
Formal verification of secure ad-hoc network

routing protocols using deductive model-checking∗

Ta Vinh Thong
thong@crysys.hu

Budapest University of Technology and Economics,
Department of Telecommunications,

Laboratory of Cryptography and System Security (CrySyS)

TECHNICAL REPORT

Copyright c©Ta Vinh Thong, CrySyS Lab.

2012

∗This report is the extended and revised version of the 6 pages conference paper [8]

1

Contents

1 Introduction 4

2 Some attacks against secure routing protocols 5
2.1 Relay attacks . 5
2.2 An attack against the SRP protocol . 6
2.3 An attack against the Ariadne protocol . 6
2.4 Summary . 8

3 Motivation and Related works 8

4 The sr-calculus 9
4.1 Type system of the sr-calculus . 9
4.2 Basic definitions and terminology . 10
4.3 Simple type system for the applied π-calculus . 10
4.4 Syntax and informal semantics of the sr-calculus 12
4.5 Semantics . 15

4.5.1 The Structural Equivalence(≡) . 15
4.5.2 Reduction relation (→) . 17

4.5.3 Labeled transition system (
α−→) . 18

4.6 Equational Theory . 18
4.7 Examples . 18

4.7.1 Example for broadcasting and message loss 18
4.7.2 Example for multiple broadcast send and receive 19
4.7.3 Example for mobility . 19

4.8 Attacker knowledge base, static equivalence, labeled bisimilarity 20
4.9 Example on modelling the attacker knowledge base 22
4.10 Example on labeled bisimilarity (≈Nl) . 23

5 Attacker’s ability and knowledge 23

6 Application of the calculus 24
6.1 Modelling the SRP protocol and the attack . 25

7 Weaker definition of security: up to barb ⇓ ACCEPT 30

8 A systematic proof technique based on backward deduction 30
8.1 The backward deduction algorithm . 32
8.2 General specification of on-demand source routing protocols 36
8.3 Analysing the security of Ariadne . 36
8.4 Analysing the security of endairA . 40
8.5 sr-verif : On automating the verification . 45

8.5.1 Assumptions on routing protocols and attacker model 45
8.5.2 The concept of the verification method . 46

8.6 Specifying on-demand source routing protocols . 48

9 From protocol specification to logic rules 52
9.1 Syntax of the logic rules . 52
9.2 Translation rules . 53
9.3 The resulting protocol rules . 57
9.4 Specifying the attacker rules . 60

2

10 Automating the verification using resolution-based deduction and backward
searching 62
10.1 Derivation . 62
10.2 The verification algorithm . 63
10.3 Termination . 69
10.4 Correctness and completeness . 72
10.5 Complexity . 73

10.5.1 Implementation . 75

11 Conclusion and future work 76

3

Abstract

Ad-hoc networks do not rely on a pre-installed infrastructure, but they are formed by
end-user devices in a self-organized manner. A consequence of this principle is that end-
user devices must also perform routing functions. However, end-user devices can easily be
compromised, and they may not follow the routing protocol faithfully. Such compromised
and misbehaving nodes can disrupt routing, and hence, disable the operation of the network.
In order to cope with this problem, several secured routing protocols have been proposed for
ad-hoc networks. However, many of them have design flaws that still make them vulnerable
to attacks mounted by compromised nodes. In this paper, we propose a formal verification
method for secure ad-hoc network routing protocols that helps increasing the confidence
in a protocol by providing an analysis framework that is more systematic, and hence, less
error-prone than the informal analysis. Our approach is based on a new process algebra
that we specifically developed for secure ad-hoc network routing protocols and a deductive
proof technique. The novelty of this approach is that contrary to prior attempts to formal
verification of secure ad-hoc network routing protocols, our verification method can be made
fully automated, and provides expressiveness for explicitly modelling cryptographic privitives.

1 Introduction

In the recent past, the idea of ad-hoc networks have created a lot of interest in the research
community, and it is now starting to materialize in practice in various forms, ranging from static
sensor networks through opportunistic interactions between personal communication devices to
vehicular networks with increased mobility. A common property of these systems is that they
have sporadic access, if at all, to fixed, pre-installed communication infrastructures. Hence, it is
usually assumed that the devices in ad-hoc networks play multiple roles: they are terminals and
network nodes at the same time.

In their role as network nodes, the devices in ad-hoc networks perform basic networking func-
tions, most notably routing. At the same time, in their role as terminals, they are in the hand of
end-users, or they are installed in physically easily accessible places. In any case, they can be easily
compromised and re-programmed such that they do not follow the routing protocol faithfully. The
motivations for such re-programming could range from malicious objectives (e.g., to disrupt the
operation of the network) to selfishness (e.g., to save precious resources such as battery power).
The problem is that such compromised and misbehaving routers may have a profound negative
effect on the performance of the network.

In order to mitigate the effect of misbehaving routers on network performance, a number of
secured routing protocols have been proposed for ad-hoc networks (see e.g., [13] for a survey).
These protocols use various mechanisms, such as cryptographic coding, multi-path routing, and
anomaly detection techniques, to increase the resistance of the protocol against attacks. Unfor-
tunately, the design of secure routing protocols is an error-prone activity, and indeed, most of
the proposed secure ad-hoc network routing protocols turned out to be still vulnerable to attacks.
This fact implies that the design of secure ad-hoc network routing protocols should be based on a
systematic approach that minimizes the number of mistakes made in the design.

As an important step towards this goal, in this paper, we propose a formal method to ver-
ify the correctness of secure ad-hoc network routing protocols. The examples presented in this
paper mainly consider secure on-demand source routing protocols, however, the general idea and
methodology can be used to reasoning of other routing protocols as well. Our approach is based
on a new process algebra that we specifically developed for modeling the operation of secure ad-
hoc network routing protocols, and a proof technique based on deductive model checking. The
systematic nature of our method and its well-founded semantics ensure that one can have much
more confidence in a security proof obtained with our method than in a ”proof” based on informal
arguments. In addition, compared to previous approaches that attempted to formalize the verifi-
cation process of secure ad-hoc network routing protocols [9, 2, 3, 4], the novelty of our approach
is that it can be fully automated.

4

The organization of the paper is the following: In Section 2 we give an overview of the SRP
protocol [17] and the Ariadne protocol [14] and the attacks that have been found against them. In
these attacks the attacker node creates an incorrect routing state by modifying control messages
during the route discovery phase so that the incorrect route is accepted as if it is correct. In this
work we focus on modelling and verifying the occurence of this kind of attacks. In Section 3,
we provide the discussion on the most important related works and emphasizing the difference
between them and our work. In Section 8.6, we give the detailed discussion of the syntax as well
as the semantics of our process algebra. In Section 6, we demonstrate the expressive power of
our algebra by modelling the operation of SRP and a known security flaw in SRP. In Section 6
we demonstrate the application of the sr-calculus by modelling the SRP protocol and an attack
on it. In Section ??, we discuss how the verification process can be automated and describe
our deductive proof technique. In Section ?? we demonstrate the application of our automatic
verification method by detecting an attack on the SRP protocol. Finally, in Section 11, we conclude
the paper and discuss our planned future work on this topic.

2 Some attacks against secure routing protocols

Several ”secure” routing protocols have been proposed in the recent past for wireless ad hoc
networks. However, later most of them are turned out to be vulnerable to various attacks. In
this section, we introduce some of these attacks that serves as the motivation of our work. First,
we discuss the attack called as relay attack, which has already been modelled in the previous
works [16, 5, 11]. Afterwards we give an overview of more subtle attacks against the SRP and the
Ariadne protocols [9, 3]. We emphasize that these kinds of attacks cannot be modelled directly
and conveniently in the previous works [16, 11, 22]. Our emphasis is deliberately on modelling
and verifying these kinds of attacks.

2.1 Relay attacks

Relay attacks are such kind of attacks in which the attacker node forwards the received message
unchanged. A typical relay attack scenario against on-demand source routing protocols is shown
in the Figure 1. In this scenario the attacker node A receives the request message that includes
the route specified by the list of node IDs [. . . , N]. At this point, node A should append its own
identifier to the ID list above and forwards the request containing the ID list [. . . , N,A] to the
node M . However, instead the attacker forwards the message unchanged to M . Then, node M
appends it own identifier to the ID list and forwards it. This procedure continues until the request
message reached the destination node. At this point after making verification steps the destination
node sends back a reply message. The reply message propagates backward along the route in the
request message. After a while the reply reaches node M and is forwarded ”backward”. Due
to the wireless environment and the fact that the attacker node is within the transmission range
of node M , the reply is intercepted by the attacker. When the attacker node receives the reply
message it forwards it unchanged. At the end, the source node accepts the route [. . . , N,M, . . .]
which does not exist in the current topology.

N A M

[…,N] […,N]

[…,N,M,…][…,N,M,…]

Figure 1: A typical relay attack scenario against on-demand source routing protocols.

5

2.2 An attack against the SRP protocol

SRP is a secure on-demand source routing protocol for ad-hoc networks proposed in [17]. The de-
sign of the protocol is inspired by the DSR protocol [15], however, DSR has no security mechanisms
at all. Thus, SRP can be viewed as a secure variant of DSR. SRP tries to cope with attacks by
using a cryptographic checksum in the routing control messages (route requests and route replies).
This checksum is computed with the help of a key shared by the initiator and the target of the
route discovery process; hence, SRP assumes only shared keys between communicating pairs.

In SRP, the initiator of the route discovery generates a route request message and broadcasts it
to its neighbors. The integrity of this route request is protected by a Message Authentication Code
(MAC) that is computed with a key shared by the initiator and the target of the discovery. Each
intermediate node that receives the route request for the first time appends its identifier to the
request and re-broadcasts it. The MAC in the request is not updated by the intermediate nodes,
as by assumption, they do not necessarily share a key with the target. When the route request
reaches the target of the route discovery, it contains the list of identifiers of the intermediate nodes
that passed the request on. This list is considered as a route found between the initiator and the
target.

The target verifies the MAC of the initiator in the request. If the verification is successful, then
it generates a route reply and sends it back to the initiator via the reverse of the route obtained
from the route request. The route reply contains the route obtained from the route request, and
its integrity is protected by another MAC generated by the target with a key shared by the target
and the initiator. Each intermediate node passes the route reply to the next node on the route
(towards the initiator) without modifying it. When the initiator receives the reply it verifies the
MAC of the target, and if this verification is successful, then it accepts the route returned in the
reply.

The basic problem in SRP is that the intermediate nodes cannot check the MAC in the routing
control messages. Hence, compromised intermediate nodes can manipulate control messages, such
that the other intermediate nodes do not detect such manipulations. Furthermore, the accumu-
lated node list in the route request is not protected by the MAC in the request, hence it can be
manipulated without the target detecting such manipulations.

Figure 2: An attack scenario against the SRP protocol.

In order to illustrate a known attack on SRP, let us consider the network topology shown in
Figure 2. Let us further assume that node N1 initiates a route discovery to node N3.

The attacker node A can manipulate the accumulated list of node identifiers in the route request
such that N3 receives the request with the list (N2, λ,N4), where λ is an arbitrary sequence of fake
identifiers. This manipulation remains undetected, because the MAC computed by N1 does not
protect the accumulated node list in the route request, and intermediate nodes do not authenticate
the request. When the target N3 sends the route reply, A forwards it without modification to N1

in the name of N2. As the route reply is not modified, the MAC of the target N3 verifies correctly
at N1, and thus, N1 accepts the route (N1, N2, λ, N4, N3). However, this is a mistake, because
there is no route via nodes N2, λ, N4.

2.3 An attack against the Ariadne protocol

In this subsection, we show the attack has been found in [9] against the Ariadne secure routing
protocol.

6

Ariadne has been proposed in [14] as a secure on-demand source routing protocol for ad hoc
networks. Ariadne comes in three different flavors corresponding to three different techniques for
data authentication. More specifically, authentication of routing messages in Ariadne can be based
on TESLA [18], on digital signatures, or on MACs. We discuss Ariadne with digital signatures.

There are two main differences between Ariadne and SRP. First, in Ariadne not only the
initiator and the target authenticate the protocol messages, but intermediate nodes too insert their
own digital signatures in route requests. Second, Ariadne uses per-hop hashing to prevent removal
of identifiers from the accumulated route in the route request. The initiator of the route discovery
generates a route request message and broadcasts it to its neighbors. The route discovery message
contains the identifiers of the initiator and the target, a randomly generated request identifier,
and a MAC computed over these elements with a key shared by the initiator and the target.
This MAC is hashed iteratively by each intermediate node together with its own identifier using a
publicly known one-way hash function. The hash values computed in this way are called per-hop
hash values. Each intermediate node that receives the request for the first time re-computes the
per-hop hash value, appends its identifier to the list of identifiers accumulated in the request,
and generates a digital signature on the updated request. Finally, the signature is appended to a
signature list in the request, and the request is re-broadcast. When the target receives the request,
it verifies the perhop hash by re-computing the initiators MAC and the perhop hash value of each
intermediate node. Then it verifies all the digital signatures in the request. If all these verifications
are successful, then the target generates a route reply and sends it back to the initiator via the
reverse of the route obtained from the route request. The route reply contains the identifiers of
the target and the initiator, the route and the list of digital signatures obtained from the request,
and the digital signature of the target on all these elements. Each intermediate node passes the
reply to the next node on the route (towards the initiator) without any modifications. When the
initiator receives the reply, it verifies the digital signature of the target and the digital signatures
of the intermediate nodes (for this it needs to reconstruct the requests that the intermediate nodes
signed). If the verifications are successful, then it accepts the route returned in the reply.

Figure 3: A subtle attack against Ariadne. The figure on the left shows the communication during
the route discovery, while the figure on the right illustrates that at the end of the route discovery
phase, the source node accepts the route S, V,W,A,D, which is not valid because the link between
W and A does not exist.

Let us consider Figure 3, which illustrates part of a configuration where the discovered attack
is possible. The attacker is denoted by A. Let us assume that S sends a route request towards D.
The request reaches V that re-broadcasts it. Thus, A receives the following route request message:

reqV = (rreq, S, D, ID, hV , (V), (sigV))

where ID is the random request identifier, hV is the per-hop hash value generated by V , and sigV
is the signature of V .

After receiving reqV the attacker waits for an another route request from X:

reqX = (rreq, S, D, ID, hX , (V ,W ,X),(sigV , sigW , sigX)).

From reqX , A knows that W is a neighbor of V . A computes hA = H(A,H(W,hV)), where hV is
obtained from req1, and H is the publicly known hash function used in the protocol. A obtains
the signatures sigV , sigW from req2. Then, A generates and broadcasts the following request:

reqA = (rreq, S, D, ID, hA, (V ,W ,A) (sigV , sigW , sigA))

7

Later, D generates the following route reply and sends it back towards S:

rep = (rreq, D, S, (V ,W ,A), (sigV , sigW , sigA), sigD).

When A receives this route reply, it forwards it to V in the name of W . Finally, S will output the
route (S,V ,W , A, D), which is a non-existent route.

2.4 Summary

To sum up this section, we note that the modelling of the relay attacks has been addressed in
some related works [11, 16]. However, relay attacks are mainly concerned in neighbor discovery [19]
instead of route discovery. In contrast, in our work we primarily focus on formal verification of the
attacks concerning routing, such as the attack against the SRP and Ariadne protocols we shown
above. We note that modelling the attacks against the SRP and Ariadne protocols is more difficult
than modelling relay attacks because they required the modelling of more complex attackers.

3 Motivation and Related works

As we can see, the discussed attacks are very subtle, thus, it is hard to detect and reasoning about
them manually. In addition, reasoning in the hand and pencil manner is error-prone, therefore a
systematic and automatic method is required.

Our purpose in this paper is to provide a formal modelling of secure on-demand source routing
protocols and a systematic and automatic method for detecting attacks similar to the attacks
we introduced in the previous section. Till now, there are only few works address directly this
problem. Each method proposed in the most important related works [11, 12, 22, 5, 16, 9, 3, 23, 21]
has numerous drawbacks that we will discuss in the following:

In works [9, 3] the authors model the operation of the protocol participants by interactive and
probabilistic Turing machines, where the interaction is realized via common tapes. This model
enables us to be concerned with arbitrary feasible attacks. The security objective function is
applied to the output of this model (i.e., the final state of the system) in order to decide whether
the protocol functions correctly or not. Once the model is defined, the goal is to prove that for
any adversary, the probability that the security objective function is not satisfied is negligible.

The main drawback of this method is that the proof is not systematic and automated, and the
framework is not well-suited for detecting attack scenarios once the proof fails.

In this paper we aim at improving these works by adding automated verification method based
on deductive model-checking.

In order to give a formal and precise mathematical reasoning of the operation of routing
protocol for mobile ad-hoc networks several process calculi have been proposed in the recent
years. Among them the two works [11, 22] are closest to our work.

In the work [11] the author proposes the process algebra that is called as CMAN for formal
modelling of mobile ad-hoc networks. The advantage of this method is that it provide the modelling
of cryptographic primitives and it is focused mainly on modelling mobilily nature of mobile ad-
hoc networks. The drawback of this method is that it cannot be directly used for modelling such
attacks as the attacks scenario against the Ariadne or SRP protocols we showed in the Section 2.
In the attack scenario against the Ariadne protocol the attacker node waits, collects information
it intercepts from the neighbor nodes and use them to construct an message that contains an
incorrect route. CMAN does not provide syntax and semantics for modelling a knowledge base of
the attacker node. In order to directly model these kind of attacks we propose the notion of the
active substitution with range in the sr-calculus.

In the work [22] the authors propose the process algebra that is called as the ω-calculus. The
main advantage of this calculus is that it provides the direct modelling of broadcast communication
and mobility. The main drawback of this method that it does not provide the syntax and semantics
for modelling cryptographic primitives and attacker’s knowledge base. In contrast to this our
calculus provides the modelling of cryptographic primitives and attacker accumulated knowledge.

8

The advantage of these process algebras is that the operation of mobile ad-hoc networks and
several properties such as loop-freedom and security properties can be precisely and systematically
described with them, however, the drawback of them is that the proofs and reasoning are still
performed manually by hand.

Several works in the literature address the problem of automatic verification of routing proto-
cols. In the works [23, 21] the authors investigate the problem of verifying loop freedom property
of routing protocols. In [23] the LUNAR protocol is verified using the SPIN, and UPPAAL
model-checkers; in [23] the authors verified the DYMO protocol using graph transformation. In
contrast to these works we proposed an automatic verification method focuses on verifying security
properties of ”secure” routing protocols instead of loop freedom property.

The two works that are most related to our work are [5, 16]. In the work [5], and [16] the
authors address the problem of verification security properties of secure routing protocols using
the SPIN model-checker and CPAL-ES tools, respectively.

The main drawbacks of these methods are that they suffer from expressiveness limitation. In
particular, they cannot directly model cryptographic primitives and boadcast communications, in-
stead they simulate cryptographic primites with a series of bytes [5] and broadcast communication
with a sequence of unicast communication. In contrast to these works, our automatic verification
method provides a direct modelling of cryptographic primitives and neighborhood.

4 The sr-calculus

In this section we define the proposed calculus: its syntax and informal semantics, as well as its
operational semantics. We call this calculus as sr-calculus, where the prefix sr refers to the words
secure routing.

The advantage of the sr-calculus is that it provides expressiveness for modelling broadcast
communication, neighborhood, mobility, and transmission range like in CMAN [11] and the ω-
calculus [22], and the explicit modelling of cryptographic primitives like in the applied π-calculus
[10], however, compared to them it includes the novel definition of active substitution with range
that enables us to model attacker knowledge and attacks in the context of ad-hoc mobile networks.

CMAN cannot be used to directly model the attacks we found against the well-known SRP
and Ariadne protocols [9, 3]. In these attacks the attacker can receive information from several
paths, the attacker node then collects and store these information and construct a message that
contains an incorrect route.

The ω-calculus lacks of modelling cryptographic primitives, such as digital signature and hash-
ing, and has been used for modelling loop-freedom properties of AODV. Hence, it also lacks sytax
and semantics for modelling attacker’s knowledge set. In addition, neighbor nodes is organized
into groups. However, it is not easy to determine groups in the topology.

Finally, the applied pi-calculus [10] provides active substitution that can be used to model
actual attacker’s knowledge. However, it lacks syntax and semantics for broadcasting, neighbors
and deals with Dolev-Yao attacker model, which is not true in case of MANET.

We combine the advantage of each in order to provide a calculus with which we can directly
and conveniently modelling and proving security properties and reasoning about attacks discussed
in Section 2.

4.1 Type system of the sr-calculus

In this subsection we provide a basic type system for the proposed calculus. The main purpose
of the type system is to reduce the number of the possible cases to be examined during the
formal security proofs. Based on the type system we are capable of capturing errors such as arity
mismatch and errounous binding/substitution of terms. We adopt the type system proposed for
the applied π-calculus, discussed in the chapter 4 of [7], which have been shown to be sound and
complete. This type system includes a syntax and a semantics part, which discuss the declaration

9

of the types and the rules for typing, for example, the type preserved property of transitions. In
this paper, we only provide a brief overview of the type system in the chapter 4 of [7].

The type system catches the errors such as arity errors and matching of terms of different type.
The type system does not include recursive types, so the type of processes such as c〈c〉.P is not
defined.

4.2 Basic definitions and terminology

Definition 1. Type assignment is an assignment v : T (or u : T) of a type T to v (or u) that can
be a name, a constant, a node ID or a variable.

Definition 2. A well-formed type environment Γ is a finite set of type assignments where all
names and variables are distinct. The domain of Γ is dom(Γ) = { v | ∃ T .{ v : T} ∈ Γ }

Definition 3. Let Γ and ∆ type environments. We say that Γ extends ∆ if the following holds:

• dom(Γ) ⊆ dom(∆)

• if v ∈ dom(∆) such that {v : T} ∈ ∆, then {v : T} ∈ Γ.

If ∆ = {v1 : T1,. . . , vn : Tn } and Γ = {u1 : T1,. . . , un : Tn } and dom(Γ) ∩ dom(∆) = ∅, then
∆ can be extended with Γ by taking their union, denoted by ∆] Γ.

4.3 Simple type system for the applied π-calculus

The set of types is divided into the sets of term types and process/behavior types. Within the term
types we distinguish among channel types, broadcast types, name types, variable types, constant
types, and node ID types.

Given a term type Tt, channel and broadcast channel types are constructed by the unary type
constructors ch(Tt) and bch(Tt), which are the types that is allowed to carry data with term type.

Let Γ be a type environment and Λ an expression which may be either a term, a process, or
an extended process. A type judgment Γ ` Λ : T is an assertion that the expression Λ has type
T under the assumptions given in Γ. In particular, Γ ` Λ : T , asserts the following depending on
Λ. If Λ is a term, then T is term type Tt. Thus Γ ` t : Tt asserts that t has term type under the
assumptions of Γ. The so called behavior type, denoted by Tproc, is introduced for processes. Γ `
P : Tproc asserts that process P respects the type assertions in Γ. The judgment (` Γ well-formed)
means that Γ is a well-formed type environment.

The types for the sr-calculus are generated by the grammar:

S, T ::= Tt | Tproc (Types)
Tt ::= Tch | Tbr | Tstr (Term Types)
Tstr ::= Tname | Tvar | Tf | Tconst (String Types)

Tname ::= tn1 | . . . | tnn (Name Types)
Tvar ::= tv1 | . . . | tvn (Variable Types)
Tf ::= f(T 1

str, . . . , T
n
str) (Function Types)

Tconst ::= Treq/rep | tconst i (Constant Types)
Tch ::= ch(T 1

str, . . . , T
n
str) (Channel Types)

Tbr ::= bch(T 1
str, . . . , T

n
str) (Broadcast Channel Types)

Tid ::= tl1 | . . . | tln (Node ID Types)
Tproc ::= tp1 | . . . | tpn (Process/Behavior Types)

where tn, tv, tl and tp are name, variable, node ID, and process types, respectively. The ab-
breviation of x1 : T1,. . . , xn : Tn is defined by ~x : ~T . Of course, if a term t has a string type
Tstr then it also has a term type Tt, and if t has been assigned to one of the type Tname, Tvar,
Tf , Tconst then it implicitly has a type Tstr. The reverse direction is not always true, hence, to
avoid type conflict the most narrow type should be assigned in the declaration. Note that within

10

the set of term type the channel types are distinguished from the remaining string types because
to reasoning about routing protocols we do not need to send channels, or need not to define a
function that includes channel arguments. Within the constant type we define Treq/rep as the type
for the special constants rreq and rrep which are the parts of the routing messages.

Within a function types we distinguish types of each crypto function, such as, digital signature
type, Tsig, one-way hash type, Thash, MAC function type, Tmac. We also define types of secret
key, Tskey, public key Tpkey, and symmetric shared key Tshkey. In this paper we only use these
three crypto functions, but of course any function types can be defined in the similar way. With
these types we can ease the security verification, and reducing the number of possibilities.

Tskey ::= sk(Tid) (Secret Key Types)
Tpkey ::= pk(Tid) (Public Key Types)
Tshkey ::= k(Tid, Tid) (Shared Key Types)
Tsig ::= sign(Tstr, Tskey) (Digital Signature Types)
Thash ::= hash(Tstr) (One-Way Hash Types)
Tmac ::= mac(Tstr, Tkey) (MAC Types)

The syntax, reduction rules and trasition rules for the typed applied π-calculus remains un-
changed from the one for the untyped applied π-calculus.

In order to ensure that structural equivalence preserves well-typedness, we require that the
type system assigns equal types to terms that are equated by the equational theory.

Definition 4. (Well formed environment)

• ` ∅ well-formed

• If (` Γ well-formed) and u /∈ dom(Γ), then (` Γ] u well-formed).

Definition 5. (Type rules for terms) Let t ∈ T be a term, T a type, and Γ a well-formed type
environment. Then the type judgment Γ `T t : T holds if it can be derived by application of one
of the following rules.

• If ` Γ well-formed and u : T ∈ Γ then Γ `T u : Tstr

• If Γ `T t1 : T 1
str . . . Γ `T tn : Tnstr, and the arity of f is n, then Γ `T f(T 1

str, . . . , T
n
str) :

Tstr, for each function name f .

Definition 6. (Type rules for processes) Let P ∈ P be a process, Γ a well-formed type environment,
and Tproc the behavior type. Then the judgment Γ `P P : Tproc holds if it can be derived by
application of one of the following rules.

• If (` Γ well-formed) then (Γ `P nil : Tproc)

• If (Γ `P P : Tproc) and (Γ `P Q : Tproc), then Γ `T P | Q : Tproc.

• If (Γ `P P : Tproc) then If (Γ `P !P : Tproc)

• If (Γ] {u : Tstr} `P P : Tproc) then (Γ `P νu.P : Tproc)

• If (Γ `T t1 : Tstr), (Γ `T t2 : Tstr), (Γ `P P : Tproc), (Γ `P Q : Tproc) then (Γ `P [t1 =
t2] P else Q : Tproc), and also (Γ `P [t1 = t2] P : Tproc).

• If (Γ `T l : Tid), (Γ `T σ : Tid), (Γ `P P : Tproc), (Γ `P Q : Tproc) then (Γ `P [l ∈ σ]
P else Q : Tproc), and also (Γ `P [l ∈ σ] P : Tproc).

• If (Γ] {~x : ~Tstr} `P P : Tproc) and (Γ `T c : ch(~Tstr)) then (Γ `P c(~x).P : Tproc).

11

• If (Γ `T ~t : ~Tstr) and (Γ `T c : ch(~Tstr)) and (Γ `P P : Tproc) then (Γ `P c〈~t 〉.P : Tproc
).

• If (Γ] {~x : ~Tstr} `P P : Tproc) and (Γ `T br : bch(~Tstr)) then (Γ `P br(~x).P : bch(~Tstr)).

• If (Γ `T ~t : ~Tstr) and (Γ `T br : bch(~Tstr)) and (Γ `P P : Tproc) then (Γ `P br〈~t 〉.P :
Tproc). In the rest of the paper to represent broadcast sending/receiving we simply use 〈~t〉.P ,
and (x).P by removing br from the beginning.

• If (Γ `T t : Tstr) and (Γ `T x : Tstr) then (Γ `P {t/x} : Tproc).

4.4 Syntax and informal semantics of the sr-calculus

We assume an infinite set of names N and variables V, where N ∩ V = ∅. Further, we define a
set of node identifiers (node ID) L, where N ∩ L = ∅. Each node identifier uniquely identifies a
node, that is, no any node pair shares the same identifier.

We define a set of terms as

t ::= req | rep | true | ACCEPT | c, n,m, k | li, la | x, y, z, v, w | f(t1, . . . , tk)

• req and rep are unique constants that represent the req and rep tags in route request and
reply messages;

• true is a special constant that models the logical value 1;

• ACCEPT is a special constant. The source node outputs ACCEPT when it receives the
reply message and all the verifications it makes on the reply are successful.

• c models communication channel;

• n, m and k are names and are used to model some data (e.g., a random nonce, a secret key);

• li, i can be numbers or letters not equal to a, and la are node IDs of the honest and the
attacker node, respectively;

• x, y, z, v and w are variables that can represent any term, that is, any term can be bound
to variables.

• Finally, f is a constructor function with arity k and is used to construct terms and to model
cryptographic primitives, route request and reply messages. For instance, digital signature
is modelled by the function sign(t1, t2), where t1 models the message to be signed and t2
models the secret key. Route request and reply messages are modelled by the function tuple
of k terms: tuple(t1,. . . ,tk), which we abbreviate as (t1,. . . ,tk).

We note that, this definition of term is new compared to CMAN, ω-calculus, and the applied
pi-cacluclus in that it includes constants rep, req for modelling route discovery protocols, and pro-
cess [l ∈ σ]P for examining the neighborhood.

The internal operation of nodes is modelled by processes. Processes can be specified with the
following syntax, and inductive definition:

P , Q, R ::= processes
c〈t〉.P unicast send
c(x).P unicast receive
〈t〉.P broadcast send
(x).P broadcast receive
P |Q composition
νn.P restriction

12

!P replication
[ti = tj]P if
[l ∈ σ]P in
0 nil
let (x = t) in P let

We note that, this definition of processes is novel compared to ω-calculus in that it includes
constructor and destructor applications. Constructor/destructor application is used to model cryp-
tographic primitives. Compared to CMAN it includes also the posibility of unicast. Finally, it
differs from the applied pi-calculus in that it includes broadcast send and receive actions.

