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Abstract

The use of Physically Uncloneable Functions (PUFs) in Cryptography is a recent break-
through that has caught the interest of both theoreticians and practitioners. A major step to-
wards understanding and securely using PUFs has been done in [CRYPTO 2011] where Brzuska,
Fischlin, Schröder and Katzenbeisser augmented the Universal Composition (UC) Framework
of Canetti [FOCS 2001] by considering Physically Uncloneable Functions (PUFs). Their model
considers trusted PUFs only (i.e., adversaries are assumed to be unable to produce fake/malicious
PUFs). Moreover they assumed that the simulator can observe queries made by an adversary
to a PUF (i.e., an adversary can access a PUF only in a prescribed detectable way). Since the
study of PUFs to achieve cryptographic tasks is still in its infancy, assuming such limitations on
the capabilities of the adversaries in misbehaving with PUFs might not correspond to real-world
scenarios.

In this work we continue this research direction by focusing on relaxing the above two
restrictions. We �rst present models that are resilient to possible real-world attacks that have
not been addressed by the model (and constructions) of Brzuska et al. Next, we give positive
answers to the question of achieving universally composable secure computation with PUFs
under the new security models. In particular we consider �rst the case of fully malicious PUFs
and show how to obtain UC security for any functionality using computational assumptions. We
then achieve unconditional UC security for any functionality with trusted PUFs but allowing the
adversary an oblivious (undetected by any simulator) access to them. The latter result improves
the work of Brzuska et al. since we obtain the same result but considering a relaxed assumption
(i.e., modeling a more powerful adversary).

Our work sheds light on the power and applicability of PUFs in the design of cryptographic
protocols even when modeling adversaries that physically misbehave with PUFs.

Keywords: Physically uncloneable functions, UC security, hardware set-up assumptions.

1 Introduction

The impossibility of secure computation in the universal composability framework has been
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proved �rst by Canetti and Fischlin [CF01], and then strengthened by Canetti et al. in [CKL03].
As a consequence, several setup assumptions, and relaxations of the UC framework have been
proposed to achieve UC security [CLOS02, BCNP04, PS04, KLP05].

More recently, Katz in [Kat07] showed that UC security is possible by relying on the existence
of tamper-proof programmable hardware tokens. Smart cards are well understood examples of
such tokens, since they have been used in practice in the last decades. Several improvements and
variations of Katz's model have been then proposed in follow up papers (e.g., [CGS08, MS08,
GKR08, GIS+10, DKMQ11]).

Recently a di�erent hardware component has gained a lot of attention and has been con-
cretely designed and constructed by using di�erent technologies: Physically Uncloneable Functions
(PUFs) [Pap01, PRTG02]. A PUF is a device generated through a special physical process such that
producing a clone is considered infeasible. Once a PUF has been constructed, there is a physical
procedure to query it, and to measure its answers.

The apparent similarity of PUFs with programmable tamper-proof hardware tokens vanishes im-
mediately when one compares in detail the two physical devices. Indeed, PUFs are non-programmable
and thus provide unpredictability only. Instead tokens are programmable and can run sophisticated
code. Moreover, PUFs are stateless, while tokens can be stateful. When a PUF is not physically
available, it is not possible to know the output of new queries it received. Instead the answer of a
stateless token to a query is always known to its creator1, since it knows the program that the token
runs. Tamper-proof tokens are realized through ad-hoc procedures that models them as black boxes,
their internal content is protected from physically attacks and thus the functionalities that they im-
plement can be accessed only through the prescribed input/output interface provided by the token
designer. Instead, PUFs do not necessarily require such a hardware protection, and their design is
associated to recommended procedures to generate and query a PUF, guaranteeing uncloneability
and unpredictability. Finally, in contrast to tokens that correspond to PPT machines, PUFs are
not simulatable since it is not clear if one can produce an (even computationally) indistinguishable
distribution.

The use of PUFs in cryptographic protocols is rapidly increasing but various incomparable mod-
els have been used so far, therefore producing incomparable results that moreover do not necessarily
hold when some real-world PUFs are used. A very recent breakthrough in modeling PUFs for cryp-
tographic protocols has been presented in [BFSK11].

The model of Brzuska et al. [BFSK11]. In the model of Brzuska et al. the Universal Com-
position (UC) Framework of Canetti is augmented by including PUFs modeled with only basic
properties. Even if there exist technologies for the construction of PUFs that enjoy other advanced
properties, the choice of Brzuska et al. is to consider only the basic properties obtained by all
current realizations of PUFs. Such properties are unpredictability and uncloneability. The �rst
property informally means that the only way to know the output of a PUF on input a given value,
consists in querying it. The second property is that PUFs are unique in their input/output behavior,
therefore without possession of a given PUF, it is not possible to predict its output to a query, even
in case outputs of other queries have been previously obtained. Since the PUF model of Brzuska et
al. is integrated in the UC framework, PUFs are de�ned through an ideal functionality.

1This is true for stateful tokens too, provided that one knows the sequence of inputs received by the token.
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1.1 Our Contribution

Relaxing the model of Brzuska et al. The model of Brzuska et al. considers trusted PUFs
only (i.e., adversaries are assumed to be unable to produce fake/malicious PUFs). Moreover it is
assumed that the simulator can observe queries made by an adversary to a trusted PUF (i.e., an
adversary can access a honest PUF only through a detectable and understandable process).

In this work we continue this research direction by focusing on relaxing the two above restric-
tions. Indeed given that the study of PUFs is still in its infancy, it is risky to rely on assumptions
on the capabilities of the adversaries in generating and accessing PUFs adversarially. Our goal con-
sists in presenting security models that are resilient to the above plausible real-world attacks (viz.,
adversaries producing malicious PUFs, or adversaries making �hidden� queries to PUFs so that the
simulator can not observe these queries).

We present two relaxations of the model of Brzuska et al. and in both cases we give positive
answers to the question of achieving universally composable secure computation with PUFs. The
importance of our contribution lies precisely in improving the goal of Brzuska et al. that chose
to give a �very minimalistic model� (see discussion in the second page of [BFSK11]). Indeed their
formulation has two strong requirements that could not be achieved by real-world PUFs, namely:
1) impossibility of generating malicious PUFs; 2) impossibility of �nding alternative procedures
(unknown to the others) to query a honest PUF. Not only we present two interesting relaxed
formulations, but we also show that in both cases UC secure computation is possible. More details
follow below.

Malicious PUF generation. We augment the UC framework with untrusted (malicious) PUFs,
so that an adversary is assumed to be able to produce fake PUFs (e.g., stateful, programmed with
malicious code). The natural question is whether UC security can be achieved in such a much more
hostile setting. We give a positive answer by relying on the (realistic) assumption that standard
computational assumptions still hold in presence of PUFs.

Hardness assumptions with PUFs. Notice that as correctly observed in [BFSK11], since PUFs
are not PPT machines, it is not clear if standard complexity-theoretic assumptions still hold in
presence of PUFs. We agree with this observation. However the critical point is that even though
there can exist a PUF that helps to break in polynomial time a standard complexity-theoretic
assumptions, it is still unlikely that a PPT adversary can �nd such a PUF. Indeed a PPT machine
can only generate a polynomial number of PUFs, therefore obtaining the one that allows to break
complexity assumptions is an event that happens with negligible probability and thus it does not
e�ect the concrete security of the protocols.

In light of the above discussion, only one of the following two cases is possible. 1) Standard
complexity-theoretic assumptions still hold in presence of PPT adversaries that generate PUFs;
in this case our constructions are secure. 2) There exists a PPT adversary that can generate a
PUF that breaks standard assumptions; in this case our constructions are not secure, but the
whole foundations of complexity-theoretic cryptography would fall down (which is quite unlikely to
happen) with respect to real-world adversaries.

Malicious access to PUFs. We augment the UC framework with trusted (honest) PUFs follow-
ing the spirit of [BFSK11], but we relax the requirement that queries made by an adversary can be
observed by a simulator. The reason is that we do not want to make the assumption that an adver-
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sary has only black-box access to the PUF2. It is possible that a smart real-world adversary could be
able to stimulate the PUF with a physical process that is di�erent from the one prescribed by the
PUF designer. In this case, it is not clear to someone observing the system what the corresponding
query/response pair is. The above point is reinforced by drawing an analogy with the Knowledge
of Exponent assumption (KEA) [Dam91, BP04]. Let g be a generator of an �appropriate� group
(for details, see [BP04]), and consider an adversary A that gets as input (g, ga), and outputs a pair
(C, Y ). The adversary wins if Ca = Y . Roughly, the knowledge of exponent assumption states that
the only way for the adversary to win is to choose c, and output (gc, gac). Or in other words, to
win, the adversary must know the exponent c. This is formalized by saying that for every adversary,
there exists an extractor that can output c. We feel that in the case of PUFs, assuming that the
simulator can observe the PUF queries of the adversary is similar in spirit to the KEA (which is
a controversial, non-standard and non-falsi�able assumption). Note that the main assumption in
KEA is that there is only one way for the adversary to output a winning tuple, and this is debatable.
Also, in the case of PUFs, as we have discussed in the previous paragraphs, we can not rule out
existence of malicious procedures for accessing PUFs.

Now, one can object that the above restriction to the simulator is not relevant since we can
always have a non-black-box simulator based on the code of the adversary, that by de�nition knows
the querying mechanisms of the adversary. However, in presence of such non-black-box simulators,
it should still be hard for the simulator to understand a query, when a protocol is executed in the
universal composability framework. Indeed the order of quanti�ers in the UC de�nition is ∀A∃S,
and therefore if an adversary is able to query a PUF in some special way, there should exist a
simulator that can understand the query and the answer. However this objection fails when one
would like to follow the spirit of UC security. Indeed in the UC framework there is an environment
Z that can not be rewound by the simulator. Technically speaking, in the UC de�nition, we have
the following quanti�ers: ∀A∃S∀Z. It is therefore possible that an adversary does not know how to
query a PUF in some alternative way, and therefore the simulator does not know it either3. However
the environment is in possession of this knowledge, and can instruct the adversary to query the PUF
in some special way getting back the result. Notice that the UC de�nition allows the environment
to use the adversary as a proxy. Therefore following this modeling, when the adversary holds a
PUF the environment is allowed to ask the adversary to query the PUF in a di�erent way, sending
some data X. The adversary performs this procedure and sends back to the environment some
data Y . Now the environment knows that X correspond to a query x, and the obtained data Y
corresponds to an output y. However both the adversary and the simulator are unaware of these
mappings, and therefore they have no idea about which query has been asked and which answer
has been obtained4.

Clearly because of this lack of information, the adversary could not continue a protocol that
needs the input/output of the PUF (i.e., x/y in the above example) without knowing such values.
However this is not an issue for the adversary in the UC framework. Indeed it can still continue the
protocol acting as a proxy with the environment that therefore would be the actual adversary using

2Contrast this scenario with the case of tamper-proof hardware tokens. In the case of these tokens, due to the
�tramper-proof� assumption, an adversary can only observe the input/output behavior of the token, and thus it is
justi�ed for the simulator to observe an adversary's queries. However, as we argue next, the case of PUFs is di�erent.

3Moreover we can not assume that a simulator has hardwired in all possible physical processes that can be used
to query a PUF since there is no evidence that the number of such procedures is polynomially bounded.

4We stress that this behavior does not violate unpredictability since the PUF has been actually queried with input
x, but since a di�erent procedure has been used, the query is not detected by the simulator.
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a PUF but hiding his queries. The PUF is however still accessible by the adversary, and therefore
still accessible by the simulator too (that can still query it as already allowed in the de�nition
of [BFSK11]).

Obviously if the environment instructs the adversary to physically access the PUF in some special
way, one should also take into account the fact that the environment might ask the adversary
to destroy the PUF5. Therefore one might have an adversary that is able to access the PUF in
some undetectable way (i.e., the simulator does not catch queries asked by the adversary and the
corresponding answers given by the PUF), and then immediately destroys the PUF (i.e., later on
the simulator will no be able to query the PUF again). In this case it seems that both advantages of
the simulator with respect to malicious players considered in the de�nition of [BFSK11] disappear
and therefore UC security can not be achieved. Indeed, since the simulator (because of the oblivious
access to a PUF) can not observe the queries asked by the adversary and (because of the capability
of destroying a PUF after its use) can not query a PUF after adversary's queries, it is not clear how
one can get any reasonable advantage to achieve UC security, which requires straight-line simulation
(i.e., straight-line extraction of the input of the adversary and straight-line equivocality of the input
played on behalf of the honest party).

Very surprisingly we show that in this model unconditional UC secure computation is possible!
The construction given in [BFSK11] clearly fails in such a relaxed model, but we use it as a building
block along with other techniques to design our construction therefore obtaining security against
stronger adversary and thus improving their result.

2 De�nitions

Notation. We denote by n the security parameter and by PPT the property of an algorithm of
running in probabilistic polynomial-time.

We denote by (vA, vB) ← 〈A(a), B(b)〉(x) the random process obtained by having A and B
interacting on common input x and on (private) auxiliary inputs a and b to A and B, respectively
(if any), and with independent random coin tosses for A and B, and by (vA, vB) the local outputs
of parties A and B, respectively, after the completion of their interaction. When the common input

x is the security parameter, we omit it. We use v
$← Alg() when the algorithm Alg() is randomized.

We denote by viewA(A(a), B(b))(x) the view of A of the interaction with player B, i.e., its values is
the transcript (γ1, γ2, ..., γt; r), where the γi's are all the messages exchanged and r is A's coin tosses.
Finally, let P1 and P2 be two parties running a protocol that uses protocol (A,B) as sub-protocol.
When we say that party �P1 runs 〈A(·), B(·)〉(·) with P2� we always mean that P1 executes the
procedure of party A and P2 executes the procedure of party B.

