynext,List2], y′mac)).
〈ysrc, (rep, ysrc, ydst, yid, [lx, ynext,List2], y′mac)〉.

The operation of process is similar to the process WaitRepPireqinit excepts that
intermediate nodes do not verify the message authentication code. This is rep-
resented by the variable y′mac, which can be unified with any terms (which could
be fake message authentication code), that is, the node will accepts it whatever
it is. Further, the WaitRepPireqinit represents the scenario in which the interme-
diate node is the neighbor of the source node. That is, the it waits for the list
of identifier of the form [lx, ynext,List2] in which there is node identifier before
lx.

The process ListenPi2 is modelled the another possible operation of an inter-
mediate node:

ListenPi2 (lx)
def
=

((= req, ysrc, ydst, yid, ymac, [List, yprev])).
〈(req, ysrc, ydst, yid, ymac, [List, yprev, lx])〉.!WaitRepPilisten.

This process differs from the process ListenPi1 (lx) in that it models the scenario
in which a node receives the request message in which the list of identifiers
contains at least one identifier, while in case of the process ListenPi1 (lx) the
request message including the empty list of identifier is received.

The process WaitRepPilisten is defined as (WaitRepFW1 |WaitRepFW2). WaitRepFW1

corresponds to the scenario in which the intermediate node lx is not a neighbor

73

of the source and the destination node, that is, in the returned reply message
the list of the identifier is [List1, yprev, lx, ynext,List2], where yprev and ynext are
the identifier of other intermediate nodes.

WaitRepFW1

def
=

(= lx, (= rep,= ysrc,= ydst,= yid,= [List1, yprev, lx, ynext,List2], y′mac)).
〈yprev, (rep, ysrc, ydst, yid, [List1, yprev, lx, ynext,List2], y′mac)〉.

The process WaitRepFW2 concerns the scenario in which the node lx is the neigh-
bor of the destination node, which means that there is no node indentifier after
lx in the list of identifier.

WaitRepFW2
def
=

(= lx, (= rep,= ysrc,= ydst,= yid,= [List, yprev, lx], y′mac)).
〈yprev, (rep, ysrc, ydst, yid, [List, yprev, lx], y′mac)〉.

Finally, the process DestPi(lx) model the operation of the destination node.
When receives some message the destination node checks if the message is the
request, the message authentication code is correct. If so then is generates a
reply message and sends back to the node of which identifier is the last element
of the list of identifier.

DestPi(lx)
def
=

((= req, ysrc,= lx, yid,= mac((req, ysrc, lx, yid, k(ysrc, lx)), [List, yprev])) .
let MAC1 = mac ((rep, ysrc, li, yid, [List, yprev]), k(ysrc, lx)) in
〈(rep, ysrc, lx, yid, [List, yprev],MAC1)〉.

This description is then translated to the following protocol rules described in
clauses:

Rreq1

route(xplx , x
p
dest)−→ wm

((
reqp, xplx , x

p
dest, ID[],mac

(
(reqp, xplx , x

p
dest, ID[]), k(xplx , x

p
dest)

))
, honest

)
The rule Rreq1 models the case when the source node xplx creates a request mes-

sage
(
(reqp, xplx , x

p
dest, x

p
ID,mac

(
(reqp, xplx , x

p
dest, x

p
ID), k(xplx , x

p
dest)

)
)
)
.

Rrep1

wm
((
xplx , rep

p, xplx , x
p
dest, x

p
ID, [x

p
next, List

p],mac
(
(repp, xpsrc, x

p
lx
, xpID, [x

p
next, List

p]), k(xplx , x
p
dest)

))
, s

)
∧ nbr(xplx , x

p
next)

p,i2−→ accept(s)

The rule Rrep1 models the case when the source node xplx receives some message.
If this message is unifiable with the message(
xplx , rep

p, xplx , x
p
dest, x

p
ID, [xpnext, List

p],mac
(

(repp, xpsrc, x
p
lx
, xpID, [xpnext, List

p]), k(xplx , x
p
dest)

))
then the fact ok(s) is derived, which means that the source node accepted the
returned route. If s=advr then it means that the source node accepted the
incorrect route while s=honest means that the reply message is not forwarded

74

by the attacker node but only honest nodes.

