
Client-Server Authentication Using Pairings

Michael Scott

Certivox Labs
mike.scott@certivox.com

Abstract. What would be the ideal attributes of a client-server authen-
tication scheme? One might like an identity based scheme not requir-
ing PKI, plus support for multi-factor authentication based on a token,
a PIN number, and optionally a biometric. The former might hold a
high-entropy secret, and the latter may be represented as relatively low-
entropy parameters. However it would be preferred if the token could be
in the form of a relatively inexpensive USB stick rather than a Smart-
Card. The user should be at complete liberty to choose and change a PIN
number, but if they forget it a recovery mechanism should be available.
A fuzzy biometric measurement could be supported and accepted if ac-
curate within certain limits. However the Server should not be required
to store any information derived from client secrets, so there should be
no equivalent of a vulnerable “password file”. In fact neither the PIN nor
the biometric should be stored anywhere (other than in the client’s brain
or as part of the client’s body respectively). Reasonable performance on
relatively low-powered devices should be possible. The damage caused by
compromise of the Server and the loss of its long term secrets should be
mitigated as much as possible. The property of Perfect Forward Secrecy,
a requirement for clients concerned about long-term privacy, should be
supported. In this paper we aim to deliver such a scheme.

1 Introduction

A Client-Server authentication protocol should ideally authenticate the Client
to the Server, and the Server to the Client, and should result in both of them ne-
gotiating strong encryption keys suitable for further communication. Note that
this can be regarded as a specialised subset of the more general problem of
peer-to-peer authenticated key exchange. However it is in a many-to-one set-
ting, where the roles of clients and servers are quite different and clearly under-
stood. Authenticated Key Agreement (AKE) is one of the classic problems to be
solved using modern methods of Cryptography. Identity based methods for key
exchange have a long history, going back to an original proposal by Okamoto
in the 1980s [12]. In the client-server setting we are particularly interested in
techniques that support a multi-factor authentication, that is the client authen-
ticates via a cryptographically strong secret, associated with their identity, and
which is divided between a physical token and a memorised PIN number, and
(optionally) a biometric measurement.

Such schemes have often been suggested in the past, but they are notori-
ously difficult to get right, and were often got badly wrong. A classic example
would be the scheme proposed by Kim et al. [10], which promised an “ID-based
password Authentication Scheme using Smart Cards and Fingerprints”. Scott
[15] showed how it could be comprehensively broken by an attacker who pas-
sively eavesdropped a single transaction. Many other schemes have fallen into
the break-fix-break-fix cycle which generates a lot of literature, but rather less
confidence.

For some recent papers and a review of some recent literature, see [8] and
[18].

To contextualize the problem let us consider it in the setting of an e-banking
application.

Its 2016 and the Bank of Oceania rolls out its new e-banking service, want-
ing to avoid relying on the SSL protocol, and looking for a cheap, secure and
user-friendly system. The customer gets two USB stick-like devices. They are
identical, and one is to be stored safely in case the original is lost. New ones will
be issued every year. Each stick contains a secret unique to the customer and
calculated directly from their identity. On inserting the stick into their home
computer for the first time, an on-board program fires up and asks the customer
to select a PIN number, and, optionally, to enter a biometric. The biometric
might be based on immutables like eyes/ears/nose, or on a voice print.

The PIN and the biometric are then subtracted from the secret stored on the
stick. When the stick is used for legitimate e-banking, these values are extracted
from the client and added back, but only for the duration of the authentication
protocol. The stick has its own processing capabilities, and runs its own secure
browser to connect to the bank. The user can change their own PIN number
locally at any time. For the user the e-banking experience is as simple and
familiar as using an ATM.

Now lets try and deliver such a system. We will develop our scheme in the
context of two-factor authentication based on a token and a memorised PIN,
although the extension to include a fuzzy biometric is obvious.

The property of Perfect Forward Secrecy (PFS) according to its original def-
inition implies that if all of the long term secrets employed in a protocol are
compromised, previously recorded transcripts are still secure. Recent authors
have rather muddied the water by considering degrees of Perfect Forward Secu-
rity, depending on exactly which secrets are lost [16]. We take a purist view. The
original ephemeral Diffie-Hellman algorithm [11] would be the classic example of
a protocol which has the property of PFS. Indeed, it has no long-term secrets.
One simple way to enhance a protocol to obtain PFS is to introduce into it a
Diffie-Hellman component.

