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Abstract. In the last two decades, many computational problems arising in cryptography
have been successfully reduced to various systems of polynomial equations. In this paper,
we derive new complexity bounds for a class of polynomial systems introduced by Faugère,
Perret, Petit and Renault. Our analysis is based on the background heuristic assumption
that Gröbner basis algorithms terminate shortly after the first non trivial degree fall oc-
curs in the computation. We support this assumption in our case by new experimental data
for small parameters. Interestingly, our analysis generalizes previous work on HFE cryp-
tosystem. We then revisit the applications of these systems to the elliptic curve discrete
logarithm problem (ECDLP) for binary curves, to the factorization problem in SL(2,F2n)
and to other discrete logarithm problems. As a main consequence, we provide a heuristic
analysis showing that Diem’s variant of index calculus for ECDLP requires a subexponential

number of bit operations O(2c n2/3 logn) over the binary field F2n , where c is a constant
smaller than 2. According to our estimations, generic discrete logarithm methods are out-
performed for any n > N where N ≈ 2000, but elliptic curves of currently recommended
key sizes (n ≈ 160) are not immediately threatened. The analysis can be easily generalized
to other fields with “small” characteristic.

1 Introduction

While linear systems of equations can be efficiently solved with Gaussian elimination,
polynomial systems are much harder to solve in general. After their introduction by
Buchberger [15], Gröbner bases have become the most popular way to solve polynomial
systems of equations, in particular after the developement of fast algorithms like F4 [27]
and F5 [28]. Polynomial systems arising in cryptography tend to have a special structure
that simplifies their resolution. In the last twenty years, many cryptographic challenges
have been first reduced to polynomial systems of equations and then solved with fast and
sometimes dedicated Gröbner basis algorithms [52,46,32,41,13,23,24,34,14,33].

Our contribution

In this paper, we revisit a particular class of polynomial systems introduced by Faugère
et al. [36,37], together with their cryptographic applications. These systems naturally
arise by deploying a multivariate polynomial equation over an extension field into a
system of polynomial equations over the ground prime field (a technique commonly called
Weil descent). As pointed out in [36,37], the block structure (called multi-homogeneous
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structure in [37]) of the resulting equations may already lead to substantial complexity
improvements in practice.

Our first contribution is a new complexity analysis of these systems. We first observe
that the low degree equations identified in [36,37] provide very strong bounds on the first
fall degrees of the systems. For many classes of polynomial systems, experimental and
theoretical evidence show that the first fall degree provides a very good estimation of the
degree of regularity, which in turn determines the complexity of Gröbner basis algorithms.
Based on new experimental data for “small” parameters, we then explicitely assume that
the same is true for polynomial systems arising from a Weil descent and we immediately
deduce new (heuristic) complexity bounds for their resolution. Interestingly, we observe
that our bounds naturally generalize previous bounds obtained for HFE systems.

We then apply our analysis to an elliptic curve discrete logarithm algorithm of
Diem [22] in the case of binary fields [37]. After adapting and verifying our heuristic
assumption in this particular setting, we show (under the assumption) that the elliptic
curve discrete logarithm problem can be solved over the binary field F2n in subexponential
time

O(2c n
2/3 logn),

where c is a constant smaller than 2. For n prime, this problem was previously thought
to have complexity O(2n/2).

Finally, we discuss further applications of polynomial systems arising from a Weil
descent, including the factorization problem in SL(2,F2n), HFE and other discrete log-
arithm problems.

The great and various applications of polynomial systems arising from a Weil descent
make our analysis particularly useful to cryptography. Although we focus on charac-
teristic 2 in this paper, most of our results can be easily extended to other “small”
characteristics.

Outline

The remaining of this paper is organized as follows. Section 2 contains most of the nota-
tions and definitions used in the paper. Section 3 provides general background on alge-
braic cryptanalysis with Gröbner basis. Section 4 contains our new analysis of polynomial
systems arising from a Weil descent. The application to Diem’s algorithm is detailed in
Section 5 and other applications are discussed in Section 6. Finally, Section 7 concludes
the paper.

2 Definitions and notations

We mostly follow the notations introduced in [36]. For any “small” prime p and any
n ∈ Z, we write Fpn for the finite field with pn elements. We see the field Fpn as an
n-dimensional vector space over Fp and we let {θ1, . . . , θn} be a basis for Fpn/Fp. With
some abuses of notations, we use bold letters for all elements, variables and polynomials
over Fpn and normal letters for all elements, variables and polynomials over Fp.

If x1, . . . , xN are variables defined over a field K, we write R := K[x1, . . . , xN ] for
the ring of polynomials in these variables. Given a set of polynomials f1, . . . , f` ∈ R,



the ideal I(f1, . . . , f`) ⊂ R is the set of polynomials
∑`

i=1 gifi, where, g1, . . . , g` ∈ R.
We write Resxi(f1, f2) for the resultant of f1, f2 ∈ R with respect to the variable xi. A
monomial of R is a power product

∏k
i=1 x

ei
i where ei ∈ N. A monomial ordering for R is

an ordering > such that m1 > m2 ⇒ m1m3 > m2m3 for any monomials m1,m2,m3 and
m > 1 for any monomial m. The leading monomial LM(f) of a polynomial f ∈ R for a
given ordering is equal to its largest monomial according to the ordering. Its leading term
is the corresponding term. For any polynomial f ∈ R, we denote the set of monomials of
f by Mon(f).