• The processes c〈t〉.P represents the sending of message t on channel c followed by the execu-
tion of P , and c(x).P represents the receiving of some message and binds it to x in P . For
example, the communication between c〈t〉.P and c(x).P can be described as the reduction
step of the parallel composition, namely, c〈t〉.P | c(x).P −→ P | P{t/x}. These two process
model the unicast receive actions.

• The two processes 〈t〉.P , and (x).P represent the broadcast send and receive. Compared to
the unicast case they does not contain the channel, which intends to model the fact that
there is no any specified target.

• A composition P |Q behaves as processes P and Q running in parallel. Each may interact
with the other on channels known to both, or with the outside world, independently of the
other. Given a family of processes P1, P2, . . . Pk, we write

∏
i∈1...k Pi, or

∏
i∈{1...k} Pi for

their parallel composition P1|P2| . . . |Pk.

• A restriction νn.P is a process that makes a new, private name n, and then behaves as P .

• A replication !P behaves as an infinite number of copies of P running in parallel.

• Processes [ti = tj]P and [l ∈ σ]P mean that if t1 = t2 and l ∈ σ, respectively, then process
P is ”activated”, else they get stuck and stay idle.

• The nil process 0 does nothing.

• Finally, let (x = t) in P means that the procedure of binding t to free occurrences of x in
process P .

A ”physical” node is defined as bP cσl , which represents a node with identifier l behaves as P and
its transmission range covers nodes with the identifiers in the set σ. Two nodes are neighbors if
they are in each other’s range. We note that σ can be empty, denoted as bP cl, which means that
the node has no connections.

A networks, denoted as N , can be an empty network with no nodes: 0N ; a singleton network
with one node: bP cl; the parallel composition of nodes: bP1cσ1

l1
| bP2cσ2

l2
, where σ1 and σ2 may

include l2 and l1 respectively; a network with name restriction, and the parallel composition of
networks: N1 | N2.

N ::= 0N | bP cl | (bP1cσ1

l1
| bP2cσ2

l2
) | νn.N | (N1 | N2)

Note that, bP cl2l1 and bQcl1l2 means the node l1 and node l2 are bidirectionally connected.

We stress that we use the form bP cσl that is already proposed in CMAN, and not the defini-
tion of groups (where neighbor nodes is organized to the same group) as in ω-calculus because we
found that the topology of Mobile Ad-hoc Networks is usually represented as graph and given in an
adjacency matrix, thus, using the groups method in ω-calculus an algorithm can be required which
extracts the cliques in the graph. Moreover, there can be redundant groups that should be handle
properly for efficiency purpose. Finally, we prefer the bP cσl form because it gives us a possibility

13

to model uni-directional links, which is not the case in ω-calculus. However, we note that CMAN
does not include syntax and semantics for uni-directional links.

νn.N represents the creation of new name n, such as secret keys, a nonce and only N knows
it.

In order to modelling attacker’s knowledge base and make modelling the attacks, where attacker
waits, collects and stores information feasible and more convenient, we extend the definition of
networks with the substitution with range and the restriction on variables. Additionally, we adapt
the the notion of active substitution for modelling the attacker’s actual knowledge.

Again, we emphasize that the notion of active substitution and static equivalence have been
used in the applied pi-calculus, however, it models the knowledge of a Dolev-Yao attacker who
eavesdrops every message that has been sent by communicating partners without considering the
attacker model in wireless ad-hoc networks.

Our contribution results in slightly modifying the notion active substitution to model such an
adversary who can only intercept messages sent by its neighbors. More precisely, the intercepting of
broadcasted information is restricted to only nodes in the broadcast range. Furthermore, we adapt
the concept of active substitution for modelling the attacker’s knowledge set, which can continuesly
change during the protocol. Finally, we emphasize that this is novel compared to all of the three
calculi: CMAN, ω-calculus, and applied pi-calculus.

The definition of the extended network is as follows:

E ::= extended network
N plain network
Ei|Ej parallel composition
νn.E name restriction
νx.E variable restriction
b{t/x}σcactive substitution with range

• N is a plain network we already discussed above.

• Ei|Ej is a parallel composition of two extended networks.

• νn.E is a restriction of the name n to E.

• νx.E is a restriction of the variable x to E.

• b{t/x}σc, which is abbreviated as {t/x}σ in the rest of the paper: {t/x}σ means that the
substitution {t/x} is applied to any node that is in parallel composition with {t/x} and
its identifier is in the set σ. Intuitively, we can say that σ is the range of the substi-
tution {t/x}. Formally, we can explain the notion of active substitution with range by
νx.
(
{t/x}σ |

∏
li∈σ bQic

σi
li

)
. This formula in turn can be defined as νx. ({t/x} |Aσ), where

Aσ is the extended process (the notion of extended process A is presented in the applied
π-calculus) that only includes the internal behavior of nodes in σ, and {t/x} is the active
substitution known in the applied π-calculus.

We write fv(E), bv(E), fn(E), and bn(E) for the sets of free and bound variables and free
and bound names of E, respectively. These sets are defined as follow:

fv({t/x}σ)
def
= fv(t) ∪ {x}, fn({t/x}σ)

def
= fn(t) ∪ {node IDs ∈ σ}

bv({t/x}σ)
def
= ∅, bn({t/x}σ)

def
= bn(t)

An extended network is closed when every variable is either bound or defined by an active substi-
tution with range.

14

In the applied π-calculus, a frame is an extended process built up from 0 and active substi-
tutions of the form {t/x} by parallel composition and restriction. Analogously, we follow this
concept and we let the frame of network, denoted by ϕN , be an extended network built up from
0N and active substitutions with range, b{t/x}σc (or simply {t/x}σ). Every extended network E
can be mapped to a frame ϕN (E) by replacing every plain network embedded in E with empty
network 0N . We distinguish the notations frame of network (ϕN) and frame of processes (ϕ) also
known in case of the applied π-calculus.

For example, the frame of process E, where

E = {t1/x1}σ1 | {t2/x2}σ2 |. . . | {tk/xk}σk |
∏
i bQic

σi
li

is ϕN (E) = {t1/x1}σ1 | {t2/x2}σ2 |. . . | {tk/xk}σk .
The frame ϕN (E) can be viewed as an approximation of the behavior of E that accounts for

the static knowledge exposed by E to its environment, but not for E’s dynamic behavior.

In the next section we give the semantics of the calculus in order to reason about secure
on-demand source routing protocols.

4.5 Semantics

First we define the strutural equivalence relation which is used to simplify a process of large size to
a smaller one that is the is equivalent to the original one. This relation is very important in proofs.
We say that two processes are structurally equivelence, if they are identical up to structure.

4.5.1 The Structural Equivalence(≡)

In particular, structural equivalence relation is defined as the least equivalence relation satisfying
bound name, bound variable conversion (also called as α-conversion) and the following rules:

(Rules for Processes:)
(Struct P-α) P ≡x←y Q; P ≡n1←n2 Q
(Struct P-Par1) P |0 ≡ P
(Struct P-Par2) P1|P2 ≡ P2|P1

(Struct P-Par3) (P1|P2)|P3 ≡ P1|(P2|P3)
(Struct P-Switch) νn1.νn2.P≡ νn2.νn1.P
(Struct P-Repl) !P ≡ P |!P
(Struct P-Drop) νn.0≡ 0
(Struct P-Extr) νn.(P |Q)≡ P |νn.Q if n /∈ fn(P)
(Struct P-Let) let x = t in P ≡ P{t/x}
(Struct P-If1) [t = t]P ≡ P
(Struct P-If2) [ti = tj]P≡ 0 (if ti 6= tj)
(Struct P-In1) [l ∈ σ]P ≡ P (if l ∈ σ)
(Struct P-In2) [l ∈ σ]P ≡ 0 (if l is not in σ)

The meaning of each rule is the following:

• Struct P-α: P and Q are stuctural equivalent if Q can be obtained from P by renaming one
or more bound names/variables in P, or vice versa. For instance, processes (x).P and (y).P
are structural equivalent by renaming y to x. This is denoted by ≡x←y.

• Struct P-Par1: The parallel composition with the nil process does not change anything, the
result is the same as the original parallel composition.

• Struct P-Par2: The parallel composition is commutative.

• Struct P-Par3: The parallel composition is associative.

15

• Struct P-Switch: The restriction is commutative.

• Struct P-Drop: Restriction does not affect the nil process, thus, we can drop it.

• Struct P-Extrusion: We can drop the restriction from process P when P does not contain
the restricted name as free name, that is, the restricted name does not occur in P .

• Struct P-Let: Both sides represent the binding of the term t to variable x in P.

• Struct P-If1, P-If2: if the two terms are the same then the execution of P begins, while if
they are distinct then the process gets stuck.

• Struct P-In1, P-In2: If the node identifier l is in the set σ then the execution of P begins,
otherwise the process P gets stuck and stays idle.

The next additional rules are valid to structural equivalence:

P ≡ Q,Q ≡ R
P ≡ R

P ≡ P ′

P |Q ≡ P ′|Q
P ≡ P ′

νn.P ≡ νn.P ′

The first one means structural equivelence relation is transitive: if P ≡ Q and Q ≡ R then P ≡ R;
the second and third rules show that structural equivalence closed to replication and restriction.
Similarly the rules for network can be defined:

(Rules for Networks:)
(Struct N-Par1) N |0N≡N
(Struct N-Par2) N1|N2 ≡N2|N1

(Struct N-Par3) (N1|N2)|N3 ≡N1|(N2|N3)
(Struct N-Switch) νn1n2.N ≡ νn2n1.N
(Struct N-Extr) (νn.N1)|N2 ≡ νn.(N1|N2) (if n /∈ fn(N2) ∪ id(N1))
(Struct N-Node) bP cσl ≡ bQc

σ
l (if P ≡ Q)

(Struct N-Rest) bνn.P cσl ≡ νn. bP c
σ
l

fn(N), id(N) represents the set of free names of N , the set of free varibles of N , and the set of
node identifiers in N , respectively. The first five rules are standard, the only rules require some
words to mention is the (Struct N-Node) and (Struct N-Rest). The first means that two networks
are strutural equivalent if it contains nodes with the same internal operation and they have the
same identifier with same neighbors. The second rule says that a name restriction on process can
be seen as a restriction on a node.

Finally the rules for the extended network E are defined as follows:

Again, we emphasize that this part is new compared to CMAN, and the ω-calculus in that it
enables us to model the knowledge base of the attacker node. The knowledge of the attacker can
improve after series of communication steps. Also it is novel compared to the applied π-calculus
in that active substitution has range for modelling neighborhood.

(Rules for Extended Networks:)
(Struct E-Par1) E|0N ≡ E
(Struct E-Par2) E1|E2 ≡ E2|E1

(Struct E-Par3) (E1|E2)|E3 ≡ E1|(E2|E3)
(Struct E-Extr) (νn.E1)|E2≡ νn.(E1|E2) (if n /∈ fn(E2) ∪ fv(E2) ∪ id(E1))
(Struct E-Switch) νn1n2.E ≡ νn2n1.E
(Struct E-Intro) νx.{t/x}σ≡ 0N
(Struct E-Try) {t/x}σ|E≡ {t/x}σ|E{t/x}σ
(Struct E-Rewrite) {t1/x}σ≡ {t2/x}σ (if t1 = t2)

16

fn(E), fv(E) and id(E) represents the set of free names of E, the set of free varibles of E, and the
set of node identifiers in E, respectively. The first five rules is similar and come straightforward
from the rules on networks and processes. Rule (Intro) is used to introduce any active substitutions.
The rule (Struct E-Rewrite) say that two active subtitutions with the same range σ, and terms
are stucturally equivalent. Rule (Try) represents the trying to apply substitution {t/x}σ to the
extended network E: For example, let E be

E = νñ({t1/x1}σ1 |. . . | {tk/xk}σk | bQicσili |. . . | bQjc
σj
lj

)

where ñ is a collection of non-duplicated names. Then E{t/x}σ, where ñ /∈ fn(t)∪ fv(t)∪ id(E),
is

νx.νñ.({t1/x1}σ1 |. . . | {tk/xk}σk | bQicσili {t/x}
σ | . . . | bQjc

σj
lj
{t/x}σ)

Intuitively, this means that the substitution is applied on every plain network. However, this
substitution successes at bQicσili only in case location li ∈ σ, otherwise, it has no effect. This is
formally defined by the rules (E-Try) and (E-Subst):

(Struct E-Try-1) bQicσili {t/x}
σ ≡li∈σ bQi{t/x}c

σi
li

(Struct E-Try-2) bQicσili {t/x}
σ ≡li /∈σ bQic

σi
li

(Struct E-Subst-1) {t/x}σ| bQicσili ≡li∈σ {t/x}
σ| bQi{t/x}cσili

(Struct E-Subst-2) {t/x}σ| bQicσili ≡li /∈σ {t/x}
σ| bQicσili

In the next subsection we introdude the reduction relation that are used to model the internal
operation/computation of nodes, and to model a reduction step in case of networks.

4.5.2 Reduction relation (→)

(Internal reduction rules for processes:)
(Red P-Let) let x = t in P → P{t/x}
(Red P-If1) [t = t]P → P
(Red P-If2) [ti = tj]P → 0 (if ti 6= tj)
(Red P-In1) [l ∈ σ]P → P (if l ∈ σ)
(Red P-In2) [l ∈ σ]P → 0 (if l is not in σ)

The operations (i) binding a variable to a term in a process; (ii) checking the equality of two
terms; (iii) checking the presence of a node identifier in a set of node identifier; and (iv) destructor
computations such as checking digital signatures, are all internal operations of nodes. Next we
introduce the internal reduction steps in a network. Internal or silent steps that can be performed
by nodes are connecting and disconnecting that concern the mobility:

(Reduction relations for mobility:)

(Red Connect) bP cσ1

l1
| bQcσ2

l2
→{l1• l2} bP c

σ1l2
l1
| bQcσ2

l2
, where l2 is not in σ1.

(Red Disconnect) bP cσ1l2
l1
| bQcσ2

l2
→{l1◦ l2} bP c

σ1

l1
| bQcσ2

l2
, where l2 is not in σ1.

The Reduction relation (Red Connect) model the scenario in which the node l2 gets into the
transmission range of the node l1. This reduction relation is denoted as →{l1• l2}. Its counterpart
is the reduction relation (Red Disconnect) is denoted as →{l1◦ l2} and says that node l2 get out
of the transmission range of the node l1.

We note that although we have defined the rules for mobility, we will not use them in our
proofs because we are only considering the analysis of the attacks discussed in Secition 2. Hence,
we always assume that the topology does not change during the attack.

In order to reason about secure on-demand source routing protocols, and describe the operation
semantics of the sr-calculus we introduce the labeled transition system of the calculus in the
following subsection. Labelled transition system is very important in proofs, and captures such
activities made by nodes that can be observed by the environment. This activity , for instance, is
broadcast sending.

17

4.5.3 Labeled transition system (
α−→)

We note that broadcast and unicast sending are non-deterministically executed, while receiving
actions can take place at the same time.

The traditional operation semantics for processes is defined as a labeled transition system
(P,G,→) where P represents a set of processes, G is a set of labels, and → ⊆ P × G × P. In our
case it is the ternary relation (N ,G,→) where N represents a set of extended networks, G is a set
of labels, and → ⊆ N × G × N . The following labeled transitions are specified in this transition
system in the sr-calculus.

(Labeled transition rules for networks)

(Ext BroadSend1) νñ. b〈t〉.P cσl
νx.〈x〉:l{σ}−→ νñ. ({t/x}σ| bP cσl)

(Ext BroadSend2) b〈t〉.P cσl
νx.〈x〉:lσ−→ ({t/x}σ| bP cσl)

(Ext BroadRecv1) b(x).Qcσ2

l

(t)σ :{l∈σ}−→ bQ{t/x}cσ2

l

(Ext BroadRecv2) νñ. b(x).Qcσ2

l

(t)σ:{l∈σ}−→ νñ. bQ{t/x}cσ2

l

New names ñ typically represent some secret key or nonce in secure on-demand source routing
protocols. The rules (Ext BroadSend1-2) say that the node l has broadcast term t, hence, it is
now available for nodes in its range, σ. This is modelled by {t/x}σ and νx, which restricts the
substitution to nodes within the range. The rules (Ext BroadRecv1-2) say that if the listening
node l is within σ (which is the range of the node that sent t, denoted by (t)σ) then it obtains t.

4.6 Equational Theory

The destructor applications (e.g., proposed in the spi-calculus), which basically is the inverse of
functions, and are used to model verification computations on messages. Formally, it is the process
let (x = g(t1, . . . , tn)) in P else Q, which tries to evaluate g(t1, . . . , tn) if this succeeds, x is bound
to the result and P is executed, otherwise, Q is executed. For instance, a typical destructor can
be verification of digital signature as checksign(sign(x, sk(y)), pk(sk(y))), where the constructor
pk(sk(y)) represents the public key generated from the given secret key.

To make the proofs and the system specification be more simpler, instead of using destructor
applications, we use the notion of equational theory proposed in the applied π-calculus. An
equational theory Eq is defined over the set of function symbols

∑
. It contains a set of equations

of the form t1 = t2, where terms t1, t2 are defined in
∑

. Like the destructor application it
allows us to capture relationships between terms defined in

∑
. Equality modulo the equational

theory, written =Eq, is defined as the smallest equivalence relation on terms, that contains Eq and
is closed under application of function symbols, substitution of terms for variables and bijective
renaming of names [10]. For instance, dec(enc(x, y),y) = x and checksign(sign(x, y),pk(y)) = true
for a special constant true. Note that we write = instead of =Eq for simplicity because in our case
it is clear from the context.

4.7 Examples

Next we show the application of active substitution with range and the defined labeled transition
system on two example networks. The first example network illustrated in the Figure 4 includes
three nodes.

4.7.1 Example for broadcasting and message loss

In this simple network node P is assigned the identifier l1 node Q has identifier l2 and node R is
at l3. Node P and node Q are neighbors, but node P and R are not. Thus, when P broadcasts
message t, only Q receives t. The followong labeled transitions model the procedure in which P
broadcast t, and only Q received this.

18

Q P R

t t

Figure 4: An example network

(
b〈t〉.P1cl2l1 | b(y).Q1cl1l2 | b(z).R1cl3

)
νx.〈x〉:l1{l2}−→(

{t/x}{l1,l2}| bP1cl2l1 | b(y).Q1cl1l2 | b(z).R1cl3
)

(t){l1,l2}:{l2∈{l1,l2}}−→(
{t/x}{l1,l2}| bP1cl2l1 | bQ1{t/x}cl1l2 | b(z).R1cl3

)
.

This example includes only one broadcast step. There is no replication. First the rule (Ext Broad-
Send2) is applied, then, the rule (Ext BroadRecv1) is applied, which models Q receives t, because
l2 ∈ {l1, l2}.

4.7.2 Example for multiple broadcast send and receive

The next example is a bit more complicated that includes replication and multiple broadcasts.
The network can be seen in the Figure 5. Here, both nodes P and Q are the neighbors of R. First
P broadcasts t1 then Q broadcasts t2. Node R is under replication which intuitively means that
it repeatedly listens for messages.

P R Q

t1 t2

Figure 5: Another example network(
b〈t1〉.P c{l3}l1

| b〈t2〉.Qc{l3}l2
| b!(y).Rc{l1,l2}l3

)
νx.〈x〉:l1{l3}−→(

{t1/x}{l1,l3}| bP c{l3}l1
| b〈t2〉.Qc{l3}l2

| b!(y).Rc{l1,l2}l3

)
(t1)
{l1,l3}:{l3∈{l1,l3}}−→(

{t1/x}{l1,l3}| bP c{l3}l1
| b〈t2〉.Qc{l3}l2

| bR{t1/x} | !(y).Rc{l1,l2}l3

)
νz.〈z〉:l2{l3}−→(

{t1/x}{l1,l3}|{t2/z}{l2,l3}| bP c{l3}l1
| bQc{l3}l2

| bR{t1/x} | !(y).Rc{l1,l2}l3

)
(t2)
{l2,l3}:{l3∈{l2,l3}}−→(

{t1/x}{l1,l3}|{t2/z}{l2,l3}| bP c{l3}l1
| bQc{l3}l2

| bR{t2/z}| R{t1/x} | !(y).Rc{l1,l2}l3

)
.

Each labeled transition step is similar as in the previous example with the only difference that
each rule is applied twice due to the two broadcast communications.

4.7.3 Example for mobility

The next example illustrate the mobility issue and message loss when the message sent by a node
N1 is not received by an another node N2 because N2 moved out of the transmission range of N1.
The scenario can be seen in the Figure 6. In this scenario, at first two nodes N1 and N2 have no
connection after that the node N2 gets into the transmission range of the node N1. After this the
message t broadcasted by N1 is received by N2. In the next reduction step N2 moves out of the
transmission range of N1, and then the message t sent by N1 is not intercepted by N2, thus, t is
lost.
We let N1 and N2 be b!〈t〉.P1cl1 , and b!(x).P2cl2 , respectively. At first, they are not connected.
After the reduction relation →{l1•l2} the node N2 moves into the transmission range of the node

19

Figure 6: Example for mobility and message loss.

N1. Then node N1 broadcasts t, which is then received by N2. These steps are modelled by

the labeled transitions
νx.〈x〉:l1{l2}−→ and

(t){l1,l2}:{l2∈{l1,l2}}−→ . After these labeled transition steps the
operation of nodes N1 and N2 get into the states P1 and P2{t/x}, respectively. As the next step,
node N2 moved out of the transmission range of N1. This modelled by the reduction relation
→{l1◦l2}. At this time, node N1 against broadcasts t, which now is not intercepted by N2.

(
b!〈t〉.P1cl1 | b!(x).P2cl2

)
→{l1•l2}

(
b!〈t〉.P1cl2l1 | b!(x).P2cl2

)
νx.〈x〉:l1{l2}−→(

{t/x}{l1,l2} | bP1 | !〈t〉.P1cl2l1 | b!(x).P2cl2
)

(t){l1,l2}:{l2∈{l1,l2}}−→(
{t/x}{l1,l2} | bP1 | !〈t〉.P1cl2l1 | bP2{t/x} | !(x).P2cl2

)
→{l1◦l2}(

{t/x}{l1,l2} | bP1 | !〈t〉.P1cl1 | bP2{t/x} | !(x).P2cl2
) νy.〈y〉:l1{l2}−→(

{t/y}{l1} | {t/x}{l1,l2} | bP1 | !〈t〉.P1cl1 | bP2{t/x} | !(x).P2cl2
)
.

In the next subsection we introduce the static equivalent and labeled bisimilarity in the new
context, in particular, on Mobile Ad-hoc Networks. We can use them to prove security properties
of secure on-demand source routing protocols, as well as reasoning about attacks.

4.8 Attacker knowledge base, static equivalence, labeled bisimilarity

We let L(N) be the set of identifier li’s in the network N , again we recall that each li is a unique
name in the network, and identify each node of the network. Then we let connectj(L(N)) ∈ C(N)
be a set of all links in the j-th topology of the network N . C(N) is the set of all possible topologies
of N .

Recall that an extended network is composed of active substitution with range and plain
networks as follow:

E=νñ. ({t1 /x1
}σ1 | {t2 /x2

}σ2 | . . . | {tm /xm}
σm |N1| . . . |Nr)

The output of the extended network E is defined by a frame ϕ, which is composed of name
restrictions and a parallel composition of all active substitutions:
ϕ = νñ. ({t1 /x1

} | {t2 /x2
} | . . . | {tm /xm}). We note that in ϕ the ranges σ1, . . . , σn are removed

from active substitutions with range.

Intuitively, the frame represents the output of the network. We note that while the attacker
node knows only the messages sent by its neighbors the wireless environment knows all of the
sent messages. By hearing everything the wireless environment can distinguish the operation of
two networks. When an attack (against a routing protocol) is executed successfuly on a specific
topology the wireless environment will be aware of it, because it can distinguish the correct from
the incorrect operations.

Taking into account that in our adversary model the attacker is weaker than the Dolev-Yao
attacker in the sense that he cannot eavesdrop all the messages sent in the network but only
messages from its neighbors. On the other hand, the attacker can perform numerous computation
steps based on its knowledge. Adapting the notion of frame, the accumulated knowledge base

20

of the attacker is defined as the frame with the identifier la as parameter: ϕ(la). The frame ϕ(la)
can be seen as the ”subset” of the frame ϕ, because it contains only such active substitution(s)
{ti /xi}

σi (i∈{1, . . . ,m}) where la ∈ σi. That is,

ϕ(la)=νñ.
(
{ti /xi}

σi |
{
tj /xj

}σj | . . . | {tk /xk}σk),
where la ∈ σi, la ∈ σj ,. . . , la ∈ σk, and {i, j, . . . , k} ⊆ {1, 2 . . . , n}.

Definition 7. Two terms t1 and t2 are equal in a frame ϕ, and write [t1 = t2]ϕ, if and only if
ϕ ≡ νñ.ω, t1ω = t2ω, and {ñ} ∩ (fn(t1) ∪ fn(t2)) = ∅ for some names ñ and substitution ω.

Definition 8. Two closed frames ϕ and ψ are statically equivalent, and write ϕ ≈s ψ, when
dom(ϕ) = dom(ψ) and when, for all terms t1 and t2, we have [t1 = t2]ϕ if and only if [t1 = t2]ψ.

We say that two closed extended networks are statically equivalent, and write E1 ≈s E2, when
their frames are statically equivalent.

Lemma 1. Static equivalence is closed by structural equivalence, by reduction, and by application
of closing evaluation contexts C[-].

Proof. Due to the definition of frame we use in static equivalent is the same as in the applied
π-calculus. The proof is also the same as in [10].

The advantage of the static equivalence is that it does not depend on the arbitrary environment
of processes. Instead in order to check the validity of the equivalent it is enough to verify the frames
we already know.

Unlike the spi-calculus [1], which is designed for reasoning about security protocols, where one
has to define the relation < that pairs two processes between which he wants to prove observational
equivalence. Furthermore, one has to define the cipher environment and takes care about the
attacker’s (process R that comes into contact with the two processes as a parallel composition)
condition after each relation step, that is, one has to prove that secret key materials still not be
obtained by the attacker (that is, names represents secret keys not become a free name of R).

Finally, we define the labeled bisimilarity in the context of Mobile Ad-Hoc Network. The
advantage of the labeled bisimilarity is that it does not depend on an arbitrary context but only
on the frames which is well-known after each transition step.

In order to make the definition be intuitive in the context of Mobile Ad-Hoc Networks, in the
next definition without corrupting the correctness we assume that

E1 consists of one plain network N1, and E2 consists of one plain network N2. Again, we note
that we are considering only the reasoning about the attacks discussed in Section 2, hence, we
assume that the topology remains unchanged during attacks

Definition 9. Labeled bisimilarity (≈Nl) is the largest symmetric relation < on closed extended
networks such that E1 < E2 implies: L(N1) = L(N2) and connecti(L(N1)) = connectj(L(N2)),
and

1. E1 ≈s E2;

2. if E1 −→ E′1, then E2 −→∗ E′2 and E′1 < E′2 for some E′2; (This is the induction based on
internal reductions);

3. if E1
α−→ E′1 and fv(α) ⊆ dom(E1) and bn(α) ∩ fn(E2) = ∅; then E2 −→∗

α−→−→∗ E′2 and
E′1 < E′2 for some E′2. (This is the induction based on labeled relations). Here α can be a
broadcast, an unicast, or a receive action.

Intuitively, this means that the outputs of the two networks of same topology cannot be distin-
guished during their operation. In particular, the first point means that at first E1 and E2 are
statically equivalent; the second point says that E1 and E2 remains statically equivalent after
internal reduction steps. Finally, the third point says that if the node l in E1 outputs (inputs)
something then the node l in E2 outputs (inputs) the same thing, and the ”states” E′1 and E′2
they reach after that remain statically equivalent. Here, →∗ models the sequential execution of
some internal reductions, or more formally, a transitive and reflexive closure of →.

21

Definition 10. Given E1 and E2 such that L(N1) = L(N2). We say that E1 and E2 are la-
beled bisimilar if they are labeled bisimilar in every same topology. That is, ∀connecti ∈ C(N1),
∀connectj ∈ C(N2), such that connecti(L(N1)) = connectj(L(N2)) : E1 ≈Nl E2.

4.9 Example on modelling the attacker knowledge base

Let us consider the example topologies in the Figure 7. Next we demonstrate how to model that
the attacker node collects information, namely, how the attacker builds its knowledge base during
the route discovery phase.

Figure 7: On the left is the topology in which an attack is found against the SRP protocol: Node
N1 initiates the route discovery towards node N3, and node NA is the attacker node. On the right
is the topology in which an attack is found against the Ariadne protocol: Node NS initiates the
route discovery towards node ND, and node NA is the attacker node.

First, we consider the scenario on the left. Let N1 be bP1c{l2,la}l1
, N2 be bP2c{l1,la}l2

, N3 be

bP3c{la,l4}l3
, N4 be bP4c{la,l3}l4

, and NA be bPAc{l1,l2,l3,l4}la
. Then the topology on the left of the

Figure 7 is specified as:

netw1
def
= bP1c{l2,la}l1

| bP2c{l1,la}l2
| bPAc{l1,l2,l3,l4}la

| bP3c{la,l4}l3
| bP4c{la,l3}l4

After the broadcasting of the request req1 by node N1 netw1 gets into the state netw′1.

netw1
νx.〈x〉:l1{l2,la}−→ netw′1, where

netw′1
def
= {req1 /x}{l2,la} | bP ′1c

{l2,la}
l1

| bP2c{l1,la}l2
| bPAc{l1,l2,l3,l4}la

| bP3c{la,l4}l3
| bP4c{la,l3}l4

The active substitution with range {req1 /x}{l2,la} means that the attacker node intercepts the
request req1 because la∈ {l2, la}. Thus, at this time the knowledge base of the attacker node is
increased with req1. The process P ′1 is the process we reach from P1 after broadcasting req1.