Rreq
1

2

wm
((
reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac

)
, s

)
∧ nbr(ypsrc, y

p
lx

)
p,i13−→ wm

((
reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac, [y

p
lx

]
)
, s

)
The rule Rreq

1

2 says that if the route request message is broadcasted by the
source node then the neighbors of the source node receive the request and ap-
pend their identifier to the request and re-broadcast the modified request.

Ratt
1

1

wm
((
reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac

)
, s

)
∧ nbr(ypsrc, l

p
att) ∧

p,i16−→ att
((
reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac

)
, s

)
The rule Ratt

1

1 says that if the route request message is broadcasted by the
source node and the attacker node is the neighbor of the source node then the
attacker intercepts the request.

Rrep
1

2

wm
((
yplx , rep

p, ypsrc, y
p
dest, y

p
ID, [y

p
lx
, ypnext, List

p], y′pmac

)
, s

)
∧ nbr(yplx , y

p
next)

p,i14−→

wm
((
ypsrc, rep

p, ypsrc, y
p
dest, y

p
ID, [y

p
lx
, ypnext, List

p], y′pmac

)
, s

)
The rule Rrep

1

2 models scenario in which the honest intermediate node yplx re-
ceives a reply message. This rule says that if the message the node yplx received

is unifiable with the message
(
yplx , rep

p, ypsrc, y
p
dst, y

p
ID, [y

p
lx
, ypnext, List

p], y′pmac
)
,

and the node ypnext is the neighbor of the node yplx then node yplx forwards the
reply message to the source node ypsrc.

Rreq
2

2

wm
((
reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac, [List

p, ypprev]
)
, s

)
∧ nbr(ypprev, y

p
li
)
p̃,i23−→

wm
((
reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac, [List

p, ypprev, y
p
li
]
)
, s

)
The rule Rreq

2

2 says that if the route request message is broadcasted by an inter-
mediate node then its neighbors receive the request and append their identifier
to the request and re-broadcast the modified request.

Ratt
2

1

wm
((
reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac, [List

p, ypprev]
))
∧ nbr(ypprev, l

p
att)

p,i26−→ att
((
reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac, [List

p, ypprev]
))

The rule Ratt
2

1 says that if the route request message is broadcasted by an inter-
mediate node and the attacker node is its neighbor then the attacker intercepts
the request.

Rrep
2

2

wm
((
yplx , rep

p, ypsrc, y
p
dest, y

p
ID, [List

p
1 , y

p
prev, y

p
lx
, ypnext, List

p
2], y

′p
mac

)
, s

)
∧ nbr(yplx , y

p
next) ∧

nbr(yplx , y
p
prev) ∧

p,i24−→ wm
((
ypprev, rep

p, ypsrc, y
p
dest, y

p
ID, [List

p
1 , y

p
prev, y

p
lx
, ypnext, List

p
2], y

′p
mac

)
, s

)

75

The rule Rrep
2

2 models scenario in which the honest intermediate node yplx re-
ceives a reply message. This rule says that if the message the node yplx received is

unifiable with the message
(
yplx , rep

p, ypsrc, y
p
dest, y

p
ID, [List

p
1, y

p
prev, y

p
lx
, ypnext, List

p
2], y′pmac

)
,

and the nodes ypprev and ypnext are the neighbors of the node yplx then node yplx
forwards the reply message to node ypprev.

Rreq3

wm
((
reqp, zpsrc, x

p
dest, z

p
ID,mac((rep

p, zpsrc, x
p
dest, z

p
ID, k(z

p
src, x

p
dest)), [List

p, zpprev]
)
, s

)
∧ nbr(zpprev, x

p
dest)

p,i5−→
wm

((
zpprev, rep

p, zpsrc, x
p
dest, z

p
ID, [List

p, zpprev],mac
(
(repp, zpsrc, x

p
dest, z

p
ID, [List

p, zpprev]), k(z
p
src, x

p
dest)

))
, s

)
The rule Rreq3 says that if the route request message is broadcasted by a honest
intermediate node and the destination node xpdest is its neighbor then the desti-
nation node receives the request and sends back the reply message.