We measure the memory and time complexities of algorithms by respectively the
number of bits and bit operations required. We write O for the “big O” notation: given
two functions f and g of n, we say that f = O(g) if there exist N, c ∈ Z+ such that
n > N ⇒ f(n) ≤ cg(n). Similarly, we write o for the “small o” notation: given two
functions f and g of n, we say that f = o(g) if for any ε > 0, there exists N ∈ Z such
that for any n > N , we have |f(n)| ≤ ε|g(n)|.

Finally, we write ω for the linear algebra constant. Depending on the algorithm used
for linear algebra, we have 2.376 ≤ ω ≤ 3.

3 Background on polynomial system resolution

Whereas linear systems can be solved with Gaussian elimination, polynomial systems of
equations are usually solved with Gröbner bases.

3.1 Gröbner basis algorithms

Let R be a polynomial ring and let > be a fixed monomial ordering for this ring. A
Gröbner basis [15,20] of an ideal I(f1, . . . f`) ⊂ R is a basis {f ′1, . . . , f ′`′} of this ideal such
that for any f ∈ I(f1, . . . f`), there exists i ∈ {1, . . . , `′} such that LT(f ′i)|LT(f).

The first Gröbner basis algorithm was provided by Buchberger in his PhD thesis [15].
Lazard [48] later observed that computating a Gröbner basis is essentially equivalent to
performing linear algebra on Macaulay matrices at a certain degree.

Definition 1 (Macaulay Matrix [49,50]). Let R be a polynomial ring over a field K
and let Bd := {m1 > m2 > · · · } be the sorted set of all monomials of degree ≤ d for a
fixed monomial ordering. Let F := {f1, . . . , f`} ⊂ R be a set of polynomials of degrees
≤ d. For any fi ∈ F and tj ∈ Bd such that deg(fi) + deg(tj) ≤ d, let gi,j := tjfi and
let cki,j ∈ K be such that gi,j =

∑
mk∈B c

k
i,jmk. The Macaulay matrix Md(F ) of degree

d is a matrix containing all the coefficients cki,j, such that each row corresponds to one
polynomial gi,j and each column to one monomial mk ∈ Bd.
The idea behind Lazard’s observation is linearization: new equations for the ideal are
constructed by algebraic combinations of the original equations, every monomial term
appearing in the new equations is treated as an independent new variable, and the system
is solved with linear algebra. Gröbner basis algorithms like F4 [27] and F5 [28] successively
construct Macaulay matrices of increasing sizes and remove linear dependencies in the
rows until a Gröbner basis is found. Moreover, they optimize the computation by avoiding
monomials tj that would produce trivial linear combinations such as f1f2 − f2f1 = 0.
The complexity of this strategy is determined by the cost of linear algebra on the largest
Macaulay matrix occuring in the computation.



3.2 Degree of regularity and first fall degree

The degree of the largest Macaulay matrix appearing in a Gröbner basis computation
with the algorithm F5 is called the degree of regularity Dreg. For a “generic” sequence of

polynomials f1, . . . , f` ∈ R (with ` ≤ n), this degree is equal to 1 +
∑`

i=1(deg(fi)−1) [7].
The degree of regularity can be precisely estimated in the case of regular and semi-
regular sequences [7,10] and (assuming a variant of Fröberg conjecture) in a few other
cases [30,12]. However, precisely estimating this value for other classes of systems (in
particular for the various structured systems appearing in cryptanalysis problems) may
be a very difficult task.

In practice, the degree of regularity may often be approximated by the first degree
at which a non trivial degree fall occurs during a Gröbner basis computation.

Definition 2. Let R be a polynomial ring over a field K. Let F := {f1, . . . , f`} ⊂ R be a
set of polynomials of degrees ≤ Dfirstfall. The first fall degree of F is the smallest degree
Dfirstfall such that there exist polynomials gi ∈ R with deg(fi) + deg(gi) ≤ Dfirstfall,

satisfying deg(
∑`

i=1 gifi) < Dfirstfall but
∑`

i=1 gifi 6= 0.

We have Dreg ≥ Dfirstfall. Experimental and theoretical evidences have shown in various
contexts that the two definitions often lead to very close numbers. This can intuitively be
explained by the observation that an extremely large number of relations with a degree
fall occur at the degree Dfirstfall or the degree Dfirstfall+1 in these contexts, and the low
degree relations can in turn be combined to produce lower degree relations [41]. Although
this is not true in general (counter-examples exist for HFE- [29]), it seems to be true for
“random systems” and many “random” instances of “cryptanalysis systems” including
HFE and its variants [32,41,25,23,24,12]. In fact, the first fall degree has even sometimes
been called degree of regularity in the cryptography community [25,23,24].