Then, after N2 broadcasts req2 the network netw′1 reaches the state netw′′1 :

netw′1
νy.〈y〉:l2{l1,la}−→ netw′′1 , where

netw′′1
def
= {req2 /y}{l1,la} | {req1 /x}{l2,la} | bP ′1c

{l2,la}
l1

| bP ′2c
{l1,la}
l2

| bPAc{l1,l2,l3,l4}la
|

bP3c{la,l4}l3
| bP4c{la,l3}l4

The active substitution with range {req2 /y}{l1,la} means that the attacker node intercepts the
request req2 because la∈ {l1, la}. Hence, at this point the knowledge of the attacker node has
been extended with req1 and req2. Formally, let us assume that the initial knowledge of the
attacker is zero, then we have ϕ(la) = {req2 /y} | {req1 /x}.

The scenario on the right side in the Figure 7 can be described in the same manner as in the
scenario on the left side.

We note that this ability of the sr-calculus is novel compared to CMAN and the ω-calculus. With
this ability the sr-calculus can be used to directly modelling the attacks found against the SRP and
Ariadne protocols, which is not the case in CMAN and the ω-calculus.

22

4.10 Example on labeled bisimilarity (≈N
l)

Let us consider the example network and scenario netw1 in the Figure 8 that is similar to the
case in the Figure 5. In addition, let us consider the another network netw2, which has the same
topology (node identifiers and neighborhood) as netw1. However, in netw2 the first node has the
internal operation 〈t3〉.P ′ in which the message t3 is broadcast instead of t1 as in the case of 〈t1〉.P ,
where t1 6= t3.

Figure 8: The two networks netw1 and netw2 have the same topology but the operations of the
leftmost nodes differ (P and P’).

netw1
def
=
(
b〈t1〉.P c{l3}l1

| b〈t2〉.Qc{l3}l2
| b!(y).Rc{l1,l2}l3

)
νx.〈x〉:l1{l3}−→(

{t1/x}{l3}| bP c{l3}l1
| b〈t2〉.Qc{l3}l2

| b!(y).Rc{l1,l2}l3

)
(t1)
{l3}:{l2∈{l3}}−→(

{t1/x}{l3}| bP c{l3}l1
| b〈t2〉.Qc{l3}l2

| bR{t1/x} | !(y).Rc{l1,l2}l3

)
νz.〈z〉:l2{l3}−→(

{t1/x}{l3}|{t2/z}{l3}| bP c{l3}l1
| bQc{l3}l2

| bR{t1/x} | !(y).Rc{l1,l2}l3

)
(t2)
{l3}:{l2∈{l3}}−→(

{t1/x}{l3}|{t2/z}{l3}| bP c{l3}l1
| bQc{l3}l2

| bR{t2/z}| R{t1/x} | !(y).Rc{l1,l2}l3

)
.

netw2
def
=
(
b〈t3〉.P ′c{l3}l1

| b〈t2〉.Qc{l3}l2
| b!(y).Rc{l1,l2}l3

)
νx.〈x〉:l1{l3}−→(

{t3/x}{l3}| bP ′c{l3}l1
| b〈t2〉.Qc{l3}l2

| b!(y).Rc{l1,l2}l3

)
(t3)
{l3}:{l2∈{l3}}−→(

{t3/x}{l3}| bP ′c{l3}l1
| b〈t2〉.Qc{l3}l2

| bR{t1/x} | !(y).Rc{l1,l2}l3

)
νz.〈z〉:l2{l3}−→(

{t3/x}{l3}|{t2/z}{l3}| bP ′c{l3}l1
| bQc{l3}l2

| bR{t1/x} | !(y).Rc{l1,l2}l3

)
(t2)
{l3}:{l2∈{l3}}−→(

{t3/x}{l3}|{t2/z}{l3}| bP ′c{l3}l1
| bQc{l3}l2

| bR{t2/z}| R{t1/x} | !(y).Rc{l1,l2}l3

)
.

It is easy to see that netw1 and netw2 are not labeled bisimilar, because their outputs, that is
their frames {t1/x}|{t2/z} and {t3/x}|{t2/z} can be distinguished because t1 6= t3.

5 Attacker’s ability and knowledge

The computation ability of the attacker is an unchanged set, denoted by Ac, of constructor func-
tions such as computing encryption, hash, and digital signature, compose a message tuple etc.
The knowledge of the attacker is composed of initial knowledge (denoted by Kinit) and gained
knowledge (denoted by Kgain). Typically, Kinit often contains the node IDs of the neighborhood
of the attacker, and pre-shared keys. Hence, formally, when modeling the initial knowledge we
initiate the frame ϕ(la) with the substitution (with the range {la}, hence, not available for the
honest nodes) of the initial knowledge on new variables. Thereafter, the frame ϕ(la) is periodically
extended with new knowledge (i.e., Kgain), and whenever the attacker compute a message for his
purpose it can use its whole knowledge and computation ability.

The computation ability of the attacker node is the set B of functions such as encrypt(t,k),
hash(t), mac(t,k), sign(t,k), etc. To capture the attacker’s ability for message verification, set B
also contains equations from

∑
, such as dec(enc(x, y),y) = x and checksign(sign(x, y),pk(y)) =

23

true for a special constant true. In the processes of the attacker, the parameters of these functions
and equations can only those that appear in ϕ(la).

To make the behavior of the attacker systematic, we assume that the attacker tries all the
possible moves (selecting possible functions, equations with the available parameters). To reduce
the number of possibilities we can explicitly add the type-respect binding of the parameters to
functions and equations. For instance, in sign(t,k), from ϕ(la) only the terms of type DATA can
be bound to t, and only terms of type PRIVATEKEY can be bound to k. Moreover, in case of
source routing protocols, usually, the patterns (skeletons) of the accepted reply and request are
known. Hence, by reasoning in a backward manner that which kind of message parts the attacker
need to have in order to compose the reply or request that includes an invalid route but fullfils
the pattern of accepted message, we can systematically make the analysis and greatly reducing
the number of possibilities.

6 Application of the calculus

In this section we demonstrate the usability of the sr-calculus by modelling the SRP protocol and
the attack scenario we discussed in Section 2.

In order to model secure on-demand source routing protocols for mobile ad-hoc networks we
introduce the following required constructor functions and destructor applications.

We start with the discussion of the construction function tuple and the next and previous
functions related to tuple, then we discuss the MAC function.
tuple : The constructor function tuple models a tuple of n terms t1, t2,. . . , tn. We write the
function as

tuple(t1, t2, . . . , tn)

We abbreviate it simply as (t1, t2, . . . , tn) in the rest of the paper.
We introduce the destructor functions i that returns the i-th element of a tuple of n elements,

where i ∈ {1, . . . , n}:

i(t1, t2, . . . , tn) = ti

list : The constructor function list models a list of n terms t1, t2,. . . , tn. We write the function as

list(t1, t2, . . . , tn)

We abbreviate it as [t1, t2, . . . , tn] in the rest of the paper. We note that a list can be empty, that
is n = 0, and we denote the empty list as [].

Then the destructor applications next and prev are introduced for modelling the next and
the previous element of a particular element in the list. Each function has two arguments, a first
is a list and the second is the term of which we want to know its next and previous element in
the given list. If there is no such element in the list or it has no next or previous element then
it returns a constant symbol undefined . The sort system may enforce that next and prev are
applied only to list.

next([t1, . . . , ti, ti+1, . . . tn] , ti) = ti+1,
next([t1, . . . , tn] , tn) = undefined
next([t1, . . . , tn] , ti) = undefined, if ti does not occur in the list,
prev([t1, . . . , ti−1, ti, . . . tn] , ti) = ti−1,
prev([t1, . . . , tn] , t1) = undefined
prev([t1, . . . , tn] , ti) = undefined, if ti does not occur in the list.

We also introduce the functions toendlist and toheadlist that model the list with n + 1
elements by appending an element t to the end (to the head) of a list tlist of n elements with same
sort as t, respectively.

24

toendlist ([t1, . . . , tn], t) = [t1, . . . , tn, t]
toheadlist (t, [t1, . . . , tn]) = [t, t1, . . . , tn].

In the rest of the paper for convenient presentation we write [t1, . . . , tn, t] instead of toendlist ([t1, . . . , tn], t).
With the function toendlist we can model lists as follows: [l1, l2,. . . , ln] = toendlist(. . . toendlist(toendlist([
], l1), l2) . . . ln).

Functions first, and last represents the first, and the last element of List, respectively.

first([t1, . . . , tn]) = t1
last([t1, . . . , tn]) = tn.

Finally we model the keyed hash or MAC function with symmetric key k with the binary
function mac. The

mac(t1, t2).

function that computes the message authentication code of message t1 using secret key t2. The
shared key between node li and lj is modelled by function k(li, lj).

6.1 Modelling the SRP protocol and the attack

The scenario in Section 2 is modelled by the extended network defined as:

netw
def
= (bP1c{l2,la}l1

| bP2c{l1,la}l2
| b!PAc{l1,l2l3,l4}la

| b!P3c{la,l4}l3
| bP4c{la,l3}l4

).

where N1=bP1c{l2,la}l1
, N2=bP2c{l1,la}l2

, A=b!PAc{l1,l2,l3,l4}la
, N3=b!P3c{la,l4}l3

, N4=bP4clal3l4
. Pro-

cesses P1,P2,!P3,P4 model the operation of honest nodes while process A model the operation of
the attacker node as follows:

P1
def
= let MAC13 = mac ((l1, l3), k(l1, l3)) in ReqInit.

ReqInit
def
= 〈(req, l1, l3,MAC13, [])〉.!WaitRep1.

WaitRep1
def
= (xrep).[1(xrep) = l1] [2(xrep) = rep] [3(xrep) = l1]

[4(xrep) = l3][first(5(xrep)) ∈ {l2la}]
[mac ((l1, l3, 5(xrep)) , k(l1, l3)) = 6(xrep)]
〈ACCEPT〉.

Intuitively, the node l1 generates the route request message that includes the ID of source and tar-
get nodes, and the message authentication code MAC13 computed using the shared key, broadcasts
it and waits for the reply. When it receives a message, it checks whether (i) it is the addressee,
(ii) the message is a reply, (iii) the ID of the source and the target nodes, and (iv) the message
authentication code using its shared key. If all are correct then it signals term ACCEPT. The
process P2 models the operation of the node N2 and is specified as follow:

P2
def
= (yreq) .[1(yreq) = req].
〈(1(yreq), 2(yreq), 3(yreq), 4(yreq), [5(yreq), l2])〉
!WaitRep2.

WaitRep2
def
= (yrep) .[1(yrep) = l2][2(yrep) = rep]

[next (5(yrep), l2) ∈ {l1la}]
in 〈(l1, 2(yrep), 3(yrep), 4(yrep), 5(yrep), 6(yrep))〉.

Intuitively, on receiving a message it checks if it is a request, then appends its ID l2 to the end
of the list, re-broadcasts it and waits for a reply. When it receives the reply message it checks if
the message is intended to it, it is a reply, the next ID in the list corresponds to neighbors and
forwards the message to the destination node l1. The process P4 models the operation of the node
N4 and is specified as follow:

25

P4
def
= (zreq) .[1(zreq) = req].
〈(1(zreq), 2(zreq), 3(zreq), 4(zreq), [5(zreq), l4])〉
!WaitRep4.

WaitRep4
def
= (zrep) .[1(zrep) = l2][2(zrep) = rep]

[prev (5(zrep, l4)) ∈ {lal3}]
let tidList = 5(zrep) in let lprev = prev (tidList, l4)
in 〈(lprev, 2(zrep), 3(zrep), 4(zrep), 5(zrep), 6(zrep))〉.

Intuitively, on receiving a message node N4 checks if it is a request, then appends its identifier l4
to the end of the list, re-broadcasts it and waits for a reply. When it receives the reply message it
checks if the message is intended to it, it is a reply, the previous and next ID in the list corresponds
to neighbors and forwards the message to the previous node lprev in the list. The process P4 models
the operation of the node N4 and is specified as follow:

Finally, the operation of the destination node N3, the process P3, is modelled as:

P3
def
= (wreq) .[1(wreq) = req][3(wreq) = l3].

[mac (〈2(wreq), 3(wreq)〉, k(l1, l3)) = 4(wreq)] let MAC31=
mac((1(wreq), 2(wreq), 3(wreq), 5(wreq)) , k(l1, l3)) in
let lprev = last (5(wreq)) in
〈(lprev, rep, 2(wreq), 3(wreq), 5(wreq),MAC31)〉.

Intuitively, on receiving the a message it checks if the message is a request, and it is the destination,
and verifies the MAC embedded in the request using its shared key with l1. If so then it creates
a reply message and forwards it to the last node in the list.

Next we specify the model (MA) of the attacker node as follows: we assume that the attacker
cannot forge message authentication codes MAC13 and MAC31 without possessing keys. Initially,
the attacker node knows the IDs of its neighbors {l1, l2, l3, l4}. The attacker can creates new data
n, and can append elements of {l1, l2, l3, l4}, and n to the end of an ID list it receives. Finally, it
can broadcast and unicast its message to honest nodes.

The attacker overhears only messages sent by its neighbors. Let frame ϕ(la) be {ti /xi} |{
tj /xj

}
| . . . | {tk /xk}. This represents the attacker’s knowledge he accumulates during the route

discovery phase by eavesdropping. He combines this accumulated knowledge and initial knowledge
to construct an attack. Let Tlp be a tuple that consists of the elements in {l1, l2, l3, l4}.

Formally, the operation of the attacker node is defined as follows: PA
def
= (x̃) .νn.〈f (x̃, Tlp , n)〉,

where x̃ is a tuple (x1,. . . ,xn) of variables, νn means the attacker creates new data n. The function
f (x̃, Tlp , n) represents the message the attacker generates from the eavesdropped messages that it
receives by binding them to x̃, its initial knowledge and the newly generated data n, respectively.
At first, x̃ is a single variable xa.

As the next step, we define an ideal model of netw, written as netwspec. The definition of

netwspec is the same as netw except that the desription of N1 is bP spec1 c{l2la}l1
.

Process P spec1 models the ideal operation of the source node N1 in the sense that although
the source node does not know the route to the destination it is equipped with a special function
consistent(List) that informs it about the correctness of the returned route. We define this ideal
source node as follow:

P spec
1

def
= let MAC13 = mac ((l1, l3), k(l1, l3)) in ReqInitspec.

ReqInitspec
def
= 〈(req, l1, l3,MAC13, [])〉.!WaitRepspec.

WaitRepspec

def
= (xrep).[1(xrep) = l1] [2(xrep) = rep][3(xrep) = l1]

[4(xrep) = l3][first(5(xrep)) ∈ {l2la}]
[mac ((l1, l3, 5(xrep)) , k(l1, l3)) = 6(xrep)]
[consistent (5(xrep)) = true].〈ACCEPT〉.

Intuitively, in the ideal model, every route reply that contains a non-existent route is caught
and filtered out by the initiator of the route discovery. Next we give the definition of secure routing
based on labeled bisimilarity:

26

Definition 11. A routing protocol is said to be secure if for all extended networks E and its
corresponding ideal network Espec, which includes an arbitrary attacker node, we have: E ≈Nl
Espec.

Theorem 1. The SRP protocol is insecure.

Proof. We will show that netw ≈Nl netwspec does not hold besides the attacker MA because the
third point of the Definition 9 is violated. In order to do this we will show that there exist a
sequence of labeled transitions and internal reduction relations that can be performed in case of
netw but can not be performed in case of netwspec. Formally, this means that the frames of netw
and netwspec can be distinguished.

Let us see the following sequence of labeled transitions and reduction relations that netw can
perform: First the source node l1 broadcast the route request message (req, l1, l3,MAC13, []) to
initiates the discovery of the route towards the node l3.(
bP1c{l2,la}l1

| bP2c{l1,la}l2
| b!PAc{l1,l2,l3,l4}la

| b!P3c{la,l4}l3
| bP4c{la,l3}l4

)
νx.〈x〉:l1{l2,la}−→

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} | bP ′1c{l2,la}l1
| bP2c{l1,la}l2

| b!PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP4c{la,l3}l4
) (→ ×2 (EXT BroadRecv1))

The active substitution with range
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la}
means that after l1 broadcasts

the message (req, l1, l3,MAC13, []) it is available for itself and its neighbors, the nodes l1 and la.
The process P ′1 is !WaitRep1. After applying two times the rule (EXT BroadRecv1) netw reaches
the following state:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} | b!WaitRep1c
{l2,la}
l1

|
⌊
P2

{
(req,l1,l3,MAC13,[]) /x

}⌋{l1,la}
l2

|
⌊
PA
{
(req,l1,l3,MAC13,[]) /x

}
| !PA

⌋{l1,l2,l3,l4}
la

| b!P3c{la,l4}l3
| bP4c{la,l3}l4

) (→ ×2 (Red P-Let))

Intuitively, this means that node l2 and the attacker node la receive the broadcasted message.
After broadcasting the message (req, l1, l3,MAC13, []) node l1 reaches to the state !WaitRep1 and
after receiving the route request message the nodes l2 and la are going to broadcast their message.
The node l2 is going to broadcast the request message (req, l1, l3,MAC13, [l2]) and the attacker
node (req, l1, l3,MAC13, [l2, n, l4]). (→ ×2 (Red P-Let)) means the application of the reduction
relation rule (Red P-Let) twice.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} | b!WaitRep1c
{l2,la}
l1

| b〈1(x), 2(x), 3(x), 4(x), [5(x), l2]〉.!WaitRep2c
{l1,la}
l2

| b〈1(x), 2(x), 3(x), 4(x), [l2, n, l4]〉 | !PAc{l1,l2,l3,l4}la

| b!P3c{la,l4}l3
| bP4c{la,l3}l4

)
νy.〈y〉:la{l1,l2,l3,l4}−→

As we mentioned earlier the broadcast sends are choosed non-deterministically they are going to
executed at the same time. We assume that in this labeled transition trace the attacker node
outputs its message before node l2. After broadcasting (req, l1, l3,MAC13, [l2, n, l4]) netw reaches
the following state:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

| b!WaitRep1c
{l2,la}
l1

| b〈1(x), 2(x), 3(x), 4(x), [5(x), l2]〉.!WaitRep2c
{l1,la}
l2

| b0 | !PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP4c{la,l3}l4
) ≡Struct P−Par1

27

(→ ×4 (EXT BroadRecv1))

We note that at this time the frame of netw is (
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} | {(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

,
which represents the output messages so far. After applying the rules (Struct P-Par1) and 4 times
the rule (EXT BroadRecv1) netw reaches the following state:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
⌊
WaitRep1

{
(req,l1,l3,MAC13,[l2,n,l4]) /y

}
| !WaitRep1

⌋{l2,la}
l1

|
⌊
P ′2
{
(req,l1,l3,MAC13,[l2,n,l4]) /y

}⌋{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

|
⌊
P3

{
(req,l1,l3,MAC13,[l2,n,l4]) /y

}⌋{la,l4}
l3

|
⌊
P4

{
(req,l1,l3,MAC13,[l2,n,l4]) /y

}⌋{la,l3}
l4

) →∗

Here the process P ′2 is 〈1(x), 2(x), 3(x), 4(x), [5(x), l2]〉.!WaitRep2. After receiving the message
(req, l1, l3,MAC13, [l2, n, l4]) broadcasted by the attacker node, nodes l1 and l2 drops it since the
verification they make on it fails. This is modelled by the nil process.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

| b0 | !WaitRep1c
{l2,la}
l1

| bP ′2c
{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b〈l4, rep, 2(y), 3(y), 5(y),MAC31〉 | !P3c{la,l4}l3

| b〈1(y), 2(y), 3(y), 4(y), [5(y), l4]〉.!WaitRep4c
{la,l3}
l4

)

−→∗, ≡Struct P−Par1 ×2,
νx′.〈x′〉:l2{l1,la}−→

After applying a sequence of reduction relations that models the verification made on the message
and applying the rule (Struct P-Par1) twice the nil processes are eliminated, and applying the

labeled transition
νx′.〈x′〉:l2{l1la}−→ , we have that netw reaches the following state:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} | b!WaitRep1c
{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b!PAcl1l2l3l4la
| b〈l4, rep, 2(y), 3(y), 5(y),MAC31〉 | !P3c{la,l4}l3

| b〈1(y), 2(y), 3(y), 4(y), [5(y), l4]〉.!WaitRep4c
{la,l3}
l4

)

νz.〈z〉:l3{la,l4}−→

After applying a sequence of reduction relations that models the verification made on the message
and applying the rule (Struct P-Par1) twice the nil processes are eliminated, and applying the

labeled transition
νz.〈z〉:l3{lal4}−→ , which models that the destination node l3 accepts the message sent

by the attacker node and sends back a reply message. Again, we assume that in this transition
trace node l3 sends its message before node l4:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

| b!WaitRep1c
{l2,la}
l1

| bP ′2c
{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b0 | !P3c{la,l4}l3

| b〈1(y), 2(y), 3(y), 4(y), [5(y), l4]〉.!WaitRep4c
{la,l3}
l4

)
≡StructP−Par1, (→ ×2 (EXT BroadRecv1))

The frame of netw at this time is{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} | {(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

28

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

. After applying the rules
(Struct P-Par1) and (EXT BroadRecv1) twice we have:

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

| b!WaitRep1c
{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

|
⌊
PA
{
(l4,rep,l1,l3,[l2,n,l4],MAC31) /z

}
| !PA

⌋l1l2l3l4
la

| b!P3c{la,l4}l3
|
⌊
P ′4
{
(l4,rep,l1,l3,[l2,n,l4],MAC31) /z

}⌋{la,l3}
l4

) ≡

Here P ′4 is 〈1(y), 2(y), 3(y), 4(y), [5(y), l4]〉.!WaitRep4. At this point, after receiving the reply mes-
sage (l4, rep, l1, l3, [l2, n, l4],MAC31) node l4 drops it because l4 still has not output the request
corresponding to this reply. However, the attacker node intercepts the reply.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

| b!WaitRep1c
{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b〈l1, 2(z), 3(z), 4(z), 5(z), 6(z)〉 | !PAc{l1,l2,l3,l4}la

| b!P3c{la,l4}l3
| bP ′4c

{la,l3}
l4

)
νw.〈w〉:la{l1l2l3l4}−→

Then the attacker node la forwards the reply message (l1, rep, l1, l3, [l2, n, l4],MAC31) to node l1
in the name of node l2. This message can be overheared by the neighbors of the node la.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

|
{
(l1,rep,l1,l3,[l2,n,l4],MAC31) /w

}{la,l1,l2,l3,l4}
| b!WaitRep1c

{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b0 | !PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP ′4c
{la,l3}
l4

) ≡PAR-0, →∗

The sent reply message (l1, rep, l1, l3, [l2, n, l4],MAC31) is then overheared by nodes l1, l2, l3, and
l4. However, nodes l2, l3, and l4 drops it because they are not the addressee but node l1.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

|
{
(l1,rep,l1,l3,[l2,n,l4],MAC31) /w

}{la,l1,l2,l3,l4}
|
⌊
WaitRep1

{
(l1,rep,l1,l3,[l2,n,l4],MAC31) /w

}
| !WaitRep1

⌋{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP ′4c
{la,l3}
l4

) →∗

After receiving the message (l1, rep, l1, l3, [l2, n, l4],MAC31) the source node l1 makes verification
steps on it. According to the operation of the protocol all verification steps made by l1 pass and
thus the term ACCEPT is being to output.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

|
{
(l1,rep,l1,l3,[l2,n,l4],MAC31) /w

}{la,l1,l2,l3,l4}
| b〈ACCEPT〉 | !WaitRep1c

{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

29

| b!PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP ′4c
{la,l3}
l4

)
νv.〈v〉:l1{l2la}−→

After the source node l1 receives the rely message sent by the attacker it sees that it is the ad-
dressee. Hence, it makes verification steps. All verification steps pass so that it outputs the special
term ACCEPT.

(
{
(req,l1,l3,MAC13,[]) /x

}{l1,l2,la} |{(req,l1,l3,MAC13,[l2,n,l4]) /y
}{la,l1,l2,l3,l4}

|
{
(req,l1,l3,MAC13,[l2]) /x′

}{l2,l1,la} |{(l4,rep,l1,l3,[l2,n,l4],MAC31) /z
}{l3,la,l4}

|
{
(l1,rep,l1,l3,[l2,n,l4],MAC31) /w

}{la,l1,l2,l3,l4} | {ACCEPT /v}l1l2la
| b0 | !WaitRep1c

{l2,la}
l1

| b!WaitRep2c
{l1,la}
l2

| b!PAc{l1,l2,l3,l4}la
| b!P3c{la,l4}l3

| bP ′4c
{la,l3}
l4

).

We note that in this section we intend to demonstrate the applicability of the sr-calculus for
reasoning about secure routing protocols and for shorter presentation purpose the proof illustrates
the following attack scenario: When the attacker node receives the request message (req, l1, l3,
MAC13,[]) from node l1, it creates some new fake node indentifier n, then adds l2, n and the
identifier of N4, l4 to the list [], and re-broadcasts (req, l1,l3,MAC13,[l2, n, l4]). When this message
reaches the target node l3 it passes all the verifications makes by l3. Then, node l3 generates the
reply (l4, rep, l1, l3,MAC31) and sends back to l4. The attacker node overhears this message
and forwards it to the source l1 in the name of l2. As the result, in netw node l1 accepts the

returned invalid route [l2, n, l4] and outputs ACCEPT by the
l1{l2la}−→ transition relation. However,

in netwspec node l1 does not accept the returned route, thus, ACCEPT is not output. Formally,

at this point netwspec cannot perform the transition
νv.〈v〉:l1{l2la}−→ , which violates the third point

of Definition 9. In this proof netwspec, which is the ideal version of netw, can perform the same

labeled transitions and reduction relations as netw except the last transition
νv.〈v〉:l1{l2la}−→ .

Finally, we note that we can easily extend the proof so that it illustrates the scenario in which
the attacker receives the request message (req, l1, l3, MAC13,[l2]) from node l2, it creates some new
fake node indentifier n, then adds n and the identifier of N4, l4 to the list [], and re-broadcasts
(req, l1,l3,MAC13,[l2, n, l4]). The rest part of the attack scenario is the same as the scenario
above.

7 Weaker definition of security: up to barb ⇓ ACCEPT

One can feel that the notion of labeled bisimilarity may be too strict for defining security because
it requires the existence of same outputs in the two networks. In fact, we only need that for
the same topology and attacker behavior trace the real and specification networks always do the
same with respect to the barb ACCEPT . Namely, if the specification can/cannot emit the term
ACCEPT then so do the real system, and vice versa. Then this must be true for all the possible
topologies and attackers.

We note that this kind of definition is not necessarily weaker than the labeled bisimilarity.
It depends on the definition of the specification version, and how much it differs from the real
system.

8 A systematic proof technique based on backward deduc-
tion

The proof shown in Section 6.1 is based on a forward search/reasoning, namely, we specify a
certain network topology and “simulate” the operation of the protocol on this topology. The main

30

drawback of this proof technique is that we need to take into account a huge number of possible
behavior scenarios as well as many possible network topologies.

We develope a more systematic proof technique, that enables us to reason about the security
of routing protocols in a more efficient way. This proof technique is based on backward reasoning,
namely, we start with the assumption that the source has accepted an invalid route, and based on
the definition of the protocol we reason backward step-by-step to find out how could this happen.
In case we get a contradiction it means that the starting assumption could not be valid, and
the protocol is secure. Like in the forward search technique, this proof technique is also based
on Definition 9 but we perform the labelled transitions backward, starting from the extended
networks that represent the final states of system and get back into the networks that specify the
initial states.

For this backward reasoning method, we define an ideal and a real system a bit differently
compared to the systems that we used in the forward search. First of all, the source node in
both systems will output the function term accept(tlist), instead of outputting the constant term
ACCEPT. This means that the source has accepted the returned list tlist.

The procedure of the backward reasoning (backward deduction) is performed according to the
protocol specification. Namely, we step backward node-by-node from the source to the destination
(in the reply direction), and thereafter, from the destination to the source (in the request direction)
through a possible route, which can either be the route represented by tlist in accept(tlist) or an
another route. Formally, let us denote the state when the source has accepted the list tlist by
the extended network Eaccept(tlist), and the state when the source has just sent the initial request
by Ereqinit. The backward deduction is based on performing labelled transitions backward from
Eaccept(tlist) to Ereqinit. We use the upper index real (Erealreqinit, E

real
accept(tlist)

) and ideal (Eidealreqinit,

Eidealaccept(tlist)
) to denote the corresponding network states in the real and ideal systems, respectively.

The backward deduction is based on backward application of labelled transitions from Eaccept(tlist)
to Ereqinit:

Eaccept(tlist)
∗ ←− α1←− ∗ ←− . . . ∗ ←− αn←−∗ ←− Ereqinit,

where α1,. . . , αn can be a broadcast, an unicast, or a receive action. For instance, the following
backward deduction trace shows a possible scenario about how we can get from the state when
the source has sent the request, to the state when the destination sends back the reply:

EdstsentREP
νz.〈z〉: ldst{ lint,... }←− ∗ ←− EdstrecvdREQ

(treq)
σ2:{ldst∈σ2}←− EintsentREQ

νy.〈y〉: lint{ ldst,lsrc, ... }←− ∗ ←− EintrecvdREQ
(treqinit)

σ1:{lint∈σ1}←− EsrcsentREQINIT
νx.〈x〉: lsrc{ lint,... }←−

∗ ←− Ereqinit,

where the frame of EdstsentREP contains the substitution {trep/z}, and the frames of EintsentREQ
and EintsentREQINIT contain {treq/y} and {treqinit/x}, respectively. σ1 and σ2 are the neighbor-
hood of lint and ldst, respectively. Intuitively, the trace

EdstsentREP
νz.〈z〉: ldst{ lint,... }←− ∗ ←− EdstrecvdREQ

(treq)
σ2:{ldst∈σ2}←− EintsentREQ

says that in order to ldst can send the reply trep, before this, it should receive the request treq
from lint. The trace

EintsentREQ
νy.〈y〉: lint{ ldst,lsrc, ... }←− ∗ ←− EintrecvdREQ

(treqinit)
σ1:{lint∈σ1}←− EsrcsentREQINIT

says that in order to node lint can send the request treq, it should receive the request treqinit from
lsrc. Finally, the trace

EsrcsentREQINIT

νx.〈x〉: lsrc{ lint,... }←− ∗ ←− Esrcreqinit

31

says that in order to node lsrc can send the request treqinit, it should be able to composed this
request somehow.