For two random variables X and Y with supports in {0, 1}n, the statistical di�erence between X
and Y , denoted by SD(X,Y ), is de�ned as, SD(X,Y ) = 1

2

∑
z∈{0,1}n |Pr [X = z ]− Pr [ Y = z ]|.

2.1 Physically Uncloneable Functions

In this section we follow the de�nitions given in [BFSK11]. A Physically Uncloneable Function
(PUF) is a noisy physical source of randomness. The randomness property comes from an uncon-

5Indeed in practice PUFs are very easy to break, and destroying a PUF does not violate the assumption that all
PUFs are honest. Instead, there is no way for the adversary to tweak the PUF changing its input/output behavior,
since this would violate the assumption that there exists honest PUFs only.
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trollable manufacturing process. A PUF is evaluated with a physical stimulus, called the challenge,
and its physical output, called the response, is measured. Because the processes involved are physi-
cal, the function implemented by a PUF can not necessarily be modeled as a mathematical function,
neither can be considered computable in PPT. Moreover, the output of a PUF is noisy, namely,
querying a PUF twice with the same challenge, could yield to di�erent outputs. The mathematical
formalization of a PUF due to [BFSK11] is the following.

A PUF-family P is a pair of (not necessarily e�cient) algorithms Sample and Eval. Algorithm
Sample abstracts the PUF fabrication process and works as follows. Given the security parameter
in input, it outputs a PUF-index id from the PUF-family satisfying the security property (that we
de�ne soon) according to the security parameter. Algorithm Eval abstracts the PUF-evaluation
process. On input a challenge q, it evaluates the PUF on q and outputs the response a. Without
loss of generality, we assume that the challenge space of a PUF is a full set of strings of a certain
length.

De�nition 1 (Physically Uncloneable Functions). Let rg denote the size of the range of a PUF-
family and dnoise denote a bound of the PUF's noise. P = (Sample,Eval) is a family of (rg, dnoise)-
PUF if it satis�es the following properties.

Index Sampling. Let In be an index set. On input the security parameter n, the sampling
algorithm Sample outputs an index id ∈ In following a not necessarily e�cient procedure. Each
id ∈ In corresponds to a set of distributions Did. For each challenge q ∈ {0, 1}n, Did contains
a distribution Did(q) on {0, 1}rg(n). Did is not necessarily an e�ciently samplable distribution.

Evaluation. On input the tuple (1n, id, q), where q ∈ {0, 1}n, the evaluation algorithm Eval
outputs a response a ∈ {0, 1}rg(n) according to distribution Did(q). It is not required that Eval
is a PPT algorithm.

Bounded Noise. For all indexes id ∈ In, for all challenges q ∈ {0, 1}n, when running
Eval(1n, id, q) twice, the Hamming distance of any two responses a1, a2 is smaller than dnoise(n).

In the following we use PUFid(q) to denote Did. When not misleading, we omit id from PUFid,
using only the notation PUF.

Security of PUFs. We assume that PUFs enjoy the properties of uncloneability and unpredictabil-
ity. Unpredictability is modeled via an entropy condition on the PUF distribution. Namely, given
that a PUF has been measured on a polynomial number of challenges, the response of the PUF
evaluated on a new challenge has still a signi�cant amount of entropy. Furthermore, we assume
that PUFs are tamper-evident. In the following we recall the concept of average min-entropy, and
the formal de�nition of PUF-unpredictability.

De�nition 2 (Average min-entropy). The average min-entropy of the measurement PUF(q) condi-
tioned on the measurements of challenges Q = (q1, . . . , q`) is de�ned by

H̃∞(PUF(q)|PUF(Q)) =

= −log
(
Eai←PUF(qi)[max

a
Pr [ PUF(q) = a|a1 = PUF(q1), . . . , a` = PUF(q`) ]

)
= −log

(
Eai←PUF(qi)[2

H∞(PUF(q)=a|a1=PUF(q1),...,a`=PUF(q`)
)

where the probability is taken over the choice of id from In and the choice of possible PUF responses
on challenge q. The term PUF(Q) denotes a sequence of random variables PUF(q1), . . . ,PUF(q`)
each corresponding to an evaluation of the PUF on challenge qk.
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De�nition 3 (Unpredictability). A (rg, dnoise)-PUF family p = (Sample,Eval) for security param-
eter n is (dmin(n),m(n))-unpredictable if for any q ∈ {0, 1}n and challenge list Q = (q1, . . . , qn),
one has that, if for all 1 ≤ k ≤ n the Hamming distance satis�es disham(q, qk) ≥ dmin(n), then
the average min-entropy satis�es H̃∞(PUF(q)|PUF(Q)) ≥ m(n). Such a PUF-family is called a
(rg, dnoise, dmin,m)- PUF family.

Fuzzy Extractors. The output of a PUF is noisy, that is, feeding it with the same challenge twice
may yield distinct, but still close, responses. Fuzzy extractors of Dodis et al. [DORS08] are applied
to the outputs of the PUF to convert such noisy, high-entropy measurements into reproducible
randomness.

Let U` denote the uniform distribution on `-bit strings. Let M be a metric space with the
distance function dis: M×M→ R+.

De�nition 4 (Fuzzy Extractors). Let dis be a distance function for metric spaceM. A (m, `, t, ε)-
fuzzy extractor is a pair of e�cient randomized algorithms (FuzGen,FuzRep). The algorithm FuzGen
on input w ∈ M, outputs a pair (p, st), where st ∈ {0, 1}` is a secret string and p ∈ {0, 1}∗ is a
helper data string. The algorithm FuzRep, on input an element w′ ∈ M and a helper data string
p ∈ {0, 1}∗ outputs a string st. A fuzzy extractor satis�es the following properties.

Correctness. For all w,w′ ∈M, if dis(w,w) ≤ t and (st, p)
$← FuzGen, then FuzRep(w′, p) = st.

Security. For any distribution W on the metric space M, that has min-entropy m, the �rst
component of the random variable (st, p), de�ned by drawing w according to W and then
applying FuzGen, is distributed almost uniformly, even given p, i.e., SD((st, p), (U`, p)) ≤ ε.

Given a (rg(n), dnoise(n), dmin(n),m(n))-PUF family with dmin = o(n/ log n), a matching fuzzy
extractor has the following parameters: `(n) = n, t(n) = dnoise(n), and ε is a negligible function in n.
The metric spaceM is the range {0, 1}rg with Hamming distance disham. We call such PUF family
and fuzzy extractor as having matching parameters, and the following properties are guaranteed.

Well-Spread Domain. For all polynomial p(n) and all set of challenges q1, . . . , qp(n), the proba-
bility that a randomly chosen challenge is within distance smaller than dmin with any qk is
negligible.

Extraction Independence. For all challenges q1, . . . , qp(n), and for a challenge q such that dis(q, qk) >
dmin for 1 ≤ k ≤ p(n), it holds that the PUF evaluation on q and subsequent application of
FuzGen yields an almost uniform value st even if p is observed.

Response consistency. Let a, a′ be the responses of PUF when queried twice with the same

challenge q, then for (st, p)
$← FuzGen(a) it holds that st← FuzRep(a′, p).

3 UC Security with Malicious PUFs

In Section 1 we have motivated the need of di�erent formulation of UC security with PUFs that al-
lows the adversary to generate malicious PUFs. In this section we �rst show how to model malicious
PUFs in the UC framework, and then we show that as long as standard computational assumptions
still hold when PPT adversary can generate (even malicious) PUFs, there exist protocols for UC
realizing any functionality with (malicious) PUFs.
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3.1 Modeling Malicious PUFs

We allow our adversaries to send malicious PUFs to honest parties. As discussed before, the mo-
tivation for malicious PUFs is that the adversary may have some control over the manufacturing
process and may be able to produce errors in the process that break the PUF's security properties.
Thus, we would like the parties to rely on only the PUFs that they themselves manufacture, and not
on the ones they receive. We think of a malicious-PUF family as a PUF-family that does not guar-
antee the security property of De�nition 3. Of course, we also want the honest parties to be able to
obtain and send honestly generated PUFs. Thus our ideal functionality for PUFs, FPUF (Figure 1)
is parameterized by two PUF families: the normal (or honest) family (Samplenormal,Evalnormal) and
the possibly malicious family (Samplemal,Evalmal). When a party Pi wants to initialize a PUF, it
speci�es a mode ∈ { normal, mal } to FPUF, and the ideal functionality uses the corresponding fam-
ily for initializing the PUF. For each initialized PUF, the ideal functionality FPUF also stores a tag
representing the family (i.e., mal or normal) from which it was initialized. Thus, when the PUF
needs to be evaluated, FPUF runs the evaluation algorithm corresponding to the tag.

The handover procedure remains the same as in the original formulation of Brzuska et al. [BFSK11].
Each PUF has a status �ag which determines whether it is in transit or not. We allow the PUF
to be queried by the adversary while it is in transit. Thus, when a party Pi hands over a PUF to
party Pj , that PUF's �ag is changed from notrans to trans, and the adversary is allowed to send
evaluation queries to this PUF. When the adversary is done with querying the PUF, it sends a
readyPUF message to the ideal functionality, which hands over the PUF to Pj and changes the PUFs
transit �ag back to notrans. The party Pj may now query the PUF. The ideal functionality now
waits for a receivedPUF message from the adversary, at which point it sends a receivedPUF message
to Pi informing it that the handover is complete. The ideal functionality is described formally in
Figure 1.

3.2 Constructions for UC Security in the Malicious PUFs model

In this section we start presenting a construction that UC-realizes the Fcom functionality. We then
show how to obtain UC security for any functionality.

Recall that the major di�culty when using (honest) PUFs (in contrast to tamper-proof tokens)
is that PUFs are not programmable. This means that the simulator must honestly answer all queries
made by the adversary by forwarding them to the actual PUF. Thus, the simulator can only exploit
the power of observing the queries made by the adversary to the PUF received from the honest
party, and of running the PUF when it is still possessed by the adversary. In the honest PUF
model, the simulator is guaranteed that any PUF sent by the adversary is honest. This means
that the answers received from such a PUF are unpredictable for the adversary as well, and more
importantly, the adversary has no control of the behaviour of the PUF. This fact is of great help in
designing protocols with honest PUFs.

In the malicious PUFs model instead, the behaviour of a PUF sent by an adversary is entirely in
the adversary's control. This means that the malicious PUF can answer (or even abort) adaptively
on the query according to some pre-shared strategy with the malicious creator. Also, even though
the malicious PUF can now be programmable, the honest PUF is still unpredictable. In particular,
the simulator is still constrained to send an honest PUF which outputs are therefore out of the
control of the simulator.
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FPUF is parameterized by PUF families P1 = (Samplenormal,Evalnormal) with parameters
(rg, dnoise, dmin,m), and P2 = (Samplemal,Evalmal), and receives as initial input a security pa-
rameter 1n and runs with parties P1, . . . , Pn and adversary S.

• When a party Pi writes (initPUF, sid, mode, Pi) on the input tape of FPUF, where mode ∈
{ normal, mal }, then FPUF checks whether L already contains a tuple (sid, ∗, ∗, ∗, ∗, ∗):

� If this is the case, then turn into the waiting state.

� Else, draw id← Samplemode(1
n) from the PUF-family. Put (sid, id, mode, Pi, notrans) in

L and write (initializedPUF, sid) on the communication tape of Pi.

• When party Pi writes (evalPUF, sid, Pi, q) on FPUF's input tape, check if there exists a tuple
(sid, id, mode, Pi, notrans) in L.

� If not, then turn into waiting state.

� Else, run a ← Evalmode(1
n, id, q). Write (responsePUF, sid, q, a) on Pi's communication

input tape.

• When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a tuple
(sid, ∗, ∗, Pi, notrans) in L.

� If not, then turn into waiting state.

� Else, modify the tuple (sid, id, mode, Pi, notrans) to the updated tuple (sid, id, mode, ⊥,
trans(Pj)). Write (invokePUF, sid, Pi, Pj) on S's communication input tape.

• When the adversary sends (evalPUF, sid,S, q) to FPUF, check if L contains a tuple (sid, id,
mode, ⊥, trans(∗)).

� If not, then turn into waiting state.

� Else, run a← Evalmode(1
n, id, q) and return (responsePUF, sid, q, a) to S.

• When S sends (readyPUF, sid,S) to FPUF, check if L contains the tuple (sid, id, mode, ⊥,
trans(Pj)).

� If not found, turn into the waiting state.

� Else, change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj , notrans) and
write (handoverPUF, sid, Pi) on Pj 's communication input tape and store the tuple
(receivedPUF, sid, Pi) in L.

• When the adversary sends (receivedPUF, sid, Pi) to FPUF, check if the tuple
(receivedPUF, sid, Pi) exists in L. If not, return to the waiting state. Else, write this
tuple to the communication input tape of Pi.

Figure 1: The ideal functionality FPUF for malicious PUFs.
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The high-level idea behind our protocol. The protocol is shown in Figure 2. We start
providing the high-level idea of the protocol, and then we show how to actually implement it.