The new analysis of Faugère et al.’s systems presented in this paper relies on the
assumption that the two definitions also produce very close results for these particular
systems.

3.3 Algebraic cryptanalysis

Many polynomial systems arising in cryptanalysis are very far from generic ones. In
fact, their special structures often induce lower degrees of regularity, hence much better
time complexities. Gröbner basis techniques have successfully attacked many cryptosys-
tems, including HFE and its variants [52,46,32,41,13,23,24], the Isomorphism of Poly-
nomials [34,14] and some McEliece variants [33]. In many cases, the resolution of these
systems could be accelerated using dedicated Gröbner basis algorithms that exploited
the particular structures. As was first pointed out in [36,37], this is also the case for
polynomial systems arising from a Weil descent.

4 Polynomial systems arising from a Weil descent

Let n, n′,m be positive integers and let V be a vector subspace of F2n/F2 with dimension
n′. Let f ∈ F2n [x1, . . . ,xm] be a multivariate polynomial with degrees bounded by 2t− 1
with respect to all variables. In [36,37], Faugère et al. considered the following problem:

Find xi ∈ V, i = 1, . . . ,m, such that f(x1, . . . ,xm) = 0. (1)



The constraints xi ∈ V, i = 1, . . . ,m are called linear constraints. From now on, we
assume that mn′ ≈ n such that Problem (1) has about one solution on average. We also
assume n′ ≥ t.

The multilinear case (t = 1) was first considered in [36] and later extended in [37].
We observe that the monovariate case (m = 1) also appeared in the cryptanalysis of
HFE and its variants [32,41,23,25,12]. In these contexts, the linear constraints are trivial
(V = F2n) and the polynomial f has a special shape (it deploys as quadratic equations
over F2). Interestingly, we will see that the special form of f in HFE contexts has little
influence on the complexity of Problem (1).

4.1 Previous work by Faugère et al. [36,37]

Following [36,37], we reduce Problem (1) to a system of polynomial equations. We fix a
basis {θ1, . . . , θn} of F2n over F2 and a basis {vi|i = 1, . . . , n′} of V over F2. We define

m · n′ variables xij over F2 such that xi =
∑n′

j=1 xijvj and we group them into m blocks
of variables Xi := {xij |j = 1, . . . , n′}. By substituting each xi in f , decomposing in the
basis {θ1, . . . , θn} and reducing by the field equations x2ij − xij = 0, we obtain

0 = f(x1, . . . ,xm) = f

 n′∑
j=1

x1jvj, . . . ,

n′∑
j=1

xmjvj

 = [f ]↓1 θ1 + . . .+ [f ]↓n θn (2)

for some [f ]↓1 , . . . , [f ]↓n ∈ F2[x11, . . . , xmn′ ] that depend on f and on the vector subspace
V . Problem (1) can therefore be reformulated as finding a solution to the (algebraic)
system

[f ]↓1 = 0, . . . , [f ]↓n = 0. (3)

Due to the bounds on the degrees of f , the degrees of all polynomials [f ]↓k are bounded
by t with respect to all blocks of variables. The resolution of System (3) can therefore be
greatly accelerated using block-structured Gröbner basis algorithms [31,36,37].

Another very important observation made in [36,37] is that the ideal generated by
the equations of System (3) contains an abnormally high number of low degree equations
compared to generic systems. As an example of these equations, let us write the monomial
x1 as

∑n
i=1 [x1]↓i θi, where each polynomial [x1]↓i ∈ F2[x11, . . . , x1,n′ ] has degree 0 or 1.

Defining aijk ∈ F2 such that θiθj =
∑

k aijkθk, we obtain

x1f =

(
n∑
i=1

[x1]↓i θi

) n∑
j=1

[f ]↓j θj

 =
n∑

i,j,k=1

aijk [x1]↓i [f ]↓j θk.

Decomposing x1f according to the basis {θ1, . . . , θn}, we see that every polynomial [x1f ]↓k
can be written (modulo the field equations) as an algebraic combination of the polyno-
mials (3)

[x1f ]↓k =

n∑
i,j=1

aijk [x1]↓i [f ]↓j =

n∑
j=1

pik(x11, . . . , x1,n′) [f ]↓j (4)

where each polynomial pik(x11, . . . , x1,n′) :=
∑n

i=1 aijk [x1]↓i has degree 0 or 1. On the
other hand, since the polynomial x1f has degree at most 2t in the variable x1, the



degree of each polynomial [x1f ]↓i is still bounded by t with respect to every block of
variables Xi and its total degree is mt (instead of mt+1 as expected from Equation (4)).
Similarly deploying mf for various monomials m ∈ F2n [x1, . . . ,xn′ ], many more low
degree equations can be generated [36,37].