One particularly deadly attack on such schemes is the “off-line dictionary
attack”. Here an attacker typically captures the token and enough other infor-
mation (perhaps by eavesdropping a transaction), to go back to his own computer
and quickly search through all possible PIN numbers until he finds the unique
PIN consistent with the captured information. To this end we must assume that

2

an attacker has access to some ciphertext encrypted with the finally agreed key,
which when decrypted with the correct key results in something instantly recog-
nisable. In other words, an attacker will know when they have hit on the right
key.

To avoid this kind of attack the protocol designer must ensure that all in-
formation leaked or otherwise accessible to an attacker is consistent with any
possible PIN number.

Our notation may be considered a little sloppy. For example a one-way hash
function is commonly denoted as simply H(.), where its input and output format
are assumed to be clear from the context. The mathematical outcome of the
protocols is a mutual key k, but in a practical protocol this is often combined
with transmitted values via a hash function to form the final key K.

There is often an implicit assumption when describing key exchange proto-
cols, that received elements are of the correct form and the correct order. For
example a point on an elliptic curve is (a) assumed to be on the curve, and
(b) assumed to have the expected large prime order. In practice checks should
always be made to ensure that these assumptions are true, as failure to do so
may open the door to small subgroup confinement attacks [14]. If the checks
fail, the protocol should be immediately aborted. In our descriptions below in
the interests of clarity, we have omitted these steps.

2 A Poor Man’s protocol

One extremely simple solution is that the server maintains a single master secret
s, and calculates a shared secret with every client with Identity W of the form
H(W |s), where H(.) is a hash function like SHA256. This is simple, fast, robust,
and no interaction is required. Every participant has just one secret to protect.
In particular the Server does not have to maintain a password file. Distribution
of the shared secret is carried out at registration time. It might be considered
possible to extract part of the hash as a PIN which would need to be re-inserted
in order to reconstruct the shared secret. However an attacker who (a) captures
the token, and (b) eavesdrops a packet encrypted with the whole key, can perform
an offline dictionary attack to find the PIN by re-inserting every possible PIN
until the packet decrypts to something sensible. Furthermore the system is not
Perfect Forward Secure (PFS), and the loss of s is of course absolutely fatal.

3 Poor Man redux

Two different approaches are suggested to include a Diffie-Hellman component
into the original protocol.

3.1 Embedded DH

What if the original Poor Man’s protocol is used instead to establish a secret
generator g of a large prime order group, used then as the basis for a Diffie-
Hellman key exchange (in the spirit of SPEKE [9])? This supports PFS, and

3

now a PIN α can apparently be safely extracted from g to create a token. This
protocol should be used with a safe prime modulus p of size at least 1024 bits
and q at least 160 bits.

Alice - identity IDa

Generates random even x < q
IDa →

Pa = ((H(IDa|s)− α) + α)x

Pa →
K = H(IDa|Pa|Ps|Ps

x)

Server
Generates random even y < q

Ps = H(IDa|s)y
← Ps

K = H(IDa|Pa|Ps|Pa
y)

3.2 In Tandem DH

An alternative approach is to simply implement DH in tandem with the origi-
nal protocol, and combine the contributions from both techniques using a hash
function.

Alice - identity IDa

Generates random x < q
IDa →
Pa = gx

Pa →
K = H((H(IDa|s)− α) + α|Ps

x)
M = H(IDa|Pa|Ps|K)

M →

Server
Generates random y < q

Ps = gy

← Ps

K = H(H(IDa|s)|Pa
y)

N = H(IDa|Pa|Ps|K)
if M ̸= N , drop connection

However if Charlie steals the token but doesn’t know the PIN, and if the
Server were to respond with something encrypted with the correct key, Charlie
can simply try every possible PIN off-line until he hits on the right one. But
since there is no ambiguity with respect to the roles of Client and Server we can
avoid this problem by insisting that the Client first sends something calculated
from the key to the Server first, as shown above. If it does not check out, the
Server immediately drops the connection.