To commit to a bit, the committer C sends a (regular6) commitment of that bit over the chan-
nel, while it sends the opening of such commitment to a PUF received from the receiver R. The
idea is that the simulator will observe the adversary's PUF queries (i.e., the opening of the regular
commitment) and extract the committer's bit. To enforce C to query the PUF before the commit-
ment phase is over (otherwise simulator will not be able to extract), we require it to also send the
commitment to the answer that the PUF gives on input the opening of the commitment. Note that
the committer can not send the answer itself as the PUF is malicious. Later, in the decommitment
phase, the committer will send the openings of both commitments: the commitment of the bit
and the commitment of the answer of the PUF. By the binding of commitment scheme, and by
the unpredictability of PUFs, the committer is forced to query the PUF with the valid opening
already in the commitment phase, in order to be able to provide an accepting decommitment phase.
Hence, the simulator extracts the bit committed with all but negligible probability. Thus, this is
an extractable commitment scheme.

Now let us look at a malicious receiver. In this case, the simulator needs to equivocate. To
achieve this, instead of using a regular commitment as described above, we use an equivocal regular
commitment from the committer to the receiver. The problem is that the simulator must equivocate
in straight line. To achieve this, we augment an existing equivocal commitment scheme in the
standard model with the use of PUFs to get the desired result. In particular, we use the equivocal
commitment scheme from [CO99], which in turn is based on Naor's scheme [Nao89]. Naor's scheme
consists of two messages, where the �st message is a randomly chosen string r that the receiver
sends to the committer. The scheme has the property that if the string r is crafted appropriately,
then the commitment is equivocal. Di Crescenzo and Ostrovsky [CO99] show how this can be
achieved by adding a coin-tossing phase before the commitment. To make this approach work in
our case, we need to implement the coin tossing in such a way that a straight-line simulator can force
the output to the desired result. In particular, the coin tossing in the scheme of [CO99] proceeds
as follows: the receiver commits to a random string α (using a statistically hiding commitment
scheme), the committer sends a string β, and then the receiver opens the commitment, so that the
Naor parameter is set as α⊕β. The simulator would be able to equivocate if it can extract the value
α committed by R, before having to send β. For this purpose, we construct a straight-line extractable
statistically hiding commitment scheme in the malicious PUF model. This scheme follows the idea
of our extractable commitment described above but is tailored to be also statistically-hiding. It
will be used by the receiver to commit to α. Once the string r is properly crafted, the simulator
completes the commitment phase as follows: 1) it commits to a random bit, 2) it does not query
the PUF with the opening of such commitment (indeed, since we are in the malicious PUF model,
querying the PUF more that an honest party would do, can be fatal for the simulation), 3) it
commits to a random string instead of the answer of the PUF. In the decommitment phase, once it
receives the bit b to open to, the simulator plays the decommitment as follows. It �rst computes the
equivocation of the commitment of the bit such that it opens to b, then it queries the PUF with such
decommitment and obtains the answer. Finally it computes the equivocation of the commitment of
the string, such that it opens to the answer received from the PUF.

The �nal construction consists of the extractable commitment of α sent by R to C, the message
β sent by C to R and the extractable/equivocal commitment of the bit, and the answer of the PUF,

6By �regular� commitment, we mean a commitment scheme in the plain model.
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sent by C to R.
The protocol sketched so far involves back-and-forth for PUFs. This is because the protocol

involves a party Pi committing to the response of a random query (secret to Pj) to the PUF created
by Pj , and then later proving that it had indeed committed to the correct response. However,
because of unpredictability, to check the correctness of such response, Pj needs to query its own
PUF and this involves Pi sending the PUF back to Pj . In the actual implementation we show how
to overcome this problem.

The actual implementation. The receiver starts by querying its PUF with a pair of queries
(q0, q1), and then sends the PUF to C. Then, to commit to a bit b the committer queries the PUF
with query qb (instead of the opening of the commitment of b), and sends to R only the commitment
of the answer received from the PUF. C obtains the desired query qb by running an Oblivious
Transfer (OT) protocol with R. The simulator can extract the bit by checking the queries sent to
the PUF and looking which one is close enough, in hamming distance, to either q0 or q1. Due to the
security of OT, C can not get both queries (thus confusing the simulator), neither R can detect which
query has been transferred. This idea improves the straight-line extractable commitment scheme
discussed above (for now just consider the originally proposed computationally hiding version) since
this implementation does not require back-and-forth of PUFs.
Implementing the statistically-binding straight-line extractable and equivocal commitment Comequiv.
Using the above implementation of a straight-line extractable (computationally hiding) commit-
ment scheme that avoids back-and-forth of PUFs, new issues arises. The �rst issue concerns the
equivocation. Indeed, now the simulator has to query the token with a particular string, chosen by
the receiver, and it has to choose it already in the commitment phase, when it does not know yet
which is the bit to open to. We overcome this di�culty as follows. After C has sent its commitment
of the answer, R reveals both queries (q0, q1) and also randomness used to run the OT protocol. In
this way the simulator gets both strings and, in the opening phase, will query the PUF with the one
corresponding to the bit to open. Another subtle issue is the selective abort of a malicious PUF. If
the PUF aborts when queried with a particular string, then we have that the sender would abort
already in the commitment phase, while the simulator aborts only in the decommitment phase. We
avoid such problem by requiring that the sender continues the commitment phase also in case the
PUF aborts, by committing to a random value. The above protocol is statistically binding (we
are using Naor's commitment), straight-line extractable, and, assuming that Naor's parameter is
decided by the output of the coin �ipping, it is also straight-line equivocal. Since to commit to a
bit we are basically committing to the l-bit string answer of the PUF, the size of Naor's parameter
is N = (3n)l. We denote such a protocol as Comequiv. The formal speci�cation of the protocol is
given in Figure 7, and the proof is shown in Appendix B.2.
Implementing the statistically-hiding extractable commitment scheme Comshext. Another issue con-
cerns the fact that, in order to use the arguments for binding of Naor's commitment, we need that
the extractable commitment sent by the receiver, i.e., the commitment of the string α for the coin
�ipping, to be statistically hiding. Thus we can not reuse the same protocol Comequiv discussed
above. We will obtain the desired scheme by applying following modi�cation to the straight-line
extractable (but only computationally hiding) commitment scheme that avoids back-and-forth of
PUFs, as we discussed above.

First, the answer received from the PUF is committed using a statistically hiding commitment
scheme, and the OT protocol must be such that the receiver's privacy is statistical. Second, after
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the commitment, the receiver (that is playing as committer for α) has to provide a statistical zero-
knowledge argument of knowledge of the message committed. This turns out to be necessary to
argue about binding. Such protocol is statistically hiding and straight-line extractable. We denote
such a protocol as Comshext. The formal speci�cation of Comshext is given in Figure 6, while the
formal proof is shown in Appendix B.1.

The �nal protocol Comuc = (Cuc,Ruc) is shown in Figure 2 and consists of the receiver com-
mitting to α using the statistically hiding straight-line extractable commitment scheme Comshext =
(Cshext,Rshext), the sender choosing β and the result of the coin �ipping, σ = α ⊕ β, is used as
common input to run the statistically binding straight-line extractable and straight-line equivocal
Comequiv = (Cequiv,Requiv)(σ). The protocol needs two PUFs (one for each party) that are exchanged
only at the beginning of the protocol.

Committer's Input: Bit b ∈ {0, 1}.
Commitment Phase

Ruc ⇔ Cuc : (Coin Flipping)

1. Ruc picks α
$← {0, 1}N ; commit to α by running ((cα, dα), cα) ←

〈Cshext(com, α),Rshext(recv)〉 with Cuc.

2. Cuc sends β
$← {0, 1}N to Ruc.

3. Ruc sends decommitment (α, dα) to Cuc.
4. Cuc: if Rshext(dα, α) = 0, abort.

Cuc ⇔ Ruc : (Equivocal Commitment)
Cuc commit to b by running ((cbit, dbit), cbit)← 〈Cequiv(com, b),Requiv(recv)〉(α⊕β) with Ruc.

Decommitment Phase

Cuc sends decommitment (b, dbit) to Ruc.

Ruc accepts i� Requiv(α⊕ β, cbit, b, dbit) is accepting. Else, reject.

Figure 2: Computational UC Commitment Scheme (Cuc,Ruc).

Theorem 1. If Comshext = (Cshext,Rshext) is a statistically hiding straight-line extractable commit-
ment scheme in the malicious PUF model, and Comequiv = (Cequiv,Requiv) is a statistically binding
straight-line extractable and equivocal commitment scheme in the malicious PUF model, then Pro-
tocol Comuc = (Cuc,Ruc) depicted in Figure 2, UC-realizes the Fcom functionality.

The proof is provided in Appendix C.1.
The above protocol can be used to implement the multiple commitment functionality Fmcom by

using independent PUFs for each commitment. Note that in our construction we can not reuse the
same PUF when multiple commitments are executed concurrently 7. The reason is that, in both
sub-protocols Comshext,Comequiv, in the opening phase the committer forwards the answer obtained
by querying the receiver's PUF. The answer of a malicious PUF can then convey information about
the value committed in concurrent sessions that have not been opened yet.

7We remark that however our protocol enjoys parallel composition and reusing of the same PUF.
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When implementing Fmcom one should also deal with malleability issues. In particular, one
should handle the case in which the man-in-the-middle adversary forwards honest PUFs to another
party. However such attack can be easily ruled out by exploiting the unpredictability of honest
PUFs as follows. Let Pi be the creator of the PUFi, running an execution of the protocol with Pj .
Before delivering its own PUF, Pi queries it with the identity of Pj concatenated with a random
nonce. Then, at some point during the protocol execution with Pj it will ask Pj to evaluate PUFi
on such nonce (and the identity). Due to the unpredictability of PUFs, and the fact that nonce is
a randomly chosen values, Pj is able to answer to such a query only if it possesses the PUF.

The �nal step to obtain UC security for any functionality consists in using the compiler of [CLOS02],
which only needs a UC secure implementation of the Fmcom functionality.

4 Honest PUFs with Oblivious Queries

We describe a more relaxed (we consider stronger adversaries) PUF access model in this section. In
particular, we study the question: what is the power of the simulator in the PUF-model? In their
original formulation, Brzuska et al.([BFSK11]) made the model non-programmable. Their motivation
was that PUFs are intrinsically non-programmable in the sense that even the manufacturer does not
have control over the PUF functionality. Moreover, as a PUF is considered to implement a physical
process, it can not be assumed that a PPT simulator will be able to reproduce that distribution
indistinguishably. Thus, the simulator must answer the adversary's queries faithfully by forwarding
them to the PUF.

A di�erent axis along which we can analyze the power of the simulator is whether it can observe
the queries made by the adversary to the PUF or not. The protocols in Brzuska et al.([BFSK11])
crucially rely on the simulator's ability to observe the adversary's queries to the PUF.

We consider a relaxation of the model where the simulator may not observe the adversary's
queries. Our motivation of this model comes from the possibility of an adversary to maliciously run
the Eval process. Even for an honest PUF, an adversary may use a di�erent physical process (that
is, di�erent from the prescribed procedure Eval) to obtain an obfuscated query-response pair that
is hidden from anyone observing the system. Indeed, as PUFs are generated by a known physical
process, we assume that the adversary has a non black-box access to the PUF. Thus a more realistic
model would be allowing the adversary's queries to remain hidden from the simulator. In particular
this is the case when considering the UC framework and the fact that the simulator does not know
the code of the environment, and the environment can use the adversary as a proxy, therefore using
procedures to query the PUF that are not understood by the simulator. See Section 1 for a more
detailed discussion.

Formally, we consider the original PUF ideal functionality of Brzuska et al [BFSK11], which we
call FhPUF for honest PUFs. We construct an unconditional UC protocol for Oblivious Transfer
functionality in the FhPUF-hybrid model and show an ideal model simulator that has the following
property: the simulation strategy is oblivious to the adversary's PUF queries. When the adversary
makes a PUF query, the simulator sends it to FhPUF, and sends the response back to the adversary.
However, the simulator's next message function does not depend upon the query or the response.
We call such simulators oblivious-query simulators. The ideal functionality FhPUF is described in
Figure 9 in Appendix E.

Before we begin, we address one �nal technical issue concerning oblivious-query simulators. As
the simulator can not observe the adversary's PUF queries, it must determine its own queries to
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the PUF only from the transcript (it is clear that the simulator must query the PUF, else we are
in the plain model where UC is impossible). Now in the real physical world, a party that receives
a PUF may certainly destroy it after using it. To model this behaviour, we ought to augment our
PUF ideal functionality with a kill message, that destroys a PUF so that no party may query that
particular PUF anymore. Let us call this the augmented − FhPUF hybrid model. However, this
creates a problem for the oblivious-query simulator. Consider an adversary the destroys a PUF as
soon as it queries it, i.e., before sending any message. Now, by the time the simulator determines
what to ask the PUF, the PUF is already dead and can not be accessed and the simulator is stuck.
This attack must be handled explicitly in the protocol.

However, there exists a simple compiler that transforms a protocol in FhPUF hybrid model (where
parties are not allowed to send kill message to FhPUF) to a protocol in the augmented−FhPUF hybrid
model where parties are allowed to destroy PUFs. The point is that it is straight forward for party
Pj to check if a party Pi still possesses a PUF that Pj had sent it earlier: before handing over
the PUF, party Pj queries the PUF with a random query, say q, and obtains the response, and
then hands over the PUF to Pi. When party Pj wishes to check if Pi still possesses the PUF (and
hasn't destroyed it by sending a kill message), party Pj simply sends q to Pi and compares the
responses. If Pi is no longer in possession of the PUF (because it had sent a kill message earlier),
by the unpredictability of PUFs, it will not be able to give the correct response, and Pj will abort.

The compiler works as follows: given any protocol in FhPUF hybrid model, the protocol in
augmented − FhPUF follows the same steps as the original protocol, except that after every round
of the original protocol, each party veri�es that all the recipients of its PUFs are still in possession
of those PUFs. Having this compiler in mind, and for the sake of simplicity of notation, we present
our protocol in the FhPUF hybrid model.