In [36,37], Faugère et al. mostly focused on the block structure to obtain efficiency
improvements on the resolution of System (3). They also attempted to linearize Sys-
tem (3) with the low degree equations, but they could only obtain loose bounds on the
complexity of Problem (1)1.

4.2 New experiments and heuristic assumption

In this paper, we follow a heuristic methodology commonly used to analyze HFE equa-
tions, that consists in approximating the degree of regularity of a particular system by its
first fall degree. In the more general setting of System (3), we formalize the assumption
as follows:

Assumption 1. For a random polynomial f and a random vector space V , the degree of
regularity and the first fall degree of System (3) are approximately equal. More precisely,
we have Dreg = Dfirstfall + o(Dfirstfall) with a high probability.

The first fall degree of System (3) is easily deduced from the low degree equations.

Proposition 1. The first fall degree of System (3) is at most mt+ 1.

Proof. By definition, the proof amounts to showing the existence of a polynomial g 6= 0
with degree at mostmt that can be written as g(x11, . . . , xmn′) =

∑n
i=1 pi(x11, . . . , xm,n′) [f ]↓i

for some polynomials pi ∈ K[x11, . . . , xmn′ ] of degree 1. In fact, Equation (4) shows that

we can take g := [x1f ]↓k for any k.

To validate Assumption (1), we experimentally study the degree of regularity of Sys-
tem (3) for various parameters n,m, n′, t. For every set of parameters, we generate a ran-
dom vector space V of dimension n′ and a random multivariate polynomial f(x1, . . . ,xm)
with degree bounded by 2t − 1 with respect to each variable. We then perform a Weil
descent on this polynomial, we append the field equations to the system and we apply
the Magma function Groebner to the result. We repeat each experiment three times. In
Table 1, we report the maximal degree D reached during the computation, as obtained
from the Verbose output of the Magma function.

For every parameter set, the maximal degree reached by Gröbner basis computations
on System (3) is much lower than the value that a generic system of equations (or even
a generic binary system of equations) with the same degrees will have [7,8,9]. In fact,
the maximal degree observed is either equal to mt + 1 or shortly larger than this value
for most parameter sets. When t = n′, this degree is sometimes even as small as mt,
probably due to a degenerency in the degrees of the original equations.

These experimental results provide good evidence that Assumption (1) is true, at
least for small parameters. An experimental verification for larger parameters quickly

1 The analysis of [36] turned out to be wrong since it ignored some linear dependencies between the low
degree equations. These vector dependencies were identified and the analysis was adapted in [37], but
the new bounds obtained in [37] are very loose, in particular compared to the experimental degrees
that we observe in Section 4.2.



Table 1: Maximal degree reached in Gröbner Basis experiments for generic polynomials
t n n′ m D

1 6 3 2 3
1 6 3 2 3
1 6 3 2 3

1 6 2 3 3
1 6 2 3 3
1 6 2 3 3

1 8 4 2 3
1 8 4 2 3
1 8 4 2 3

1 12 6 2 3
1 12 6 2 3
1 12 6 2 3

1 12 4 3 4
1 12 4 3 4
1 12 4 3 4

1 12 3 4 5
1 12 3 4 6
1 12 3 4 6

t n n′ m D

1 12 2 6 6
1 12 2 6 6
1 12 2 6 8

1 15 5 3 5
1 15 5 3 5
1 15 5 3 4

1 15 3 5 6
1 15 3 5 6
1 15 3 5 6

1 16 8 2 3
1 16 8 2 3
1 16 8 2 3

1 16 4 4 6
1 16 4 4 5
1 16 4 4 5

1 16 2 8 8
1 16 2 8 9
1 16 2 8 8

t n n′ m D

1 18 9 2 3
1 18 9 2 3
1 18 9 2 4

1 18 6 3 5
1 18 6 3 5
1 18 6 3 4

1 18 3 6 7
1 18 3 6 7
1 18 3 6 7

1 20 10 2 3
1 20 10 2 3
1 20 10 2 3

1 20 5 4 5
1 20 5 4 7
1 20 5 4 7

1 20 4 5 6
1 20 4 5 6
1 20 4 5 6

t n n′ m D

2 6 3 2 5
2 6 3 2 5
2 6 3 2 6

2 6 2 3 7
2 6 2 3 7
2 6 2 3 7

2 8 4 2 5
2 8 4 2 5
2 8 4 2 5

2 9 3 3 7
2 9 3 3 8
2 9 3 3 7

2 12 4 3 8
2 12 4 3 7
2 12 4 3 7

2 12 3 4 10
2 12 3 4 9
2 12 3 4 11

t n n′ m D

2 15 5 3 7
2 15 5 3 7
2 15 5 3 7

2 16 8 2 5
2 16 8 2 5
2 16 8 2 5

3 6 3 2 6
3 6 3 2 6
3 6 3 2 6

3 12 6 2 7
3 12 6 2 8
3 12 6 2 8

3 12 4 3 11
3 12 4 3 9
3 12 4 3 10

3 12 3 4 12
3 12 3 4 13
3 12 3 4 12

t n n′ m D

3 15 5 3 10
3 15 5 3 10
3 15 5 3 10

3 16 8 2 8
3 16 8 2 7
3 16 8 2 7

3 16 4 4 14
3 16 4 4 13
3 16 4 4 13

4 8 4 2 9
4 8 4 2 8
4 8 4 2 9

4 12 4 3 12
4 12 4 3 12
4 12 4 3 13

4 15 5 3 13
4 15 5 3 13
4 15 5 3 14

becomes a challenging computational task due to the high degrees of regularity involved.
The similarity of System (3) with HFE systems (for which a similar assumption has been
widely verified) provides further confidence on its validity.