Note that this protocol has a key correction capability. For example if the
client inputs a PIN number wrong by an amount δ, the Server can easily detect
the value of δ, by simply searching through neighbouring keys using H(IDa|s)±i
for small values of i until it finds the correct one. As we will see this might be
considered as a useful feature. Note that the PIN itself is not revealed to the
Server by this process.

However the overall method has a fatal problem. An attacker who captures
a token can launch a trivial man-in-the-middle attack which first pretends to
be a server to the client, and then launches an off-line dictionary attack to find
the PIN, and then uses the stolen token and the recovered PIN to log onto the
genuine Server. The details are left as a simple excercise to the reader. The fact

4

that this attack succeeds might be put down to the fact that a stolen client secret
(all or the major part of it) allows the attacker to masquerade as both the client
to the Server, and the Server to the client. But if this problem could be fixed...?

A problem with these simple hash-based protocols is that the secret s is used
for both enrollment in the system (in the issuing of keys to client), and is also
required on-line by the Server. Its loss resulting from an attack on the Server
is clearly catastrophic. A better idea is to split the role of the Server from the
enrollment role, which should instead be assigned to a trusted third party, which
is trusted by both the clients and the Server.

4 Okamoto’s protocol

This protocol [12] is not specialised to client-Server, but is worthy of study in
that it demonstrates that the possibility of PIN extraction from a secret cannot
be assumed. This scheme was one of the first “identity-based” schemes ever to
be proposed. Here an individual’s identity is offered to the other participant at
the start of the protocol, and unless that identity has been properly endorsed
by a Trusted Authority (TA), the key exchange will not succeed. This TA issues
simple RSA signatures on the identities of each participant. Note that once all
such secrets have been distributed the RSA private key can be deleted (in theory)
if considered desirable. So identity W is issued with the secret W 1/3 mod n,
where n is the TAs public key. All arithmetic is modulo n. The key exchange
proceeds as follows

Alice - identity IDa

Generates random x < n
IDa →

Pa = H(IDa)
1/3.gx

Pa →
k = (Pb

3/H(IDb))
x = g3xy

Bob - identity IDb

Generates random y < n
← IDb

Pb = H(IDb)
1/3.gy

← Pb

k = (Pa
3/H(IDa))

y = g3xy

Note however that a PIN cannot be extracted from the individual secrets.
An attacker who captures the token can simply try every PIN off-line and cube
modulo n until they recover the correct ID. The problem is that the TA’s public
key is known to all, and can be used to check on the validity of any signature.

5 Pairings and PINs

With the advent of pairings other solutions became possible. The main significant
property of pairings is that of bilinearity

e(aA, bB) = e(bA, aB) = e(A,B)ab

where A and B are points on a special pairing-friendly elliptic curve [6].

5

Here we assume the type-3 pairing [7] where C = e(A,B) is G1 ×G2 → GT ,
where A ∈ G1, B ∈ G2, and C ∈ GT . Note that elements from these groups
cannot be mixed. We can assume that the pairing-friendly elliptic curve supports
such groups of the same large prime order q.

Assume again the existence of an independent TA with its own master se-
cret(s) that is not required on-line – it is only responsible for off-line enrollment
and issuing of client and Server ID-based secrets. This provides an extra layer of
security and limits the damage caused by the loss of client or Server long-term
secrets.

Assume IDa and IDs are Alice’s identity and the Server’s identity respec-
tively. H1(.) is a hash function that hashes to a point of order q in the group
G1, H2(.) is a hash function that hashes to a point of order q in the group G2.
Then both the client Alice and the Server are issued with secrets sA and sS
respectively, where A = H1(IDa), S = H2(IDs) and s is the TA’s master secret
for use with a particular Server. Of course knowing A and sA does not reveal s,
as it is protected by a difficult discrete logarithm problem.

Now the simple linear form of these secrets opens up interesting possibilities.
Firstly it immediately supports a simple but perfect secret-sharing strategy. A
secret sA can be trivially split into two parts s1A and s2A where s = s1 +
s2. Furthermore a secret has no special format that makes it identifiable. Any
multiple of A is potentially a valid secret, and since A is a generator in G1, that
means that any member of G1 could be a valid secret.