Rrep
3

2

wm
((
yplx , rep

p, ypsrc, y
p
dst, y

p
ID, [List

p
1 , y

p
prev, y

p
lx

], y′pmac

)
, s

)
∧ nbr(yplx , y

p
prev)

p̃,i34−→

wm
((
ypprev, (rep

p, ypsrc, y
p
dst, y

p
ID, [List

p
1 , y

p
prev, y

p
lx

], y′pmac)
)
, s

)
The rule Rrep

3

2 says that when the reply message is received by a neighbor of the
destination node. After verifying that the node ypprev is its neighbor the reply
message is forwarded to the node ypprev.

Ratt2

wm
((
yplx , rep

p, ypsrc, y
p
dst, y

p
ID, [List

p
1 , y

p
prev, y

p
lx
, ypnext, List

p
2], y

′p
mac

)
, s

)
∧ nbr(yplx , y

p
next) ∧

nbr(yplx , y
p
prev) ∧ nbr(y

p
lx
, lpatt)

p,i7−→ att
((
ypprev, rep

p, ypsrc, y
p
dst, y

p
ID, [List

p
1 , y

p
prev, y

p
lx
, ypnext, List

p
2], y

′p
mac

)
, s

)
The rule Ratt2 says that if an intermediate node yplx forwards the reply message
to the node ypprev and the attacker node lpatt is its neighbor then the attacker
node intercepts the reply.

The node identifiers of the five nodes are the constants lp1 , lp2 , lp3 , lp4 , and lpatt.
The input of the algorithm is the tuple (T0, {Nlpi |1 ≤ i ≤ 4}, Nlpatt , route(lp1, l

p
3),

K, A) where: T0 contains 11 rules in total including the rules Rreq1 , Rreq
1

2 and

Ratt
2

1 that we use in this demonstration. The topology is defined by the five sets
Nlp1 , Nlp2 , Nlp3 , Nlp4 , and Nlpatt where : Nlp1 = {nbr(lp1, l

p
2), nbr(lp1, l

p
att)}; Nlp2 =

{nbr(lp2, l
p
1), nbr(lp2, l

p
att)}; Nlp3 = {nbr(lp3 , l

p
att), nbr(lp3, l

p
4)}; Nlp4 = {nbr(lp4 , l

p
att),

nbr(lp4, l
p
3)}; Nlpatt = {nbr(lpatt, l

p
1), nbr(lpatt, l

p
2), nbr(lpatt, l

p
3), nbr(lpatt, l

p
4)}. The

initial knowledge K and the computational ability A of the attacker are defined
by the two sets {I1, I2, I3} and {S1, S2, S3, S4, S5}, respectively. The initial
knowledge is the same as in Section 9.4. The rules S1, S2, S3, S4 and S5 are
specified as follows:

S1. att(i)→ att(n[i])

Rule S1 is the same as rule C1 in Section 9.4.

76

S2. att ((reqp, xpsrc, x
p
dest, x

p
ID, x

p
mac,Listp)) ∧ att(ypl) →

att((reqp, xpsrc, x
p
dest, x

p
ID, x

p
mac, [Listp, ypl]))

Rule S2 is the special case of rule C2 and says that the attacker node can append
any data it has to the end of the ID list embedded in the request it receives.
Pattern Listp represents an ID list, which can be empty. The variables xpsrc,
xpdest, x

p
ID, and xpmac specify the ID of the source and destination node, the

message ID, and the message authentication code, respectively.

S3. att((xpl , rep
p, xpsrc, x

p
dest, x

p
ID,Listp, xpmac)) ∧ att(y

p
l) →

att((ypl , rep
p, xpsrc, x

p
dest, x

p
ID,Listp, xpmac))

Rule S3 is an another special case of rule C2 and says that if the attacker receives
a reply message (repp, xpsrc, x

p
dest, x

p
ID,Listp, xpmac) addressed to node xpl then it

can replace the node identifier at the beginning of the message, which specifies
the addressee, by an another identifier ypl . This rule intend to model that the
attacker can forward the reply in the name of another nodes.