4.3 Heuristic complexity bounds for Problem (1)

Provided that Assumption 1 holds, the complexity of Problem 1 simply follows from the
cost of linear algebra.

Proposition 2. Under Assumption 1, Problem 1 can be solved with standard Gröbner
basis algorithms (like F5) in time O(nωD) and memory O(n2D), where ω is the linear
algebra constant and D ≈ mt.

In the monovariate case, this estimation reduces to D ≈ t which perfectly matches known
cryptanalysis results on HFE algebraic systems [32,41]. Interestingly, the special shape of
HFE polynomials (they deploy to quadratic equations over F2) seems to have no impact
on the degree of regularity (although further restrictions on the shape may have an impact
as pointed out in [23]). In the multilinear case, the estimation provided by Proposition 2
becomes D ≈ m which matches to the experimental data of [36].

As observed in [36,37], the block structure of System (3) can be exploited to accelerate
its resolution. According to our analysis, the maximal degree appearing in the computa-
tion is approximately equal to the initial degree of Equations (3) and can be naturally
distributed among the m blocks. Therefore, a dedicated Gröbner basis algorithm can be
designed to exploit the sparsity induced by the block structure and reduce the time and
memory complexities of solving Problem (1).

Proposition 3. Under Assumption 1, Problem 1 can be solved with block Gröbner ba-
sis algorithms in time O((n′)ωD) and memory O((n′)2D), where ω is the linear algebra
constant and D ≈ mt.



Additional heuristic methods like the hybrid approach [11] may lead to substantial com-
plexity improvements in practice, as was described in [36] for the multilinear case.

To conclude this section, we remark that the analysis of HFE by Granboulan et al. [41]
can be easily adapted to provide an alternative analysis of Problem (1). We now turn to
the main application (so far) of this problem.

5 Index calculus for elliptic curves

As pointed out in [37], an instance of Problem (1) appears in the relation search step
of an index calculus algorithm for elliptic curves proposed by Diem [22]. Given a cyclic
(additive) group G, a generator P of this group and another element Q of G, the dis-
crete logarithm problem asks for computing an integer k such that Q = kP . Groups
typically used in cryptography include the multiplicative groups of finite fields and cyclic
subgroups of the Jacobian groups of elliptic and hyperelliptic curves. Index calculus
algorithms [47,26] with subexponential complexities have long been obtained for the mul-
tiplicative groups of finite fields [1,19,2,5,43] and more recently for the Jacobian groups of
hyperelliptic curves [3,39,38]. On the other hand, the best algorithms for solving elliptic
curve discrete logarithms remained generic algorithms until very recently.

In 2004, Semaev introduced his summation polynomials and identified their potential
application to build index calculus algorithms on elliptic curves [56] over prime fields
Fp. These ideas were independently extended by Gaudry [40] and Diem [21] to elliptic
curves over composite fields Fpn . Following this approach, Gaudry [40] and later Joux and
Vitse [44,45] obtained index calculus algorithms running faster than generic algorithms
for any p and any n ≥ 3. On the other hand, Diem [21,22] identified some families of
curves with a subexponential time index calculus algorithm by letting p and n grow
simultaneously in an appropriate way. As far as was known at the moment, the two
families of elliptic curves recommended by standards [51] (elliptic curves over prime
fields Fp or over binary fields F2n with n prime) remained immune to these attacks. In
2012, Faugère et al. [37] observed that the computation of the relations in an algorithm of
Diem for binary fields [22] could be reduced to special instances of Problem (1). Moreover,
they pointed out that the special structure of Problem (1) could be used to accelerate
its resolution. In this section, we follow [37] and apply our analysis of Problem (1) to the
relation search step of Diem’s algorithm.

5.1 Diem’s variant of index calculus

Let K be a finite field and let E be an elliptic curve over K defined by the equation

E : y2 + xy = x3 + x2 + a6 (5)

for some a6 ∈ F2n . Semaev’s summation polynomials Sr are multivariate polynomi-
als satisfying Sr(x1, . . . ,xr) = 0 for some x1, . . . ,xr ∈ K̄ if and only if there exist
y1, . . . ,yr ∈ K̄ such that (xi,yi) ∈ E(K̄) and (x1,y1)+· · ·+(xr,yr) = P∞ [56]. The sum-
mation polynomials of the curve (5) can be recursively computed as S2(x1,x2) := x2+x1,
S3(x1,x2,x3) := x1

2x2
2 + x1

2x3
2 + x1x2x3 + x2

2x3
2 + a6 and for any r ≥ 4, any

k, 1 ≤ k ≤ r − 3:

Sr(x1, . . . ,xr) := ResX (Sr−k(x1, . . . ,xm−k−1,X),Sk+2(xr−k, . . . ,xr,X)) (6)



For r ≥ 2, the polynomial Sr is symmetric and has degree 2r−2 in every variable xi [56].