In practise Alice can extract a PIN α of her choosing from her secret, to
divide it into the token part ((s − α)A, and the PIN part αA. Clearly, when
these are added together the full secret can be reconstituted. A captured token
is compatible with any possible PIN, and so useless without it.

A very desirable feature is that a rogue client who steals another clients long-
term secret should not be able to determine their PIN by performing off-line
key-exchanges with themselves. That is, clients should only be able to exchange
keys with a Server, not with other clients. By using a type-3 pairing where clients
are in G1 and the Server is in G2, we achieve this [14].

Note that PIN extraction cannot be used with many pairing-based protocols,
for example, Boneh and Franklin’s IBE scheme [3], or the Chen and Kudla
authenticated Key exchange [5], or any scheme which requires as part of its
public parameters a generator point P and Ppub = sP in G2 (or any scheme
implemented on a type-1 pairing). In such a case if Charlie were to capture
Alice’s token containing (s−α)A, Charlie could quickly find her PIN by testing
all i until

e((s− α)A+ iA, P) = e(A, sP)

This is another example of the off-line dictionary attack, and it is quite
deadly. Bilinearity can be as effective an enemy as a friend!

If a Server secret sS is ever leaked (that is revealing S and sS), or indeed any
multiple of a known point by s in G2, then those values can be used to determine
the PIN associated with a stolen token. It is of course only common sense that

6

this should be possible. If the Server secret is discovered, the discoverer can set
up their own false Server, and try every possible PIN against a stolen token, and
thus discover the PIN.

Note that all clients who access any Server validated by the same TA using
the same s, are at risk if just one of those servers in compromised. For this
reason each individual server should ideally be associated with a different s
master secret.

Interestingly we can deliberately create a circumstance where the Server can
launch an off-line dictionary attack on the PIN, and exploit it as a useful feature.

A Server offers a simple PIN-recovery service to the client. The client A sends
X = H(e((s−α)A,S)) to the Server S, which requires only the token. Then the
client presumably goes to some lengths to prove their identity (mother’s maiden
name etc.). Once that is done to the Server’s satisfaction, the Server goes off-
line and calculates Y = H(e(A, sS − iS)) for all possible i until he gets a match
X = Y . Then i = α. This can then be sent back to the client by email, or some
other method.

5.1 Scott’s Protocol

A client-server protocol of this type was first proposed by Scott [14]. This paper
suggested that whereas a type-1 pairing was suitable for peer-to-peer Authenti-
cated Key Exchange, a type-3 pairing was ideal for the client-Server context. The
protocol does not require a TA public key and so PINs can be safely extracted
as described above (unlike for Okamoto’s protocol).

Alice - identity IDa

Generates random x < q
IDa →

S = H2(IDs), A = H1(IDa)
Pa = e((s− α)A+ αA, S)x

Pa →
k = Ps

x = e(A,S)sxy

K = H(IDa|IDs|Pa|Ps|k)

Server - identity IDs

Generates random y < q
← IDs

A = H1(IDa), S = H2(IDs)
Ps = e(A, sS)y

← Ps

k = Pa
y = e(A,S)sxy

K = H(IDa|IDs|Pa|Ps|k)

This algorithm can be regarded as being derived from the embedded DH
approach, as using the SOK non-interactive key exchange algorithm [13] to con-
struct the generator g for use in a Diffie-Hellman key exchange, again rather in
the spirit of SPEKE [9]. Therefore this protocol inherits the property of Perfect
Forward Secrecy from Diffie-Hellman.

A serious concern is vulnerability to a “Key Compromise Impersonation”
(KCI) attack [2], [4]. If Charlie captures Alice’s private key and her PIN number,
Charlie can not only pretend to be Alice to the Server (which is only to be
expected), but Charlie can also pretend to be the Server to Alice. The attack
is trivial. Having captured sA Charlie too can calculate Ps = e(sA, S)y. More

7

seriously if someone should hack the server and extract its secret sS, they could
log into that Server claiming any identity Z by calculating e(Z, sS), which is of
course the same as e(sZ, S). Again bilinearity is at the root of the problem.

Observe that in the client-server setting (rather than the Peer-to-Peer setting
in which key exchange is usually described) KCI can be broken down into Server-
to-Client KCI, where the server can masquerade as a client, or Client-to-Server
KCI where the client can masquerade as a server, or mutual KCI where both
cases are possible. The point being that there could be a scenario where one or
other is possible, but not both.