4.1 Unconditional OT in the Oblivious Query Model

In this section, we construct an unconditional UC protocol for OT in the oblivious-query PUF
model. Recall that in this model, the simulator can not use the queries that an adversary makes
to the PUF. We begin with the original OT protocol of Brzuska et al. [BFSK11], and identify the
sections of the protocol where the simulator needs to observe the adversary's queries to extract
its input. We then modify these parts by embedding extra information in the transcript which
allows extraction without observing the queries. Because of this added information, we also need
to add more consistency checks for the �nal protocol to work. In the following, we give an informal
overview of the original protocol of Brzuska et al. [BFSK11], and then describe these steps in more
detail. A formal description of our protocol is given in Figure 3.

Overview of the Brzuska et al. [BFSK11] OT protocol. The protocol starts with the receiver
initializing a PUF, say sidR, and querying it on a random query q to obtain response a. The receiver
now hands over sidR to the sender and can not make any more queries. Now the idea is that the
sender will pick two queries such that the receiver knows the response to only one of them. This is
done by the sender picking two random queries x0, x1 sending them to the receiver, who responds
with v = xb⊕ q, where b is receiver's input. Now, of the two queries v⊕ x0 and v⊕ x1, the receiver
knows the response to only one, while the sender has no information about which response the
receiver knows. The sender uses the responses to these queries to mask its strings and the receiver
can �decrypt� only one of them.
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Extracting from Sender without observing queries. This is already possible in the original
protocol. Note that the sender masks its strings by responses to the queries v⊕x0 and v⊕x1. Both
of these queries can be determined from the transcript. The simulator obtains responses to both of
these, and thus �decrypts� both the strings. We use the same strategy in our protocol.

Extracting from Receiver without observing queries. Consider an adversary that corrupts
the receiver. Informally, the simulator in the original protocol of [BFSK11] keeps a list of the queries
made by the adversary. When it receives the value v from the adversary, it checks which of v ⊕ x0

and v ⊕ x1 is in that list8. If it is the former, then the adversary's bit is 0, else it is 1. Thus, the
simulator relies crucially on observability of queries.

To tackle this, we simply ask the receiver to send, along with v, a query d whose response is the
receiver's bit9. There are several issues to handle here:

Whose PUF can be used? Note that at the time the receiver sends v to the sender, receiver's PUF
is already with the sender. Thus, the query d can not be sent to receiver's PUF anymore,
otherwise the sender can evaluate the PUF on d and obtain the receiver's bit. Instead, we
make the sender send a PUF, say sidS, in the beginning of the protocol to the receiver. The
receiver queries sidS with random queries till it �nds a query d whose response is its secret
bit. Then it sends d along with v, and because it still holds sidS, the sender can not query it
on d, and receiver's bit is hidden. However, the simulator can query sidS with d and extract
receiver's bit.

Forcing Receiver to use correct queries: Cut-and-Choose. Of course, a malicious receiver might
not use a query d that corresponds to its bit. In this case, the simulator will extract an incor-
rect bit. However, we can use cut-and-choose to enforce correct behaviour on the receiver. Let
k be a statistical security parameter. The sender sends 2k PUFs, say sidS1 , . . . , sid

S
2k, and 2k

pairs (x0
1, x

1
1), . . . , (x0

2k, x
1
2k), to the receiver after receiving its PUF sidR. The receiver chooses

random bits b1, . . . , b2k and prepares vi and di according to bi (that is, vi = qi ⊕ xbi for some
query qi, and the response of di to PUF sidSi is the bit bi.) Now the sender asks the receiver
to �reveal� k of these indices chosen at random. To reveal an index i, the receiver sends the
query qi, along with its response (from PUF sidR) ai, and also hands over the PUF sidSi back
to the sender. The sender �rst determines the bit bi from vi (by checking if vi ⊕ qi is x0

i of
x1
i ). Then it checks if the response of sidSi matches bi or not. If the checks pass for a random

subset of size k, then the number of indices j where the response of dj (i.e., response from
sidSj ) does not correspond to bj is very small.

Combining OTs. If the above cut-and-choose does not abort, consider the indices that were not
�revealed�. We have k pairs of queries (vj ⊕x0

j , vj ⊕x1
j ), such that for almost all pairs, (1) the

receiver knows the response (of sidR) to only one query in each pair, and the sender does not
know which query the receiver knows, and (2) the simulator knows the query whose response
is known by the receiver. Now we run the original OT protocol of Brzuska et al. [BFSK11] on
these pairs to implement k random OTs. As the �nal step, we use the well-known reduction
from random OTs to OT.

The proof of the following theorem is deferred to Appendix C.2.

8This is a simpli�cation. The simulator actually checks which of v ⊕ x0 and v ⊕ x1 is within a hamming distance
dmin of some query in the list.

9The response of a PUF is a long string and not a bit, but we can use a suitable Boolean function to map the
response to a bit. In our protocol, we use the Parity function for this purpose.
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Sender's Input: Strings s0, s1 ∈ {0, 1}n.
Receiver's Input: Bit b ∈ {0, 1}.

1. [(SuncOT ⇒ RuncOT): Sender PUF initialization] S initializes 2k PUFs sidS1, . . . , sid
S
2k and sends

them R.

2. [(SuncOT ⇐ RuncOT): Receiver PUF initialization] R initializes a PUFs sidR. It uniformly chooses
2k queries q1, . . . , qk and obtains responses a1, . . . , ak. It sends the PUF sidR to S.

3. [Cut-and-Choose]

(a) (SuncOT ⇒ RuncOT)For 1 ≤ i ≤ 2k, sender uniformly selects a pair of queries (x0i , x
1
i ) and sends

it to R.

(b) (SuncOT ⇐ RuncOT)For each 1 ≤ i ≤ 2k, receiver does the following:

• select random bit bi ∈ {0, 1}.
• select random query di and let dai be the response of the PUF sidSi . Compute (dsti, dpi)←

FuzGen(dai). If Parity(dsti) 6= bi, repeat this step. Else, continue.

• compute vi := xbii ⊕ qi.
For each 1 ≤ i ≤ 2k receiver sends to sender (vi, di, dpi).

(c) (SuncOT ⇒ RuncOT)Sender selects a random subset S ⊂ [2k] of size k and sends it to receiver.

(d) (SuncOT ⇐ RuncOT)For all j ∈ S, receiver sends (qj , aj) to sender, and also hands over the PUF

sidSj to the sender.

(e) Sender makes the following checks for each j ∈ S:
• compute the response of PUF sidR on query qj to obtain a∗j ; if dis(aj , a

∗
j ) > dnoise, abort.

• if vj ⊕ qj = x0j , set b
∗
j = 0; if vj ⊕ qj = x1j , set b

∗
j = 1; else abort.

• query the PUF sidSj with dj to obtain response da∗j ; if Parity(FuzRep(da∗j , dpj)) 6= b∗j , abort.

4. [(SuncOT ⇐ RuncOT): Receiver sends correction-bits] Let i1, . . . , ik be the indices not in S. For
1 ≤ j ≤ k, receiver sends to sender the bit b′ij = bij ⊕ b.

5. [(SuncOT ⇒ RuncOT): Sender's �nal message] Sender prepares its �nal message as follows:

• for δ ∈ {0, 1}, choose random strings sδ1, . . . , s
δ
k such that sδ =

⊕k
j=1 s

δ
j .

• for δ ∈ {0, 1}, for 1 ≤ j ≤ k, compute q̂δij = vij ⊕ xδij and let (stδij , p
δ
ij

) be the output of the
fuzzy extractor applied to the response of PUF sidij to query qij .

• for δ ∈ {0, 1} and 1 ≤ j ≤ k, set mδ
ij

= sδj ⊕ st
b′ij
⊕δ

ij
.

Sender sends (m0
i1
,m1

i1
), . . . , (m0

ik
,m1

ik
) and (p0i1 , p

1
i1

), . . . , (p0ik , p
1
ik

) to the receiver.

6. [Receiver's �nal step] For 1 ≤ j ≤ k, receiver computes stij ← FuzRep(p
bij
ij
, aij ). It outputs

sb =
⊕k

j=1(mb
ij
⊕ stij ).

Figure 3: Unconditional OT protocol (SuncOT,RuncOT) in the Oblivious Query Model.
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Theorem 2. The protocol (SuncOT,RuncOT) in Figure 3, UC-realizes the FOT functionality in the
FPUF-hybrid model.

5 Unconditional Security with Malicious PUFs

We turn our attention back to the malicious PUF model. In Section 3.2 we provided a computa-
tional commitment scheme using malicious PUFs. This combined with the results in Canetti et
al. [CLOS02] gives us computational UC security with malicious PUFs. The natural question to ask
is whether we can leverage the power of PUFs to obtain unconditional UC security. We leave this
as an intriguing open question for future work. As evidence that this endeavour might be fruitful,
in this section we provide a statistically hiding and statistically binding commitment scheme.

Our protocol is the straightforward adaptation of Naor's commitment protocol [Nao89] in the
malicious PUFs model. The sender �rst queries the PUF with a random string and then sends the
PUF to the receiver. Then, as in Naor's protocol, the receiver sends a random string, and �nally
the sender sends either the response of the PUF to the random query10, or the response of the PUF
to the random query XORed with the string sent by the receiver, depending on whether the bit to
be committed is 0 or 1. By extraction independence, it follows that receiver's view in the two cases
is identical. To argue binding, we note that the binding argument in Naor's commitment relies only
on the expansion property of the PRG. Thus, if we choose the PUF family and a matching fuzzy
extractor family of appropriate length, the same argument holds in our case. The formal description
of the protocol, along with security proofs, are given in Appendix D.
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A Missing De�nitions and Tools

Notation. A function ε is negligible in n (or just negligible) if for every polynomial p(·) there
exists a value n0 ∈ N such that for all n > n0 it holds that ε(n) < 1/p(n).

In the following de�nitions we assume that parties are stateful and that malicious parties obtain
auxiliary inputs, although for better readability we omit them.

Indistinguishability. LetW be a set of strings. An ensemble of random variablesX = {Xw}w∈W
is a sequence of random variables indexed by elements of W.

De�nition 5. Two ensembles of random variables X = {Xw}w∈W and Y = {Yw}w∈W are com-

putationally indistinguishable (resp., statistically indistinguishable), i.e., {Xw}w∈W
C≡ {Yw}w∈W

(resp., {Xw}w∈W
S≡ {Yw}w∈W) if for any polynomial-sized circuit (resp., unbounded) D there exists

a negligible function ε such that∣∣Pr [ α← Xw : D(w,α) = 1 ]− Pr [ α← Yw : D(w,α) = 1 ]
∣∣ < ε(w).

A.1 Commitment Schemes

De�nition 6 (Bit Commitment Scheme). A commitment scheme is a tuple of PPT algorithms
Com = (C,R) implementing the following two-phase functionality. Given to C an input b ∈ {0, 1},
in the �rst phase (commitment phase) C interacts with R to commit to the bit b, we denote this
interaction as ((c, d), c) ← 〈C(com, b), R(recv)〉 where c is the transcript of the commitment phase
and d is the decommitment. In the second phase (opening phase) C sends (b, d) and R �nally
accepts or rejects according to (c, b, d).

Com = (C,R) is a commitment scheme if it satis�es the following properties.

Completeness. If C and R follow their prescribed strategy then R will always accept (with proba-
bility 1).

Statistical (resp., Computational) Hiding. For every (resp., PPT) R∗ the ensembles {viewR∗

(C(com, 0), R∗) (1n)}n∈N and {viewR∗(C(com, 0), R∗) (1n)}n∈N are statistically (resp., compu-
tationally) indistinguishable, where viewR∗ (C(com, b), R∗) denotes the view of R∗ in the commit
stage interacting with C(com, b).

Statistical (resp., Computational) Binding. For every (resp., PPT) C∗, there exists a negligi-
ble function ε such that the malicious sender C∗ succeeds in the following game with probability
at most ε(n): On security parameter 1n, C∗ interacts with R in the commit stage obtaining the
transcript c . Then C∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the opening phase,
R(0, d0, c) = R(1, d1, c) = accept.

It will be helpful to consider commitment schemes in which the committer and receiver take
an additional common input, denoted by σ. This additional common input is drawn fresh for each
execution from a speci�ed distribution. In our case, this additional common input is always drawn
from the uniform distribution of appropriate length. We will denote such commitment schemes with
Com = (C,R)(σ). The properties of De�nition 6 are required to hold over the random choice of σ.
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De�nition 7 (Straight-line Equivocal Commitment Scheme.). A commitment scheme Com =
(C,R)(σ) with common input σ, is a straight-line equivocal commitment scheme if there exists
a straight-line strict polynomial-time simulator S = (S1,S2,S3) such that for any b ∈ {0, 1}, and
for all PPT R∗, the output of the following two experiments is computationally indistinguishable:

Experiment ExpC
R∗(n) : Experiment ExpSR∗(n):

σ
$← {0, 1}`(n); (σ̃, state1)

$← S1(1n);
((c, d), c)← 〈C(com, b),R∗(recv)〉(σ); (state2, c̃)← 〈S2(state1),R∗(recv)〉(σ̃);

return R∗(σ, b, c, d)〉; d̃← S3(σ, state2, b); return R∗(σ̃, c̃, b, d̃);

Note that in this de�nition, the veri�cation of the receiver R is computed upon the common input
also.