Summation polynomials were used by Gaudry [40], Joux and Vitse [44] and Diem [21,22]
to compute relations in index calculus algorithms for elliptic curves over composite fields.
The following variant is due to Diem [22].

1. Factor Basis definition. Fix two integers m,n′ < n with mn′ ≈ n and a vector
space V ⊂ F2n/F2 of dimension n′. Let FV := {(x,y) ∈ E(K)|x ∈ V } be the factor
basis.

2. Relation search. Find about 2n
′

relations aiP + biQ =
∑m

j=1 Pij with Pij ∈ FV .
For each relation,

(a) Compute Ri := aiP + biQ for random integers ai, bi.

(b) Solve Semaev’s polynomial Sm+1(x1, . . . ,xm, (Ri)x) with the constraints xi ∈ V .

(c) If there is no solution, go back to (a).

3. Linear Algebra. Perform linear algebra on the relations to recover the discrete
logarithm value.

In previous works [40,21,22,44], a Weil descent was applied to Semaev’s polynomials and
the resulting systems were solved with resultants or Gröbner basis algorithms. In these
works, the complexity of the relation search step was derived from the complexity of
solving generic systems. However as pointed out in [36,37] and further demonstrated in
Section 4 of the present paper, polynomial systems arising from a Weil descent are very
far from generic ones.

5.2 A new complexity analysis

We now revisit Diem’s algorithm [22] and its analysis by [37] according to our new
analysis of Problem (1). Let n,m, n′ be integer numbers. Before starting Diem’s algo-
rithm, the (m + 1)th summation polynomial must be computed. Using Collins’ evalua-
tion/interpolation method [18] for the resultant of Equation (6), this can be done in time
approximately 2t1 where2

t1 ≈ m(m+ 1). (7)

We then compute about 2n
′
relations. To obtain these relations, we solve special instances

of Problem (1) where

f(x1, . . . ,xm) := Sm+1(x1, . . . ,xm, (aiP + biQ)x)

has degree 2m−1 with respect to every variable. Since Semaev’s polynomials are clearly
not random ones, the analysis requires to modify Assumption (1) as follows:

Assumption 2. Let E be an elliptic curve defined over the field F2n. Let V be a random
vector space of dimension n′ over F2 and let R be a random point on the curve. Let
f := Sm+1(x1, . . . ,xm, Rx) and let S be the corresponding System (3). For this system,
we have Dreg = Dfirstfall + o(Dfirstfall) with a high probability.

2 To compute Sm+1, we apply Collins’ algorithm on Sk where k = dm+3
2
e. This polynomial has degree

2d(m−1)/2e in each variable. Following Collins, Theorem 9, we have t1 ≤ 2(m + 1)m/2 = m(m + 1).



To validate this new assumption, we apply Diem’s algorithm to a randomly chosen
binary curve E : y2 + xy = x3 + a4x

2 + a6 defined over F2n , where n ∈ {11, 17}. We
first fix m ∈ {2, 3} and n′ := dn/me. We then generate a random vector space V of
dimension n′ and a random point R on the curve. As in Section 4.2, we finally use
the Groebner function of Magma to solve Semaev’s equation Sm+1(x1, . . . ,xm, Rx) = 0
with the linear constraints. We also do the same experiments with the Koblitz curve
E : y2 + xy = x3 + x2 + 1. The maximal degrees reached during the computation are
reported in Tables 2 and 3. The extra column T in this table corresponds to the degree
of the (m+ 1)th summation polynomial with respect to every variable.

Table 2: Maximal degree D reached in
Gröbner Basis experiments for Semaev’s
polynomials, random curves

n m n′ T t D

11 2 6 2 2 3
11 2 6 2 2 4
11 2 6 2 2 4

n m n′ T t D

11 3 4 4 3 7
11 3 4 4 3 7
11 3 4 4 3 7

n m n′ T t D

17 2 9 2 2 4
17 2 9 2 2 4
17 2 9 2 2 4

n m n′ T t D

17 3 6 4 3 9
17 3 6 4 3 8
17 3 6 4 3 7

Table 3: Maximal degree D reached in
Gröbner Basis experiments for Semaev’s
polynomials, E : y2 + xy = x3 + x2 + 1