S4. att
(
reqp, xpsrc, x

p
dest, x

p
ID,MAC req, [Listp, xpprev]

)
∧

nbr(lpatt, x
p
dest) ∧ nbr(xpdest, l

p
att) ∧ nbr(xpdest, x

p
prev)

p,i10−→
att
(
(xpprev, rep

p, xpsrc, x
p
dest, x

p
ID, [Listp, xpprev],MAC rep

1), honest
)
.

where MAC req is mac((repp, xpsrc, x
p
dest, x

p
ID, k(xpsrc, x

p
dest)) and MAC rep

1 is
mac

(
(repp, xpsrc, x

p
dest, x

p
ID, [Listp, xpprev]), k(xpsrc, x

p
dest)

)
. Rule S4 is the spe-

cial case of rule C3
4 concerning the case when the destination node and the

attacker node are neighbors of each other. In this special case Veriffactsatt is
nbr(xpdest, x

p
prev) that models the verification step in which the destination checks

if the last ID in the ID list belongs to its neighbor.

S5. att ((psrc, rep
p, xpsrc, x

p
dest, x

p
ID, [x

p
next,Listp],MAC rep

2), s) ∧
nbr(lpatt, x

p
src) ∧ nbr(xpsrc, x

p
next)

p,i11−→ accept(advr).

where MAC rep
2 is mac ((repp, xpsrc, x

p
dest, x

p
ID,Listp), k(xpsrc, x

p
dest)). Rule S5 is

the special case of rule C4
4 concerning the case when the source node is a neighbor

of the attacker node.
The most important protocol rules that we use in this demonstration are the

rules Rreq1 , Rreq
1

2 and Ratt
2

1 :

Rreq1 = route(xpsrc, x
p
dest)−→

wm(reqp, xpsrc, x
p
dest, ID,mac((req

p, xpsrc, x
p
dest, ID, k(xpsrc, x

p
dest)), [])

Rule Rreq1 models the scenario when the source node xpsrc creates and broadcasts
the request message (reqp, xpsrc, x

p
dest, x

p
ID,mac ((reqp, xpsrc, x

p
dest, x

p
ID), k(xpsrc, x

p
dest))).

Rreq
1

2 = wm ((reqp, ypsrc, y
p
dest, y

p
ID, y

p
mac, [])) ∧ nbr(ypsrc, yplx)

p,i12−→
wm

(
(reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac, [y

p
lx

])
)

77

Rule Rreq
1

2 says that if the route request message is broadcasted by the source
node then the honest neighbors of the source node receive the request and they
append their own identifier to the request and re-broadcast the modified request.

Ratt
2

1 = wm
(
(reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac, [List

p, ypprev])
)
∧ nbr(ypprev, lpatt)

p,i6−→
att

(
(reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac, [List

p, ypprev])
)

Rule Ratt
2

1 says that if a route request message is broadcasted by an intermediate
node and the attacker node is its neighbor then the attacker intercepts that
request. Listp is a pattern that represent a list of node identifiers, which can
be empty.

The derivation of one possible attack against the SRP protocol is mod-
elled by derivation trees shown in the Figure 20 and Figure 21. Figure 20
describes the propagation of the request message from the source node lp1 to the
attacker node lpatt via the intermediate node lp2. First, the resolution route(lp1, l

p
3)

◦route(xpsrc,xpdest)R
req
1 is computed. With the unifier σ1, σ1={xpsrc ← lp1, x

p
dest ←

lp3} route(lp1, l
p
3) ◦route(xpsrc,xpdest)R

req
1 yields the fact

wm((reqp, lp1, l
p
3 , ID,mac((l

p
1, l

p
3, ID), k(lp1, l

p
3)), [])),

which is then resolved with Rreq
1

2 and yields the rule R1
tmp:

R1
tmp=nbr(lp1, y

p
lx

)
p,i2−→ wm

(
(reqp, lp1 , l

p
3, ID,mac((l

p
1, l

p
3, ID), k(lp1, l

p
3)), [yplx])

)
where the unifier σ2 of the above resolution is

σ2 = {ypsrc ← lp1 , ypdest ← lp3 , ypID ← ID, ypmac ← mac ((reqp, lp1 , l
p
3 , ID), k(lp1 , l

p
3))}.

Afterwards, the facts in the set Nlp1 are resolved with R1
tmp. The resolu-

tion nbr(lp1, l
p
2) ◦nbr(lp1 ,yplx)R

1
tmp with the unifier σ3, σ3={yplx ← lp2} yields the

fact wm((reqp, lp1, l
p
3, ID,mac((l

p
1, l

p
3, ID), k(lp1, l

p
3)), [lp2])). Intuitively, this means

that node lp2 received the request message broadcasted by lp1, and then lp2 ap-
pends its identifier to the request and re-broadcasts it.