De�nition 8 (Straight-line Extractable Commitment Scheme in the Malicious PUF model). A
commitment scheme Com = (C,R) is a straight-line extractable commitment scheme in the malicious
PUF model if there exists a straight-line strict polynomial-time extractor E that, having on-line access
to the queries made by any PPT malicious committer C∗ to the PUFs sent by the honest receiver
R, and running only the commitment phase, it outputs a bit b? such that:

- (simulation) the views viewC∗(C
∗(com, ?),R(recv)) and viewC∗(C

∗(com, ?),E) are identical;
- (extraction) let c be the transcript obtained from the commitment phase run between C∗ and E.

If c is accepting then b? 6= ⊥.
- (binding) if b? 6= ⊥ the probability that C∗ decommit to a bit b 6= b? is negligible.

A.2 Statistical Zero-Knowledge Argument of Knowledge

A polynomial-time relation R is a relation for which it is possible to verify in time polynomial in
|x| whether R(x,w) = 1. Let us consider an NP-language L and denote by RL the corresponding
polynomial-time relation such that x ∈ L if and only if there exists w such that RL(x,w) = 1. We
will call such a w a valid witness for x ∈ L. We will denote by Probr[ X ] the probability of an
event X over coins r.

Interactive proof/argument systems with e�cient prover strategies. An interactive proof
(resp., argument) system for a language L is a pair of probabilistic polynomial-time interactive
algorithms P and V , satisfying the requirements of completeness and soundness. Informally, com-
pleteness requires that for any x ∈ L, at the end of the interaction between P and V , where P has
as input a valid witness for x ∈ L, V rejects with negligible probability. Soundness requires that for
any x 6∈ L, for any (resp., any polynomial-sized) circuit P ∗, at the end of the interaction between
P ∗ and V , V accepts with negligible probability. We denote by out(〈P (w), V 〉(x)) the output of
the veri�er V when interacting on common input x with prover P that also receives as additional
input a witness w for x ∈ L. Moreover we denote by out(〈P ∗, V 〉(x)) the output of the veri�er V
when interacting on common input x with an adversarial prover P ∗.

Formally, we have the following de�nition.

De�nition 9. A pair of interactive algorithms 〈P (·), V (·)〉(·) is an interactive proof (resp., argu-
ment) system for the language L, if V runs in probabilistic polynomial-time and

1. Completeness: For every x ∈ L, |x| = n, and for every NP witness w for x ∈ L

Pr [ out(〈P (w), V 〉(x) = 1 ] = 1.
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2. Soundness (resp. computational soundness): For every (resp., every polynomial-sized) circuit
family {P ∗n}n∈N there exists a negligible function ε(·) such that

Pr [ out(〈P ∗n , V 〉(x)) = 1 ] < ε(|x|).

for every x 6∈ L of size n.

Argument of knowledge. Informally, a proof system is an argument of knowledge if for any
probabilistic polynomial-time interactive algorithm prover P ∗ that convinces an honest veri�er with
non-negligible probability, there exists a probabilistic polynomial-time algorithm called the extrac-
tor, that outputs a valid witness for the statement proved by P ∗ with roughly equivalent probability.
Formally, we have the following de�nition.

De�nition 10. (adapted from [BG93] with negligible knowledge error) A proof (resp., argument)
system 〈P (·), V 〉(x) for an NP-language L is a proof (resp., argument) system of knowledge if
there exists a probabilistic polynomial-time algorithm E such that for every (resp., every polynomial-
sized) circuit family {P ∗n}n∈N , there exists a negligible function ε such that for any x of size n, if
Pr [ out(〈P ∗n , V 〉(x)) = 1 ] = p(|x|), then Pr

[
w ← EP

∗
n(x)(x) : RL(x,w) = 1

]
= p(|x|) − ε(|x|) and

the expected running time of E is polynomial in |x|.

Zero knowledge. The classical notion of zero knowledge has been introduced in [GMR89]. In a
zero-knowledge argument system a prover can prove the validity of a statement to a veri�er without
releasing any additional information. This concept is formalized by requiring the existence of an
expected polynomial-time algorithm, called the simulator, whose output is indistinguishable from
the view of the veri�er.

De�nition 11. An interactive argument system 〈P (·, ·), V (·)〉 for a language L is computational
(resp., statistical, perfect) zero-knowledge if for all polynomial-time veri�ers V ∗, there exists an
expected polynomial-time algorithm S such that the following ensembles are computationally (resp.,
statistically, perfectly) indistinguishable:

viewV ∗((P (w), V ∗(z))(x))x∈L,w∈W (x),z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ .

A.3 The UC framework and the Ideal Functionalities

For simplicity, we de�ne the two-party protocol syntax, and then informally review the two-party
UC-framework, which can be extended to the multi-party case. For more details, see [Can01].

Protocol syntax. Following [GMR89] and [Gol01], a protocol is represented as a system of prob-
abilistic interactive Turing machines (ITMs), where each ITM represents the program to be run
within a di�erent party. Speci�cally, the input and output tapes model inputs and outputs that are
received from and given to other programs running on the same machine, and the communication
tapes model messages sent to and received from the network. Adversarial entities are also modeled
as ITMs.

The construction of a protocol in the UC-framework proceeds as follows: �rst, an ideal func-
tionality is de�ned, which is a �trusted party� that is guaranteed to accurately capture the desired
functionality. Then, the process of executing a protocol in the presence of an adversary and in a
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given computational environment is formalized. This is called the real-life model. Finally, an ideal
process is considered, where the parties only interact with the ideal functionality, and not amongst
themselves. Informally, a protocol realizes an ideal functionality if running of the protocol amounts
to �emulating� the ideal process for that functionality.

Let Π = (P1, P2) be a protocol, and F be the ideal-functionality. We describe the ideal and real
world executions.

The real-life process. The real-life process consists of the two parties P1 and P2, the environment
Z, and the adversary A. Adversary A can communicate with environment Z and can corrupt any
party. When A corrupts party Pi, it learns Pi's entire internal state, and takes complete control
of Pi's input/output behavior. The environment Z sets the parties' initial inputs. Let REALΠ,A,Z
be the distribution ensemble that describes the environment's output when protocol Π is run with
adversary A.

We also consider a G-hybrid model, where the real-world parties are additionally given access to
an ideal functionality G. During the execution of the protocol, the parties can send inputs to, and
receive outputs from, the functionality G. We will use REALGΠ,A,Z to denote the distribution of the
environment's output in this hybrid execution.

The ideal process. The ideal process consists of two �dummy parties� P̂1 and P̂2, the ideal func-
tionality F , the environment Z, and the ideal world adversary Sim, called the simulator. In the ideal
world, the uncorrupted dummy parties obtain their inputs from environment Z and simply hand
them over to F . As in the real world, adversary Sim can corrupt any party. Once it corrupts party
P̂i, it learns P̂i's input, and takes complete control of its input/output behavior. Let IDEALFSim,Z
be the distribution ensemble that describes the environment's output in the ideal process.

De�nition 12. (UC-Realizing an Ideal Functionality) Let F be an ideal functionality, and Π be a
protocol. We say Π realizes F in the G-hybrid model if for any hybrid-model PPT adversary A,
there exists an ideal process expected PPT adversary Sim such that for every PPT environment Z,

IDEALFSim,Z ∼ REALGΠ,A,Z

Oblivious Transfer Functionality. Oblivious Transfer (OT) is a two-party game in which a
sender holds a pair of strings (s0, s1), and a receiver needs to obtain one string according to its
input bit b. The transfer of the desired string is oblivious in the sense that the sender does not
know the string obtained by the receiver, while the receiver obtaining one string gains no information
about the other one. The OT Functionality FOT is shown in Fig. 4.

Functionality FOT

FOT running with an oblivious sender S a receiver R and an adversary Sim proceeds as follows:
• Upon receiving a message (send, sid, s0, s1,S,R) from S where each s0, s1 ∈ {0, 1}n, record the

tuple (sid,s0, s1) and send (send, sid) to R and Sim. Ignore any subsequent send messages.
• Upon receiving a message (receive, sid, b) from R, where b ∈ {0, 1} send (sid, sb) to R and

Sim and halt. (If no (send,·) message was previously sent do nothing).

Figure 4: The Oblivious Transfer Functionality FOT.
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Commitment Functionality. The ideal functionality for Commitment Scheme as presented
in [CF01], is depicted in Fig. 5. Such de�nition captures the hiding and binding property de�ned
in De�nition 6.

Functionality Fcom

Fcom running with parties P1, . . . , Pm and an adversary Sim proceeds as follows:
• Commitment Phase: Upon receiving a message (commit, sid, Pi, Pj , b) from Pi where
b ∈ {0, 1}, record the tuple (sid, Pi, Pj , b) and send the message (receipt, sid, Pi, Pj) to Pj
and Sim. Ignore any subsequent commit messages.

• Decommit Phase: Upon receiving (open,sid, Pi, Pj) from Pi, if the tuple (sid, Pi, Pj , b) is
recorded then send (open,sid, Pi, Pj , b) to Pj and to Sim and halt. Otherwise halt.

Figure 5: The Commitment Functionality Fcom.

A.4 Security in presence of Malicious Adversary in the Stand-alone Model

In this paragraph we recall the de�nition of security in presence of malicious adversary in the stand-
alone model. The security in the stand-alone model is de�ned as a comparison of the output of two
experiments, the real-life experiment and the ideal process, as for the UC-model in Section A.3,
except that, in the stand-alone model there is no environment Z. In this weaker model, REALΠ,A is
de�ned as the output pair of the honest party and the adversary A from the real-life execution of Π
(instead of the real-time view of the environment Z), while IDEALFSim, is de�ned as the output pair
of the honest party and the ideal adversary Sim from the above ideal execution. In the following
de�nition for simplicity of notation, we use the same notation used for de�nition of UC-security.

De�nition 13. (Security in presence of Malicious adversary in the Stand-alone Model). Let F be
an ideal functionality, and Π be a protocol. We say Π securely computes F with abort in presence
of malicious adversary, if for any non-uniform adversary PPT A, there exists a non-uniform PPT
ideal process adversary Sim such that

IDEALFSim ∼ REALΠ,A

Stand-alone Secure Statistical Receiver Oblivious Transfer. A statistical receiver OT is an
Oblivious Transfer protocol in which the security of the receiver is preserved statistically, and is one
of the ingredients of our constructions: Comshext and Comequiv. One can obtain a statistical receiver
string OT protocol from any statistical sender bit OT protocol as follows. First, from bit statistical
sender OT obtain a bit statistical receiver OT, by applying the OT-reverse transformation shown by
Wolf and Wullschleger in [WW06]. Then, obtain string statistical receiver OT from bit statistical
receiver OT, by using the technique shown by Brassard et al. in [BCR86]. Finally note that a
construction for stand-alone statistical sender bit OT is provided by Lindell and Hazay in [HL10]
under the DDH assumption. In the rest of the paper we will write statistical receiver OT to refer
to a stand-alone secure OT protocol in which the security of the receiver is preserved statistically.
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B Sub-Protocols

In this section we show the main ingredients of Protocol Comuc, i.e., Protocol Comshext and Protocol
Comequiv. For simplicity, in this section we use the following informal notation. We refer to a PUF
created by party A as PUFA, and we denote by v ← PUFA(q) the evaluation of the PUF PUFA on
challenge q. An example of the formal notation involving the invocation of the ideal functionality
FPUF is provide in Section D.

B.1 Statistically Hiding Straight-line Extractable Commitment Scheme.

Let ComSH = (CSH,RSH) be a Statistically Hiding string commitment scheme, (SOT,ROT) be a sta-
tistical receiver OT protocol (namely, an OT protocol where the receiver's privacy is statistically pre-
served). Let (P, V ) be a Statistical Zero Knowledge Argument of Knowledge (SZKAoK) for the fol-
lowing relation: Rcom = {(c, (s, d)) such that RSH(c, s, d) = 1}. Protocol Comshext = (Cshext,Rshext)
is depicted in Fig.6.

Committer's Input: Bit b ∈ {0, 1}.
Commitment Phase

Rshext : Initialize PUFR.

1. obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).
3. handover PUFR to Cshext.

Rshext ⇔ Cshext : (OT phase)
〈SOT(q0, q1),ROT(b)〉 is run by Rshext as SOT with input (q0, q1), and Cshext as ROT with input
b. Let q′b be the local output of Cshext.

Cshext : a′b ← PUFR(q′b). If PUFR aborts, a′b
$← {0, 1}n.

Cshext ⇔ Rshext : (Statistically Hiding Commitment)
((c, d), c)← 〈CSH(com, a′b),RSH(recv)〉 is run by Cshext as CSH to commit to a′b, and by Rshext

as RSH.

Cshext ⇔ Rshext : (SZKAoK)
〈P (d, a′b), V 〉(c) is run by Cshext playing as prover P for the theorem (c, (c, d)) ∈ Rcom and
by Rshext playing as veri�er V on input c. If the proof is not accepting, Rshext aborts.

Decommitment Phase

Cshext : if PUFR did not abort, send opening (d, a′b, b) to Rshext.

Rshext : if RSH(c, a′b, d) = 1 and FuzRep(a′b, pb) = stb then accept. Else reject.

Figure 6: Statistically Hiding Straight-line Extractable Bit Commitment Scheme (Cshext,Rshext).
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Theorem 3. If ComSH = (CSH,RSH) is a statistically-hiding commitment scheme, (SOT,ROT) is
a statistical receiver OT protocol and (P, V ) is a SZKAoK, then Comshext is a statistically hiding
straight-line extractable bit commitment scheme in the malicious PUFs model.

Proof. Completeness. Before delivering its own PUF PUFR, Rshext queries it with a pair of random
challenges (q0, q1) and gets answers (a0, a1). To commit to a bit b, Cshext has to commit to the output
ab of PUFR.