n m n′ T t D

11 2 6 2 2 4
11 2 6 2 2 4
11 2 6 2 2 4

n m n′ T t D

11 3 4 4 3 7
11 3 4 4 3 7
11 3 4 4 3 7

n m n′ T t D

17 2 9 2 2 4
17 2 9 2 2 4
17 2 9 2 2 4

n m n′ T t D

17 3 6 4 3 9
17 3 6 4 3 8
17 3 6 4 3 8

The results provide good evidence in favor of Assumption (2). In fact, the maximal
degrees reached in the computations are in all cases even below the predictions of Propo-
sition (1). This phenomenon is due to the sparsity of Semaev’s polynomials and will be
exploited in future work (in particular, the degree of Sm+1 with respect to every variable
is 2m−1 but bounded by 2m−1 in the analysis of Section 4). From now on in the analysis,
we ignore this difference and analyze Semaev’s polynomials as the random polynomials
of Section 4.

Under Assumption (2), Step 2(b) of Diem’s algorithm can be solved using a dedicated
Gröbner basis algorithm taking advantage of the block structure, in a time (n′)ωD, where
D ≈ (m2 + 1) and ω is the linear algebra constant. Once the x components of a relation
have been computed, the y components can be found by solving m quadratic equations
and testing each possible combination of the solutions. This requires a time roughly 2m,
that can be neglected. On average, the probability that a point Ri := aiP + biQ can be

written as a sum of m points from the factor basis is 2mn′−n

m! [22]. Assuming mn′ ≈ n,
the total cost of the relation search step can therefore be approximated by 2t2 , where

t2 ≈ m logm+ n′ + ω(m2 + 1) log n′. (8)

The last step of Diem’s algorithm consists in (sparse) linear algebra on a matrix of
rank about 2n

′
with about m elements of size about n bits per row. This step takes a



time approximately equal to mn2ω
′n′ = 2t3 , where

t3 ≈ logm+ log n+ ω′n′ (9)

and ω′ is the sparse linear algebra constant. If Assumption (2) holds and if mn′ ≈ n, the
total time taken by Diem’s algorithm can be estimated by T := 2t1 + 2t2 + 2t3 , where
t1, t2, t3 are defined as above.

5.3 On the hardness of ECDLP in characteristic 2

We now use Formulas (7) to (9) to evaluate the hardness of the elliptic curve discrete
logarithm problem over the field F2n for “small” values of n. In our estimations, we
conservatively use ω = 3 and ω′ = 2. We consider n ∈ {50, 100, 160, 200, 500, 103, 2 ·
103, 5 · 103, 104, 2 · 104, 5 · 104, 105, 2 · 105, 5 · 105, 106} and m ∈ {2, . . . , n/2}. For every
pair of values, we compute the values t1, t2 and t3 with Equations (7), (8) and (9)
respectively. Finally, we approximate the total running time of Diem’s algorithm by
2tmax where tmax := max(t1, t2, t3). For every value of n, Table 4 presents the data
corresponding to the value m for which tmax is minimal. We point out that the numbers
obtained here have to be taken cautiously since they all rely on Assumption 2 and involve
a few approximations.

Table 4: Complexity estimates for Diem’s algorithm in characteristic 2
n m n′ t1 t2 t3 tmax

50 2 25 6 97 57 97
100 2 50 6 137 108 137
160 2 80 6 177 168 177
200 2 100 6 202 209 209
500 3 167 12 393 344 393
1000 4 250 20 664 512 664
2000 4 500 20 965 1013 1013
5000 6 833 42 1926 1682 1926
10000 7 1429 56 3020 2873 3020
20000 9 2222 90 4986 4462 4986
50000 11 4545 132 9030 9110 9110
100000 14 7143 210 14762 14306 14762

According to our estimations, Diem’s version of index calculus (together with a sparse
Gröbner basis algorithm) beats generic algorithms for any n ≥ N , where N is an integer
close to 2000. An actual attack for current cryptographically recommended parameters
(n ≈ 160) seems to be out of reach today, but the numbers in [37] suggest that medium-
size parameters could be reachable with additional Gröbner basis heuristics like the
hybrid method [11]. This will be investigated in further work.



Letting n grow and fixing n′ := nα and m := n1−α for a positive constant α < 1, we
obtain

t1 ≈ n2(1−α),

t2 ≈ (1− α)n1−α log n+ nα + max
(
αωn2(1−α) log n, nα + 3 log n

)
,

t3 ≈ (2− α) log n+ ω′nα

Taking α := 2/3, the relation search dominates the complexity of the index calculus
algorithm and we deduce the following result.

Proposition 4. Under Assumption 2, the discrete logarithm problem over F2n can asymp-
totically be solved in time O(2cn

2/3 logn), where c := 2ω/3 and ω is the linear algebra
constant.

In particular if the Gaussian elimination algorithm is used for linear algebra, we have
w = 3 and c = 2. We stress that Proposition 4 holds even when n is prime. Until now,
the best complexity estimates obtained in that case corresponded to generic algorithms
that run in time 2n/2.