The whole example trace corresponds to the following scenario: On the route lsrc − lint − ldst,
(1) lsrc broadcasts treqinit; (2) lint received treqinit, performs calculations, and broadcasts treq; (3)
ldst received treq, performs verifications, and returns trep.

8.1 The backward deduction algorithm

At the beginning, a reply including an invalid route tlist = [l1,. . . , ln] is assumed to be accepted by
the source. Afterwards, we follow the way of this reply in a backward manner. The possible paths
of this reply is investigated by reasoning about the nodes and edges through which this reply and
the corresponding request should have traversed during the route discovery. On searching for the
possible paths of the reply and request backward, whenever an attacker node is reached, it means
that the reply or request has been forwarded (and may be modified) by the attacker node. If this
is the case, at this point we are aware of the information of what message should the attacker
forward so that it will be accepted later, that is, what messages should the attacker generate in
order to perform a successful attack. This is then followed by examining how the attacker could
generate these messages.

The attacker is able to compose a reply or request message using its computational ability and
knowledge base. We note that while the computation ability of the attacker is fix, its knowledge
base is continually updated during the route discovery. Hence, by backward reasoning we mean
the reasoning about three issues: (i) Can the attacker generate each part of the message based
only on its computational ability and initial knowledge? (ii) Which messages should the attack
node intercept in case it cannot set up a whole reply/request based solely on its computational
ability and initial knowledge? (iii) How the topology should be formed such that the attacker is
able to intercept the required message parts?

Figure 9: The figure illustrates the main phases of the backward deduction procedure. The circles and as-
terisks represent the particular states during the deduction. Each state statei is represented by an extended
network Ei

req/rep, which we get from Eaccept(tlist), which represents the initial state, after performing a
series of transitions, in a backward direction. The asterisks represent the terminal states, which is Ereqinit.
Each honest phase contains at least one state, while attacker phases may contain zero state in them. After
state Ehon2

req/rep, we can get into the phases Ph-A and Ph-H2 again and again, because there can be several
attacker nodes or the attacker can take place in interleaving route discovery sessions.

The backward deduction procedure can be illustrated as a derivation tree, in which the state
Eaccept(tlist) is the root. The edges are the labelled transitions which can be a broadcast and unicast
send/receive, and the silent actions. The leaves of the tree are the terminal states, which is the
extended network Ereqinit (denoted by an asterisk). More specifically, the backward deduction
procedure is accomplished as follows:

1. At the beginning, we assume that the source node has accepted the list tlist, which means

32

that the function term accept(tlist) has been output by lsrc. Formally, at first, the frames
of both Erealaccept(tlist)

and Eidealaccept(tlist)
contain only the substitutions represent the initial

knowledge of the attackers, and {accept(tlist) / xaccept}:

{accept(tlist) / xaccept, t
att
initknow1

/ xinitknow1
, . . . , tattinitknowk / xinitknowk},

The substitutions {tattinitknow1
/ xinitknow1

}, . . . , {tattinitknowk / xinitknowk} say that, by default,
the initial knowledge of the attackers is available to the attackers. During the remaining
deduction steps, we will reason about how the presence of this substitution in the frames
could happen. Based on the protocol specification and the message format of the request
and reply, we analyze which messages should have been sent, and by which nodes, so that
these message exchanges eventually lead to the acceptance of tlist. At some point during the
backward reasoning procedure, if we found that a message tmsg should have been sent, then
the frame at that point will be extended with the substitution {tmsg / xmsg}.

2. The backward deduction terminates with an attack through a given route [l1, . . . , ln], if this
list is differs from tlist, and by stepping backward node-by-node in this list (from l1 to ln
and then in a reverse direction), we successfully get back to Ereqinit (i.e., the initial request
is output by the source lsrc) in every required deduction branch . More precisely, this
means that the frame of Ereqinit is extended with the substitution {treqinit / xreqinit}, where
treqinit is the initial request sent by the source.

In order to detect an attack we focus on the case when tlist is not a valid route, and we reason
about how could this invalid route be accepted (if this is the case). To achieve this, during the
deduction procedure we try to find the traces that get back to Ereqinit on a route differs from
tlist. Let us assume that tlist in accept(tlist) represents an invalid route. In case the backward
reasoning procedure terminates through the route other than tlist, it means that the routing
protocol is insecure because the attacker can achieve that the invalid route tlist is accepted, while
if the deduction procedure can only terminate through the route tlist, then we get a contradiction
since tlist cannot be invalid, otherwise, we could not traverse back through it. Hence, in the latter
case the protocol is secure.

In this backward deduction procedure, in order to perform a systematic proof based on Def-
inition 9, we distinguish the ideal system and the real system in the following way: In the ideal
system, the source always can check the correctness of the returned route tlist by using the special
function consistent(tlist), and only outputs accept(tlist) if tlist is a correct route from the source
to the destination. To attain this, we define the ideal system such that the backward deduction
can only terminate without founding an attack. Namely, for the deduction paths where we can
get back to the Ereqinit through a route differs from tlist, we forbid to perform the last transition
in one deductution branch:

EsrcsentREQINIT
νx.〈x〉: lsrcσ←− ∗ ←− Esrcreqinit (last-TRANS),

which models the broadcast of the initial request.
To prove the security of on-demand source routing protocols based on the backward deduction

approach, we apply the Definition 9 in a reverse direction, specifically:

Definition 12. Let Erealaccept(tlist)
and Eidealaccept(tlist)

be the real and the ideal specification variants

of a (on-demand source) routing protocol Prot in the sr-calculus. The protocol Prot is said to be
secure if for all the possible routes represented by the list tlist, the following holds:

1. Erealaccept(tlist)
≈s Eidealaccept(tlist)

;

2. if Erealaccept(tlist)
←− Erealprvaccept(tlist)

, then Eidealaccept(tlist)
∗ ←− Eidealprvaccept(tlist)

and Erealprvaccept(tlist)
<

Eidealprvaccept(tlist)
for some Eidealprvaccept(tlist)

;

33

3. if Erealaccept(tlist)

α←− Erealprvaccept(tlist)
and fv(α) ⊆ dom(Erealprvaccept(tlist)

) and bn(α)∩fn(Eidealaccept(tlist)
) =

∅; then Eidealaccept(tlist)
∗ ←− α←− ∗ ←− Eidealprvaccept(tlist)

and Erealprvaccept(tlist)
< Eidealprvaccept(tlist)

for some

Eidealprvaccept(tlist)
, where α can be a broadcast, an unicast, or a receive action.

Intuitively, Definition 12 says that starting from the states Erealaccept(tlist)
and Eidealaccept(tlist)

, if the two
backward deduction procedures cannot be distinguished from each other then the routing protocol
is secure. In other words, the deduction of the ideal system can simulate every deduction trace
of the real system. The rationality behind this Definition is based on the fact that the backward
deduction of the ideal and the real systems differ only at the last transition (last-TRANS), which
is allowed in the ideal case only when the deduction trace (so far) conforms with the list tlist, while
it is allowed in the real case for every possible trace. Hence, the deduction of the ideal system,
Eidealaccept(tlist)

, can simulate the deduction of Erealaccept(tlist)
if in both cases (last-TRANS) can only be

performed when the deduction trace confoms with tlist. This means that tlist, which is accepted at
the end of the route discovery, must be valid. The ideal system is defined such that the accepted
list tlist must always be valid, and if we deduce that this is also true for the real system, then the
routing protocol is secure.

In phase Ph-H1 we investigate how the reply could propagate. The backward deduction may
not involve the attacker interference in both the request and reply directions. Hence, the attacker
phase Ph-A can be skipped, that is, it contains zero state. The extended networks with the upper
index hon represents the states where the request and reply messages are just sent by a honest node,
while the networks with index att describe the state after an attacker node perfoms an internal
computation or a message output/input. In the “honest” phases Ph-H1, Ph-H2 the request and
reply messages are forwarded by only the honest nodes. These phases include labelled transitions
that models the send and receive actions by honest nodes, as well as the silent transitions that
specify verification steps made on the received message (which are not visible for the attackers).
Every step during the backward deduction in Ph-H1 and Ph-H2 is based on the specification of
the honest nodes Nsrc, N

i
int and Ndst. From the state Ehon1rep in Ph-H1 we get into the state

Eatt1req/rep in Ph-A, which means that in the extended network Eatt1req/rep, an attacker node sent a

reply/request, and in the resulted extended network Ehon1rep , this message is received by a honest

node. Similarly, if there is an edge from Eattnreq/rep to Ehon2req/rep, then this means that in Ehon2req/rep a

honest node has sent a request or reply, and in the next step, an attacker node receives/intercepts
it in Eattnreq/rep.

The reasoning about how attacker nodes could generate an incorrect reply Rep or request
Req which leads to a successful attack, takes place in phase Ph-A. In Ph-A, we examine how the
attacker could generate the Req/Rep message that leads to a successful attack. In particular, how
the attacker can obtain or compute all the parts of the request or reply messages. The attacker(s)
can obtain each part of a request/reply by either computes it based on the available information
and the computation ability, or receives/intercepts a message that contains this part. In the
latter case, the deduction procedure is continued with the phase Ph-H2, where we check how the
attackers could receives/intercepts those messages. The phase Ph-Rec represents a “recursive”
application of the attacker phase Ph-A. Typically, if (N = 1) then there is one attacker node and
we consider its interference in the reply or the request direction. The case (N ≥ 2) takes into
account the possibility of several attackers and interleaving sessions, or one attacker node who
interferes in both the request and reply directions.

The attacker phase Ph-A: In the attacker phase Ph-A, if we found that the attacker must
have sent the reply tattrep or the request tattreq to be successful, then in the rest steps we deduce
how this message could have been composed. This phase include labelled transitions that applies
when the attacker receives/intercepts or sends a message, and silent transitions that models the
computations that are performed by the attacker. An attack scenario is found when the deduction
terminates (i.e., the state Ereqinit is reached) through an route differs from tlist.

We let both tattrep and tattreq have the form (head; v1; . . . ; [List]; . . . ; vk), which is true in most
source routing protocols. The head part, head, is the tuple (rreq/rrep : Treq/rep, s : Tstr, d :
Tstr, sID : Tstr), where the first element has REQ/REP type, the remaining three elements have

34

string type. The reason for giving the string type instead of node ID type or name type is that we
want to give mode possibility to the attackers to replace these elements with some data of other
types. The list [List] is also given a string type, while v1, . . . , vn are additional protocol specific
parts, which typically are some (crypto) functions computed on one portion of the message. For
instance, in case of the SRP protocol we have one function part, which is the MAC, while the
Ariadne protocol includes hash and digital signature functions.

During the backward reasoning we attempt to find attacks with minimal number of transition
steps.

1. First of all, we examines whether the attack could be performed if the attacker has forwarded
the request/reply treq/rep, by following to the protocol correctly. This means that in the
Figure 9, the networks (or states) Eatt1req/rep and Eattnreq/rep are the same, and basically, the

phase Ph-A contains only one state Eattreq/rep. If with this condition, the deduction terminates
through an route differ from tlist, then an attack scenario is detected. In particular, when
an attack scenario is detected we successfully prove the violation of Definition 12.

2. Otherwise, if the deduction in the first point can terminate only through tlist, we return
to examine how the attacker can obtain or compute each part of treq/rep, where treq/rep
= (head; v1; . . . ; [List]; . . . ; vk). An attack scenario is detected only when every elements of
treq/rep can be computed/obtained by the attacker(s).

We define priority/weight on terms of different types. We distinguish three classes of priority.
The keyed crypto functions such as digital signatures, MAC function, public and symmetric
key encryption have the highest priority. The next highest priority in line is assigned to
keyless crypto functions such as one-way hash function. The lowest priority is given to non-
crypto functions and data construct such as list and node IDs. Within the same priority
terms are classified by weight, which specifies the number of variables and constants in them.
The more subterms (names, variables, functions) are included the larger the weight is.

Let W be a set that contains the terms to be examined whether they can be computed or
obtained by the attackers.

(I.) First, treq/rep is decomposed and the resulted parts head, v1, . . . , [List], vk are put into
W .

(II.) If there still are unexamined terms in W we choose one of the highest priority group
of terms, and within this group we start with the term that has highest weight that has not
been examined before.

(III.) For the name/constant terms tn, we check whether they belong to the attacker’s
knowledge base, namely, tn ∈ Katt. For each function term tf we examine if can the attacker
compute it using the current knowledge base Katt (e.g., keys for crypto functions). If there
is a term tn/f in W that the attacker cannot compute/obtain based on its current knowledge
base then we go on with step (IV.).

(IV.) For each term tn/f cannot compute by the attacker, we analyse how the attacker
can intercept/receive this term from either a honest node or an another attacker node. In
particular, we replace (in a type conform way) some part of (head; v1; . . . ; [List]; . . . ; vk) with
tn/f , then we reason about how this modified message could propagate during the route
discovery. If for every tn/f the deduction can terminate only through tlist, then the protocol
is secure, otherwise, an attack scenario is found.

During the deduction procedure, whenever we get into a loop, namely, we reach the term that
has already been examined before, then we finish that branch of deduction to avoid infinite loop.
During the backward deduction, we also keep track of the topology Ttop, which is the topology
belongs to an attack scenario (if any). At first, Ttop does not contain any edges, and first state
Eaccept(tlist) is

Eaccept(tlist)
def
= {accept(tlist)/xaccept}σsrc∪{la} | b!Psrccσsrclsrc

|
∏
i∈1,...,n

⌊
!P iint

⌋σiint
liint
| b!Pdstcσdstldst

.

35

where σsrc, σ
i
int and σdst are empty. During the backward deduction, if at one point we found

that to make the source accepts tlist, the source lsrc should send a message treq/rep to li, then
we update Ttop with the new edge between lsrc and li. Further, we add li to the neighborhood of
lsrc, σsrc, and add lsrc to σi (assuming bi-directional edges). {accept(tlist)/xaccept}σsrc∪{la} says
that the output accept(tlist) is available to the neghborhood of lsrc and the attacker. We add la
to each substitution, because by default we assume that the attacker nodes can be everywhere
in the network. The exact number and location of the attackers depends on the deduction path.
Similarly, the terminal state Ereqinit is specified as follows:

Ereqinit
def
= {accept(tlist)/xaccept}σsrc∪{la}, . . . , {treqinit/xreqinit}σsrc∪{la} |

⌊
!Psrc | P reqinitsrc

⌋σsrc
lsrc

|
∏
i∈1,...,n

⌊
!P iint

⌋σiint
liint
| b!Pdstcσdstldst

.

In Ereqinit, the frame is extended with the substitution {treqinit/xreqinit}σsrc∪{la}, and P reqinitsrc is
the process we get after treqinit has been broadcast in Psrc.

8.2 General specification of on-demand source routing protocols

In this subsection, a general and simplified specification of the on-demand source routing protocols
is given, which is well-suited for the backward deduction technique. The specification is based on
the sr-calculus, but instead of defining specific network topologies, we provide a general specificaion
that includes the specification of a source, a destination, and some intermediate nodes, regardless
of the topology.

On-demand source routing protocols have an important flavour that each node usually has the
same uniform internal operation: during route discovery each node can play a role of a source
node, or an intermediate node, or a destination node. Leveraging this beneficial characteristic, we
need to specify only the operation of three nodes instead of all of the nodes in the network, which
is more comfortable.

Erouting
def
= b!Psrccσsrclsrc

|
∏
i∈1,...,n

⌊
!P iint

⌋σiint
liint
| b!Pdstcσdstldst

.

where Nsrc = b!Psrccσsrclsrc
, N i

int, N
i
int =

⌊
!P iint

⌋σiint
liint

, represents the i-th intermediate node, and∏
i∈1,...,n

⌊
!P iint

⌋σiint
liint

represents the parallel composition of n intermediate nodes
⌊
!P iint

⌋σiint
liint

, for i

∈ {1, . . . , n}, Ndst=b!Pdstcσdstldst
. Processes Psrc, Pint, Pdst model the operation of honest nodes. We

do not need to include explicitly the behavior of the attacker node(s). The attackers is modelled
by the wireless environment in an implicit way, which can be seen as a cooperation of several
attackers. In case an attack scenario is detected, the specific place of the attacker(s) is determined
based on the messages it (they) intercepts or sends during the scenario. The number of the
intermediate nodes, n, is also determined based on the specific detected attack scenario.

We note that the specific structure of each process depends on the specific routing protocol.

8.3 Analysing the security of Ariadne

In this subsection, we analyse the security of the Ariadne protocol using the backward deduction
technique. We start with the defining the functions one-way hash and digital signature used by
Ariadne.

Digital-signature schemes rely on pairs of public and secret keys. In each pair, the secret key
serves for computing signatures and the public key for verifying those signatures. We introduce
two new unary function symbols pk and sk for generating public and secret keys of the node l
(with their types): pk(l): Tpk, and sk(l) : Tsk.

In order to model digital signatures and verification, we use the binary function symbol sign,
the ternary function symbol checksign, with the following equations:

36

sign (tmsg, sk(l)).
checksign (sign (tmsg, sk(l)) , pk(l)) = tmsg.

note that in checksign the secret key (sk(l)) and public key (pk(l)) should match, otherwise, the
process gets stuck.

One-way hash function is defined as an unary function symbol h with no equations. The
absence of an inverse (equation) for h models the one-way property of h. The assumption that
h(t1msg) = h(t2msg) holds only when t1msg = t2msg ensures that h is collision-free.

With these functions, the behavioral specification of the protocol is as follows:

Eadriadne
def
= b!Psrccσsrclsrc

|
∏
i∈1,...,n

⌊
!P iint

⌋σiint
liint
| b!Pdstcσdstldst

.

Psrc
def
= let headreq = (rreq, lsrc, ldst, ID) in

let MACsd = mac (headreq, k(lsrc, ldst)) in
〈(headreq,MACsd, [], [])〉.!WaitRepsrc.

WaitRepsrc
def
=

(= lsrc,= rrep,= lsrc,= ldst, xidList, xsigList, xsigDst).
[1(xidList) ∈ σsrc]
let headrep = (rrep, lsrc, ldst) in
let hash0 = mac(headreq, k(lsrc, ldst)) in
[(headrep, xidList, xsigList) = checksign(xsigDst, pk(ldst))]⋂
j∈{1,...,last} (let hashj = h((j(xidList), hashj−1)) in

let listj = [1(xidList), . . . , j(xidList)] in
[(headreq, listj , hashj) = checksign(j(xsigList), pk(lj(xidList))])

〈accept(xidList)〉.

P iint
def
= (= rreq, xsrc, xdst, xid, xhashchain, xidList, xsigList).

[last(xidList) ∈ σiint]
let headreq = (rreq, xsrc, xdst, xid) in
let hashi = h((li, xhashchain)) in
let sig i = sign((headreq, hashi, [xidList, li], xsigList), sk(li)) in

〈(headreq, hashi, [xidList, li], [xsigList, sigi])〉.!WaitRepiint.

WaitRepiint
def
=

(= li,= rrep, xsrc, xdst, xidList, xsigList, xsigDst).
[prev (xidList, li) ∈ σiint] [next (xidList, li) ∈ σiint]
〈(prev (xidList, li) , rrep, xsrc, xdst, xidList, xsigList, xsigDst)〉.

We note that the function prev(tlist:Tlist, li:Tid) and next(tlist:Tlist, li:Tid) return undef if li
is not in the list, otherwise, they return the element before and after li, respectively. In case li is
the last element of tlist, next(tlist:Tlist, li:Tid) returns ldst, while if li is the first element of tlist,
then prev(tlist:Tlist, li:Tid) returns lsrc. The node IDs lsrc, ldst are dedicated to the source and
destination nodes, respectively.

Pdst
def
= (= rreq, xsrc,= ldst, xid, xhashchain, xidList, xsigList).

[last(xidList) ∈ σdst]
let headreq = (rreq, xsrc, ldst, xid) in
let hash0 = mac(headreq, k(xsrc, ldst)) in

37

⋂
j∈{1,...,last} (let hashj = h((j(xidList), hashj−1)) in

let listj = [1(xidList), . . . , j(xidList)] in
[(headrep, listj , hashj) = checksign(j(xsigList), pk(lj(xsigList))])

let headrep = (rrep, xsrc, ldst) in
let sigdst = sign((headrep, xhashchain, xidList, xsigList) in
〈(last(xidList), headrep, xidList, xsigList, sigdst)〉.

We will show that Definition 12 is violated with tlist, tlist = [lint, latt], where lint and latt are
the IDs of a honest intermediate node and an attacker node, respectively. Specifically, the reply
received by the source should be:

rep/repA = (lsrc, rrep, lsrc, ldst, ID, [lint, latt], [sigint, sigatt], sigdst).

Since the source accept this reply, lint should be a neighbor of lsrc, which can happen in two
cases: The reply is sent by lint or by the attacker latt. In the following, we examine the two cases
in details:

Figure 10: Analysing Ariadne: The backward deduction steps based on the first case.

1. Assuming one attacker node, in the first case, where rep is sent by lint, we have the following
message exchanges: The first step (Step-1 in Figure 10) describes the message

lint → lsrc : (lsrc, rrep, lsrc, ldst, ID, [lint, latt], [sigint, sigatt], sigdst),

and bring us back to lint. After Step-1 it follows that there is a uni-directinal link from lint
to lsrc. Step-2 says that there must be a bi-directional link between lsrc and lint because of
the neighbor check performed by lsrc based on the list [lint, latt]. At this point, we reason
about how lint could sent rep, namely, which message (and from whom) should lint receive.
Step-3 says that latt should send to lint the following reply message, repA:

latt → lint : (lint, rrep, lsrc, ldst, ID, [lint, latt], [sigint, sigatt], sigdst).

Node lint performs the neighbor check based [lint, latt], which means that there should be the
bi-directional link between lint and latt (see Step-4). The first four steps belong to the phase
Ph-H1 in Figure 9. After Step-3 and 4 we start to reason about the attacker’s behavior,
formally, we get into phase Ph-A.

Following the backward deduction algorithm, first we examine if what happens if the attacker
has forwarded the received reply, by following to the protocol correctly. Based on the reply
message, it follows that the reply (denoted by rep(sigdst)) must have been sent by the
destination, ldst to latt:

38

ldst → latt : (latt, rrep, lsrc, ldst, ID, [lint, latt], [sigint, sigatt], sigdst).

To make node ldst send this reply, it must receive the following request from latt:

latt → ldst : (rreq, lsrc, ldst, ID, hashatt, [lint, latt], [sigint, sigatt]).

However, the last two messages means that there is a bi-directional link between latt and
ldst. At this point we have Ttlist ⊆ Ttop, hence, from this point, the ideal sytem can always
simulate the deduction of the real system. Intuitively, this means that this deduction path
cannot lead to an attack because the route defined by tlist is a valid route from this point.

Hence, we return to the beginning of phase Ph-A and start to examine how the attacker could
compose each part of the reply message repA. We recall that to be successful the attacker
must obtain all the parts of repA. According to the algorithm, we start with the term that
has the highest priority and weight, which is the signature sigdst computed by ldst. The
attacker cannot compute sigdst because it does not posses the private key sk(ldst), and we
assumed that private keys will not be leaked during the route discovery process. Therefore,
it can only obtain sigdst if it receives a reply that contains it. Because sigdst is computed
on the list [lint, latt], it should be part of the corresponding reply rep(sigdst) sent by ldst to
latt (Step-5). Similarly as the previous case, after Step-6 we get Ttlist ⊆ Ttop.
To summarize, the first case cannot result in an attack scenario.

Figure 11: Analysing Ariadne: The backward deduction steps based on the second case.

2. In the second case, the source accepts the reply repA sent by the attacker latt. This is
illustrated in Step-1 of Figure 11, which also shows that there is an uni-directional link from
latt to lsrc.

latt → lsrc : (lsrc, rrep, lsrc, ldst, ID, [lint, latt], [sigint, sigatt], sigdst).

Step-2 shows there is an uni-directional link from lsrc to lint after the neighbor check per-
formed by lsrc. At this point we get into the attacker phase Ph-A. For the similar reason
as the first case, if latt forwards the reply it received, following to the protocol, it cannot
lead to an attack scenario. We examine how the attacker could compose each part of the
reply message repA, and we start with sigdst. Like in the fist case, the reply (denoted by
rep(sigdst)) must have been sent by the destination, ldst to latt (shown in Step-3):

39

ldst → latt : (latt, rrep, lsrc, ldst, ID, [lint, latt], [sigint, sigatt], sigdst).

Previously, ldst should have received the following request reqA from latt, which yields the
bi-directional link between latt and ldst (illustrated in Step-4):

latt → ldst : (rreq, lsrc, ldst, ID, hashatt, [lint, latt], [sigint, sigatt]).

At this point, we reach the attacker node and step into the phase Ph-A again. The deduction
cannot lead to an attack scenario when the attacker forwards reqA according to the protocol,
because this means that latt has received the request

lint → latt : (rreq, lsrc, ldst, ID, hashint, [lint], [sigint]).

from lint after it received the initial request from lsrc. This results in Ttlist ⊆ Tatt. Therefore,
we examine how the attacker could obtain each parts of reqA. Specifically, we examine how
node latt could obtain hashatt, sigint and sigatt.

First, to compute sigatt where

sigatt = sign((rreq, lsrc, ldst, ID, hashatt, [lint], [sigint]), sk(latt)),

the attacker has to obtain sigint and hashatt. How the signature sigint, computed by node
lint can be obtained? Can any request message contain sigint, which will be obtained by latt?
The attacker tries to append some new node IDs lnew to the list [lint], getting [lint, lnew].
Then, the attacker examines whether the request message containing [lint, lnew] includes
sigint:

(rreq, lsrc, ldst, ID, hashnew, [lint , lnew], [sigint, signew]).

The answer is yes and this message should sent from lnew to latt (Step-6). Before this, lnew
should obtain the request

(rreq, lsrc, ldst, ID, hashint, [lint], [sigint]),

from li (Step-7), who must receive the initial request output by lsrc (Step-8).

Secondly, to compute hashatt, hashatt = h((latt,MACsd)), the attacker has to obtainMACsd,
which is the MAC computed by the source on the initial request using the key it shares with
the destination. Namely, the question is that can MACsd be a part of an req/rep message
that latt can obtain. The answer is yes, because the initial request sent by lsrc contains
MACsd (illustated in Step-5).

Based on this deduction path, the Definition 12 is violated because this deduction trace is
allowed in the real system, which cannot be simulated in the ideal system.

8.4 Analysing the security of endairA

In this subsection, we analyse the security of the endairA protocol. The endairA protocol is
proposed by the authors in [3], after they found a security holes in the Ariadne protocol. The
goal of endairA is improve and revise the security solutions proposed in Ariadne, and to patch the
security weaknesses found in it. The security mechanism of endairA use less crypto functions, and
the request and reply messages are protected reversely compared to the solution in Ariadne. This
can found in the naming of the protocol, because endairA is the reverse of Ariadne. We start with
the specification of the processes in the sr-calculus:

40

EendairA
def
= b!Psrccσsrclsrc

|
∏
i∈1,...,n

⌊
!P iint

⌋σiint
liint
| b!Pdstcσdstldst

.

Psrc
def
= νID.〈(rreq, lsrc, ldst, ID, [], [])〉.!WaitRepsrc.

WaitRepsrc
def
=

(= lsrc,= rrep,= lsrc,= ldst, xidList, xsigDst, xsigList).
[1(xidList) ∈ σsrc]
let headrep = (rrep, lsrc, ldst) in
[(headrep, xidList) = checksign(xsigDst, pk(ldst))]
let sigListTill0 = [xsigDst] in
let tillsig0 = (headrep, xidList, sigListTill0) in⋂
j∈{1,...,last} ([(tillsigj−1 = checksign(j(xsigList), pk(j(xidList))]

let sigj = sign((tillsigj−1), sk(j(xidList))) in
let sigListTill j = [sigListTill j−1, sigj] in
let tillsigj = (headrep, xidList, sigListTillj) in)

〈accept(xidList)〉.

P iint
def
= (= rreq, xsrc, xdst, xid, xidList).

[last(xidList) ∈ σiint] 〈(rreq, xsrc, xdst, xid, [xidList, li])〉.!WaitRepiint.

WaitRepiint
def
=

(= li,= rrep, xsrc, xdst, xidList, xsigDst, xsigList).
[prev (xidList, li) ∈ σiint] [next (xidList, li) ∈ σiint]
let headrep = (rrep, lsrc, ldst) in
[(headrep, xidList) = checksign(xsigDst, pk(ldst))]
let sigListTill0 = [xsigDst] in
let tillsig0 = (headrep, xidList, sigListTill0) in⋂
j∈{1,...,last} ([(tillsigj−1 = checksign(j(xsigList), pk(j(xidList))]

let sigj = sign((tillsigj−1), sk(j(xidList))) in
let sigListTill j = [sigListTill j−1, sigj] in
let tillsigj = (headrep, xidList, sigListTillj) in)

〈(prev (xidList, li) , rrep, xsrc, xdst, xidList, xsigDst, xsigList)〉.

Pdst
def
= (= rreq, xsrc,= ldst, xid, xidList).

[last(xidList) ∈ σdst]
let sigdst = sign((rrep, xsrc, ldst, xidList), sk(ldst)) in
〈(last(xidList), rrep, xsrc, ldst, xidList, sigdst)〉.

We distinguish the next settings before performing a systematic analysis based on backward
deduction:

1. Assuming only one attacker node in the network :

Case I. The list tlist includes latt as the first element, namely, tlist = [latt, l
1
int. . . , lkint] for

some k. In this case, the reply , denoted by repA, which is received and accepted by lsrc
must be sent by the attacker latt (otherwise, the first ID in tlist would belong to a honest
node).

latt → lsrc : repA = (lsrc, rrep, lsrc, ldst, ID, [latt, l
1
int. . . , lkint], sigdst, [sigkint, . . . , sig1

int,
sigatt]).