By the completeness of the OT protocol, Cshext obtains the query qb corresponding to its secret
bit. Then Cshext queries PUFR with qb and commits to the response a′b running CSH. Furthermore,
Cshext proves using SZKAoK the knowledge of the opening. By the completeness of SZKAoK and
ComSH the commitment phase is concluded without aborts. In the opening phase, Cshext sends b
and opens the commitment to a′b, and Rshext checks whether the string a′b matches the answer ab
obtained by its own PUF applying the fuzzy extractor. By the response consistency property, Rshext

gets the correct answer and accept the decommitment for the bit b.

Statistically Hiding. We show that, for all R∗shext it holds that:

viewR∗shext
(Cshext(com, 0),Rshext)

S≡ viewR∗shext
(Cshext(com, 1),R∗shext).

This follows from the statistical security of the three sub-protocols run in the commitment phase
by Cshext. More speci�cally, recall that the view of R∗shext in the commitment phase consists of the
transcript of the execution of the OT protocol (SOT,ROT), the transcript of the Statistically Hiding
commitment scheme ComSH and the transcript of the execution of the SZKAoK protocol. The
proof goes by hybrids.

H0: In this hybrid the sender Cshext commits to bit 0. Namely, it plays the OT protocol with the bit
0 to obtain q′0, then it queries the malicious PUF∗R to obtain a string a′0, then it commits to a′0
executing CSH and �nally it runs the honest prover P to prove knowledge of the decommitment.

H1: In this hybrid, Cshext proceeds as in H0, except that it executes the zero knowledge protocol by
running the zero knowledge simulator S. By the statistical zero knowledge property of (P, V ),
hybrids H0 and H1 are statistically indistinguishable.

H2: In this hybrid, Cshext proceeds as in H1, excepts that it runs CSH to commit to a random string
s instead of a′0. By the statistically hiding property of protocol ComSH, hybrids H1 and H2

are statistically indistinguishable.

H3: In this hybrid, Cshext proceeds as inH2, except that in OT protocol it plays with bit 1, obtaining
query q′1. By the receiver security of protocol (SOT,ROT), hybrids H2 and H3 are statistically
indistinguishable.

H4: In this hybrid, Cshext proceeds as in H3, except that here it queries the PUF with string q′1 to
obtain a′1 (however it still commits to the random string s). If the PUF∗R aborts, then Cshext

sets a′1 ← {0, 1}l. Note that any malicious behavior does not e�ect the transcript generated
in H4. Thus, hybrids H3 and H3 are identical.

H5: In this hybrid, Cshext proceeds as in H4 except that it commits to the string a′1. By the statisti-
cally hiding property of protocol ComSH, hybrids H4 and H5 are statistically indistinguishable.
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H6: In this hybrid, Cshext proceeds as in H5, except that it executes the zero knowledge protocol
running as the honest prover P . By the statistical zero knowledge property of (P, V ), hybrids
H5 and H6 are statistically indistinguishable.

By observing that hybrid H0 corresponds to the case in which Cshext commits to 0 and hybrid
H6 corresponds to the case in which Cshext commits to 1, the hiding property is proved.
Straight-line Extractability. To prove extractability we show a straight-line strict polynomial-
time extractor E that satis�es the properties required by De�nition 8. Recall that, in the com-
mitment scheme Comshext, the sender basically commits to the answer ab received from PUFR. By
the unpredictability of PUF, the sender needs to get the right query qb from Rshext in order to
obtain the value to commit to. Such qb is obliviously retrieved by Cshext running OT with the bit
b. The strategy of the extractor, that we show below, is very simple. It consists of running the
commitment phase as the honest receiver, and then looking at the queries made by C∗shext to PUFR
to detect which among q0, q1 has been asked and thus extract the bit. The extraction of the bit
fails when one of the following two cases happens. Case Fail1: the set of queries contains both
(q0, q1) (or at least a pair that is within their hamming distance); in this case E cannot tell which is
the bit played by C∗shext and therefore outputs ⊥. By the sender's security of OT this case happens
only with negligible probability. Case Fail2: the set of queries does not contain any query close
(within hamming distance) to neither q0 nor q1. This is also a bad case since E cannot extract any
information. However, if there exists such a C∗shext that produces an accepting commitment without
querying the PUF in the commitment phase (but perhaps it makes queries in the decommitment
phase only) then, given that responses of honest PUFs are unpredictable, one can break either
the binding property of the underlying commitment scheme ComSH or the argument of knowledge
property of (P, V ). The formal description of E is given below. Formal arguments follow.

Extractor E

Commitment Phase. Run the commitment phase following the honest receiver procedure. We
denote by (q0, q1) the queries made by the extractor E to the honest PUF before delivering it
to C∗shext. E uses such a pair when running as SOT in OT protocol. If all sub-protocols (OT,
ComSH,SZKAoK) are successfully completed go the extraction phase. Else, abort.

Extraction phase. Let Q be the set of queries asked by C∗shext to PUFR during the commitment
phase.

Fail1. If there exists a pair q′0, q
′
1 ∈ Q such that disham(q0, q

′
0) ≤ dmin and disham(q1, q

′
1) ≤ dmin,

output b? = ⊥.
Fail2. If for all q′ ∈ Q it holds that disham(q0, q

′) > dmin and disham(q1, q
′) > dmin, output

b? = ⊥.
Good. 1. If there exists q′ ∈ Q such that disham(q0, q

′) ≤ dmin then output b? = 0.
2. If there exists q′ ∈ Q such that disham(q1, q

′) ≤ dmin then output b? = 1.

The above extractor E satis�es the following three properties.
Simulation. E follows the procedure of the honest receiver Rshext. Thus the view of C∗shext playing
with E is identical to the view of C∗shext playing with Rshext.
Extraction. Let τc the transcript of the commitment phase. For the extraction property we have
to show that if τc is accepting, then the probability that E outputs ⊥ is negligible. Note that E
outputs ⊥ if and only if one of the event between Fail1 and Fail2 happens. Thus,
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Pr [ b? = ⊥ ] = Pr [ Fail1 ] + Pr [ Fail2 ]

In the following we show that, if τc is accepting, then Pr [ b? = ⊥ ] is negligible by showing
separately that Pr [ Fail1 ] and Pr [ Fail2 ] are negligible.

Lemma 1 (Pr [ Fail1 ] is negligible). If (SOT,ROT) is an Oblivious Transfer protocol, then Pr [ Fail1 ]
is negligible.

Proof. Assume that there exists a PPT C∗shext such that event Fail1 happens with non-negligible
probability δ. Then it is possible to construct R∗OT that uses C∗shext to break the sender's security
of the OT protocol. R∗OT interacts with an external OT sender SOT, on input auxiliary information
z = (s0, s1), while it runs C∗shext internally. R

∗
OT initializes and sends PUFR to C∗shext, then it runs the

OT protocol forwarding the messages received from the external sender SOT to C∗shext and vice versa.
When the OT protocol is completed, R∗OT continues the internal execution with C∗shext emulating the
honest receiver. When the commitment phase is successfully completed, R∗OT analyses the set Q of
queries made by C∗shext to PUFR. If there exists a pair (q′0, q

′
1) within hamming distance with strings

(s0, s1) then R∗OT outputs (s0, s1), therefore breaking the sender's security of OT with probability
δ (indeed, there exists no simulator that can simulate such attack since in the ideal world Sim
gets only one input among (s0, s1)). Since by assumption (SOT,ROT) is a stand-alone secure OT
protocol, δ must be negligible.

Lemma 2 (Pr [ Fail2 ] is negligible). Assume that τc is an accepting transcript. If ComSH =
(CSH,RSH) is a commitment scheme and if (P, V ) is a SZKAoK then Pr [ Fail2 ] is negligible.

Proof. If transcript τc is accepting then it holds that C∗shext in the decommitment phase will send a
tuple (b, d, a′b) for which, given τc, the receiver Rshext accepts, i.e., the opening (d) of the statistically
hiding commitment is valid and corresponds to an answer (a′b) of PUFR upon one of the queries
played by the Rshext in the OT protocol. Formally, RSH(c, a′b, d) = 1 and FuzRep(a′b, pb) = stb.

Toward a contradiction, assume that Pr [ Fail2 ] = δ and is not-negligible. Recall that the event
Fail2 happens when C∗shext successfully completed the commitment phase, without querying PUFR
with any of (q0, q1). Given that τc is accepting, let (b, d, a′b) be an accepting decommitment, we
have the following cases:

1. C∗shext honestly committed to the correct a′b without having queried PUFR. By the unpre-
dictability of PUFR we have that this case has negligible probability to happen.

2. C∗shext queries PUFR in the decommitment phase to obtain the value a′b to be opened. Thus
C∗shext opens commitment c (sent in the commitment phase) as string a′b. We argue that by
the computational binding of ComSH and by the argument of knowledge property of (P, V )
this case also happens with negligible probability.
First, we show and adversary C∗SH that uses C∗shext as a black-box to break the binding of
the commitment scheme ComSH with probability δ. C∗SH runs C∗shext internally, simulating
the honest receiver Rshext to it, and forwarding only the messages belonging to ComSH to
an external receiver RSH, and vice versa. Let c denote the transcript of ComSH. When the
commitment phase of Comshext is successfully completed, and therefore C∗shext has provided an
accepting proof for the theorem (c, ·) ∈ Rcom, C∗SH runs the extractor EP associated to the
protocol (P, V ). By the argument of knowledge property, EP , having oracle access to C∗shext,
extracts the witness (ãb, d̃) used by C∗shext to prove theorem c ∈ Rcom w.h.p. If the witness
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extracted is not a valid decommitment of c, then C∗shext can be used to break the soundness
of (P, V ).
Else, C∗SH proceeds to the decommitment phase, and as by hypothesis of Lemma 2, since the
commitment τc is accepting, C

∗
shext provides a valid opening (ab, d).

If (ãb, d̃) 6= (ab, d) are two valid openings for c then C∗SH outputs such tuple breaking the
binding property of ComSH with probability δ.
If (ãb, d̃) = (ab, d) with non-negligible probability, then consider the following analysis. By
assumption, event Fail2 happens when C∗shext does not query PUFR with none among (q0, q1).
By the unpredictability property, it holds that without querying the PUF, C∗shext cannot guess
the values ab, thus w.h.p. the commitment c played by C∗shext in the commitment phase, does
not hide the value ab. However, since the output of the extraction is a valid opening for
ab, then it must have been the case that in one of the rewinding attempts of the black-box
extractor EP , C

∗
shext has obtained ab by asking PUFR. Indeed, upon each rewind EP very

luckily changes the messages played by the veri�er of the ZK protocol, and C∗shext could choose
the queries for PUFR adaptively on such messages. However, recalling that EP is run by C∗SH
to extract from C∗shext, C

∗
SH can avoid such failure by following this strategy: when a rewinding

thread leads C∗shext to ask the PUF with query qb, then abort such thread and start a new
one. By noticing that in the commitment phase, C∗shext did not query the PUF with qb, we
have that, by the argument of knowledge property of (P, V ) this event happens again in the
rewinding threads w.h.p. Thus, by discarding the rewinding thread in which C∗shext asks for
query qb, C

∗
SH is still be able to extract the witness in polynomial time (again, if this was not

the case then one can use C∗shext to break the argument of knowledge property). With this
strategy, the event (ãb, d̃) = (ab, d) is ruled out.

Binding. Let b? = b0 the bit extracted by E, given the transcript τc. Assume that in the decommit-
ment phase C∗shext provides a valid opening of τc as b1 and b0 6= b1. If such an event happens, the the
following three events happened: 1) in the commitment phase C∗shext queried PUFR with query qb0
only; 2) in decommitment phase C∗shext queried PUFR with qb1 , let ab1 be the answer; 3)C∗shext opens
the commitment c (that is the commitment of the answer of PUFR received in the commitment
phase), as ab1 , but c was computed without knowledge of PUFR(qb1).

By the security of the OT protocol and by the computational binding of the commitment scheme
ComSH, the above cases happen with negligible probability. Formal arguments follow previous
discussions and are therefore omitted.

Lemma 3. Protocol Comshext is close under parallel repetition using the same PUF.

Sketch. The proof comes straightforwardly by the fact that all sub-protocols used in protocol
Comshext are close under parallel repetition. However, issues can arise when the same, possibly
malicious and stateful PUF, is reused. Note that, the output of the (malicious) PUF is statistically
hidden in the commitment phase and that it is revealed only in the decommitment phase. Thus,
any side information that is leaked by a dishonest PUF, cannot be used by the malicious creator,
before the decommitment phase. At the decommitment stage however, the input of the commit-
ter is already revealed, and no more information is therefore gained by the malicious party. We
stress out that re-usability is possible only when many instances of Comshext are run in parallel, i.e.,
only when all decommitment happen simultaneously. If decommitment phases are interleaved with
commitment phase of other sessions, then reusing the same PUF, allow the malicious creator to
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gain information about sessions that are not open yet. To see why, let i and j be two concurrent
executions. Assume that the commitment of i and j is done in parallel but session j is decommitted
before session i. Then, a malicious PUF can send information on the bit committed in the session
i through the string sent back for the decommitment of j.

Statistically Hiding Straight-line Extractable String Commitment Scheme. We obtain statistically
hiding straight-line extractable string commitment scheme, for n-bit string, by running n execution
of Comshext in parallel and reusing the same PUF. In the main protocol shown in Figure 2 we use
the same notation Comshext to refer to a string commitment scheme.

B.2 Statistically Binding Straight-line Extractable and Equivocal Commitment

Scheme.