The Key Compromise Impersonation weakness is clearly not desirable. For-
tunately it can be fixed at the cost of some further calculations and bandwidth.

Alice
Generates random x, z < q

IDa →
S = H2(IDs), A = H1(IDa)

Pz = zA →
Pa = e((s− α)A+ αA,Pw + zS)x

Pa →
K = H(IDa|IDs|Pz|Pw|Pa|Ps|P x

s)

Server
Generates random y, w < q

← IDs

A = H1(IDa), S = H2(IDs)
← Pw = wS

Ps = e(Pz + wA, sS)y

← Ps

K = H(IDa|IDs|Pz|Pw|Pa|Ps|P y
a)

The mutual key is derived from k = e(A,S)sxy(w+z). Next is another modifi-
cation of Scott’s Protocol which prevents Server-to-Client KCI, but not Client-
to-Server KCI, and keeps client-side calculations to a minimum.

Alice
Generates random x < q

IDa →
S = H2(IDs), A = H1(IDa)

Pa = e((s− α)A+ αA,Pw + S)x

Pa →
K = H(IDa|IDs|Pw|Pa|Ps|P x

s)

Server
Generates random y, w < q

← IDs

A = H1(IDa), S = H2(IDs)
← Pw = wS

Ps = e(A+ wA, sS)y

← Ps

K = H(IDa|IDs|Pw|Pa|Ps|P y
a)

This time the mutual key is derived from k = e(A,S)sxy(w+1).

6 Wang’s protocol.

Scott’s method is not the only pairing-based protocol that can support PIN
extraction. Here we adapt Wang’s protocol [17] for the client-Server setting, and
base it on a type-3 pairing. In this setting this protocol has the same desirable
properties as Scott’s (except that it does not immediately have the property
of Perfectly Forward Secrecy), and it is arguably more efficient to implement.

8

Furthermore Wang’s protocol has a formal proof of security and forms part of
the P1363.3 proposed IEEE standard [1].

We start with a much simplified version of Wang’s protocol.

Alice - identity IDa

Generates random x < q
IDa →

S = H2(IDs), A = H1(IDa)
Pa = xA

Pa →
k = e(x.((s− α)A+ αA), Ps) = e(A,S)sxy

Server - identity IDs

Generates random y < q
← IDs

A = H1(IDa), S = H2(IDs)
Ps = yS
← Ps

k = e(Pa, y.sS) = e(A,S)sxy

Wang’s protocol is not vulnerable to a Key Compromise Impersonation at-
tack. However the TA who has eavesdropped on Pa and Ps can easily calculate
the key as e(Pa, Ps)

s. This is as a direct result of the protocol not having the
property of Perfect Forward Secrecy (PFS).

To include the property of PFS, Wang suggests this modification which in-
cludes an in-tandem Diffie-Hellman into the key exchange. See also [5].

Alice - identity IDa

Generates random x < q
IDa →

S = H2(IDs), A = H1(IDa)
Pa = xA

Pa →
k = e(x.((s− α)A+ αA), Ps)

K = H(IDa|IDs|Pa|Ps|Pg|xPg|k)

Server - identity IDs

Generates random y, w < q
← IDs

A = H1(IDa), S = H2(IDs)
Ps = yS, Pg = wA

← Ps, Pg

k = e(Pa, y.sS)
K = H(IDa|IDs|Pa|Ps|Pg|wPa|k)

Both keys are the same K = H(IDa|IDs|Pa|Ps|Pg|xwA|e(A,S)sxy). In
Wang’s original paper it is suggested to use w = y. However this enables
the Key Compromise Impersonation attack, based on the observation that
e(xsZ, yS) = e(xyZ, sS), so if sS is captured, Charlie can log in to S with
any identity Z.

We now make an interesting observation about Wang’s protocol and protocols
like it. If the client’s reconstituted secret is off by a small amount, a mutual key
can still be calculated by the Server, who can determine the extent of the error
and compensate for it. For example if the client uses sA+ iA as their secret, the
Server can compensate by using sS + iS as its secret. Furthermore the Server
can afford to spend some time searching for the right i. Therefore this scheme
supports a key correction capability, but this time because of its KCI resistance
it is not vulnerable to a man-in-the-middle attack.