41

We step into phase Ph-A and reason about how latt could compose repA. If latt forwards the
reply accordingly to the protocol, the deduction will not lead to an attack scenario because
Ttlist ⊆ Ttop will hold. Namely, this will be resulted after the following backward deduction
steps

latt
reply←− l1int

reply←− . . .
reply←− lkint

reply←− ldst,

We examine how the attacker can obtain the highest priority/weight part in repA, which is
sig1

int, the signature of node lkint. The attacker cannot compute this signature because it does
not have the signing key sk(lkint). Hence, latt can only obtain sig1

int by receiving/intercepting
a request/reply which contains sig1

int. In the following, we reason about which request/reply
message can contain sig1

int:

sig1
int = sign((rrep, lsrc, ldst, ID, [latt, l

1
int. . . , lkint], sigdst, [sigk−1int , . . . , sig1

int, sigatt]),
sk(lkint)).

The important difference between endairA and Ariadne is that in endairA, signatures are
computed on the whole list tlist Therefore, the reply messages that contain node ID lists
differ from tlist cannot include signatures in repA. There are two cases:

C1: sig1
int can be included in repA. However, as already discussed in the previous point,

repA must traverse on the path tlist, which results in Ttlist ⊆ Ttop.
C2: sig1

int can be included in a request or reply that contains sig1
int in the place of the

session ID. This is feasible because in that place we expect any data with type string (Tstr),
which involves the type of signatures (Tsign). Hence, we examine how the attacker latt could
obtain the request

req’ = (rreq, lsrc, ldst, sig1
int, t

′
list).

This request cannot be sent directly by the source, because based on the protocol, the initial
request only allows a data with session ID type (Tsid) at the fourth place, which cannot be
a signature. Hence, req’ must have been sent on the path of one or more intermediate nodes

latt
req(1)←− ljint

req(2)←− . . .
req(m)

←− ltint
req(m+1)

←− l′att

However, since the initial request sent by lsrc does not allow a signature to be in the place
of the session ID, ltint must receive a request from the attacker node l′att. Due to the one
attacker node assumption, node l′att and latt must be the same. At this point we get into a
loop and stop (because again, we try find out how sig1

int can be obtained).

Case II. latt is not the first element of the list tlist, namely, tlist = [l1, . . . , latt, . . .]. In this
case the backward deduction will reach the point where Ttlist ⊆ Ttop holds, hence, no attack
scenario will be resulted.

To summarize our analysis: We proved that the endairA protocol is secure if we
assume one attacker node.

2. There can be more than one attacker node: In this case we continue case C2 from the point
where we get into a loop. This time, l′att and latt can be two different attacker nodes. We
analyse how (i.e., on which path) the second attacker node l′att can obtain sig1

int. The second
attacker node l′att must receive the reply sent by the honest node l1int, because only this reply
contains sig1

int. There can be two possibilities:

- We have to extend the route accepted by the source (tlist) with l′att by inserting it before
l1int, namely, tlist = [latt, l

′
att, l

1
int, . . . , lkint]. Node l′att receives the following reply, denoted

by rep1, from l1int:

42

l1int → l′att : rep1 = (l′att, rrep, lsrc, ldst, ID, [latt, l
′
att, l

1
int, . . . , lkint], sigdst, [sigkint, . . . ,

sig1
int]).

Then, we keep track backward the possible path on which this reply has traversed, and
found that from l1int backward to ldst the reply must be forwarded correctly according to the
protocol:

l1int
rep1←− . . .

repk−1←− lkint
repk←− ldst,

and the corresponding requests must be forwarded correctly from l1int to ldst

l1int
req1−→ . . .

reqk−1−→ lkint
reqk−→ ldst,

where reqk = (rreq, lsrc, ldst, ID, [latt, l
′
att, l

1
int, . . . , lkint]), . . . , req1 = (rreq, lsrc, ldst, ID,

[latt, l
′
att, l

1
int]). Further, l′att must have sent the request, reqA’, reqA’ = (rreq, lsrc, ldst,

ID, [latt, l
′
att]). At this point we get into the attacker phase Ph-A, and reason about how

node l′att could compose reqA’. Since l′att cannot generate the fresh session ID, it must be
received as a part of the request sent by lsrc. Now, the main question is that (i.) does the
second attacker, l′att, receive the request directly from the first attacker, latt, or (ii.) from
an intermediate honest node l0int. The first case means that there is a link between latt and
l′att, and because the reply was sent by latt to lsrc, there is also a link between latt and lsrc.
To summarize, this means that the route, [latt, l

′
att, l

1
int, . . . , lkint], accepted by the source is

valid, thus, no attack is detected. In the second case, we have the following messages:

l0int −→ l′att: (rreq, lsrc, ldst, ID, [t′list, l
0
int]),

for some list t′list that begins with latt. We examine the case when t′list = [latt], that is, l0int
must have received the request (rreq, lsrc, ldst, ID, [latt]), which must have been sent by latt.
In order to send this request, latt must receive the initial request, reqinit = (rreq, lsrc, ldst,
ID, []) from lsrc.

To summarize, we detected the following attack scenario in case of two attacker nodes:

Figure 12: The figure illustrates the attack against the endairA protocol. The upper figure presents
the request phase, while the one below it shows the reply phase of the attack scenario. Node IDs
latt and l′att represent the two attacker nodes, lsrc and ldst are the IDs of the source and destination
nodes, while the remaining IDs belong to the intermediate honest nodes.

The following messages are sent during the attack scenario: As the result of the attack, the
two attacker nodes latt and latt can achieve that the source lsrc accept the invalid route [latt,
l′att, l

1
int, . . . , lkint] instead of the valid [latt, l

0
int, l

′
att, l

1
int, . . . , lkint] (shown in Figure 12).

1. reqinit = (rreq, lsrc, ldst, ID, []);

43

2. reqA = (rreq, lsrc, ldst, ID, [latt]);

3. req0 = (rreq, lsrc, ldst, ID, [latt, l
0
int]);

4. reqA’ = (rreq, lsrc, ldst, ID, [latt, l
′
att]);

5. req1 = (rreq, lsrc, ldst, ID, [latt, l
′
att, l

1
int]);

.

reqk = (rreq, lsrc, ldst, ID, [latt, l
′
att, l

1
int, . . . , lkint]);

In the request phase, after receiving the initial request, the attacker node latt appends its
ID and broadcasts it, and so does the intermediate node l0int. The second attacker node l′att
replaces l0int with its own ID and broadcasts the modified request. The request is forwarded
by the honest nodes l1int, . . . , lkint according to the protocol.

6. repdst = (lkint, rrep, lsrc, ldst, ID, [latt, l
′
att, l

1
int, . . . , lkint], sigdst);

7. repk = (lk−1int , rrep, lsrc, ldst, ID, [latt, l
′
att, l

1
int, . . . , lkint], sigdst, [sigkint]);

.

rep2 = (l1int, rrep, lsrc, ldst, ID, [latt, l
′
att, l

1
int, . . . , lkint], sigdst, [sigkint, . . . , sig2

int]).

8. rep1 = (l′att, rrep, lsrc, ldst, ID, [latt, l
′
att, l

1
int, . . . , lkint], sigdst, [sigkint, . . . , sig1

int]).

9. repA = (lsrc, rrep, lsrc, ldst, ID, [latt, l
′
att, l

1
int, . . . , lkint], sigdst, [sigkint, . . . , sig1

int, sig’att,
sigatt]).

In the reply phase, the reply is sent back by ldst, l
k
int, . . . , l1int according to the protocol.

When l′att receives the reply rep1 from l1int, it should not send it to l0int, because l0int will
drop the reply since the ID l0int does not appear in the ID list. Hence, l′att need to find an
another way to forward information to latt.

l′att sends latt the signatures sig1
int in an interleaving request session with the session ID ID’.

In this interleaving session the attacker l′att receives a request from some honest node, and it
replaces the session ID, ID’, with the signature sig1

int. Then, the modified request is broad-
cast towards the first attacker latt. Since the honest nodes forwards this request without
changing the session ID, latt will receive sig1

int in message reqj, and uses it for constructing
a “proof” for the incorrect route tlist in the another route discovery session.

Interleaving1: reqA” = (rreq, lsrc, ldst, sig1
int, [l′att]);

Interleaving2: reqt = (rreq, lsrc, ldst, sig1
int, [l′att, l

t
int]);

.

Interleavingm: reqj = (rreq, lsrc, ldst, sig1
int, [l′att, l

t
int,. . . , ljint]);

In order to construct the proof for the invalid route tlist, latt has to obtain all of the signatures
in repA. All of these signatures can be obtained similarly as sig1

int, in different interleaving
sessions.

- l′att is not the part of tlist, and only overhears the reply sent by l1int. This case also results
in an attack scenario shown in Figure:

In this attack, the request messages are sent by latt and the honest nodes in a correct way.
The attacker l′att stays idle in the request phase. In addition, the corresponding reply is sent
back correctly by ldst, l

k
int, . . . , l0int. Instead of sending the correct reply to lsrc, the attacker

latt waits for the signatures sigdst, sigkint, . . . , sig1
int, which can be sent by l′att in interleaving

sessions. In each session, l′att broadcasts a request message that contains the signature(s) in
place of the session ID.

44

Figure 13: The figure illustrates an another possible attack against the endairA protocol. In this
scenario, l′att is not the part of the invalid route (tlist) that has been accepted by lsrc, but it is
neighbor of l0int and l1int. In particular, the two attacker nodes can achieve that lsrc accepts the
route [latt, l

1
int, . . . , lkint] instead of the correct route [latt, l

0
int, l

1
int, . . . , lkint].

8.5 sr-verif : On automating the verification

In this section, I present a novel automated verification technique for on-demand source routing
protocols, based on deductive model checking and backward reasoning procedure.

8.5.1 Assumptions on routing protocols and attacker model

I focus on verifying on-demand source routing protocols in which the information about the route
is included in request and reply messages in form of an ID list. In the following, some properties
of source routing protocols are given:

Every honest node checks ID duplication in ID lists. When an intermediate node receives a
request or reply message, it checks if its ID is in the ID list, and the next and previous IDs belong
to its neighbors. If this is not the case, then the message is dropped. The source checks the first
whilst the destination checks the last ID in the ID list it receives. Furthermore, I assume that
before passing on request messages each honest intermediate node appends its own ID to the ID
list, and the unicast messages include the information, such as ID, of the addressee.

Every intermediate node considers only the request it receives for the first time, further requests
with the same header are dropped. Note that the destination can accept more requests, and the
source can accept more replies. For increasing the efficiency of the verification, I assume that
the attackers cannot obtain the secret keys of the honest nodes. Note that this assumption does
not affect the results of this paper because in most cases the attacks can be performed without
knowing the secret keys.

I assume several attacker nodes which are compromised nodes, meaning that they can perform
computations like honest nodes, and posses information that honest nodes can have according the
protocol. But not like the honest nodes, attacker nodes can either decide to follow the protocol
or not. In the latter case attacker nodes can modify messages, and when it intercepts a request
it can remain idle and does nothing, or it can forward messages unchanged. Attacker nodes can
cooperate with each other, and they can run parallel sessions at the same time.

Corollary 1. In order to perform an attack, the attackers cannot remain idle after intercepting
a reply in the reply direction.

Proof. Let us assume the opposite, i.e. the attackers stay idle after intercepting the reply and an
invalid route is accepted by the source at the end. By assumption, we have that the invalid route
reply gets back to the source without passing through the attacker. However, due to the fact that
every intermediate node checks its neighbors, the invalid route reply cannot reach the source via
only honest nodes.

45

8.5.2 The concept of the verification method

In this subsection, I discuss the concept of the proposed verification method. In addition, I give
an overview of the main differences among the proposed sr-verif method, the method proposed
in [?], and the method used by the Proverif tool [6].

In the ProVerif verification tool [6] the input of the tool is the specification of security protocols
in the syntax of the applied π-calculus (Figure 14). The main advantage of using a calculus as
a specification language is that the operation of protocols can be unequivocally and precisely
modelled in it. The tool then translates the protocol specification to logic rules for performing
automatic verification.

Figure 14: The concept of the ProVerif tool.

My proposed technique was inspired by the method used in Proverif, however, as opposed to
ProVerif it is designed for verifying routing protocols and includes numerous novelties such as
the modelling of broadcast communications, neighborhood, transmission range, and considers an
attacker model specific to wireless ad hoc networks instead of the Dolev-Yao attacker model.

One important difference between the modelling of secure routing protocols and ordinary se-
curity protocols is that while in security protocols each communicating entity can have different
internal operation and structure, in case of secure routing protocols each communication entity
usually has the same uniform structure: During the route discovery each node can be (i) source
node, or (ii) intermediate node, or (iii) destination node. Hence when using the Proverif tool to
model secure routing protocols, in case of the network including n nodes, the user has to describe
the operation of all n nodes despite the fact that they are the same up to renaming variables and
names. In contrast, in my method the user is required to specify only the ”general” operation of
nodes, which represents any node.

Facts, Horn

clauses

Routing protocol

specified in a syntax

of a sr-calculus

Horn clauses
Automatic

verification algorithm

based on resolution

rules and forward

search

Yes

No

Automatic verification tool

Input OutputAutomatic verification

(attack

trace)

Topology,

Attacker ability

Figure 15: The concept of the automatic verification method proposed in [?].

Following this concept, I proposed the verification method in [?]. As Figure 15 shows, the operation
of routing protocols are specified in the syntax of processes of the simplified sr-calculus. This is
then translated to Horn-clauses using translation rules. This set of clauses is called protocol rules.
In addition, the topology and the initial knowledge of the attacker node are specified by a set of
facts, while the computation ability of the attacker node is specified by the set of Horn-clauses.
The clauses that specify the attacker computation ability are called attacker rules. The deductive

46

algorithm is based on the resolution steps accomplished over these clauses and facts in a forward
search manner. While this approach is well-suited for routing protocols and gives us a possibility of
systematic proof, it has many drawbacks. One drawback of this method is that a certain topology
is required to be input. Hence, to verify routing protocols one has to verify all of the possible

topologies. For example, in case of n nodes there are 2
n(n−1)

2 or 2n(n−1) topologies, depending on
if bidirectional or unidirectional edges are assumed.

It can be observed that some topologies are equivalent with each other (from the attacker’s
point of view) and instead of verifying all topologies only non equivalent topologies should be
considered. Although taking into account the equivalent topologies reduces the complexity of
verification in large scale, I achieved an even better result by proposing a backward searching
approach that assumes an arbitrary topology at the beginning of the verification, along with a
stronger attacker model. The concept of the improved method is shown in Figure 16.

Attacker Rules

(Horn clauses, Facts)

Routing protocol

specified in a

simplified syntax of

sr-calculus

Protocol Rules

(Horn clauses) Automatic

verification algorithm

based on resolution

rules and backward

search

Yes

No

Automatic verification tool

Input OutputAutomatic verification

(attack

trace)

Figure 16: The concept of the automatic verification method proposed. The two main novelties
compared to Figure 15 is that the verification in this case considers an arbitrary topology, and the
algorithm is based on backward reasoning.

The basic idea of my approach is that initially an invalid route r, which is represented by an ID
list [Listinvalid] of different IDs, is supposed to be accepted at the end of the route discovery. The
task of the verification algorithm is to confirm this assumption by finding a sequence of message
exchanges along with a topology in which both the destination and source accept [Listinvalid] as a
valid route, or to give a refutation in case no attack scenario can be found. At the beginning, the
topology includes only the attacker node, the source node and the destination node without any
edges. This is iteratively updated with new edges and nodes during the verification. My method
supports both uni and bi-directional edges. The verification consists in at most n rounds, where
n is a bound parameter which represents the maximal number of honest node IDs in [Listinvalid].
In each round, c + 2 ID lists are examined, where c ranges from 1 to n. In particular, an invalid
ID list of c honest node IDs, [lp1, . . . , l

p
c], along with c+ 1 additional lists created by inserting the

attacker’s unique ID into every possible places in [lp1, . . . , l
p
c] are analyzed. Whenever an attack is

detected the tool returns the attack scenario and stops. During the searching procedure the tool
follows a specific heuristic and aims at finding an attack as short as possible.

One advantage of my approach is that by searching for attacks in case of different invalid ID
lists we cover all the possibilities without redundancy. Note that the IDs lp1,. . . , lpc are symbolic,
they are distinguished only by names because initially they are not equipped with any further
information such as location and neighborhood. Therefore, the order of lp1,. . . , lpc in the list is
disregarded. In addition, I emphasize that only the number of honest nodes in [Listinvalid] is
upper bound, in order to force termination in the worst case, but the number of total nodes in the
network can be arbitrary large. On the other hand, the price we have to pay is that my method,
in the general case, can only prove that a routing protocol is flawless within n rounds. However
in most practical examples, based on the returned information provided by the tool, users can
reason about the cases beyond n. Finally, I have applied my method to verify well-known routing
protocols and found that attacks were detected within only few steps. In case of the SRP protocol
an attack is detected in the first round, whilst an attack scenario against the Ariadne protocol is
returned in the second round.

47

8.6 Specifying on-demand source routing protocols

In this section, we give an overview of the formal language with which the operation of routing
protocols can be specified (the leftmost box in Figure 16). Using directly the formal syntax of
the sr-calculus for specifying routing protocols is a bit cumbersome, because it includes several
complex notations. Hence, for automating the verification we introduce a variant of the sr-calculus
with a simplified syntax, which can be edited in an easier way in text format.

Routing protocols have an important flavour that each node usually has the same uniform
internal operation: during route discovery each node can play a role of a source node, or an
intermediate node, or a destination node. Leveraging this beneficial characteristic, in our method
users are required to specify only the operation of one node instead of all of the nodes in the
network, which is more comfortable. We note that using the existent tools designed for analysing
cryptographic protocols such as the ProVerif tool, users have to define the operation of all nodes
in the network, which is infeasible when the number of nodes is large.

Below the simplified syntax of the sr-calculus is given: Terms are used to specify request/reply
messages and their elements, and are specified by the following syntax:

t ::= rreq | rrep | ID | lsrc, ldest, lattj , li | xtype | ythis, yprv, ynxt, yhonprv, yhonnxt, y | f(t1, . . . , tk).

The meaning of each term is as follows:

• rreq and rrep are unique constants that represent the rreq and rrep tags in route request
and reply messages;

• ID is a name that is used to specify a message ID;

• lsrc, ldest, lattj are unique constants specifying the node ID of the source, the destination
and the attacker node, respectively. Different indices in lattj represents different attacker
nodes in the network.

• li, where i ∈ {1, . . . , n}, are unique constants used to specify the node IDs of the intermediate
honest nodes in the network;

• xtype is a variable that can represent any term, that is, any term of type type can be bounded
to it. We apply type inference during the pattern matching used in our verification method.
Variables are distinguished by their type, represented by the index types, which can be empty,
mac, sign, senc, penc, hash, list, etc. For example, xmac and xsign represent a variable with
the type of a MAC value and a signature, respectively.

• ythis, yprv, ynxt, yhonprv, yhonnxt are variables that represent node IDs. ythis represents the
ID of the honest node we are specifying, the index this refers to the current node. yprv and
ynxt are variables which can be bound to either honest node IDs or lattj . The indices prv
and nxt refer to the words previous and next, and are used to define the previous and next
nodes in ythis’s point of view. yhonprv and yhonnxt are similar to yprv and ynxt with the only
difference that they cannot be bounded to lattj . Eventually, y is a variable that covers all
type of node ID-s.

• Finally, f is a (constructor) function with arity k and is used to construct terms and to model
cryptographic primitives, route request and reply messages. For instance, digital signature
is modelled by the function sign(t1, t2), where t1 models the message to be signed and t2
models the secret key is used to sign. Route request and reply messages are modelled by
the function tuple of k terms: tuple(t1,. . . ,tk), which we abbreviate as (t1,. . . ,tk). Function
list(List) specifies the ID list, where List is a sequence of node IDs. We abbreviate list(List)
as [List].

Processes model the internal operation of nodes and are specified by the following syntax:

48

P , Q, R ::= Processes
broadinit(t).P broadcast by source node
broad(t).P broadcast by other nodes
unidest((y, t)).P unicast by destination node
uni((y, t)).P unicast by other nodes
recvreq(t).P receive request
recvrep(t).P receive reply
P |Q parallel composition
(new n)P restriction
!P replication
nil nil
letdst (x = g(t1, . . . , tn)) in P else Q destructor application
let (x = t) in P let
letor (x = t1) or (x = t1) in P let or
if nbr(yi, yj) then P neighbor
accept([y,List]) accepting the route [y,List]

The processes 〈t〉.P in the sr -calculus is replaced by broadinit(t).P and broad(t).P , respectively,
in the simplified syntax. The receive action (x).P is replaced by two processes recvreq(t).P and
recvrep(t).P . The processes unidest((ynid, t)).P and uni((ynid, t)).P , respectively represent sending
a message t to node with the ID ynid. The index nid refers to a variable that has the node ID
type.

• Both processes broadinit(t).P and broad(t).P first broadcast t, which is followed by the
running of process P . The reason why we distinguish broadinit from broad is that the
corresponding logic rules, which are basic elements of the automatic reasoning, are different.

• Processes unidest((ynid, t)).P and uni((ynid, t)).P first send (ynid, t) then are continued with
P . Node ID ynid at the beginning of (ynid, t) specifies the addressee of the message t. We
note that every message sent in the network is overheared, however, honest nodes drop
the message if they are not the addressee. unidest is used when a message is sent by the
destination.

• Processes recvreq(t).P and recvrep(t).P wait for the term request and reply t, respectively.
In case the received term is equal to t, P will run, otherwise, it stucks and idle.

• A composition P |Q behaves as processes P and Q running in parallel. Each may interact
with the other on channels known to both, or with the outside world, independently of the
other.

• A restriction (new n)P is a process that makes a new, private name n, and then behaves as
P .

• A replication !P is the parallel composition of infinite instances of P . This is used to model
infinite parallel sessions of a protocol.

• The nil process does nothing, used to model process termination.

• Process letdst (x = g(t1, . . . , tn)) in P else Q tries to evaluate g(t1, . . . , tn) if this succeeds,
x is bounded to the result and P is executed, otherwise, Q is executed. For instance, a typ-
ical destructor can be verification of digital signature as checksign(sign(x, sk(y)), pk(sk(y))),
where the constructor pk(sk(y)) represents the public key generated from the given secret
key. In short, we can say that the destructor function is a kind of ”inverse” function of
constructor function: For example, if the constructor function is signature then destructor
function is checksign, anf if the constructor function is encryption then the corresponding
destructor function is decryption.

• Process let (x = t) in P means that every occurrence of x binding t in process P .

49

• Process letor (x = t1) or (x = t1) in P says that x is bounded to t1 or t2 in process P .
Note that the or construct does not work in an exclusive way but it can be seen as an
union/disjunction. This process is introduced for case separation purposes in the translation
from a protocol specification to logic rules, given in Section 9.2.

• Process if nbr(ynid1 , ynid2) then P says if node ynid2 is a neighbor of node ynid1 then P will
run, otherwise, it stucks and idle. We emphase that in our method, by default we consider
one directional edges, however, our method works in case of two directional edges as well.

• Process accept([y,List]) broadcasts the ID list [y,List] in case of all the required verification
steps made on the reply are successful. This process is used to signal the acceptance of the
returned route.

We define the function [List, y] appends the ID y to the end of the ID list [List]. We remove the
syntax of networks and nodes in the simplified syntax of the sr-calculus because we focus definitely
on presenting the automated verification method, in which the specification of nodes and networks
is not required. As mentioned before, the operation of a honest node has to be provided as input,
which can be uniformly defined by the following process Pspec:

Pspec
def
= !INIT | !INTERM | !DEST

Every node can start a route discovery towards any other node, in this case process INIT is
invoked. Every node can be an intermediate node, in which case its process INTERM is invoked.
Finally, every node can be a target node when process DEST runs. We note that the specific
structure of each process depends on the specific routing protocol, nevertheless, in general form
they can be modelled in the following way:

——–
——–

INIT
def
= let (ythis = lsrc) in

(
(new ID)Protinit.broadinit(t[]∈req).!Repinit

)
.

Repinit

def
= letor (ynxt = yhonnxt) or (ynxt = latti) in PRepinit.

PRepinit

def
= recvrep((ythis, t[ynxt,List]∈rep)).if nbr(ythis, ynxt) then ProtRep

init.accept([ynxt,List]).
——–
——–

INTERM
def
= Interm1 | Interm2

Interm1
def
= recvreq(t[]∈req). if nbr(ythis, lsrc) then Protinterm1 .broad(t[ythis]∈req).!Repinterm1

.

Interm2
def
= letor (yprv = yhonprv) or (yprv = latti) in PInterm2. !Repinterm2

.

PInterm2
def
= recvreq(t[List,yprv]∈req).if nbr(ythis, yprv) then Protinterm2 .broad(t[List,yprv,ythis]∈req).

——–

Repinterm1

def
= Repinterm1

1
| Repinterm2

1

Repinterm1
1

def
= recvrep((ythis, t[ythis]∈rep)). if nbr(ythis, lsrc) then if nbr(ythis, ldest) then

ProtRep

interm1
1
.uni

(
(lsrc, t

1
rep)

)
.

Repinterm2
1

def
= letor (ynxt = yhonnxt) or (ynxt = latti) in PRepinterm2

1
.

PRepinterm2
1

def
= recvrep((ythis, t[ythis,ynxt,List]∈rep)). if nbr(ythis, lsrc) then

if nbr(ythis, ynxt) then ProtRep

interm2
1
.uni

(
(lsrc, t

2
rep)

)
.

——–

Repinterm2

def
= Repinterm1

2
| Repinterm2

2

Repinterm1
2

def
= letor (yprv = yhonprv) or (yprv = latti) in letor (ynxt = yhonnxt) or (ynxt = latti)

in PRepinterm1
2
.

PRepinterm1
2

def
= recvrep((ythis, t[List1,yprv,ythis,ynxt,List2]∈rep)). if nbr(ythis, yprv) then

if nbr(ythis, ynxt) then ProtRep

interm1
2
. uni

(
(yprv, t

3
rep)

)
.

Repinterm2
2

def
= letor (yprv = yhonprv) or (yprv = latti) in PRepinterm2

2
.

50

PRepinterm2
2

def
= recvrep((ythis, t[List,yprv,ythis]∈rep)). if nbr(ythis, yprv) then

if nbr(ythis, ldest) then ProtRep

interm2
2
. uni

(
(yprv, t

4
rep)

)
.

——–
——–

DEST
def
= let (ythis = ldest) in (letor (yprv = yhonprv) or (yprv = latti) in PDEST).

PDEST
def
= recvreq(t[List,yprv]∈req) if nbr(ythis, yprv) then Protdest.unidest

(
(yprv, t

5
rep)

)
.

Each process INIT, INTERM and DEST is composed of two parts: (i) A request part, which is
placed before the process of form !Rep, and specifies how requests are handled; and (ii) a reply
part !Rep, which describes how a node behaves when a reply is received. The protocol dependent
procedures Protinit, Protinterm, Protdest and their ProtRep counterparts include neighbor checking
processes of form if nbr(ynidi , ynidj) then, functions and “inverse” functions. The notations
t[List]∈req and t[List]∈rep represent the request and reply messages which include the ID list [List],
respectively.

Process INIT considers the case when node ythis is the source, which is illustrated as Scenario1
in the Figure 17. First, a new message ID is created, then a protocol dependent processing part
Protinit is invoked (e.g., generating a message authentication code in case of the SRP protocol,
etc). If all requirements of the protocol are fulfilled, an initial request t[]∈req is broadcast, which
is specified by process broadinit(t[]∈req). Afterwards, the source permanently waits for the corre-
sponding reply, which is modelled by process !Repinit. In Repinit process letor says that the first
ID of the ID list included in the reply can be either a honest node or an attacker node. Process
PRepinit says that on receiving some reply the source node checks if it is the addressee and the
first ID in the list belongs to its neighbor, if so, the reply is processed in a protocol specific manner
and the ID list included in the reply is accepted in case the reply fulfills all the requirements.

Figure 17: The scenarios described by the protocol specification.

Process INTERM specifies the case when node ythis is an intermediate node, and is divided to
two subprocesses Interm1 and Interm2. These two processes distinguish four different scenarios
Scenario3-6, which are shown in the Figure 17.

Process Interm1 describes the case when the current node ythis receives the initial request.
On receiving the request, ythis examines whether the source is its neighbor continued by re-
broadcasting a request when all the protocol specific verification steps are passed, and waits for
the reply. Process Repinterm1

is splitted into two processes Repinterm1
1

and Repinterm2
1
, where the

first one specifies the Scenario4 in the Figure 17 in which both the source and the destination
are neighbors of ythis, whilst the second subprocess is concerned with the Scenario5 in which the
destination node is not a neighbor of ythis but the source.

Process Interm2 specifies the scenarios 3 and 6 in the Figure 17. In this case the request part
is similar as in Interm1, however, this time there is at least one ID previous ythis in the ID list.
Again, Repinterm2

is composed of two subprocesses Repinterm1
2

and Repinterm2
2
. The first one is

concerned with Scenario3 and the second process represents Scenario6.
Finally, process DEST specifies the scenario 2 in the Figure 17. Although this scenario involves

all the other five scenarios, it is required to be considered because it differs from the others in that

51

it is from the destination’s point of view. When a request is received, the destination checks if the
last ID belongs to its neighbor, which is modelled by the part if nbr(ythis, yprv) then. Thereafter,
additional protocol specific processing could be performed. At the end, if the request fulfills all
the requirements, then the destination sends back a reply.

One of the advantages of our method is that it requires the user to specify only the operation of
a honest node, that is, the operation of the routing protocol which is usually very short. The user
is not bothered with specifying the large number of scenarios that involve the attacker nodes. The
automated verification is performed on the logic rules that specify the behavior of the protocol.
Hence, from the protocol specification in the simplified sr -calculus, we have to perform translations
into logic rules. The received logic rules should conform the specification of the protocol. All of the
possible scenarios will be derived by the translation procedure, which is performed automatically.
The translation procedure is detailed in Section 9.