Let l = rg(n) be the range of the PUF, (SOT,ROT) be a statistical receiver OT protocol and let
G : {0, 1}n → {0, 1}3n be a PRG. The commitment scheme that we present, takes as common input
a string r̄ = r1, . . . , rl, that is uniformly chosen in the set ({0, 1}3n)l. This string can be seen as l
distinct parameters for Naor's commitment, and indeed it is used to commit bit-by-bit to an l-bit
string (i.e., the answer received from the PUF). Our statistically binding straight-line extractable
and equivocal commitment scheme Comequiv = (Cequiv,Requiv) is depicted in Fig. 7.

Theorem 4. If G is a PRG and (SOT,ROT) is statistical receiver OT protocol, then Comequiv =
(Cequiv,Requiv) is a statistically binding straight-line extractable and equivocal commitment scheme
in the malicious PUFs model.

Proof. Completeness. It follows from the completeness of the OT protocol, the correctness of
Naor's commitment and the response consistency property of PUFs with fuzzy extractors. To
commit to the bit b, the sender Cequiv is required to commit to the answer of PUFR on input qb.
Therefore, Cequiv runs the OT protocol with input b and obtains the query qb and thus the value to
commit to using Naor's commitments. The correctness of OT guarantees that the consistency check
performed by Cequiv goes through. In the decommitment phase, the response consistency property
along with correctness of Naor, allow the receiver Requiv to obtain the string ab and in therefore the
bit decommitted to by Cequiv.

Straight-line Extractability.
Extractor E

Commitment Phase. Run the commitment phase following the honest receiver procedure: E
queries PUFR with (q0, q1) before delivering it to C∗equiv, and uses such a pair when running as
SOT in OT protocol. If OT protocol is not successfully completed then abort. Else, let Qprecom

be the set of queries asked by C∗equiv to PUFR before sending the commitments c1, . . . , cl to E.
Upon receiving such commitments, do as follows:

Fail1. If there exists a pair q′0, q
′
1 ∈ Qprecom such that disham(q0, q

′
0) ≤ dmin and disham(q1, q

′
1) ≤

dmin, output b
? = ⊥.

Fail2. If for all q′ ∈ Qprecom it holds that disham(q0, q
′) > dmin and disham(q1, q

′) > dmin, output
b? = ⊥.

Good. 1. If there exists q′ ∈ Qprecom such that disham(q0, q
′) ≤ dmin then output b? = 0;
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Committer's Input: Bit b ∈ {0, 1}. Common Input: r̄ = (r1, . . . , rl)
Commitment Phase

Requiv : Initialize PUFR;

1. obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).
3. handover PUFR to Cequiv;

4. choose random tape ranOT
$← {0, 1}∗.

Requiv ⇔ Cequiv : (OT phase)
〈SOT(q0, q1),ROT(b)〉 is run by Requiv as SOT with input (q0, q1) and randomness ranOT, while
Cequiv runs as ROT with input b. Let q′b be the local output of Cequiv, and τOT be the transcript
of the execution of the OT protocol.

Cequiv:(Statistically Biding Commitment)

1. a′b ← PUFR(q′b). If PUFR aborts, a′b
$← {0, 1}n.

2. for 1 ≤ i ≤ l, pick si
$← {0, 1}n, ci = G(si)⊕ (ri ∧ a′b[i]) a

3. send c1, . . . , cl to Requiv.

Requiv: upon receiving c1, . . . , cl, send ranOT, q0, q1 to Cequiv.

Cequiv: check if transcript τOT is consistent with (ranOT, q0, q1, b). If the check fails abort.

Decommitment Phase

Cequiv : if PUFR did not abort, send ((s1, . . . , sl), a
′
b), b to Rshext.

Requiv : if for all i, it holds that (ci = G(si) ⊕ (ri ∧ a′b[i]) and FuzRep(a′b, pb) = stb) then accept.
Else reject.

awhere (ri ∧ a′b[i])j = ri[j] ∧ a′b[i].

Figure 7: Statistically Binding Straight-line Extractable and Equivocal Commitment (Cequiv,Requiv).

2. If there exists q′ ∈ Qprecom such that disham(q1, q
′) ≤ dmin then output b? = 1;

Finally sends ranOT, q0, q1 to C∗equiv.
Simulation. E follows the procedure of the honest receiver Requiv. Thus the view of C∗equiv playing
with E is identical to the view of C∗equiv playing with Requiv.
Extraction. The proof of extraction follows from the same arguments shown in the proof of
Theorem 3, and it is simpler since in protocol Comequiv we use statistically binding commitments
(given that the common parameter r̄ is uniformly chosen).

Let τc the transcript of the commitment phase. For the extraction property we have to show
that if τc is accepting, then the probability that E outputs ⊥ is negligible. Note that E outputs ⊥
if and only if one event between Fail1 and Fail2 happens. Thus,
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Pr [ b? = ⊥ ] = Pr [ Fail1 ] + Pr [ Fail2 ]

By the sender's security property of the OT protocol, event Fail1 happens with negligible
probability. The formal proof follows the same arguments given in Lemma 1. Given that the
common parameter r̄ is uniformly chosen, we have that the Naor's commitments (i.e., c1, . . . , cl)
sent by C∗equiv in the commitment phase, are statistically binding. Thus, by the unpredictability
property of PUFs and the by the statistically biding property of Naor's commitment scheme, event
Fail2 also happens with negligible probability only.
Binding. Given that the common input r̄ is uniformly chosen, binding of Comequiv follows from
the statistically binding property of Naor's commitment scheme.
Straight-line Equivocality. In the following we show a straight-line simulator S = (S1,S2,S3)
and we prove that the view generated by the interaction between S and R∗equiv is computationally
indistinguishable from the view generated by the interaction between Cequiv and R∗equiv.

S1. (r̄ = r1, . . . , rl, state1)← S1(1ln):
For i = 1, . . . , l.

1. pick si0 ← {0, 1}n, αi0 ← G(si0);
2. pick si1 ← {0, 1}n, αi1 ← G(si1);
3. ri = αi0 ⊕ αi1.
Output r1, . . . , rl, state1 = {si0, si1}i∈l;

S2. (state2)← S2(state1):

- obtain PUF∗R from R∗equiv.

- run OT protocol with input a random bit b̃; if the OT protocol is not successfully completed,
abort.

- computes commitments as follows: for i = 1, . . . , l, c̃i ← G(si0). Send c̃1, . . . , c̃l to R∗equiv.
- Obtain (ranOT, q

′
0, q
′
1) from R∗equiv and check if the transcript τOT is consistent with it. If

the check fails, abort. Else, output state2 = {state1, (q
′
0, q
′
1)}.

S3. S3(state2, b):

- query PUF∗R with input q′b. If PUF
∗
R aborts, abort. Otherwise, let a′b denote the answer of

PUF∗R.
- for i = 1, . . . , l: send (siab[i], ab[i]) to R∗equiv.

Lemma 4. If (SOT,ROT) is a statistical receiver OT protocol and G is a pseudo-random generator,

then for all PPT R∗equiv it holds that, {out(Exp
Cequiv

R∗equiv
(n))} C≡ out{(ExpSR∗equiv

(n)}.

Proof. The proof goes by hybrids arguments.

H0. This is the real world experiment Exp
Cequiv

R∗equiv
.

H1. In this hybrid the common parameter r̄ is chosen running algorithm S1. The only di�erence
between experiment H0 and H1 is in the fact that in H1 each string ri ∈ r̄ is pseudo-random.
By the pseudo-randomness of PRG H0 and H1 are computationally indistinguishable.
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H2. In this hybrid, the commitments c1, . . . , cl are computed as in S2, that is, for all i, ci corresponds
to an evaluation of the PRG i.e., ci = G(si0), regardless of the bit that is committed. Then
in the decommitment phase the sender uses knowledge of si1, in case the i-th commitment
of a′b is the bit 1. (Each pair (si0, s

i
1) is inherited from the output of S1). The di�erence

between experiment H1 and experiment H2 is in the fact that in H2 all commitments are
pseudo-random, while in H1, pseudo-random values are used only to commit to bit 0. By the
pseudo-randomness of PRG, experiments H1 and H2 are computationally indistinguishable.
Note that in this experiment, the sender is not actually committing to the output obtained
by querying PUF∗R.

H3. In this experiment the sender queries PUF∗R on input qb only in the decommitment phase. The
only di�erence between this experiment and the previous one is that in H3, the sender is able
to detect if PUF∗R aborts, only in the decommitment phase. However, in experiment H2, if
the PUF aborts, the sender continues the execution of the commitment phase, committing to
a random string, ad aborts only in the decommitment phase. Therefore, hybrids H2 and H3

are identical.

H4. In this experiment, the sender executes the OT protocol with a random bit b̃, obtaining qb̃,
but it does not use such a query to evaluate PUF∗R. Instead it uses the string q′b received from
R∗equiv in the last round of the commitment phase.

We stress out that, due to the correctness of the OT protocol and to the statistical receiver's
security, the case in which R∗equiv plays the OT protocol with a pair (qb, qb̄) and then is able
to compute randomness ranOT and a di�erent pair ((q′b, qb̄) that are still consistent with the
transcript obtained in the OT execution, is statistically impossible . By the statistical receiver
security of the OT protocol, H3 and H4 are statistically indistinguishable.

H5. This is the ideal world experiment ExpSR∗equiv
.

C UC Security Proofs

C.1 Proof of Theorem 1

In this section we show that protocol Comuc = (Cuc,Ruc) depicted in Figure 2 is UC-secure, by
showing a PPT ideal world adversary Sim such that for all PPT environment Z, the view of the
environment in the ideal process is indistinguishable from the view of the environment in the real
process, in the FPUF hybrid model. Due to the straight-line extractability of Comshext and to the
straight-line extractability and equivocality of Comequiv, showing such an simulator Sim is almost
straightforward.

Receiver is corrupted. Let R∗uc a malicious receiver. We show a PPT simulator Sim whose output
is computational indistinguishable from the output obtained by R∗uc when interacting with the honest
committer Cuc. The goal of Sim is to use the straight-line equivocator S = (S1,S2,S3) associated
to protocol Comequiv. To accomplish that, Sim has to force the output of the coin �ipping, to the
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parameter generated by S1. Once this is done, then Sim can use S2 to complete the commitment
phase, and S3 to equivocate the commitment. In order to force the output of the coin �ipping, Sim
extracts the commitment of α sent by R∗uc so that it can compute β appropriately. The extraction
is done by running the extractor ECshext

associated to the protocol Comshext.

Commitment Phase

- Run (r̄, state1)← S1(1ln).
- Execute protocol Comshext by running the associated extractor ECshext

. If the output of the
extractor is ⊥, then abort. Else, let α? be the string extracted by ECshext

. Set β = r̄⊕α?,
and send β to R∗uc. If R

∗
uc aborts, then abort.

- When receiving the opening to α from R∗uc, if the opening is not accepting, or if α 6= α?

then abort.
- Execute the commitment phase of protocol Comequiv, on common input α ⊕ β = r̄, by

running S2(state1), and obtain state2 as local output.

Decommitment Phase

- On input the bit b. Execute the decommitment phase of protocol Comequiv by running
S3(state2, b).

- Output whatever Ruc outputs.

Lemma 5. For all PPT real-world malicious receiver R∗uc, for all PPT adversary Z, it holds that:

IDEALFcom
Sim,Z ∼ REALFPUF

Comuc,R∗uc,Z

Proof. It follows from the straight-line extractability of Comshext and from the straight-line equivo-
cality of Comequiv.

By the straight-line extractability of Comshext it holds that, with overwhelming probability, Sim
obtains the value α? that will be later opened by R∗uc, before it has to send the message β. Hence,
Sim is able to force the output of the coin �ipping to the value determined by S1. Then Sim just runs
the simulator S2 in the commitment phase, and S3 in the decommitment phase. By the straight-
line equivocality property of Comequiv the view generated by the interaction between R∗uc and Sim is
computationally indistinguishable from the view generated by the interaction between R∗uc and an
honest sender Cuc.

Committer is corrupted. In this case, the task of Sim is to extract the bit of the malicious
committer C∗uc already in the commitment phase. This task is easily accomplished by running
the straight-line extractor Eequiv associated to protocol Comequiv. However, note that the binding
property and thus the extractability property hold only when the common parameter r̄ is uniformly
chosen, while in protocol Comuc the common parameter is dictated by the coin �ipping.

However, by the statistically hiding property of Comshext, any unbounded adversary can not guess
α better than guessing at random. Therefore for any C∗uc the distribution of α⊕β is uniformly chosen
over {0, 1}3nl, and thus the statistically binding property of Comequiv still holds.

Commitment Phase

- Pick a random αln and executes Comshext as the honest receiver.
- Obtain β from C∗uc and let r = α⊕ β.
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- Execute protocol Comequiv by running the associated extractor Eequiv. If the extractor
aborts, abort. Else, let b? the output of Eequiv. Send (commit, sid,Cequiv,Requiv, b

?) to
Fcom

Lemma 6. For all PPT real-world malicious committer C∗uc, for all PPT adversary Z, it holds that:

IDEALFcom
Sim,Z ∼ REALFPUF

Comuc,C∗uc,Z

Proof. As mentioned before, the common input r̄ computed through the coin-�ipping, is uniformly
distributed. Therefore the binding and the extractability property of Comequiv hold. The simulator
runs protocol Comshext following the honest receiver, and runs the protocol Comequiv activating
the straight-line extractor associated. By the simulation property of the extractor, the transcript
generated by Sim is indistinguishable from the transcript generated by the honest receiver Ruc. From
the extraction property satis�ed by Eequiv, we have that Sim extracts the input bit of the adversary
C∗uc and plays it in the ideal functionality, w.h.p.