9

7 PIN issues

The PIN number extraction idea needs to be used with extreme care in the
case of Wang’s protocol. Lets say Charlie steals Alices token but does not know
her PIN number α. Charlie then attempts a connection to the Server. Charlie
enters into the protocol but calculates a key just using the token value, as C =
e(A,S)(s−α)xy. The Server behaves properly and calculates the key using k =
e(A,S)sxy.

Now during the protocol Charlie and the Server swap xA and yS. So Charlie
can calculate W = e(xA, yS) = e(A,S)xy. Next the Server sends something
to Charlie encrypted using k. At this stage Charlie drops the connection, and
offline keeps attempting decryption using CW i until he gets something sensible,
at which stage i = α, and he has recovered Alice’s PIN number. Because when
i = α

e(A,S)(s−α)xye(A,S)ixy = e(A,S)sxy

A simpler, but slower, way is for Charlie to simply calculate the key using
all possible PINs until he finds one that decrypts properly.

This off-line dictionary attack can be defeated by again insisting in the pro-
tocol that Alice send something encrypted with the key she has just calculated,
before the Server sends anything to Alice. If the Server fails to decrypt it us-
ing the correct key, the Server must immediately drop the connection. Such an
enforced ordering of messages is common in client-server protocols [19].

This potential attack does not apply to Scott’s protocol.
The same behavior can be exploited in a positive way. If the client were to

enter the wrong PIN, the server can easily determine the extent of the error
δ using the key correction capability. So for example if the client entered 1224
instead of 1234, then the server could figure out that the PIN was “out” by 10.
This is again because of bilinearity.

e((s+ δ)A,Ps) = e(Pa, y.(sS + δS)) = e(Pa, y.sS).e(Pa, yS)
δ

Basically the error on the client side can be cancelled by invoking the same
error on the Server side. The Server can calculate W = e(Pa, yS) and keep
trying k.W i for small values of i until they find the correct key (which decrypts
something sent by the client to something sensible).

This behaviour can be exploited to intelligently respond to the wrong PIN
being entered – if it is out by a lot, do not allow another attempt, if it is out by
only one digit, then allow a further attempt, etc. A “coercion” convention could
be agreed, for example if the PIN was just out by 1 in the last digit, the Server
might interpret this as a client entering a PIN while under physical threat. In
which case the Server might respond normally - but call the cops!

More interestingly this behaviour might be exploited to support a low entropy
biometric feature. A biometric is a naturally fuzzy measurement which may
well be out by a small amount while still being acceptable. Since the Server

10

can determine the extent of the error, an informed decision can be made as to
whether the biometric is “close enough” to be accepted.

8 A Two Factor Client-Server Protocol

The key correction capability makes us tend to favour the Wang protocol as the
basis of our proposed scheme, even though it is more complex, and care must be
taken to get it right.

As we have described it above Wang’s protocol has a fatal problem. The
identities of A (and S) are not directly included in the key calculation. So Bob
can claim the identity Alice, but still log on using his own credentials. This is
clearly not satisfactory. Wang uses a rather complex method to fix this, as we
will see. His solution has the useful side effect of ensuring that the ephemeral
public keys (Pa, Ps and Pg above) cannot be tampered with in transit.

Assume Hq(.) is a hash function that hashes to a number in the range 1 to
q (although according to Wang its OK to reduce this range to a size half the
number of bits in q, with some performance gains).

Alice
Generates random x < q

IDa →
S = H2(IDs), A = H1(IDa)

Pa = xA →
ra = Hq(Pa|Ps|Pg), rs = Hq(Ps|Pa|Pg)

k = e((x+ ra)((s− α)A+ αA), rsS + Ps)
K = H(k|xPg)

M = H(IDa, IDs,K)
M →

Server
Generates random y, w < q

← IDs

A = H1(IDa), S = H2(IDs)
← Ps = yS, Pg = wA

rs = Hq(Ps|Pa|Pg), ra = Hq(Pa|Ps|Pg)
k = e(raA+ Pa, (y + rs)sS)

K = H(k|wPa)
N = H(IDa, IDs,K)

if M ̸= N , drop the connection

For both parties observe that k = e(A,S)s(x+ra)(y+rs). Observe (and take
comfort) from the fact that Alice’s token and PIN are recombined locally be-
fore any value calculated from them is transmitted, so no-one is in the position
to determine the PIN from transmitted values, irrespective of their computing
power. If the wrong PIN is entered, the Server drops the connection (and only
allows a few more attempts before taking more drastic action with respect to
the purported “Alice”).