9 From protocol specification to logic rules

The automatic reasoning procedure is performed on the set of logic rules that represent a source
routing protocol, and the attacker’s computation ability and initial knowledge: We refer to the
first subset of rules as protocol rules and to the second part as attacker rules. The logic rules
used in our method are Horn-clauses that are well-known in the field logic programming. In this
section, we show how the logic rules are automatically derived from the protocol specification.
First, we introduce the syntax of the logic rules.

9.1 Syntax of the logic rules

The syntax of the logic rules used in the automatic reasoning is composed of patterns and facts.
Patterns correspond to terms in the calculus, and model the elements of request and reply mes-
sages. Each term in the calculus has a corresponding pattern in logic. We define a set E of
mappings {t1 7→ tp1},. . . , {tm 7→ tpm}, which maps each term to the corresponding pattern.

tp ::= rreqp | rrepp | IDp | np [tp1, . . . , t
p
k] | lpi | l

p
src, l

p
dest, l

p
atti
| lp[] | xptype |

ypthis, y
p
prv, y

p
nxt, y

p
honprv, y

p
honnxt, y

p | f(tp1, . . . , t
p
k).

The patterns rreqp, rrepp, xptype, y
p, ypthis, y

p
prv, y

p
nxt, y

p
honprv, y

p
honnxt, l

p
src, l

p
dest, l

p
atti , l

p
i ,

i ∈ {1, . . . , k} represent the same things as the analogous terms in calculus.
Names n and function f in the calculus are encoded as functions with arity k and r: np[tp1, . . . , t

p
k]

and f(tp1, . . . , t
p
r), respectively. In np[tp1, . . . , t

p
k], terms tp1,. . . ,tpk are the messages that are bound to

parameter in the recvreq, recvrep actions that occur before the point when new data np is created
(i.e., when process (new n) in P is called). The reason why we consider n as np[tp1, . . . , t

p
k] is that

by using the parameters tp1,. . . , tpk we can distinguish different newly created data. IDp represents
a session identifier, different session identifiers are associated to each session of processes under
replication. lp[] models a new node ID that has not occurred before. The empty list of parame-
ters, [], attached to lp, means that they are new data, which do not depend on the history. The
Horn-clauses use the following facts:

F ::= wm(tp) | att(tp) | nbr(ypnidi
, ypnidj

) | accept([List]) | ε.

The meaning of each fact is as follows: wm(tp) says that the wireless medium knows tp, which
happens when tp is output by some node; att(tp) says that the attacker knows tp, which happens
when tp is intercepted or generated by the attacker. Fact nbr(ypnidi , y

p
nidj

) says that node ypnidj
is a neighbor (within the transmission range) of node ypnidi . In the rest of the paper, we refer
to these facts as wm-facts, att-facts and nbr -facts, respectively. The special fact accept([List])
is derived when the reply has got back to the source node that accepts the route specified by
the ID list [List]. The fact ε is used to represent the successful derivation of a given fact during
the deduction procedure. If the fact ε is reached, it means that the current derivation branch

52

terminates successfully. The operation of routing protocols is modelled by Horn-clauses, that is,
the logic rules R of form F1 ∧ . . .∧ Fn → C, where either Fi or C are one of the fact given above,
and ∧ represents a logical AND (i.e., conjuction). We note that n can be zero, which means that
R has a form of C. The left side of R is called as hypothesis whilst the right side is called as
conclusion.

Next, we detail the translation rules that are specified for translating each kind of process P
in the calculus.

9.2 Translation rules

The automatic derivation of the protocol rules from the protocol specification in the calculus is
accomplished by the translation procedure, which is based on the set of pre-defined translation
rules. The set of protocol rules is defined as [P; streq; strep; dir;Hreq;Hrep;S] E , where P is the
process (in calculus) to be translated. Hreq and Hrep are used to store the hypothesis of logic
rules concerning the reply and request direction, respectively. Furthermore, Hrep is the tuple
(Hrephon1

; Hrephon2
; Hrephon3

; Hrepatt1 ; Hrepatt2), and Hreq is the tuple (Hreqhon1
; Hreqhon2

; Hreqhon3
; Hreqhon4

; Hreqhon5
;

Hreqhon6
; Hreqatt1 ; Hreqatt2 ; Hreqatt3 ; Hreqatt4). Each Hrepi , Hreqj represents different classes of scenarios, and is

composed of logical ANDing (conjuction) of nbr -facts, and wm-facts or att-facts. S is a sequence
of patterns correspond to input messages and session IDs which are used for tracking purpose. E
is a mapping from names and variables in calculus to the corresponding names and variables in
logic. σ is a set of substitutions that binds some term t to some variable x. E is always applied to
the terms occur in Hreq and Hrep.

Mappings and substitutions are denoted by the mapsto arrow 7→ and leftarrow←, respectively.
For instance, {x 7→ xp} means that variable x is mapped to pattern xp, and {x ← t} represents
the binding of t to x. As for mappings, we note that every term has only one image in the set of
patterns. streq and strep are sequence of state flags, and are applied to store the current state in
which the translation procedure is right before the translating process broad in case of the request
direction, and processes uni, accept in case of the reply direction, respectively. The translation of
the same process in different states yields different logic rules. Finally, dir is the container of flags
that are used to signal the current direction in which the translation procedure is.

At the beginning, E includes patterns rrepp, rreqp, lpsrc, l
p
dest, l

p
atti , y

p
this, y

p
prv, y

p
nxt, y

p
honprv,

yphonnxt, which are the image of corresponding terms. Adding one more mapping {t 7→ tp} to
E is denoted by E{t 7→ tp}. In case of general term t, E(t) is the mapping of each name and
variable, which occurs in t, to the corresponding patterns. Applying the substitution σ to a term
t is denoted by tσ. Adding one more fact F to Hrepi and Hreqi is defined by logical ANDing Hrepi
and Hreqi with F , respectively: Hrepi ∧F , Hreqi ∧F . Adding one more logic rule R to the rule set
[P; streq; strep; dir;Hrep;Hreq;S] E is written as [P; streq; strep; dir;Hrep;Hreq;S] E ∪ {R}. Adding
one more flag flag to streq and strep is written as (streq,flag) and (strep,flag), respectively. Finally,
when we write ∀Hrepi ∈ Hrep : Hrepi ∧F it means Hrepi ∧F is performed for all Hrepi in Hrep. The
same is valid in case of ∀Hreqi ∈ Hreq : Hreqi ∧ F .

Going into detail, as far as Hrep is concerned five different categories of scenarios are distin-
guished, which are represented by Hrephon1

, Hrephon2
, Hrephon3

, Hrepatt1 and Hrepatt2 . The first three data
structures are indexed by term hon which refers to the scenarios in which a reply is sent by a
honest node, and the last two indexed by att take into account the cases when the attacker for-
wards the reply. Additionally, Hrephon1

stores the left side of such logic rules that are concerned with
the cases when a honest node received a reply, of which it is the addressee, sent by some another
honest node. Hrephon1

comprises of wm-facts and nbr -facts, and it is initialized to be empty. Hrephon2

stores the left side of the rules describing the cases when the attacker is the addressee of a reply
sent by some honest node. Hrephon2

is a conjunction of wm-facts and nbr -facts, and it is initialized
to be empty. Hrephon3

is introduced for the cases in which the attacker is not the addressee of the
reply but it overhears the reply sent by its honest neighbor. Hrephon3

is a conjunction of wm-facts
and nbr -facts, and it is initialized to be nbr(ypthis, l

p
atti). H

rep
att1 considers the scenarios when the

attacker node sends a reply to some intermediate node, and it is initialized to be nbr(lpatti , y
p
this).

Finally, Hrepatt2 is in connection with the cases when the attacker node sends a reply to the source

53

node, and it is initialized to be nbr(lpatti , l
p
src). BothHrepatt1 andHrepatt2 are built up by logical ANDing

of att-facts and nbr -facts.
While Hrep concerns the reply direction, Hreq is used for specifying the scenarios concerning

the request direction. Again, the possible scenarios are categorized into nine different classes,
which are represented by Hreqhoni and Hreqattj , where 1 ≤ i ≤ 6 and 1 ≤ j ≤ 3. In the same lines
with the reply direction, the indices hon and att refer to the cases when a request is sent by a
honest node and attacker node, respectively. Hreqhon1

considers the scenario when an intermediate
honest node receives a request broadcast by the source node, and it is initialized to nbr(lpsrc, y

p
this).

Hreqhon2
is the left side of such logic rules that describe the case when the attacker intercepts the

request broadcast by the source node, and it is initialized to nbr(lpsrc, l
p
atti). H

req
hon3

is related
to the scenario in which a honest intermediate node receives a request output by an another
honest intermediate node. Hreqhon3

is initialized to nbr(yphonprv, y
p
this). H

req
hon4

is nbr(ypthis, l
p
atti)

at the beginning, and concerns the case in which the attacker obtains the request sent by an
intermediate honest node. Hreqhon5

and Hreqhon6
are related to the process DEST and represent the

hypothesis of the rules from the destination’s point of view. Hreqhon5
considers the case when the

destination receives a request broadcast by an intermediate honest node and the attacker is not
a neighbor of the destination. Hreqhon6

is similar to Hreqhon5
but in this case the attacker is in the

destination’s range. Hreqhon5
is initialized to nbr(yphonprv, l

p
dest), whilst at the beginning Hreqhon6

is

nbr(yphonprv, l
p
dest) ∧ nbr(lpdest, l

p
atti). Finally, Hreqatt1 , Hreqatt2 and Hreqatt3 contains the hypothesis of

such logic rules that describe the cases when the attacker node sends a request. They are in turn
initialized to nbr(lpatti , y

p
this), nbr(lpatti , l

p
dest), and nbr(lpatti , l

p
dest) ∧ nbr(lpdest, l

p
atti).

streq and strep are local variables and are containers of a sequence of constant flags HONEST,
ATTPRV, and ATTNXT. dir is a local variable and is composed of constant flags REQ and REP.
At the beginning, dir is initialized to REQ and it is changed to REP whenever the translation
reaches the process concerning the reply direction. Both streq and strep are initialized to be empty.
They are updated (not at the same time) whenever a process of form letor (yxxx = yhonxxx)
or (yxxx = latti) in P has been translated, where xxx can be prv or nxt. streq is updated
when the value of dir is REQ, whilst strep is modified when the value of dir is REP. The part
(yxxx = xhonxxx) says that x is bound to an ID of honest node and yields adding HONEST,
while (yhonprv = latti) and (yhonnxt = latti) binds latti to the variables, and the flags ATTPRV,
ATTNXT are added to streq and strep, respectively. In our method the following translation rules
are specified:

T1. [0; streq; strep; dir;Hrep;Hreq;S] E = ∅

T2. [P |Q; streq; strep; dir;Hrep;Hreq;S] E = [P ; streq; strep; dir;Hreq;S] E ∪
[Q; streq; strep; dir;Hrep;Hreq;S] E

T3. [!P ; streq; strep; dir;Hrep;Hreq;S] E = [P ; streq; strep; dir;Hrep;Hreq; (S, s)] E{s 7→ sp},
where s is a new variable session identifier

T4. [(new n)P ; streq; strep; dir;Hrep;Hreq;S] E = [P ; streq; strep; dir;Hrep;Hreq;S] E{n 7→ np[S]}

T5. [let (ythis = nid) in P ; streq; strep; dir;Hrep;Hreq;S] E =
[P{ythis ← nid}; streq; strep; dir;Hrep;Hreq;S] E

T 1
6 . [letor (yprv = yhonprv) or (yprv = latti) in P ; streq; strep; REQ;Hrep;Hreq;S] E =

[P{yprv ← yhonprv}; (streq,HONEST); strep; REQ;Hrep;Hreq;S] E ∪
[P{yprv ← latti}; (streq,ATTPRV); strep; REQ;Hrep;Hreq;S] E

T 2
6 . [letor (yprv = yhonprv) or (yprv = latti) in P ; streq; strep; REP;Hrep;Hreq;S] E =

[P{yprv ← yhonprv}; streq; (strep,HONEST); REP;Hrep;Hreq;S] E ∪
[P{yprv ← latti}; streq; (strep,ATTPRV); REP;Hrep;Hreq;S] E

T 3
6 . [letor (ynxt = yhonnxt) or (ynxt = latti) in P ; streq; strep; REP;Hrep;Hreq;S] E =

[P{ynxt ← yhonnxt}; streq; (strep,HONEST); REP;Hrep;Hreq;S] E ∪

54

[P{ynxt ← latti}; streq; (strep,ATTNXT); REP;Hrep;Hreq;S] E

T7. [recvreq(t1).P ; streq; strep; dir;Hrep;Hreq; (S, t1)] E =
[P ; streq; strep; dir; Hrep; Hreq

honi
∧ wm(t1); Hreq

attj
∧ att(t1) for every value of i and j, where

1 ≤ i ≤ 6 and 1 ≤ j ≤ 3; (S, t1)]E{t1 7→ tp1}

T 1
8 . [broad (t2) .P ; empty; strep; REQ;Hrep;Hreq; 〈S, t1〉] E =

[P ; empty; strep; REP;Hrep;Hreq; 〈S, t1〉] E{t2 7→ tp2} ∪ {H
req
hon1

→ wm(t2)}
∪ {Hreq

hon2
→ att(t1)} ∪ {Hreq

att1
→ wm(t2)}

T 2
8 . [broad (t2) .P ; (HONEST); strep; REQ;Hrep;Hreq;S] E =

[P ; (HONEST); strep; REP;Hrep;Hreq;S] E{t2 7→ tp2} ∪ {H
req
hon3

→ wm(t2)}
∪ {Hreq

att1
→ wm(t2)}

T 3
8 . [broad (t2) .P ; (ATTPRV); strep; REQ;Hrep;Hreq; 〈S, t1〉] E =

[P ; (ATTPRV); strep; REP;Hrep;Hreq; 〈S, t1〉] E{t2 7→ tp2} ∪ {H
req
hon4

→ att(t1)}
∪ {Hreq

att1
→ wm(t2)}

T9. [broadinit (t2) .P ; streq; strep; REQ;Hrep;Hreq;S] E =
[P ; streq; strep; REP;Hrep;Hreq;S] E{t2 7→ tp2} ∪ {wm(t2)}

T10. [recvrep(t1).P ; streq; strep; dir;Hrep;Hreq;S] E =
[P ; streq; strep; dir; Hrep

hon1
∧ wm(t1); Hrep

hon2
∧ wm(t1); Hrep

hon3
∧ wm(t1); Hrep

att1
∧ att(t1);

Hrep
att2
∧ att(t1); Hreq; (S, t1)] E{t1 7→ tp1}

T 1
11. [uni (t2) .P ; streq; empty; dir;Hrep;Hreq; 〈S, t1〉] E =

[P ; streq; empty; dir;Hrep;Hreq; 〈S, t1〉] E{t2 7→ tp2} ∪ {wm(t1) ∧Hrep
hon1

→ wm(t2)} ∪
{wm(t1) ∧Hrep

hon3
→ att(t2)} ∪ {wm(t1) ∧Hrep

att1
→ wm(t2)}

T 2
11. [uni (t2) .P ; streq; (HONEST); dir;Hrep;Hreq; 〈S, t1〉] E =

[P ; streq; (HONEST); dir;Hrep;Hreq; 〈S, t1〉] E{t2 7→ tp2} ∪ {wm(t1) ∧Hrep
hon1

→ wm(t2)} ∪
{wm(t1) ∧Hrep

hon3
→ att(t2)} ∪ {wm(t1) ∧Hrep

att1
→ wm(t2)}

T 3
11. [uni (t2) .P ; streq; (ATTPRV); dir;Hrep;Hreq; 〈S, t1〉] E =

[P ; streq; (ATTPRV); dir;Hrep;Hreq; 〈S, t1〉] E{t2 7→ tp2} ∪ {wm(t1) ∧Hrep
hon2

→ att(t2)}

T 4
11. [uni (t2) .P ; streq; (ATTNXT); dir;Hrep;Hreq; 〈S, t1〉] E =

[P ; streq; (ATTNXT); dir;Hrep;Hreq; 〈S, t1〉] E{t2 7→ tp2} ∪ {wm(t1) ∧Hrep
att1
→ wm(t2)}

T 5
11. [uni (t2) .P ; streq; (HONEST,HONEST); dir;Hrep;Hreq; 〈S, t1〉] E =

[P ; streq; (HONEST,HONEST); dir;Hrep;Hreq; 〈S, t1〉] E{t2 7→ tp2} ∪ {wm(t1) ∧Hrep
hon1

→ wm(t2)}
∪ {wm(t1) ∧Hrep

hon3
→ att(t2)} ∪ {wm(t1) ∧Hrep

att1
→ wm(t2)}

T 6
11. [uni (t2) .P ; streq; (ATTPRV,HONEST); dir;Hrep;Hreq; 〈S, t1〉] E =

[P ; streq; (ATTPRV,HONEST); dir;Hrep;Hreq; 〈S, t1〉] E{t2 7→ tp2} ∪ {wm(t1) ∧Hrep
hon2

→ att(t2)}

T 7
11. [uni (t2) .P ; streq; (ATTNXT,HONEST); dir;Hrep;Hreq; 〈S, t1〉] E =

[P ; streq; (ATTNXT,HONEST); dir;Hrep;Hreq; 〈S, t1〉] E{t2 7→ tp2} ∪ {wm(t1) ∧Hrep
att1
→ wm(t2)}

T 1
12. [accept(t3); streq; (HONEST); dir;Hrep;Hreq;S] E =

[0; streq; (HONEST); dir;Hrep;Hreq;S] E{t3 7→ tp3} ∪ {H
rep
hon1

→ accept(t3)} ∪
{Hrep

att2
→ accept(t3)}

T 2
12. [accept(t3); streq; (ATTNXT); dir;Hrep;Hreq;S] E =

[0; streq; (ATTNXT); dir;Hrep;Hreq;S] E{t3 7→ tp3} ∪ {H
rep
att2
→ accept(t3)}

T13. [if nbr(yk, yt) then P ; streq; strep; dir;Hrep;Hreq;S] E =
[P ; streq; strep; dir; ∀ Hrep

i ∈ Hrep: Hrep
i ∧ nbr(yk, yt); ∀ Hreq

j ∈ Hreq/{Hreq
hon2

,Hreq
hon4
}:

55

Hreq
j ∧ nbr(yk, yt); S] E{yk 7→ ypk}{yt 7→ ypt }

T14. [letdst x = g(t1, . . . , tn) in P ; streq; strep; dir;Hrep;Hreq;S] E =⋃
{[P ; streq; strep;Hrep;Hreq;S]E{x 7→ σ2p}σσ1

where g(p1, . . . , pn) = p, and (σ1, σ2) is a most general unifier such that
σ1E(ti) = σ2pi, 1 ≤ i ≤ n}

T 1
15. [unidest (t2) .P ; (HONEST); strep; dir;Hrep;Hreq;S] E =

[P ; (HONEST); strep; dir;Hrep;Hreq;S] E{t2 7→ tp2} ∪ {H
req
hon5

→ wm(t2)}
∪ {Hreq

hon6
→ att(t2)} ∪ {Hreq

att2
→ att(t2)} ∪ {Hreq

att3
→ wm(t2)}

T 2
15. [unidest (t2) .P ; (ATTPRV); strep; dir;Hrep;Hreq;S] E =

[P ; (ATTPRV); strep; dir;Hrep;Hreq;S] E{t2 7→ tp2} ∪ {H
req
att3
→ att(t2)}

The translation procedure can be seen as a consecutive execution of translation rules, which
follows the next processing precedence: By default, going from the left to the right, the keyword of
each processes are looked for. In case of P |Q, the parallel composition has the highest precedence.
However, this is not the case when boundaries are used: In (new ID)(P |Q), let . . . in (P |Q), and
letor . . . in (P |Q) the parts (new ID), let . . . in, and letor . . . in have higher precedence than parallel
composition.

Rule T1 says that the translation of the nil process in any state and direction yields no rule.
T2 says that the logic rules used for specifying process P |Q is the union of the rules correspond to
P and rules correspond to Q. T3 means that the logic rules for describing process !P is the same
as the rules for P but a new session ID is created and stored, which is rendered to a particular
instance of P . The notion of replication is not explicitly expressed but it is involved implicitly
in such a way that each logic rule corresponding to P can take place several times in different
resolution steps. Rule T4 expresses that the logic rules of (new n)P is the same as P , in which
every occurence of n in P is translated to np[], this is defined by adding new mapping {n 7→ np[S]}
to E .

T5 is concerned with the translation of process let (ythis = nid) in P , where id can be lsrc,
ldest, latti , yhonprv, yhonnxt. The logic rules for specifying let (ythis = nid) in P is the same as the
logic rules for P{ythis ← nid}. As for T6, three different subrules are distinguished regarding the
value of the states and direction. The first rule considers the REQ direction whilst the other two
rules taking into account the REP direction. The translation of process letor (yxxx = yhonxxx) or
(yxxx = latti) in P can be seen as the union of the logic rules for specifying P{yxxx ← yhonxxx} and
the logic rules for specifying P{yxxx ← latti}. In case of P{yxxx ← yhonxxx} the flag HONEST is
added to streq and strep, depeding on the current direction. In the branch P{yxxx ← latti} the
flags ATTPRV and ATTNXT are added when xxx is prv and nxt, respectively.

T7 is invoked when a process to be translated is recvreq(t1).P . recvreq(t1) is eiminated and
Hreqhoni is extended with ∧ wm(t1) while Hreqattj is extended with ∧ att(t1). Finally, E is updated

with the mapping {t1 7→ tp1} and S is extended with a the input message tp1. Rules T 1
8 , T 2

8 and T 3
8

are used for translating process broad (t2) .P , and are invoked when its streq is empty, HONEST
and ATTPRV, respectively. As the result, the procedure in all the three cases carries on with
translating P in the direction REP. In addition, the rule sets are updated with new logic rules.
We note that 〈S, t1〉 in T 1

8 and T 2
8 says that the last input message in S is t1.

T9 is very similar to T8, the only difference is that it is defined from the source’s point of view,
and only wm(tp2) is added. Note that wm(tp2) can be seen as the rule of which the hypothesis is
empty. Rule T10 translates process recvrep(t1).P in the very similar way as in case of T7 apart
from that the current value of the state and direction is off the point; Rule T11 is responsible for
handling process uni (t2) .P , and is classified into seven subrules according to the value of strep.

Whenever the translation procedure gets to the point where accept(t3) is to be translated, rules
T 1
12 and T 2

12 are invoked. The first rule is valid when the first ID of the ID list included in the
reply belongs to honest nodes, and the second rule holds when the first ID is latti . T13 extends all
Hrep
j and Hreq

i with ∧ nbr(yk, yt), except for Hreq
hon2

and Hreq
hon4

. Finally, rules T 1
15, T 2

15 are used

56

for translating process unidest (t2) .P that is similar to T11 except that other rules are added to
the rule set.

At the end, the translation procedure results in a set L of logic rules. As the subsequent step,
the rules in L are sanitized in which duplicated nbr -facts in the hypothesis are eliminated, and
the facts in each hypothesis are reordered, such that the wm-facts and att-facts are placed on the
leftmost position.

9.3 The resulting protocol rules

The translation [Pspec; streq; strep; dir;Hrep;Hreq;S] E of the protocol specification Pspec given in
Section 8.6 yields the following logic rules (after sanitizing).

(Protocol rules: Template of the correct operation) ::=
Rreq

1 . wm(tpreq).
——–

Rreq
2.1 . wm(tpreq) ∧ nbr(lpsrc, ypthis) ∧ nbr(ypthis, l

p
src) ∧ Protfactsintermreq → wm(tpreq′).

Rreq
2.2 . wm(tpreq) ∧ nbr(lpsrc, lpatti) → att(tpreq).

Rreq
2.3 . wm(tpreq) ∧ nbr(yphonprv, y

p
this) ∧ nbr(ypthis, y

p
honprv) ∧ Protfactsintermreq → wm(tpreq′).

Rreq
2.4 . wm(tpreq) ∧ nbr(yphonprv, l

p
atti

) → att(tpreq′).

Rreq
2.5 . att(tpreq) ∧ nbr(lpatti , y

p
this) ∧ nbr(ypthis, l

p
atti

) → att(tpreq′).

Rreq
2.6 . att(tpreq) ∧ nbr(lpatti , y

p
this) ∧ nbr(ypthis, y

p
honprv) ∧ Protfactsintermreq → wm(tpreq′).

Rreq
2.7 . att(tpreq) ∧ nbr(lpatti , y

p
this) ∧ nbr(ypthis, l

p
src) ∧ Protfactsintermreq → wm(tpreq′).

——–

Rreq
3.1 . wm(tpreq) ∧ nbr(yphonprv, l

p
dest) ∧ nbr(l

p
dest, y

p
honprv) ∧ Protfactsdest → wm((yphonprv, t

p
rep)).

Rreq
3.2 . wm(tpreq) ∧ nbr(yphonprv, l

p
dest)∧ nbr(l

p
dest, y

p
honprv) ∧ nbr(lpdest, l

p
atti

) ∧
Protfactsdest → att((yphonprv, t

p
rep)).

Rreq
3.3 . att(tpreq) ∧ nbr(lpatti , l

p
dest) ∧ nbr(l

p
dest, l

p
atti

) ∧ nbr(lpdest, y
p
honprv) ∧

Protfactsdest → att((yphonprv, t
p
rep)).

Rreq
3.4 . att(tpreq) ∧ nbr(lpatti , l

p
dest) ∧ nbr(l

p
dest, l

p
atti

) ∧ Protfactsdest → att((lpatti , t
p
rep)).

Rreq
3.5 . att(tpreq) ∧ nbr(lpatti , l

p
dest) ∧ nbr(l

p
dest, y

p
honprv) ∧ Protfactsdest → wm((yphonprv, t

p
rep)).

——–
——–
Rrep

1.1 . wm(tpreq) ∧ wm((lpsrc, t
p
rep)) ∧ nbr(lpsrc, yphonnxt)

∧ Protfactsinit → accept([yphonnxt,List]).
Rrep

1.2 . wm(tpreq) ∧ att((lpsrc, tprep)) ∧ nbr(lpsrc, lpatti)
∧ nbr(lpatti , l

p
src) ∧ Protfactsinit → accept([lpatti ,List]).

Rrep
1.3 . wm(tpreq) ∧ att((lpsrc, tprep)) ∧ nbr(lpsrc, yphonnxt)

∧ nbr(lpatti , l
p
src) ∧ Protfactsinit → accept([yphonnxt,List]).

——–
Rrep

2.1 . RequestPart ∧ wm((ypthis, t
p
rep)) ∧ nbr(ypthis, l

p
dest) ∧ nbr(y

p
this, l

p
src)

∧ Protfactsintermrep → wm((lpsrc, t
p
rep′)).

Rrep
2.2 . RequestPart ∧ wm((ypthis, t

p
rep)) ∧ nbr(ypthis, l

p
dest) ∧ nbr(y

p
this, l

p
src)

∧ nbr(ypthis, l
p
atti

) ∧ Protfactsintermrep → att((lpsrc, t
p
rep′)).

Rrep
2.3 . RequestPart ∧ att((ypthis, t

p
rep)) ∧ nbr(lpatti , y

p
this) ∧ nbr(ypthis, l

p
dest)

∧ nbr(ypthis, l
p
src) ∧ Protfactsintermrep → wm((lpsrc, t

p
rep′)).

Rrep
2.4 . RequestPart ∧ wm((ypthis, t

p
rep)) ∧ nbr(ypthis, y

p
honnxt)

∧ nbr(ypthis, y
p
honnxt) ∧ Protfactsintermrep → wm((lpsrc, t

p
rep′)).

Rrep
2.5 . RequestPart ∧ wm((ypthis, t

p
rep)) ∧ nbr(ypthis, y

p
honnxt) ∧ nbr(y

p
this, y

p
honnxt)

∧ nbr(ypthis, l
p
atti

) ∧ Protfactsintermrep → att((lpsrc, t
p
rep′)).

Rrep
2.6 . RequestPart ∧ att((ypthis, t

p
rep)) ∧ nbr(lpatti , y

p
this) ∧ nbr(ypthis, l

p
honnxt)

∧ nbr(ypthis, l
p
src) ∧ Protfactsintermrep → wm((lpsrc, t

p
rep′)).

57

Rrep
2.7 . RequestPart ∧ att((ypthis, t

p
rep)) ∧ nbr(lpatti , y

p
this) ∧ nbr(ypthis, l

p
atti

)

∧ nbr(ypthis, l
p
src) ∧ Protfactsintermrep → wm((lpsrc, t

p
rep′)).

Rrep
2.8 . RequestPart ∧ wm((ypthis, t

p
rep)) ∧ nbr(ypthis, l

p
dest) ∧ nbr(y

p
this, y

p
honprv)

∧ Protfactsintermrep → wm((yphonprv, t
p
rep′)).

Rrep
2.9 . RequestPart ∧ wm((ypthis, t

p
rep)) ∧ nbr(ypthis, l

p
dest) ∧ nbr(y

p
this, y

p
honprv)

∧ nbr(ypthis, l
p
atti

) ∧ Protfactsintermrep → att((yphonprv, t
p
rep′)).

Rrep
2.10. RequestPart ∧ att((ypthis, t

p
rep)) ∧ nbr(ypthis, l

p
dest) ∧ nbr(y

p
this, y

p
honprv)

∧ nbr(lpatti , y
p
this) ∧ Protfactsintermrep → wm((yphonprv, t

p
rep′)).

Rrep
2.11. RequestPart ∧ wm((ypthis, t

p
rep)) ∧ nbr(ypthis, l

p
dest) ∧ nbr(y

p
this, l

p
atti

)

∧ Protfactsintermrep → att((lpatti , t
p
rep′)).

Rrep
2.12. RequestPart ∧ wm((ypthis, t

p
rep)) ∧ nbr(ypthis, y

p
honnxt) ∧ nbr(y

p
this, y

p
honprv)

∧ Protfactsintermrep → wm((yphonprv, t
p
rep′)).

Rrep
2.13. RequestPart ∧ wm((ypthis, t

p
rep)) ∧ nbr(ypthis, y

p
honnxt) ∧ nbr(y

p
this, y

p
honprv)

∧ nbr(ypthis, l
p
atti

) ∧ Protfactsintermrep → att((yphonprv, t
p
rep′)).