The following resolution steps model the case when the attacker node inter-
cepts the request broadcasted by node lp2: The resolution

wm((reqp, lp1, l
p
3 , ID,mac((l

p
1, l

p
3, ID), k(lp1, l

p
3)), [lp2])) ◦F Ratt2

where F is wm
(
(reqp, ypsrc, y

p
dest, y

p
ID, y

p
mac, [List

p, ypprev])
)

and the the unifier
σ4 is σ2 ∪ {Listp ← [], ypprev ← lp2}. As the result we get the rule R2

tmp:

R2
tmp=nbr(lp2, l

p
att)

p,i6−→ att ((reqp, lp1, l
p
3 , ID,mac((l

p
1, l

p
3, ID), k(lp1, l

p
3)), [lp2]))

Finally, the algorithm searches for the fact nbr(lp2, l
p
att) in the set Nlp2 . When

nbr(lp2, l
p
att) is found the resolution nbr(lp2, l

p
att)◦nbr(lp2 ,lpatt) R

2
tmp is computed,

which yields the fact att ((reqp, lp1, l
p
3, ID,mac((l

p
1, l

p
3 , ID), k(lp1, l

p
3)), [lp2])).

Figure 21 describes the behaviour of the attacker node after intercepting the
message (reqp, lp1 , l

p
3, ID,mac((l

p
1, l

p
3, ID), k(lp1, l

p
3)), [lp2]): First, the attacker cre-

ates a fake identifier n[i] by rule S1. Afterwards, the fake identifier is appended
to the ID list [lp2], this step is modelled by the two resolutions

78

att ((reqp, lp1, l
p
3, ID,mac((l

p
1, l

p
3, ID), k(lp1, l

p
3)), [lp2]))◦FS2 and

att(n[i])◦att(yp)R3
tmp

where R3
tmp is the result of the first resolution.

Thereafter, the attacker appends the identifier lp4 to the list [lp2, n[i]]. This is
modelled by the two resolutions

att ((reqp, lp1, l
p
3, ID,mac((l

p
1, l

p
3 , ID), k(lp1, l

p
3)), [lp2, n[i]]))◦FS2 and

att(lp4)◦att(yp)R4
tmp

where R4
tmp is the result of the first resolution. We note that att(lp4) is an

element of the set I1 that is a part of the initial knowledge of the attacker node.
Then the attacker node broadcasts the modified request, which is received by

the destination node lp3. The destination node accepts the message sent by the
attacker node and generates the reply message. Afterwards, the destination node
sends back the reply to the node lp4, which is overheared by the attacker node.
This step is modelled by the resolutions involving the rule S2. On receiving
the reply the attacker replace lp4 by lp1. This step is modelled by the resolution
steps involving the rule S3. Finally, the attacker node forwards the reply to the
source node in the name of the node lp2 . This step is modelled by resolutions
using the rule S5.

79

Figure 20: This part of the derivation tree describes the resolution steps that
represent the propagation of the request message from the source node lp1 to the
attacker node lpatt.

11 Conclusion and future work

We argued that designing secure ad-hoc network routing protocols requires a
systematic approach which minimizes the number of mistakes made during the
design. To this end, we proposed a formal verification method for secured ad-
hoc network routing protocols, which is based on a novel process calculus and a
deductive proof technique. Our method has a clear syntax and semantics, and
it can be fully automated; this latter being a distinctive feature among other
formal approaches for verifying secure ad-hoc network routing protocols.

The work described in this paper is work in progress, and we are currently
extending it in many ways. The two most important future work items are (i)
the development of a fully automated protocol verification software tool based
on the theoretical foundations described in this paper, and (ii) the extension of
the described verification method to handle arbitrary network topologies and
arbitrary number of attacker nodes1.

1For the proposed solution for this problem, please see “Ta Vinh Thong, L. Buttyán, On
automating the verification of secure ad-hoc network routing protocols, Telecommunication
Systems Journal, Springer, 2011”

80

Figure 21: The behaviour of the attacker node after intercepting the message
(reqp, lp1 , l

p
3, ID,mac((l

p
1, l

p
3, ID), k(lp1, l

p
3)), [lp2]).