9 Conclusions

Note that Wang’s protocol is not the only choice here. There is for example an
alternative protocol due to Wang et al. [16] which also supports a PIN and key
correction. It is rather more elegant than Wang’s, and claims to be faster. It also
has a nice and simple proof of security.

11

Finally consider the implications of a successful hack on the Server which
reveals sS. Note that there are no client related secrets (token, PIN or biometric)
stored on the Server. However this attack obviously allows a false server to be
set up, onto which clients might be convinced to log on. If the successful hacker
then captures a token, they can easily find the associated PIN. However they
cannot use the captured Server secret to log onto the genuine Server, and access
its data. They cannot enroll any other clients. So although loss of the Server
secret is bad, the effects are to an extent mitigated. Of course loss of the TA
master secret s is catastrophic, except to the extent of protection offered by
Perfect Forward Secrecy.

References

1. IEEE P1363 home page. http://grouper.ieee.org/groups/1363/.

2. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. Cryptography and Coding, 1355:30–45, 1997.

3. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586–615, 2003.

4. L. Chen, Z. Cheng, and N. P. Smart. Identity-based key agreement protocols from
pairings. Int. J. Inf. Secur., 6:213–241, June 2007.

5. L. Chen and C. Kudla. Identity based key agreement protocols from pairings. In
Proc. of the 16-th IEEE Computer Security Foundations Workshop, pages 219–213.
IEEE Computer Society, 2002.

6. D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing friendly elliptic curves.
Journal of Cryptography, 23:224–280, 2010.

7. S. Galbraith, K. Paterson, and N. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156:3113–3121, 2008.

8. F. Hao and D. Clarke. Security analysis of a multi-factor authenticated key
exchange protocol. Cryptology ePrint Archive, Report 2012/039, 2012. http:

//eprint.iacr.org/2012/039.

9. D. Jablon. Strong password-only authenticated key exchange. Computer Commu-
nication Review (ACM SIGCOMM), 26(5):5–26, 1996.

10. H. S. Kim, S. W. Lee, and K. Y. Yoo. ID-based password authentication scheme
using smart cards and fingerprints. ACM Operating Systems Review, 37(4):32–41,
2003.

11. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
applied cryptography. CRC Press, Boca Raton, Florida, 1996.

12. E. Okamoto. Proposal for identity-based key distribution systems. Electron. Lett.,
pages 1283–1284, 1986.

13. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. The 2000
Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.

14. M. Scott. Authenticated ID-based key exchange and remote log-in with simple
token and PIN number. Cryptology ePrint Archive, Report 2002/164, 2002. http:
//eprint.iacr.org/2002/164.

15. M. Scott. Cryptanalysis of an ID-based password authentication scheme using
smart cards and fingerprints. Cryptology ePrint Archive, Report 2004/017, 2004.
http://eprint.iacr.org/2004/017.

12

16. Shengbao Wang, Zhenfu Cao, Zhaohui Cheng, and Kim-Kwang Raymond Choo.
Perfect forward secure identity-based authenticated key agreement protocol in the
escrow mode. Science in China Series F Information Sciences, 52(8):1358–1370,
2009.

17. Y. Wang. Efficient identity-based and authenticated key agreement protocol. Cryp-
tology ePrint Archive, Report 2005/108, 2005. http://eprint.iacr.org/2005/

108.
18. Y. Wang. Password protected smart card and memory stick authentication against

off-line dictionary attacks. Cryptology ePrint Archive, Report 2012/120, 2012.
http://eprint.iacr.org/2012/120.

19. T. Wu. The secure remote password protocol. In Proceedings of the 1998 Internet
Society Network and Distributed System Security Symposium, pages 97–111, 1998.

13