Rrep
2.14. RequestPart ∧ att((ypthis, t

p
rep)) ∧ nbr(ypthis, y

p
honnxt) ∧ nbr(y

p
this, y

p
honprv)

∧ nbr(lpatti , y
p
this) ∧ Protfactsintermrep → wm((yphonprv, t

p
rep′)).

Rrep
2.15. RequestPart ∧ wm((ypthis, t

p
rep)) ∧ nbr(ypthis, y

p
honnxt) ∧ nbr(y

p
this, l

p
atti

)

∧ Protfactsintermrep → att((lpatti , t
p
rep′)).

Rrep
2.16. RequestPart ∧ att((ypthis, t

p
rep)) ∧ nbr(lpatti , y

p
this) ∧ nbr(ypthis, l

p
atti

)

∧ nbr(ypthis, y
p
honprv) ∧ Protfactsintermrep → wm((yphonprv, t

p
rep′)).

Again we note that these rules consider a general case, the protocol dependent processing parts,
and the request and reply messages tireq and tjrep are defined by a specific protocol. Figure 18,
Figure 19 and Figure 20 illustrate the scenarios described by each logic rule. In the figures,
the nodes labelled by lsrc, ldest and latt are the source, the destination and the attacker nodes.
The remaining nodes represent honest intermediate nodes. The arrow with the label req or rep
represents the outputing of request or reply messages. The direction of arrows is from the sender
node to the receiver node. For example, the edge with label req or rep from node A to node B
means that B has received the request or reply sent by A. The arrow with label nbr represents
the neighbor check performed by a node after receiving some request or reply. For instance, the
edge labelled by nbr from lpsrc to lpatt means that the source node checks whether the attacker is its
neighbor. The arrow with label (nbr, req) or (nbr, rep) has the joint interpretation of the previous
two cases, that is, the neighbor check was carried out and the reply or request is forwarded.

To make this more clear we provide the interpretation of some scenarios in the Figures: In
Rreq2.1 , after receiving a request broadcast by the source, ythis checks if lsrc is its neighbor, if so,
it re-broadcasts the request. Rreq2.7 present the case when the attacker impersonates lsrc, and says
that after ythis receives the request sent by latt it checks if the source is its neighbor. Finally, Rrep2.2

says that after performing neighbor checks, ythis forwards the reply addressed to the source node,
however, this reply is overheared by the attacker. Other rules can be interpreted in a similar way.

Rule Rreq1 and Rrep1.1 , Rrep1.2 , Rrep1.3 model the operation of the source node. Rreq1 says that the
initial request has been broadcast by the source node. Rule Rrep1.1 describes the case when lsrc
receives a reply sent by a honest node, rules Rrep1.2 specifies the scenario when the source node
receives a reply sent by the attacker node and the first ID in the ID list is latt. Rule Rrep1.3 is the
same as Rrep1.2 except for the first ID in the ID list is some honest node yhonnxt, which is concerned

58

Figure 18: The scenarios corredponding to the logic rules which are concerned with the request
direction.

with the case when the attacker impersonates yhonnxt.
Rules Rreq2.i and Rrep2.j are concerned with the operation of intermediate nodes. Rreq2.1 says that

when ythis obtains a request broadcast by lsrc, first, it checks if lsrc is its neighbor, thereafter, the
request is processed and re-broadcasted. Rreq2.2 specifies the scenario in which the attacker receives
the initial request. Rules Rreq2.3 and Rreq2.4 are similar to the previous two rules, but this time the
sender is some honest intermediate node yhonprv. Rules Rreq2.5 and Rreq2.6 are related to the scenarios
when the attacker node forwards some request: The first rule considers the case when the attacker
follows the protocol faithfully and appends its ID to the ID list whilst the second is concerned
with the case when the attacker impersonates yhonprv. R

req
2.7 is similar to Rreq2.6 except that in Rreq2.7

the attacker impersonates the source node.

Figure 19: The scenarios corredponding to the logic rules which are concerned with the reply
direction, part 1.

The five rules Rreq3.1 ,. . . , Rreq3.5 define the scenarios from the destination’s point of view, and
describe how the destination processes request messages. In Rreq3.1 , node yhonprv gets back the
reply addressed to it from the destination. In Rreq3.2 , the reply intended to ythis is overheared by
the attacker. Rule Rreq3.3 is associated to the case when the attacker impersonates yhonprv. In Rreq3.4 ,
the attacker follows the protocol when send a request to ldest. R

req
3.5 is the same to Rreq3.3 but this

59

time the attacker is not within the transmission range of the destination.
The rules Rrep2.1 ,. . . , Rrep2.16 describe how an intermediate node ythis handles reply messages. The

first three rules specify the scenarios in which ythis receives a reply from the destination. In all the
three cases Rrep2.1 , Rrep2.2 , and Rrep2.3 , ythis checks if ldest and the ID (yhonprv or latt) before ythis in
the list included in the reply belongs to its neighbors, in that case ythis forwards the reply to node
yhonprv or latt, respectively. The next three rules Rrep2.4 − Rrep2.6 are the same to the previous three
rules with ldest is replaced by some honest intermediate node yhonnxt. R

rep
2.7 and Rrep2.16 describes

the case when ID following ythis is latt. Rules Rrep2.8 − Rrep2.10 are the same to the rules Rrep2.4 − Rrep2.6

but it involves an intermediate node instead of lsrc. Rules Rrep2.12 − R
rep
2.14 involves only intermediate

nodes. Eventually, in Rrep2.11 and Rrep2.15 the attacker node is the addressee of the reply.

Figure 20: The scenarios corredponding to the logic rules which are concerned with the reply
direction, part 2.

RequestPart in each reply rule considers the corresponding request of the reply, such that
when a reply is received by some node, it is accepted only in case its corresponding request has
been broadcast before. The part Protfacts in the rules corresponds to the processes Prot and
ProtRep in the calculus specification. They represent additional protocol specific processing steps,
which usually is an additional neighbor check or an execution of some function such as signature
check, decryption, computing hash and MAC values. One advantage of our method is that it is
based resolution which includes the application of unification methods. Unification can be used
to model implicit the verification procedure such as MAC, hash and signature verification. More
details about unification and resolution can be found in Section 10. Therefore only additional
neighbor checks should be explicitly defined, which means that Protfacts can either be composed
of nbr -facts or can be empty.

9.4 Specifying the attacker rules

The ability of a compromised node is represented in the following rules.

(Init. knowl.) ::= ∀lpi neighbors of lpatt:

IownID
att . att(lpatt), I

nbrID
att . nbr(lpatt, l

p
i) → att(lpi); IsKey

att . att(k(latt, l
p
i));

IpKey
att . att(pk(lpj)) for all honest lpj ;

IownIDatt and InbrIDatt mean that initially the attacker knows its own ID and the IDs of its honest

neighbors, respectively. IsKeyatt and IpKeyatt say that the attacker possesses all the keys it shares with
the honest nodes, and all public keys. Function pk(lpj) represents the public key of node lpj . We

denote the set of knowledge of the attacker as Katt. At the beginning, Katt = IownIDatt ∪ InbrIDatt

IsKeyatt ∪ IpKeyatt . In addition, we define a computation ability for the attacker node as follows:

(Computation ability - protocol independent) ::=

Adata. att(s)→ att(np[s])

60

Afun. For each public function f of n-arity
att(xp1) ∧ · · · ∧ att(xpn)→ att(f(xp1, . . . , x

p
n));

Ahash. att(xp)→ att(h(xp));
Asenc. att(xp) ∧ att(kp(ypnidi

, ypnidj
))→ att(senc(xp, kp(ypnidi

, ypnidj
)));

Apenc. att(xp) ∧ att(pk(ypnid))→ att(penc(xp, pk(ypnid)));
Asign. att(xp) ∧ att(sk(ypnid))→ att(sign(xp, sk(ypnid)));
Amac. att(xp) ∧ att(kp(ypnidi

, ypnidj
))→ att(mac(xp, kp(ypnidi

, ypnidj
)));

Aadd. att([Listp]) ∧ att(yp)→ att([Listp, yp]);
Acomp. att(tp1) ∧ · · · ∧ att(tpm)→ att((tp1; . . . ; tpm));

Adcom. att((tp1; . . . ; tpm)) derives additional m rules:
att((tp1; . . . ; tpm))→ att(tp1),. . . , att((tp1; . . . ; tpm))→ att(tpm);

Amsg. att((head; v1; . . . ; [List]; . . . ; vk)) yields additional k + 2 rules
Amsg

att(head). att((head; v1; . . . ; [List]; . . . ; vk)) → att(head),

...
Amsg

att([List]). att((head; v1; . . . ; [List]; . . . ; vk)) → att([List]),

...
Amsg

att(vk)
. att((head; v1; . . . ; [List]; . . . ; vk)) → att(vk);

Acontain:
Acontain

List1 . att([List, lp[]]) → att([List]);
Acontain

List2 . att([lp[],List]) → att([List]);

Areplace:

Areplace
ID . att((rreq; lpsrc; l

p
dst; t

p
incorrect; v1; . . . ; [List]; . . . ; vk)) → att(tpincorrect);

Let the set of all attacker’s rules be Catt. Rule Adata says that the attacker node can create
arbitrary new data np such as fake ID identifiers, where s is a session ID to identify the session
in which data was generated. Rule Afun says that if the attacker is aware of xp1,. . . , xpn, it can
compute some function f on them. Depending on the value of f the following rules are defined:
Ahash says that if the attacker has some pattern xp it can compute its hash value h(xp). Rule
Asenc and Apenc say that the attacker can encrypt some message xp it has with a shared key
or a public key it possesses, respectively. Rules Asign and Amac say that the attacker is able to
sign some message with the private key it has, and it can compute a message authentication code
of some message using the shared key it posseses, respectively. Aadd says that the attacker can
append a node ID to the end of the list [List], where List can be empty. Finally, rule Acomp is
a composition rule, which says that the attacker is capable to compose a tuple of the patterns it
owns.

Rule Adcom is the decomposition rule, which says that if the attacker has a tuple of m ele-
ments, it has each element as well. Note that due to hash function is one-way, it has no cor-
responding inverse function. Rule Amsg is similar to Adcom but instead of decomposing a tuple
of arbitrary patterns it deliberately considers a request and reply messages, which have a spe-
cific form, and decomposes them to smaller parts. We define reply and request as the form
(head; v1; . . . ; [List]; . . . ; vk), which is usually valid in case of source routing protocols. The part
head represents the head (rrep/rreq, lpsrc, l

p
dest, ID) of reply and request messages, respectively.

The [List] is the ID list included in a reply or a request, and the k elements v1, . . . , vk are the
remaining parts. Each vi can be an “standalone” encryption, signature, hash, and MAC, or it
can be the tuple of them. For instance, in the SRP protocol vi is a MAC, while in the Ariadne
protocol vi can be a tuple of several signatures. Finally, rules AcontainList1

and AcontainList2
say that if

the attacker has an ID list [List, lp[]] and [lp[],List], respectively, where lp[] is new node ID that
has not occured before during the verification procedure, then the attacker has the sublist [List].
Let the set of all AcontainList -type rules be CONTAIN. We can add more rules into CONTAIN to

examine the case when the new ID is inserted to every possible places in the ID list. Rule AreplaceID

says that if the attacker has a request/reply in which an incorrect typed (i.e., not a node ID type)

61

data, tpincorrect, is located in the place of the node ID, then the attacker has tpincorrect. Let the set
of all Areplace-type rules be REPLACE. The difference between the rules in Amsg and Areplace is
that in Amsg the message parts are located in correct places within the request/reply. Namely,
the type of the data exptected at a given place within a request or reply matches the type of the
data which is residing in that place.

10 Automating the verification using resolution-based de-
duction and backward searching

In this section, we present an automatic verification technique based on resolution-based deduction.
Before discussing the algorithm some notions and definitions are introduced.

10.1 Derivation

Resolution: The verification is based on a guided execution of resolution steps. The notion of
resolution [20] is well-known in logic programming and is applied in broadly used languages such
as Prolog. Intuitively, a resolution step can be seen as sequential execution of two logic rules, and
yields a new rule or a fact. To understand the formal definition of resolution, first, we review
the (well-known) notion of substitution and unification. Substitution binds some pattern to some
variable, and it is typically denoted by σ. For instance, σ = {ypnid ← lpsrc} binds constant lpsrc to
the variable yp, we note that σ can be more complex and contains a lot of bindings. Unification is
defined over a set of facts, and intuitively brings facts into a common form. More precisely, F1 and
F2 are unifiable if there exist some σ such that F1σ = F2σ, where Fσ represents the application
of σ to F . The substitution σ that unifies two facts is called as an unifier.

As mentioned at the end of Section 9.3, verification procedures such as hash and MAC verifica-
tion are implicitly modelled by unification. To illustrate this let us take the following example rule:
wm((lpsrc, [l

p
1],MAC([lp1], k(lpsrc, l

p
dest)))) → accept([lp1]). This rule says that if the source receives a

MAC value of list [lp1] encrypted with the shared key k(lpsrc, l
p
dest) then it accepts the list. Further-

more, lets say that during the automatic reasoning the fact wm((lpsrc, [l
p
1],MAC([lp1], k(lp1, l

p
2)))) has

been derived, which means that a message including the MAC computed with the key k(lp1, l
p
2) is

sent to lpsrc. Of course, because the MAC is not correct the source will not accept the received
message, which formally means that the two wm-facts are not unifiable.

Definition 13. A substitution σ is a most general unifier (mgu) of a set of facts S if it unifies
S, and for any unifier ω of S, there is a unifier λ such that ω = σ λ.

Two facts may have several unifiers but only one mgu. Now, we have arrived at the point to
provide a formal definition of resolution:

Definition 14. Given two rules r1=H1 → C1, and r2= F ∧ H2 → C2, where F is any hypothesis
of r2, and F is unifiable with C1 with the most general unifier σ, then the resolution r1 ◦F r2 of
them yields a new rule H1σ ∧ H2σ → C2σ.

For instance, let r1 says that “if the attacker has a message m, then it has the cipher text enc”;
and r2 says that “if the attacker has a chipertext enc and a secret key k, it gets the plaintext p”.
In this case, the resolution r1 ◦F r2 says that “if the attacker has a message m and a key k, it gets
the plaintext p”. Here, F is the common part that says “if the attacker has a chipertext enc”,
which is eliminated in the result. Note that both r1 and r2 can be a fact.

Resolution in a backward manner: A backward effect is achieved by performing resolution
R◦FF between a rule R and a fact F , where R = F1 ∧ . . .∧ Fn → C, and F is unifiable with C.
As the result of R◦FF , after F and C are unified with σ, they are eliminated and the hypothesis
of R, F1σ ∧ . . .∧ Fnσ, is yielded.

A rule R of form F1 ∧. . .∧ Fn → C is illustrated visually as a tree such that the conclusion
C is a root and the leaves are composed of the facts Fi, i ∈ {1, . . . , n}. The root is labelled with

62

the name of the rule. Finally, the edges in the tree are directed edges drawn from the child to its
father. The resolution R ◦F F is illustrated as a tree, where the unified form of F and C, Cσ,
resides in the root and the leaves consist of the facts F1σ, . . . , Fnσ, where σ is the most general
unifier of F and C. As an example, in Figure 21 the trees in case of the rules Ahash, Amac, Asign,
and Rrep1.1 are given.

Figure 21: The trees correspond to the attacker rules Ahash, Amac, Asign, and the protocol rule
Rrep1.1 . The derivation trees corresponding to the attacker rules are filled.

The intuition behind the direction of edges lies in the fact that we perform backward searching
during the verification. For instance, if during the verification the next fact to be proved is
att(h(xp)): Let us consider the tree corresponds to the rule Ahash in Figure 21. Intuitively, the
direction of the edge means that in order to be able to compute a one-way hash on xp, the attacker
has to possess xp. The following step would be proving the fact att(xp) and then continued with
proving each of the facts that are required to derive att(xp), and so on.

Definition 15. The derivation tree of a fact F is the tree in which the root is F and each level
below F specifies such rules which have been applied by the verification algorithm to derive F . Let
ε be a fact that takes its value from {IownIDatt ∪ IsKeyatt ∪ IpKeyatt ∪ Rreq1 }. We say that a fact F
is derivable using the set of rules R if there exists a derivation tree of F in which the nodes are
labelled with the rules in R, and all the leaves are ε.

Intuitively, the derivation tree represents a consecutive execution of resolution steps. Next,
we introduce some notions that we will use when describing the verification algorithm. Whenever
a resolution step R◦FF is executed during the backward search, we say that a derivation tree is
extended at the node F with rule R, or in other words, the children of node F are computed with
R. In case F is extended for the first time, we say that F is depth-extended, otherwise, when at
some point of the searching procedure the algorithm returns to node F and extend the tree with
some another rule, we say that F is breadth-extended.

10.2 The verification algorithm

Compared to the forward search approach, the method based on backward reasoning has the
advantage that the verification can be made on an arbitrary topology and a stronger attacker
computation ability can be assumed. Using backward reasoning in [21] the authors have been
succeeded in verifying the occurence of loop in mobile ad-hoc networks assuming an arbitrary
topology. The authors used graph transformation, which is suitable for modelling pure routing
protocols without cryptography, however, it is not well-suited for modelling secure routing pro-
tocols. To cope with an arbitrary topology and secure routing protocols at the same time we
combine the advantage of backward searching and logic based deduction.

63

At the beginning, an invalid route [Listinvalid] is assumed to be accepted by the source, which
is expressed by the fact accept([Listinvalid]). Afterwards, we follow the way of the reply which
contains this invalid list in a backward manner. The possible paths of this reply is investigated
by reasoning about the nodes and edges through which this reply and the corresponding request
should have traversed during the route discovery. On searching for the possible paths of the reply
and request backward, whenever an attacker node is reached, it means that the reply or request
has been forwarded (and may be modified) by the attacker node. If this is the case, at this point
we are aware of the information of which message should the attacker forward to be accepted later,
that is, what messages should the attacker generate in order to perform a successful attack. This
is then followed by examining how the attacker can generate these messages.

The attacker is able to compose a reply or request message using its computational ability and
knowledge base. We note that while the computation ability of the attacker is fix, its knowledge
base is continually updated during the route discovery. Hence, by backward reasoning we mean
the reasoning about three issues: (i) Can the attacker generate each part of the message based
only on its computational ability and initial knowledge? (ii) Which messages should the attack
node intercept in case it cannot set up a whole reply/request based solely on its computational
ability and initial knowledge? (iii) How the topology should be formed such that the attacker is
able to intercept the required message parts?

The verification ends either when we have reached back to the state in which the source node
generates the initial request, or in every searching branch the search gets stuck. In the first case,
an attack scenario is found whilst in the second case no attack is found regarding the invalid route
[Listinvalid]. In the following, we give an overview of the algorithm in more details:

Algorithm: The input of the algorithm is the maximal length of the invalid route, n. During
the verification the algorithm examine the invalid route from length 1 to n. The attack scenario
is stored in the tuple of three sets (Tprot, Mmsg, A), where Tprot is used to store the “attack
topology” in which the attack has been detected, Mmsg is a set of the messages exchanged by
honest nodes during the attack, and A stores messages sent by the attacker. At the end, in case an
attack is detected the attack scenario (Tprot,Mmsg, A) is returned, otherwise, (∅, ∅,∅) is returned.

At first, Ttop includes only three nodes: The attacker node lpatti , the destination node lpdest, and
the source node lpsrc without any edge. Whenever new possible edges and nodes (either a honest
or an attacker) are found through which the reply or request could have traversed, Ttop is updated
with them. In addition, the exchanged request and reply messages that are concerned with the
discovered route are added to the setMmsg, and the attacker behaviour is continually tracked by
updating A. Tprot is updated after each resolution step R◦FF , where the hypothesis of R involves
at least one nbr -fact. In particular, the update of Tprot is composed of adding nbr -facts in the
hypothesis Hyp that is resulted from R◦FF into Tprot, which is followed by removing the nbr -facts
from Hyp. The update ofMmsg and A are performed by adding the remaining wm-facts and att-
facts in Hyp, respectively. Note that wm-facts and att-facts are not removed from Hyp but only
the nbr -facts. At the end of the updating procedure the three sets are sanitized by eliminating
fact duplications in them. The analoguos interpretation for derivation tree is as follows: Node
F is depth-extended with rule R, and Tprot, Mmsg, A are updated and sanitized. Finally, the
nbr -facts among the children of F and their corresponding edges are removed from the tree.

The logic rules are classified into four subsets based on the different scenarios they specify.
Set Shon includes the request and reply rules concerning the scenarios in which the messages are
exchanged between only honest nodes. The rules describing the case when the attacker node
receives or overhears a message are put into SRecvatt . Set SFwatt contains the rules that consider the
scenario in which the attacker forwards some message to its neighbors. The rules defining the
attacker’s computation ability and initial knowledge are stored in SCompatt .

As mentioned before, at the beginning we assume that the fact accept([Listinvalid]) has been
derived. The route [Listinvalid] is formally defined by the set Tinvalid that is composed of nbr -facts.
For example, [lp1] is defined by set {nbr(lpsrc, l

p
1), nbr(lp1, l

p
src), nbr(lp1, l

p
dest), nbr(lpdest, l

p
1)}. During

the verification procedure, whenever the topology Tprot is updated, the algorithm checks if Tinvalid
⊆ Tprot holds. If the answer is yes, we get a contradiction because the route [Listinvalid] is valid in
Tprot, which means that Tprot is not an attack topology. Hence, in the description of the algorithm

64

Figure 22: The figure shows the general derivation tree occur during verification. The rulesets
placed at each phase and edges represent that in that phase they are used by the algorithm to
extend the tree. The notation ε | X says that the derivation can either terminate successfully or
gets stuck.

below, by derivation of some fact we mean such a derivation during which Tinvalid ⊆ Tprot never
holds whenever Tprot is updated. The rest part of the verification is concerned with searching for
a derivation of the fact accept([Listinvalid]). Figure 22 shows the general forms of the derivation
tree that may occur during the backward searching procedure.

In Ph-H1 the algorithm investigates how the reply, which is passed on by the attacker, propa-
gates from the attacker to the source. Note that according to Corollary 1 the attacker must pass
on replies in order to perform an attack. The reasoning about how the attacker could generate an
incorrect reply Rep which leads to a successful attack takes place in phase Ph-A. The derivation
of accept([Listinvalid]) is successfully terminated at the end of Ph-A in case the attacker is able to
create Rep based solely on its computation ability and initial knowledge. Otherwise, if some part
vi of Rep cannot be generated directly by the attacker, the verification is continued with phase
Ph-H2.

In the honest phases the tree is continually extended using the rules in Shon. Within the
attacker phases the tree is extended with the rules in SCompatt . The edges labelled by SFWatt and
SRecvatt in Figure 22 are located between the honest and attacker phases, and say that before stepping
into the next phase, first, the tree is extended with a rule in SFWatt and SRecvatt , respectively. Let
us call the subtree in Ph-A as PhA-tree. The root of Ph2-tree is a fact of form att(rep) or
att(req), where both rep and req are of form (head; v1; . . . ; [List]; . . . ; vk). In our method we
attemp to find attacks with minimal steps. (I.) First of all, the algorithm examines whether the
attack could be performed if the attacker forwards the reply unchanged. (II.) Otherwise, the
algorithm examines what messages should the attacker intercept to be able to compose message
(head; v1; . . . ; [List]; . . . ; vk).

65

Table 1: Pseudo-code of the honest phases (PhH (Fwm)).

1. if (Fwm is the fact wm(tpreqinit)) then return (Ttop,Mmsg , A); else

beginELSE
if Fwm has a request type then beginIF S:=Sreqhon; goto point 2. endIF
else if Fwm has a reply type then beginELSE S:=Srephon; goto point 2. endELSE

2. Choose a rule R ∈ S with which Fwm can be extended & not applied to Fwm before;
3. if (@ R ∈ S that has not been chosen before for extending Fwm) then
4. if (Fwm has a wm-fact typed father, Fwmfather) then goto 1. with Fwm := Fwmfather;

5. else if (Fwm has a att-fact typed father, Fattfather) then step into Ph-A with Fatt := Fattfather;
6. else return (∅,∅,∅);

else
beginELSE

7. Let denote the set of nbr-facts among the children of Fwm by nbrfacts(Fwm);
8. Update Ttop with nbrfacts(Fwm);
9. if (Tinvalid ⊆ Ttop) then remove nbrfacts(Fwm) from Ttop; goto 1.; else

beginELSE
10. Let denote the set of wm-facts among the children of Fwm by wmfacts(Fwm);
11. Let denote the set of att-facts among the children of Fwm by attfacts(Fwm);
12. Remove nbr-facts in nbrfacts(Fwm) from the tree;
13. updateMmsg , A with the facts from wmfacts(Fwm) and attfacts(Fwm), respectively;
14. goto 1. with Fwm := a fact in wmfacts(Fwm),

or step into phase Ph-A with a att-fact Fatt in attfacts(Fwm);
endELSE
endELSE

endELSE

The explanation of the pseudo-code for phase Ph-H is as follows (Table 1): This phase is defined
by the function PhH (Fwm), in which we assume that the derivation procedure has reached some
wm-fact or the fact accept([List invalid]), denoted by Fwm, and we continue with searching for a
possible derivation of Fwm. The searching procudure is basically a Depth-First search.

At the beginning, if Fwm is the fact wm(tpreqinit), where the pattern tpreqinit represents the
initial request sent by the source, then the deduction procedure terminated successfully, and the
attack scenario (Ttop,Mmsg, A) is returned (point 1). Otherwise, we search for a protocol rule R
that is resolvable with Fwm and has not been applied to Fwm before during the current verification
procedure. If the wm-fact, Fwm, corresponds to a request message then the search is performed in
the set of the request-rules, otherwise, we choose a rule R in the set of reply-rules. The examination
of the type of Fwm is performed by the resolutions Rheaderreq ◦Fwm Fwm, and Rheaderrep ◦Fwm Fwm.
Fwm has a request type (reply type) if the first (second) resolution is successful. In case we cannot
find any such R, this means that the derivation got stuck, because we cannot reach the ε leaf in
the derivation tree (point 2). The next step is to go upward in the tree to the father of Fwm,
Ffather, and search an another possible derivation path for it. There are two possibilities, Ffather
is a wm-fact or a att-fact. In the first case, the deduction procedure is continued with searching
for an another derivation path for Ffather, while in the latter case we step into the attacker phase
Ph-A (points 3-4). If Fwm does not have a father, i.e. Fwm = accept [List invalid], then not any
derivation for Fwm can be found. This means that no attack scenario is detected, and (∅,∅,∅) is
returned (point 5).

In case there is a suitable R that can be resolved with Fwm (points 6-8), then we perform the
resolution, and get the children of Fwm as result. Among these childen, the nbr -facts, wm-facts
or att-facts are added to the sets nbrfacts(Fwm), wmfacts(Fwm) or attfacts(Fwm), respectively. If
Tinvalid ⊆ Ttop holds after updating Ttop with the nbr -facts in nbrfacts(Fwm), then this derivation
path will not lead to an attack, because at this point the route defined by Listinvalid becomes
valid in the topology. Hence, we terminate this derivation path and choose an another suitable R.

Points 9-13 consider the case when Tinvalid * Ttop, and we put the wm-facts and att-facts in
the sets wmfacts(Fwm) and attfacts(Fwm) into Mmsg and A, respectively. These two sets record
the messages exchanged by the honest nodes and the attacker nodes during the attack scenario,
respectively. Finally, the whole procedure starts again, but now searching for a derivation of a
child of Fwm. The pseudo-code of the attacker phase can be found in Table 2.

66

Table 2: Pseudo-code of the attacker phase, function PhA(F rootatt).

MAIN PART

1. Decompose F rootatt with Acomp; Put the resulted facts into W ;
2. if (@ Fatt ∈ W which has not been eximaned yet) then

beginIF
3. if (∀ leaf in the tree is ε) then return (Ttop,Mmsg , A);

else step into the honest phase PhH (Fwm), where Fwm is a wm-fact and the father of F rootatt ;
endIF else
beginELSE

4. Choose Fatt = att(tpatt): t
p
att has the highest priority and weight in W ;

/* If tpatt is a constant, key, ID OR a keyless function (e.g., hash) */
5. if (Fatt has no child OR ∀ child of Fatt: not key-type) then
6. FNotKeyedFunc(Fatt);

endIF else
beginELSE

/* If tpatt is a keyed function (e.g., digital signature, MAC), and the attacker knows the key */

7. if (∃ child F ′att of Fatt, F
′
att ∈ I

sKey
att ∪ IpKeyatt) then

beginIF
8. FAttKeyedFunc(Fatt);

endIF else
beginELSE

/* If tpatt is a keyed function, but the attacker does not know the key */
/* Examine how the attacker can obtain tpatt, that is, which REQ/REP contains it */

9. Extend Fatt with AmsgFatt
results in some Fmsgatt = att(tmsgatt);

/* Examine how the attacker can obtain the request/reply tmsgatt that contains tpatt */
10. if (Fmsgatt has NOT been examined before) then

beginIF
11. REPREQcorrectplace(Fatt);

endIF else
beginELSE

12. REPREQincorrectplace(Fatt);
endELSE

endELSE
endELSE

endELSE

MAIN part: F rootatt is an att-fact att(trootatt), where the pattern trootatt is a reply or request message.
The index root of F rootatt refers to the root of the current Ph-A sub-tree. First, F rootatt is decomposed
with the rule AComp, and the resulted att-facts are put into W (point 1). An attack scenario
is returned in case no unexamined facts are left (i.e., W = ∅), and all the deduction branches
terminate successfully, otherwise, we return to the father of F rootatt , Fwm, and search for another
deduction path (points 2-3). If there still are unexamined att-facts in W , the algorithm chooses
the fact Fatt, Fatt = att(tpatt), such that the pattern tpatt has the highest priority and the highest
weight, which has not been examined before during the verification (point 4).