6 Further applications of Problem (1)

6.1 Factoring elements in SL(2, F2n)

The factorization problem in a non Abelian (multiplicative) group G is the following
one: given a set of generators S := {s1, . . . , sk} for this group and an element h ∈ G,
the problem asks for a decomposition h =

∏N
i=1 smi as a product of the generators.

The preimage security of Cayley hash functions, an interesting family of cryptographic
hash functions with natural parallelism, directly relies on this problem [57,17,53,55]. The
problem becomes potentially hard when additional restrictions are put on the length N
of the product. For a family of groups of increasing size, the standard computational
assumption is that no product of polynomial length can be computed in polynomial
time, the complexity parameter being the logarithm of the size of the groups. The mere
existence of these products in general depends on a famous conjecture of Babai on the
diameter of Cayley graphs [6,42].

Using a sequence of reductions introduced in [54], Faugère et al. [36] reduced the
factorization problem in SL(2,F2n) to a particular instance of Problem (1) with t = 1,
where

f(x1, ...,xm) := ( 1 1 )

[
m∏
i=1

(
x+xi 1
1 0

)]
( 1
1 ) (10)

for some x ∈ F2n . The first fall degree of the corresponding system is at most m+ 1. We
remark that the polynomial f is not totally random since f(x1, ...,xm) = f(xm, ...,x1),
so Assumption 1 needs to be adapted to this case. The experimental data presented
in [36] supports the corresponding assumption. Combining [54,36] and the analysis of
Section (4), we easily deduce that for any S and any h, a polynomial length factorization
of h can be computed in probabilistic subexponential time. Since our estimation of the
degree of regularity is smaller than in [36], we can also derive new smaller complexity
estimates for this problem.



6.2 HFE and other discrete logarithm problems

As we pointed out above, System (3) can also be seen as a generalization of HFE systems.
These systems have been intensively studied in the literature [32,41,25,23,24,12], and the
assumption corresponding to Assumption (1) has been widely verified in this case. The
specificity of HFE polynomials with respect to “random” polynomials is that they de-
ploy as quadratic polynomials over the prime field. Interestingly, the polynomial systems
arising from “generic” HFE polynomials seem to have the same degree of regularity as if
they arised from random polynomials with the same degrees. It is however known that
further restrictions on f may lower the degree of regularity [23].

Besides ECDLP, factoring in SL(2,F2n) and HFE, the analysis of this paper can be
applied to analyze index calculus algorithms over a wide variety of groups, including the
Jacobian of higher genus curves. (These additional applications had also been identified
by Faugère et al. [37,35]). In particular, discrete logarithm problems in the field F2n can

be reduced to an instance of Problem (1) and then solved in heuristic time O(2
1
2
ωn1/2 logn).

The complexity of this approach does not compete with Coppersmith’s algorithm [19]
but is comparable to Adleman’s first index calculus algorithm [1].

7 Conclusion and perspectives

In this paper, we revisited the complexity of solving a class of polynomial systems pre-
viously considered by Faugère et al. [36,37]. These systems appear when a multivariate
polynomial over an extension field is deployed via a Weil descent into a system of polyno-
mial equations over the ground prime field. We observed that these systems can be seen
as natural extensions of HFE systems. Under a heuristic assumption commonly taken
in the cryptanalysis community (in particular in the cryptanalysis of HFE variants), we
derive new bounds on their resolution. Our bounds nicely generalize previous bounds on
HFE.

The most proeminent consequence of our analysis so far is to the elliptic curve dis-
crete logarithm problem (ECDLP) over binary fields, an application previously iden-
tified in [37]. We showed that ECDLP can be solved in heuristic subexponential time

O(2c n
2/3 logn) over the binary field F2n , where c is a constant smaller than 2. This com-

plexity is obtained with an index calculus algorithm due to Diem [21] and a block-
structured Gröbner basis algorithm. In practice, the resulting algorithm is faster than
generic algorithms (previously thought to be the best algorithms for this problem) for
any n larger than N , where N is an integer approximately equal to 2000. In particular,
binary elliptic curves of currently recommended sizes (n ≈ 160) are not immediately
threatened.

Besides ECDLP in characteristic 2, the systems introduced in [36,37] have a wide
range of applications. We briefly discussed the factorization problem in SL(2,F2n), HFE
systems and other discrete logarithm problems. We leave a refinement of our analysis to
the particular polynomials appearing in these applications to further work, similarly to
what was done in [23] for HFE in odd characteristic.

All our complexity estimates are based on the heuristic assumption that the degrees of
regularity of polynomial systems arising from a Weil descent are only slightly larger than
their first fall degrees. This assumption was experimentally verified for small parameters



in the three different settings considered in this paper. The resemblance of our equations
with HFE systems, for which the assumption has been widely verified, provides further
confidence on its validity. We leave to further work the adaptation of the most recent
theoretical results on HFE [12] to all polynomial systems arising from a Weil descent.

To conclude this paper, we point out that most of our results generalize quite easily to
other composite fields with “small” characteristics, resulting in comparable asymptotic
complexities.
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