Acknowledgment

The work described in this paper has been supported by the grant TAMOP
- 4.2.2.B-10/12010-0009. at the Budapest University of Technology and Eco-
nomics.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the Spi
calculus. Technical Report SRC RR 149, Digital Equipment Corporation,
Systems Research Center, January 1998.

[2] G. Acs, L. Buttyan, and I. Vajda. Provable security of on-demand distance
vector routing in wireless ad hoc networks. In In In Proceedings of the
Second European Workshop on Security and Privacy in Ad Hoc and Sensor
Networks (ESAS 2005, pages 113–127, 2005.

[3] G. Acs, L. Buttyan, and I. Vajda. Provably secure on-demand source rout-
ing in mobile ad hoc networks. In IEEE Transactions on Mobile Computing,
volume 5, 2006.

81

[4] G. Acs, L. Buttyan, and I. Vajda. The security proof of a link-state routing
protocol for wireless sensor networks. In IEEE Workshop on Wireless and
Sensor Networks Security, 2007.

[5] T. R. Andel and A. Yasinsac. Automated evaluation of secure route discov-
ery in manet protocols. In SPIN ’08: Proceedings of the 15th international
workshop on Model Checking Software, pages 26–41, 2008.

[6] J. Bengtsson and F. Larsson. Uppaal a tool for automatic verification of
real-time systems. Technical Report,Uppsala University, (96/67), 1996.

[7] B. Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In
IEEE Symposium on Security and Privacy, pages 86–100, Oakland, Cali-
fornia, May 2004.

[8] A. Bloch, M. Frederiksen, and B. Haagensen.

[9] L. Buttyán and T. V. Thong. Formal verification of secure ad-hoc network
routing protocols using deductive model-checking. In Proceedings of the
IFIP Wireless and Mobile Networking Conference (WMNC), pages 1–6,
Budapest, Hungary, October 18-20 2010. IFIP.

[10] L. Buttyán and I. Vajda. Towards provable security for ad hoc routing
protocols. In SASN ’04: Proceedings of the 2nd ACM workshop on Security
of ad hoc and sensor networks, pages 94–105, 2004.

[11] C. Fournet and M. Abadi. Mobile values, new names, and secure commu-
nication. In In Proceedings of the 28th ACM Symposium on Principles of
Programming, POPL’01, pages 104–115, 2001.

[12] J. C. Godskesen. A calculus for mobile ad hoc networks. In COORDINA-
TION, pages 132–150, 2007.

[13] J. C. Godskesen. A calculus for mobile ad-hoc networks with static location
binding. Electron. Notes Theor. Comput. Sci., 242(1):161–183, 2009.

[14] G. J. Holzmann. The model checker spin. IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, 23(5), 1997.

[15] Y.-C. Hu and A. Perrig. A survey of secure wireless ad hoc routing. IEEE
Security and Privacy, 2(3):28–39, 2004.

[16] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: a secure on-demand
routing protocol for ad hoc networks. Wirel. Netw., 11(1-2):21–38, 2005.

[17] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless
networks. In Mobile Computing, 1996.

[18] J. D. Marshall, II, and X. Yuan. An analysis of the secure routing protocol
for mobile ad hoc network route discovery: Using intuitive reasoning and
formal verification to identify flaws. Technical report, THE FLORIDA
STATE UNIVERSITY, 2003.

82

[19] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks.
In Networks and Distributed Systems Modeling and Simulation, 2002.

[20] A. Perrig, J. D. Tygar, D. Song, and R. Canetti. Efficient authentication
and signing of multicast streams over lossy channels. Proceedings of the
2000 IEEE Symposium on Security and Privacy, page 56, 2000.

[21] M. Poturalski, P. Papadimitratos, and J.-P. Hubaux. Towards provable
secure neighbor discovery in wireless networks. Proceedings of the 6th ACM
workshop on Formal methods in security engineering, pages 31–42, 2008.

[22] M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and
verification of ad hoc routing protocols. 2008.

[23] A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A process calculus for
mobile ad hoc networks. Sci. Comput. Program., 75(6):440–469, 2010.

[24] O. Wibling, J. Parrow, and A. Pears. Automatized verification of ad hoc
routing protocols. Formal Techniques for Networked and Distributed Sys-
tems FORTE, pages 343–358, 2004.

83