Then, the deduction procedure is continued based on the type of tpatt. The function FNotKeyed-
Func(Fatt) is responsible for case when tpatt is a constant, a node ID, a session ID, or a keyless
crypto function (point 6). Function FAttNotKeyedFunc(Fatt) handles the case when tpatt is a keyed
crypto function, and the key is owned by the attacker (point 8). If tpatt is a keyed crypto function
but the attacker does not own the key, then we proceed to examine how the attacker node can
intercept or receive the request/reply message that contains tpatt (points 9-12). Function REPRE-
Qcorrectplace(Fatt) analyzes the scenario when tpatt is in a correct place within a request or reply
message, while REPREQincorrectplace(Fatt) considers the case when tpatt is located in an incorrect
place (for example, a MAC is put into the place of a session ID).

67

Func. FNotKeyedFunc(Fatt)

6.1. if (#childs(Fatt) > 1) then
beginIF

6.2. Put all the children of Fatt into W ; and perform deduplications.
6.3. Delete Fatt from W ; Goto point 2. in MAIN;

endIF else
6.4. if (Fatt has no child OR #childs(Fatt) = 1) then

beginIF
6.5. if (Fatt OR the child of Fatt ∈ Knowledge of the attacker) then

beginIF
6.6. Delete Fatt from W ; Goto point 2. in MAIN;
6.7. endIF else Goto point 9. in MAIN;

endIF

Func. FAttKeyedFunc(Fatt)

/* Let att(Data) ∧ att(key) → att(tpatt), where Fatt = att(tpatt) */
8.1 Decomposing att(Data) with Acomp yields some factset W ′;
8.2 Put W ′ into W and then eliminate fact duplication in W ;
8.3 Delete Fatt from W ; Goto point 2. in MAIN;

Func. REPREQcorrectplace(Fatt)

11.1 Extend Fmsgatt with some rule R, R ∈ SRecvatt , yielding a wm-fact Fwm, and step into PhH (Fwm);
11.2 if (In PhH (Fwm) the search does not get stuck, i.e., every leaf is ε & Tinvalid * Ttop) then

beginIF
11.3 Decompose Fmsgatt which yields some W ′;
11.4 W = W − {W ′ ∪ Fatt}; Goto point 2. in MAIN;

endIF
else if (we gets stuck in PhH (Fwm), and step back into PhA(Fmsgatt) according to point 5. in PhH (Fwm))
beginELSE

11.5 Decompose Fmsgatt which yields some W ′;

11.6 while (∃ rule AcontainList ∈ CONTAIN that has not been applied) do
beginWHILE

11.7 Extend att([List]) ∈ W ′ with AcontainList yielding att([List, lp[]]);

11.8 Extend att([List, lp[]]) with AmsgList yields some att(tbroaderatt);

11.9 if (att(tbroaderatt) has NOT been examined before) then
beginIF

11.10 Decompose att(tbroaderatt) which yields some W ′′;
11.11 if (Fatt ∈ W ′′) then

beginIF

11.12 Extend att(tbroaderatt) with some R, R ∈ SRecvatt , yielding a wm-fact Fwm, and step into PhH (Fwm);
11.13 if (In PhH the search does not get stuck, i.e., every leaf is ε & Tinvalid * Ttop) then

beginIF
11.14 W = W − {W ′′ ∪ Fatt};
11.15 Terminate Loop & Goto point 2. in MAIN;

endIF

else if (the search steps back into PhA(att(tbroaderatt)) according to point 5. in PhH (Fwm))
then goto point 11.6.

endIF
endIF

endWHILE
endELSE

11.16 Goto point 12. in MAIN;

Func. REPREQincorrectplace(Fatt)

12.1 while (∃ AreplaceFatt
∈ REPLACE that has not been applied) do

beginWHILE

12.2 Extend Fatt with AreplaceFatt
results in some att(treplaceatt);

12.3 if (att(treplaceatt) has NOT been examined before) then

12.4 Extend att(treplaceatt) with some rule R, R ∈ SRecvatt , yielding a wm-fact Fwm, and step into PhH (Fwm);
12.5 if (In PhH the search does not get stuck, i.e., every leaf is ε & Tinvalid * Ttop) then

beginIF

12.6 Decompose att(treplaceatt) which yields some W ′;
12.7 W = W − {W ′ ∪ Fatt}; Terminate Loop & Goto point 2. in MAIN;

endIF

else if (the search steps back into PhA(att(treplaceatt)) according to point 5. in PhH (Fwm))
then goto point 12.1.

endWHILE
12.8 step into the honest phase PhH (Fwm), where Fwm is a wm-fact and the father of F rootatt ;

In function FNotKeyedFunc(Fatt), if Fatt has more than one children in the current derivation tree,

68

then all of these children are put into W (with performing deduplication steps). Thereafter, Fatt
is removed from W (to avoid deduction loop), and we go on with analyzing the following att-fact
in W (points 6.2-3.). If Fatt does not have any child (i.e., tpatt is a constant, a node ID, a session
ID), or it has exactly one child (i.e., tpatt is a keyless function such as a one-way hash function)
(point 6.4.). In this case, we check whether Fatt or its only child is an element of the knowledge
base of the attacker (i.e., whether Fatt belongs to ε) (point 6.5.). If yes, then this deduction branch
terminates successfully (point 6.6.), otherwise, we reason about how the attacker can obtain the
request or reply that contains tpatt (point 6.7.).

In function FAttKeyedFunc(Fatt), where tpatt is a keyed crypto function and the key is owned
by the attacker, we reason about how the data part can be obtained. In particular, the data part
is decomposed into smaller parts (point 8.1.), then we update W with the resulted att-facts (point
8.2.). Finally, Fatt are removed from W (point 8.3.).

Function REPREQcorrectplace(Fatt) examines how the attacker node can intercept or receive
the request/reply message that contains tpatt, in a correct place within a request or reply message.
Let denote the request and reply that contains tpatt be tmsgatt . At the beginning, we search for the
derivation of Fmsgatt , Fmsgatt = att(tmsgatt), in the honest phase Ph-3 (point 11.1). If Fmsgatt can be
successfully derived (point 11.2.), then we remove all the parts of the message tmsgatt from W , and
start to examine the next fact in W (points 11.3-4.). If the derivation of Fmsgatt got stuck (either
because some deduction branch terminates with a fact that is not in ε, or Tinvalid ⊆ Ttop), then
as the following step, we reason about whether a broader request/reply message (that contains a
longer ID list) can contain tpatt. The rule AcontainList , AcontainList ∈ CONTAIN, specifies the action that
inserts a (new) honest node ID, lp[], into the list List. In our case, for verifying SRP, Ariadne
and EndairA, it is sufficient to define only one AcontainList rule that insert lp[] into the end of List
(point 11.7.). In general, the set CONTAIN may consist of more rules that insert more node IDs
into different places in List. In point 11.8, by extending att([List, lp[]]) with the rule AmsgList we get
att(pbroaderatt) as result, where tbroaderatt is the “broader” request/reply message that contains the ID
list [List, lp[]]. In case tbroaderatt has not been examined before, we check if it contains tpatt (points
9-11). If yes, we reason about how the attacker can obtain the message tbroaderatt (points 12-15).

If the derivation got stuck in case of all the defined rules in CONTAIN, then we proceed
to REPREQincorrectplace(Fatt), where we examine the possibility that tpatt (recall that Fatt =
att(tpatt)) is located in an incorrect place (for example, putting a MAC or signature into the place

of session ID). The rule AreplaceFatt
in the set REPLACE, defined for Fatt, specifies the insertation

of tpatt to incorrect places. The pattern treplaceatt represents the request/reply message, in which the
message element tpatt is located in an incorrect place. Again, for our purpose, it is sufficient to
define one such rule, which inserts data to the place of the session ID.

10.3 Termination

In this subsection, we discuss how the verification algorithm ensures termination. First, we exam-
ine the possibility of an infinite loop during the searching procedure. Loop could either occur in
the honest or attacker phase.

We assume on-demand source routing protocols, where the ID list is placed in the request and
reply messages. We also assume that the routing protocol to be verified was designed “correctly”,
such that it is loop free, and every honest node only handles the request (reply) with the same
session ID once, which is valid in the most well known on-demand source routing protocols. In
our verification procedure, we ensure this with the following two assumptions:

1. We examine only such invalid route List invalid in accept([Listinvalid]), where the node IDs
are pairwise different. The reason is that, in most cases, on-demand source routing protocols
are defined/designed such that honest nodes will drop the request or reply if it contains the
list with duplicated node IDs.

The checking of duplicated IDs is the most basic protection against invalid route when we
design a routing protocol. Note that we can extend our deduction algorithm for detecting
loop during the protocol run, but this falls outside the focus of the dissertation, where we aim

69

at detecting more critical weaknesses regarding the security issue. Moreover, the required
steps for detecting loop can be protocol specific, depending on the particular contents of
request/reply messages.

2. We assume that the routing protocol is specified such that each request includes the infor-
mation about the node which sent it, while a reply message contains information about both
the sender and the addressee (of course, this assumption is not valid to the messages sent
by the attackers). This assumption is valid to all the well-known on-demand source routing
protocols DSR, SRP, Ariadne, endairA, where in the request message the last node ID in
the list belongs to the sender node, while both the addressee and the sender are encoded in
a reply message.

Note that even in case the request/reply messages of a given protocol does not contain
these information, we always can add them explicit without affecting the correctness of
the protocol. For instance, if the protocol is defined such that in the request is broadcast
unchanged by the honest nodes, then in the protocol rule

wm(ypreq)∧ nbr(lpi , lpj) → wm(ypreq)

we cannot determine which lpi is sender. Hence to make the deduction algorithm usable,
we have to add the ID of the sender into the wm-facts, namely, wm((lpi , ypreq)). Note that
the added ID is not part of the request message, and only serves the automated deduction
purpose: wm(lpi , ypreq))∧ nbr(lpi , lpj) → wm(lpj , ypreq)).

Lemma 2. Besides the assumptions we provided above, in the honest phase PhH(Fwm), the de-
duction will not step into an infinite loop.

Proof. First of all, point 3 of PhH (Fwm) prevents the usage of the same rule R for the a given
Fwm infinite amount of time, by keeping track of the rules already used before. Hence, since the
number of rules that can be resolvable with Fwm is finite, the deduction algorithm examines the
derivation of a given Fwm only within a finite period of time.

In the second part of the proof, we will show that during the tree extending process (in a the
depth-first search manner) with consecutive resolution steps, we will never get into an infinite
deduction loop. Formally, when searching for the derivation of some wm-fact Fwm, the deduction
(tree) branch will not contain the same Fwm again, infinitely. Within Ph-H we further distinguish
the request and reply phases in which the request and reply messages are exchanged between
honest nodes, respectively.

• During a request phase, the message exchanges among honest nodes are simulated by the
protocol rules Rreq3 , Rreq2 and Rreq1 . After each (backward) resolution step, Rreq3 ◦Fwm Fwm,
where Fwm = wm(tpreqj) and Rreq3 = wm(ypreqi)∧ nbr(lpi , lpj)→ wm(ypreqj), we get wm(tpreqi)∧
nbr(lpi , lpj) as result. This means that in order to make lpj able to send the request tpreqj ,
its neighbor node lpi , should have sent the request tpreqi. Based on the assumption that
List invalid contains finite number of different node IDs, and the protocol rules Rreq3 , Rreq2

and Rreq1 specify message exchanges between different nodes, it follows that the deduction
procedure will terminate within a finite number of resolution steps. The resolution steps will
be performed constantly using Rreq3 until we reach to the point when the initial request has
been sent by the source node, where the rules Rreq2 and Rreq1 are used.

• The situation is similar in case of the reply phase. Again, let the reply tprep′ that has been

sent by node ypi−1 to ypprev includes the ID list [List, ypprev, y
p
i−1, y

p
next,List]. The algorithm

searches for the rules in Shon to extend the tree at wm((ypprev, t
p
rep′)). After extending

wm((ypprev, t
p
rep′)) the fact wm((lpi−1, t

p
rep)) is yielded. We recall that the ID at the beginning

of the message represents the addressee of the reply. Due to the value of the addressee is
taken from [Listinvalid], the algorithm gets into an infinite loop only in case either the length
of [Listinvalid] is not finite or there are duplicated IDs in the list. The resolution steps will be

70

performed consecutively using Rrep2.12 until we reach to the point when the destination node
sent back a reply after it received a request, which is modelled by the resolution with the
rule Rreq4 .

To summarize, in both the request and reply phases, after performing each resolution step (i.e.,
tree extending step) basically we step from node to node in List invalid. Because the number of
node IDs in List invalid is finite the honest phase will terminate within a finite number of resolution
steps.

Figure 23: The possibilities to get into an attacker phase PhA during the request and reply
directions.

We continue with showing that the attacker phase PhA(F rootatt) is infinite loop-free as well.

Lemma 3. During searching for a derivation of accept([Listinvalid]) the algorithm does not get
into an infinite deduction loop in the attacker phase PhA(F rootatt).

Proof. In attacker phases an infinite computation loop could happen when (i.) the attacker repeat-
edly performs some function f and its inverse counterparts f−1. For instance, the composition and
decomposition rules Acomp and Adcomp are performed iteratively in turn. However, in our method
we prevent this by performing decomposition only, and instead of using composition rule to set up
the required message we introduced the set of rules Amsgi , which derive the whole request or reply
that contains the given (smaller) message part. (ii.) An another case which may cause loop is
that the rule AcontainList may be performed infinite time. However, this is not the case because each
application of AcontainList introduced a new node in the network, which contains only finite number
of nodes. Formally, AcontainList is allowed only to applied up to the number of nodes in the network.

In PhA(F rootatt) we have to examine and search for the derivation of the att-facts placed in W .
The att-facts in W are the parts of the request and reply, and its number is finite because the
request and reply messages contain finite data elements. Because we perform deduplications after
putting new facts into W , the size of W is at most equal to the number of message parts of a
request and a reply message (which is finite).

In addition, we prevent deduction loop by also keeping track of the att-facts that are already
examined before during the current deduction procedure (point 1 of PhA(F rootatt)), and whenever
we get into the point where we need to derive the same att-fact again, we stop continuing this
deduction branch. In point 10 of PhA(F rootatt), and points 11.9 and 12.3, we also keep track of
the request/reply messages that we have examined before. Since the number of the possible

requests/replies tmsgatt , tbroaderatt and treplaceatt , and the att-facts in W are finite, the total number of
resolutions performed in PhA(F rootatt)) will be finite as well.

Finally, we show that during the whole deduction procedure, the occurrences of the honest
and the attacker phases are finite. Namely, there will not be an infinite loop between PhA and
PhH. In the request phase, whenever we search for a derivation of a given wm-fact Fwm, we can
step into an attacker phase by performing a resolution with the rules Rreqatt5, Rreqatt6, and Rreqatt7,

71

yielding an att-fact F rootatt (where F rootatt = att(tpreq), for some request message tpreq). According to
the deduction steps defined in PhA, we have to search for the derivation of every message element
in tpreq, which is finite. In the worst case, we step into phase PhA after points 11.6-11.7 of function

REQREPcorrectplace, when we search for the derivation of the fact att(tbroaderatt) within the phase
PhA. Request message tbroaderatt contains the broader list than List invalid, which we get by inserting
new honest node IDs in it. Let the number of the node IDs in the ID list of tbroaderatt be j. In the
honest phase (request direction), during get back from the destination to the source, we step into
PhA(F rootatt) at most j times (shown in the Figure 23). Each time, after getting into PhA(F rootatt)
we can step into the honest phase PhH (Fwm) again, and in that honest phase we again can get
into PhA, and so on. However, this circle cannot occur infinitely many times, because (i) in points
1-2 of PhA(F rootatt), F rootatt = att(headreq; v1; . . . ; [List];. . . ; vk), we search for the derivation of
each element att(headreq), att(v1), . . . , att([List]), . . . , att(vk) of the request, but only in case it
has not been examined before within a session; (ii) the request contains finite parts of elements
(i.e., k and [List] are finite). Hence, after some rounds, when we run out of the message elements
that have not been examined before, the attacker phase will always get stuck at point 2., and the
deduction procedure returns to phase PhH (Fwm) (point 3 of PhA), where we will step back to the
source after at most j resolution steps using the rules Rreq1 , Rreq2 , Rreq3 . The situation is similar
in case of the reply direction.

10.4 Correctness and completeness

Correctness: In this subsection, we discuss about the correctness and the completeness which
the verification method provides. By correctness we mean whenever an attack is detected and
returned it is really an attack. This property is stated in Lemma 4.

Lemma 4. Whenever an attack scenario (Tprot, Mmsg, A) is returned for [Listinvalid], (i.) the
fact accept([Listinvalid]) has been derived and (ii.) Tinvalid * Tprot.

Proof. According to the algorithm, the attack scenario is returned only when every leaf in the
derivation tree of accept([Listinvalid]) is ε, and when Tinvalid * Tprot holds whenever Tprot is
updated with new edges (i.e., nbr -facts). Hence, in general case, if for

Completeness: In the general case, when an arbitrary source routing protocol is assumed, our
verification method is not complete. This means that when the verification tool finished and no
attack scenario is returned, there can be still an attack. This is due to the following assumptions:

• Although our method does not assume any specific topology. The length of the invalid route,
List invalid, for which the deduction algorithm attempts to find an attack, is finite. Hence,
in general case, when the algorithm returns (∅, ∅, ∅) for a given List invalid of length k, then
it means that the attackers cannot achieve that the source accept an invalid route of length
k.

• We restrict the number of applying the same rule AcontainList in CONTAIN. Intuitively, we limit
the number of new node IDs lp[] (differ from the IDs in List invalid) the attacker can insert
into the ID list in request and reply messages. This is because the number of new nodes
can be infinite. Nevertheless, we found that in case of the well-known routing protocols an
attack can be found in the network after only one-time application of AcontainList .

Otherwise, the deduction algorithm is exhaustive: The set of protocol rules taking into account
every possible scenario. The set of rules also cover all the possible scenarios of the message
exchanges between the honest and the attacker nodes. Hence, the request and reply direction can
be simulated by the series of resolutions defined in the honest phase PhH (Fwm). In the attacker
phase, PhA, the attacker can only perform an attack if it can obtain all the smaller parts of the
request and reply messages. This is ensured in the first two points of PhA. To examine how can
the attacker could obtain each part, we examine that (i) can the attacker compute it based only
on its knowledge and ability; (ii) if not, then how can it receives/intercepts from a honest node or

72

an another attacker node. The attacker attempts to insert message parts into an incorrect place
within a request or reply. Finally, the attacker tries to insert node IDs into the ID list. Based on
the protocol specification, the attacker will not try to change/forge the information that will be
verified by the honest nodes, and the verification will fail for sure. This can be ensured by using
type interference during resolutions.

10.5 Complexity

We assume that the request message, (headreq; v1; . . . ; [List];. . . ; vk), consists of q parts and
the reply, (headrep; w1; . . . ; [List];. . . ; wm), contains p parts. We also assume that the length
of [List invalid] in the fact accept([List invalid]) is k. In our case, we define the complexity of the
proposed algorithm by the largest number of resolution steps that needed to be performed. We
distinguish and examine the following cases

• The complexity of the request direction without steping into the attacker phase: In PhH (Fwm),
checking the type of Fwm takes two resolution steps (point 1). Then, in point 2 the protocol
extends Fwm with one of the rules Rreq3 , Rreq2 and Rreq1 , namely, each time the algorithm
searches in the set Sreqhon, which has three elements. This requires at most three resolution
steps. Moreover, in points 7-8 the nbr -facts, which are resulted after each resolution step.
Eliminating one nbr -fact takes one resolution step nbr(lpi , lpj) ◦nbr nbr(ypi , ypj). Rules Rreq2

and Rreq3 contains two nbr-facts which yields two resolutions.

In the request direction, we can get back from the destination to the source node by con-
tinually performing the resolution steps with the rule Rreq3 , until we reach the source node,
where the two rules Rreq2 and Rreq1 are applied, in this order (shown in Figure 24). In the
worst case, the number of resolutions is equal to the number of ID list in the request message
tbroaderatt in the fact att(tbroaderatt). Let the number of IDs in this ID list be r. Hence, in the
request direction, (2 + 3 + 2) × max (r, k) resolution steps are required.

Figure 24: The backward reasoning is based on consecutive resolution steps. After each resolution,
we step back from one node to its neighbor node.

• The complexity of the reply direction without steping into the attacker phase: Based on the
similar reasoning, in the reply direction we have to search in the set Srephon, Srephon = {Rrep1.1 ,
Rrep2.1 , Rrep2.4 , Rrep2.8 , Rrep2.12, Rreq4 }, which costs 6 resolutions steps. In the reply direction, we can
get back from the source to the destination by applying Rrep1.1 , then constantly performing
the resolution steps with Rrep2.12. Finally, rule Rreq4 is used to get into the request direction.
The rest part is the same as in the request direction, which means that (2 + 6 + 2) × max (r,
k) resolution steps are required.

• The complexity of the attacker phase, PhA(F rootatt): The resolution steps required in one
attacker phase depends on the number of message elements in the request and reply (i.e.,

73

the size of set W). For each att-fact in W , we examine which rule in the set of the attacker’s
computation ability, Catt, can be applied. This takes |Catt| resolution steps, where |Catt|
denotes the size of Catt.
In function FNotKeyedFunc(Fatt), the case (#childs(Fatt) > 1) yields #childs(Fatt) + 1
resolution steps. In case (#childs(Fatt) = 1) or Fatt has no child, we need to examine
whether Fatt or its child is in the attacker’s knowledge set, Katt, which takes |Katt| resolu-
tions steps. The worst case complexity of FNotKeyedFunc is: Complex (FNotKeyedFunc) =
max (#childs(Fatt), |Katt|).

Then in point 7, we have to examine if the key is in the sets IsKeyatt ∪ IpKeyatt , which requires

|IsKeyatt | + |IpKeyatt | resolution steps.

In FAttKeyedFunc(Fatt), the Acomp is used to extend att(Data), which takes one resolution.
Deleting Fatt in point 8.3 also takes one resolution step.

Point 9 of PhA(F rootatt) costs one resolution step. Let the set that stores the already examined

att-facts for tmsgatt , tbroaderatt and treplaceatt messages be Wmsg, Wbroader, and Wreplace, respec-
tively. In point 10, we have to examine if Fmsgatt has been examined before, which requires
|Wmsg| resolutions.

In REQREPcorrectplace, points 11.1 and 11.5 take |SRecvatt | and one resolution steps, respec-
tively. In the while construct, points 11.7 and 11.8 requires two resolutions, points 11.10
and 11.11 takes |Wbroader| and |W ′′| resolutions, respectively. Finally, point 11.12 costs
|SRecvatt | steps. In total, the complexity of the function is: Complex (REQREPcorrectplace) =
|CONTAIN | × (|SRecvatt | + |Wbroader| + |W ′′|) + |SRecvatt | + 1.

Within the while construct of REQREPincorrectplace, points 12.2, 12.3 and 12.4 require one,
|Wreplace| and |SRecvatt | resolution steps, respectively. Hence, Complex (REQREPincorrectplace)
= |REPLACE | × (|Wreplace| + |SRecvatt | + 1).

To summarize, the worst-case complexity of phase PhA(F rootatt) is:

Complex (PhA) =

1 + |W | × (|WFatt | + |Catt| + MAX (Complex (FNotKeyedFunc), Complex (FAttKeyedFunc),

|IsKeyatt |+ |I
pKey
att |+ MAX (Complex (REQREPcorrectplace), Complex (REQREPincorrectplace))

).

The worst-case complexity of the backward deduction algorithm is

const × 70 × max (k, r)2 × Complex (PhA), for some constant const.

The complexity of the proposed algorithm in practise: The proposed backward deduction
method is very effective in case of well-known on-demand source routing protocols. Despite con-
sidering an arbitrary topology and a strong attacker node, our proposed approach is more effective
than the approach in [5], which handles specific topology. The main advantage of our approach
is that to verify a routing protocol it does not have to examine exhaustively all the topologies,

which is required in [5]. In [5] the authors exhaustively check 2
n(n−1)

2 or 2n(n−1) topologies for n
nodes. This is a bad approach because they also check a large number of equivalent topologies.
The SPIN model checker is applied for each topology to detect attacks.

We note that although the worst case complexity of our method can be large, in practice, it
is very fast when it verifies well-known routing protocols. In the most cases an attack scenario (if
any) is found with n ≤ 4. The attack scenario against the DSR protocol is found when [Listinvalid]
= [lp1], and (i = 0) are examined; The attack scenario against the SRP protocol is found at the
point when the verification tool is examining the case in which [Listinvalid] = [lp1, l

p
2] and (i = 0),

and the attack scenario against the Ariadne protocol is detected in case [Listinvalid] = [lp1, l
p
2 , l

p
attj]

and (i = 0). Finally, the covert channel attack against the endairA protocol can be detected
based on the invalid list [Listinvalid] = [lpatt1, l

p
att2], where lpatt1 and lpatt2 are the IDs of two different

attacker nodes.

74

10.5.1 Implementation

We have developed the first version of the software tool based on the theoretical foundations
described in this paper. The tool is implemented in the JAVA programming language, and was
succeeded in finding attack scenario in case of the SRP and Ariadne protocols. For all these
examples, the total time for finding derivation trees is less than 2 seconds on a Pentium 2.8 GHz.
The screenshot of the program running can be found in Figure 25 and Figure 26. The first figure is
concerned with the case when uni-directional edges, whilst the latter case considers bidirectional
edges. The TOPOLOGY part includes the attack topology Ttop, and MSG part is composed of
the messages sent by honest and attacker nodes.

Figure 25: An attack scenario detected in case of uni-directional edges.

Figure 26: An attack scenario detected in case of bi-directional edges.

75

11 Conclusion and future work

We argued that designing secure ad-hoc network routing protocols requires a systematic approach
which minimizes the number of mistakes made during the design. To this end, we proposed a
fully automatic verification method for secured ad-hoc network routing protocols, which is based
on logic and a backward reachability approach. Our method has a clear syntax and semantics
for modelling secure routing protocols, in addition, it handles arbitrary network topologies and
considers a strong attacker model. Finally, our method can be used to verify the security of source
routing protocols when the network includes several attacker nodes, who can cooperate with each
other, and run several parallel sessions of the protocol.

We have developed the first version of the software tool based on the theoretical foundations
described in this paper. The tool is implemented in the JAVA programming language, and was
successful in finding attack scenarios in well-known routing protocols.

Acknowledgment

The work described in this paper has been supported by the grant TAMOP - 4.2.2.B-10/12010-
0009. at the Budapest University of Technology and Economics. Special thanks to my advisor,
Dr. Levente Buttyán, for his encouragement, guidance, and supports.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the Spi calculus. Technical
Report SRC RR 149, Digital Equipment Corporation, Systems Research Center, January
1998.

[2] G. Acs, L. Buttyan, and I. Vajda. Provable security of on-demand distance vector routing in
wireless ad hoc networks. In In In Proceedings of the Second European Workshop on Security
and Privacy in Ad Hoc and Sensor Networks (ESAS 2005, pages 113–127, 2005.

[3] G. Acs, L. Buttyan, and I. Vajda. Provably secure on-demand source routing in mobile ad
hoc networks. In IEEE Transactions on Mobile Computing, volume 5, 2006.

[4] G. Acs, L. Buttyan, and I. Vajda. The security proof of a link-state routing protocol for
wireless sensor networks. In IEEE Workshop on Wireless and Sensor Networks Security,
2007.

[5] T. R. Andel and A. Yasinsac. Automated evaluation of secure route discovery in manet
protocols. In SPIN ’08: Proceedings of the 15th international workshop on Model Checking
Software, pages 26–41, 2008.

[6] B. Blanchet. Automatic Proof of Strong Secrecy for Security Protocols. In IEEE Symposium
on Security and Privacy, pages 86–100, Oakland, California, May 2004.

[7] A. Bloch, M. Frederiksen, and B. Haagensen.

[8] L. Buttyán and T. V. Thong. Formal verification of secure ad-hoc network routing protocols
using deductive model-checking. In Proceedings of the IFIP Wireless and Mobile Networking
Conference (WMNC), pages 1–6, Budapest, Hungary, October 18-20 2010. IFIP.

[9] L. Buttyán and I. Vajda. Towards provable security for ad hoc routing protocols. In SASN
’04: Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks, pages
94–105, 2004.

[10] C. Fournet and M. Abadi. Mobile values, new names, and secure communication. In In
Proceedings of the 28th ACM Symposium on Principles of Programming, POPL’01, pages
104–115, 2001.

76

[11] J. C. Godskesen. A calculus for mobile ad hoc networks. In COORDINATION, pages 132–150,
2007.

[12] J. C. Godskesen. A calculus for mobile ad-hoc networks with static location binding. Electron.
Notes Theor. Comput. Sci., 242(1):161–183, 2009.

[13] Y.-C. Hu and A. Perrig. A survey of secure wireless ad hoc routing. IEEE Security and
Privacy, 2(3):28–39, 2004.

[14] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: a secure on-demand routing protocol for
ad hoc networks. Wirel. Netw., 11(1-2):21–38, 2005.

[15] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless networks. In Mobile
Computing, 1996.

[16] J. D. Marshall, II, and X. Yuan. An analysis of the secure routing protocol for mobile ad hoc
network route discovery: Using intuitive reasoning and formal verification to identify flaws.
Technical report, THE FLORIDA STATE UNIVERSITY, 2003.

[17] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. In Networks and
Distributed Systems Modeling and Simulation, 2002.

[18] A. Perrig, J. D. Tygar, D. Song, and R. Canetti. Efficient authentication and signing of
multicast streams over lossy channels. Proceedings of the 2000 IEEE Symposium on Security
and Privacy, page 56, 2000.

[19] M. Poturalski, P. Papadimitratos, and J.-P. Hubaux. Towards provable secure neighbor
discovery in wireless networks. Proceedings of the 6th ACM workshop on Formal methods in
security engineering, pages 31–42, 2008.

[20] J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press, 2001.

[21] M. Saksena, O. Wibling, and B. Jonsson. Graph grammar modeling and verification of ad
hoc routing protocols. 2008.

[22] A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A process calculus for mobile ad hoc
networks. Sci. Comput. Program., 75(6):440–469, 2010.

[23] O. Wibling, J. Parrow, and A. Pears. Automatized verification of ad hoc routing protocols.
Formal Techniques for Networked and Distributed Systems FORTE, pages 343–358, 2004.

77