C.2 Proof of Theorem 2

Correctness. Consider the case when the receiver's input bit b is 0. The other case follows from
a similar argument. If both parties are honest, then it follows from the bounded noise and response
consistency properties that the protocol does not abort in the cut-and-choose phase. Let i be an
index that survives cut-and-choose, that is, i /∈ S. Let qi, ai, bi be the query, response and random
bit chosen for index i by the receiver, as de�ned in the protocol. Consider Step 5 of the protocol:
note that the q̂is computed by the sender are such that q̂bii = qi. Thus, m

0
i = s0

i ⊕ stbi , where stbi is
the output of the fuzzy extractor applied to the response of qi. From the reconstruction information
pbii , the receiver can compute stbii , and thus obtain the correct s0

i . In this way, receiver obtains all
the correct shares, and can reconstruct s0.

Malicious Sender. The simulator runs the protocol honestly with receiver's input bit as 0. How-
ever, it makes additional queries to learn the responses of both q0

ij
and q1

ij
from Step 5 of the

protocol. Thus, it can compute both st0ij and st
1
ij
and extract both the strings s0 and s1.

Malicious Receiver. The simulator SimuncOT starts an internal interaction with adversary R∗uncOT

and proceeds as follows:

1. SimuncOT plays the part of the sender and executes Steps 1-3 (i.e., till the end of cut-and-
choose) of the protocol honestly with R∗uncOT. Note that up to this point, sender's messages
do not depend on its input, so the simulator can reproduce this execution perfectly.

2. Let i1, . . . , ik be the indices not in S. The simulator receives bits b′i1 , . . . , b
′
ik
from the adversary,

and for 1 ≤ j ≤ k, does the following:

• query PUF sidSij with dij and obtain response daij .

• compute dstij ← FuzRep(dpij , daij ).
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• compute cij = b′ij ⊕ Parity(dstij ).

3. SimuncOT sets bit ĉ to the majority of ci1 , . . . , cik (ties are broken arbitrarily).

4. Simulator SimuncOT queries the ideal functionality with bit ĉ and obtains a string s. It chooses
a random string ŝ ∈ {0, 1}n and sets sĉ = s and s1−ĉ = ŝ. Then it runs Step 5 of the protocol
with the pair (s0, s1).

We �rst prove that for each 1 ≤ j ≤ k, the receiver knows only one of st0ij and st
1
ij
. This already

implies that the adversary learns only one of the sender's strings, while the other one remains
information-theoretically hidden. However, we must show that the adversary learns the same string
in both the real and ideal worlds - it should not be the case that in the real execution, the adversary
gets sc, while in the simulation it gets s1−c. We show that if the cut-and-choose succeeds, then with
high probability the simulator extracts the correct bit.

Let Q be the set of queries the adversary makes to PUF sidR. For a query q, we say �Q covers
q� if there exists q′ ∈ Q such that dis(q, q′) < dmin. The proof of the following claim appears
in [BFSK11] Appendix A, and we sketch it here for completeness.

Claim 1 (from [BFSK11]). For all j ∈ [k], with overwhelming probability, Q covers at most one of
q̂0
ij
and q̂1

ij
.

Proof. We �rst show that for a particular q′ ∈ Q, it can not be the case that both dis(q′, q̂0
ij

) < dmin

and dis(q′, q̂1
ij

) < dmin. Indeed, this would imply dis(x0
ij
, x1

ij
) < 2dmin, which happens with negligible

probability due to the well-spread domain property. The second case to consider is when two
di�erent queries in Q say q′ and q′′ are close to q̂0

ij
and q̂1

ij
. That is, dis(q′, q̂0

ij
) < dmin and

dis(q′′, q̂1
ij

) < dmin. However, this implies that dis(x0
ij
⊕ x1

ij
, q′ ⊕ q′′) < 2dmin. As the size of Q is

polynomial in the security parameter, and x0
ij
and x1

ij
are chosen randomly, the probability of this

happening is negligible. Thus, Q covers both q̂0
ij
and q̂1

ij
with negligible probability.

Fix receiver's message in Step 3(b). For 1 ≤ i ≤ 2k, set b̂i = 0 if Q covers q̂0
i , else set b̂i = 1 if Q

covers q̂1
i , else let b̂i =⊥. Let dai be response of query di to PUF sidSi . We call an index i ∈ [2k] �bad�

if b̂i 6= Parity(FuzRep(dai, dpi)). Let η be the number of bad indices , i.e., η = |{ i ∈ [2k] | i is bad. }|.
We bound the probability that the cut-and-choose succeeds and η ≥ γ, for some parameter γ. This
probability is upper bounded by the probability that cut-and-choose succeeds given η ≥ γ. This
probability, in turn, can be computed by counting the number of subsets of size k that do not
contain any of the γ bad indices. Thus, this probability is:

(
2k−γ
k

)(
2k
k

) =
(2k − γ)!

(k − γ)!

k!

(2k)!

=
k(k − 1) · · · (k − (γ − 1))

(2k)(2k − 1) · · · (2k − (γ − 1))

=

(
1− k

2k

)(
1− k

2k − 1

)
· · ·
(

1− k

2k − (γ − 1)

)
≤ e

−k
(

1
2k

+ 1
2k−1

+···+ 1
2k−(γ−1)

)
< e−γ/2.
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Setting γ = k/10, we get that the probability that the cut-and-choose succeeds and η ≥ k/10 is
at most e−k/20.

Now condition on the event that the cut-and-choose succeeds and the number of bad indices
is less than k/10. Let the bit ĉ extracted by the simulator in Step 3 be 0 (the case when ĉ = 1
is handled analogously). We will argue that in the real execution, s1 is information theoretically
hidden from the receiver. As the number of zeros in the sequence ci1 , . . . , cik is more than k/2, and
then number of bad indices in [2k] is at most k/10, there must exist an index ij such that (1) cij = 0
and, (2) ij is not bad. In fact, there will be a large number of such indices. Fix such an index ij .
Observe the following:

• Let ρ = Parity(FuzRep(daij , dpij )). As ij is not bad, we have that Q covers qρij , and not q1−ρ
ij

.

• As cij = 0, we have b′ij = ρ.

In the real execution, the sender prepares the message m1
ij

= s1
j ⊕ st

1−b′j
ij

= s1
j ⊕ st

1−ρ
ij

. As q1−ρ
ij

is not covered by Q, we have that in the real execution, st1−ρij
is information-theoretically hidden

from the adversary, which implies that the share s1
j is hidden, which in turn implies that s1 is

information-theoretically hidden.

D On Unconditional Security with Malicious PUFs

The formal description of the protocol (Cuncon,Runcon) is given in Figure 8. In the description of
the protocol, the (implicit) security parameter will be denoted by n, and we assume that FPUF is
parameterized with a PUF family P. Further, the parties also have access to a (m, `, t, ε)-fuzzy
extractor (FuzGen,FuzRep) of appropriate matching parameters such that ` = 3n.

Completeness of protocol (Cuncon,Runcon) follows from response consistency. We focus on hiding
and binding properties.

Lemma 7 (Hiding). For any malicious receiver R∗uncon, the statistical di�erence between the ensem-
bles

{ viewR∗(C(com, 0),R∗(recv))(1n) }n∈N and { viewR∗(C(com, 1),R∗(recv))(1n)) }n∈N
is negligible in n.

Proof. Let Q be the set of queries that the receiver R∗ makes to the committer's PUF sid and let q
be the query made by the committer before sending the PUF sid. First consider the case that there
exists q′ ∈ Q such that dis(q′, q) < dmin. As the receiver is polynomially bounded, the number of
queries in Q is a polynomial, say p(n). The total number of queries within a distance dmin of queries
in Q can be bounded by p(n)ndmin(n), which is a negligible fraction of 2n. Thus, this event happens
with negligible probability.

Now consider the case that q /∈ Q. By the extraction independence property, st is statistically
close to the uniform distribution, U`. As, for any string r, the distributions U` and r ⊕ U` are
identical, thus it follows from transitivity that the distributions st and st⊕ r are statistically close.
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Committer's Input: Bit b ∈ {0, 1}.
Commitment Phase

Cuncon ⇒ Runcon: Committer sends (initPUF, normal, sid,Cuncon) to FPUF and obtains
response (initializedPUF, sid). Committer uniformly selects a query q ∈ {0, 1}n
and sends (evalPUF, sid,Cuncon, q) and receives response (responsePUF, sid, q, a). Com-
mitter obtains (st, p) ← FuzGen(a), and sends p to Runcon. Committer sends
(handoverPUF, sid,Cuncon,Runcon) to FPUF.

Cuncon ⇐ Runcon: Receiver receives p′ from the committer and (handoverPUF, sid,Cuncon) from
FPUF. It uniformly chooses r ∈ {0, 1}` and sends it to the committer.

Cuncon ⇒ Runcon: If b = 0, committer sends y = st to the receiver. Else it sends y = r ⊕ st.

Decommitment Phase

Cuncon ⇒ Runcon: Committer sends (b, q) to receiver.

Runcon: Receiver receives (b′, q′) from the committer and sends (evalPUF, sid,Runcon, q
′) to FPUF

and obtains (responsePUF, sid, q
′, a′). It then computes st′ ← FuzRep(a′, p′). If b = 0, it

checks if st′ = y. Else, it checks if st′ = y ⊕ r. If the check passes, it accepts, else it rejects.

Figure 8: Unconditional Commitment (Cuncon,Runcon).

We now turn to the binding property. The proof follows a similar path as in the proof of statistical
binding in Naor's commitment [Nao89]. Informally11, Naor's argument counts the number of `bad'
strings in the range of the PRG. These are the strings r in the range of a PRG G(·) for which there
exist two seeds s0, s1 such that r = G(s0) ⊕ G(s1). For these strings r, equivocation is possible.
But because of the expansion property of PRG, the number of bad strings is small. Similarly, in
our proof of binding, we use the fact that we have set the parameters of the PUF family and fuzzy
extractor such that ` = 3n. We use the same arguments to de�ne `bad' strings and show that
because of expansion, their number is bounded. Care has to be taken to handle the fact that the
output of the PUF is noisy.

Lemma 8 (Binding). For any malicious committer C∗uncon, the probability that it wins in the binding
game of De�nition 6 is negligible in n.

Proof. Recall that we have chosen the parameters of the PUF family and fuzzy extractor such that
` = 3n. We can think of the adversary choosing the malicious PUF as picking a set of distributions
Dq1 , . . . ,DqN , where N = 2n. For a �xed p, call a string st ∈ {0, 1}` �heavy� if there exists query q
such that Pr [ FuzRep(p,Dq) = st ] ≥ 2− log2(n ).

Now we will show that the probability of the adversary breaking the binding is negligible. For
a �xed �rst message of the malicious committer, call a string r ∈ {0, 1}` `bad' if the probability
that the adversary breaks binding on receiving r in the second step of the protocol is at least
2−2 log2(n ). For this to happen, it must be the case that there exist heavy strings st0 and st1 such
that r = st0 ⊕ st1. Thus, to bound the number of bad strings in {0, 1}`, we simply need to bound

11The following assumes familiarity with Naor's commitment scheme [Nao89].
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the number of pairs of heavy strings. By the de�nition of heavy string, each query can produce at
most 2 log2(n ) heavy strings for one PUF. As the total number of queries is 2n, the total number of
pairs of heavy strings is bounded by 22(n+ log2(n )), which is a negligible fraction of 23n.
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E The Brzuska et.al. [BFSK11] Ideal Functionality FPUF

FPUF(rg, dnoise, dmin,m) receives as initial input a security parameter 1n and runs with parties
P1, . . . , Pn and adversary S.
• When a party Pi writes (initPUF, sid, Pi) on the input tape of FPUF, then FPUF checks whether
L already contains a tuple (sid, ∗, ∗, ∗, ∗):
- If this is the case, then turn into the waiting state.
- Else, draw id ← Sample(1n) from the PUF-family. Put (sid, id, Pi, ∗, notrans) in L and

write (initializedPUF, sid) on the communication tape of Pi.
• When party Pi writes (evalPUF, sid, Pi, q) on FPUF's input tape, check if there exists a tuple

(sid, id, Pi, notrans) in L.
- If not, then turn into waiting state.
- Else, run a ← Eval(1n, id, q). Write (responsePUF, sid, q, a) on Pi's communication input

tape.
• When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a tuple

(sid, ∗, Pi, notrans) in L.
- If not, then turn into waiting state.
- Else, modify the tuple (sid, id, Pi, notrans) to the updated tuple (sid, id,⊥, trans(Pj)).

Write (invokePUF, sid, Pi, Pj) on S's communication input tape.
• When the adversary sends (evalPUF, sid,S, q) to FPUF, check if L contains a tuple (sid, id,⊥
, trans(∗)).
- If not, then turn into waiting state.
- Else, run a← Eval(1n, id, q) and return (responsePUF, sid, q, a) to S.

• When S sends (readyPUF, sid,S) to FPUF, check if L contains the tuple (sid, id,⊥, trans(Pj)).
- If not found, turn into the waiting state.
- Else, change the tuple (sid, id,⊥, trans(Pj)) to (sid, id, Pj , notrans) and write

(handoverPUF, sid, Pi) on Pj 's communication input tape and store the tuple
(receivedPUF, sid, Pi).

• When the adversary sends (receivedPUF, sid, Pi) to FPUF, check if the tuple (receivedPUF, sid, Pi)
exists in L. If not, return to the waiting state. Else, write this tuple to the communication
input tape of Pi.

Figure 9: The ideal functionality FhPUF from Brzuska et.al. [BFSK11] .
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