
Attacking Scrambled Burrows-Wheeler
Transform

Martin Stanek

Department of Computer Science
Comenius University

Mlynská dolina, 842 48 Bratislava, Slovak Republic
stanek@dcs.fmph.uniba.sk

Abstract. Scrambled Burrows-Wheeler transform [4] is an attempt to
combine privacy (encryption) and data compression. We show that the
proposed approach is insecure.

1 Introduction

The Burrows-Wheeler transform (BWT) [1] is a commonly used transform in
lossless compression algorithms. The BWT does not compress the data itself,
instead it is usually the first step in a sequence of algorithms transforming an
input data into compressed data. The most prominent example of BWT-based
compression is bzip2 program [3], which uses basically the following sequence of
algorithms: the BWT, the move-to-front transform (MTF), and Huffman coding.

Recently, Oğuzhan Külekci [4] proposed a novel approach – scrambled BWT
– to combine data compression with privacy requirement. The scrambled BWT
uses a secret lexicographic order as a secret key. In order to thwart some weak-
nesses, the author proposed to accompany the scrambled BWT with modified
MTF that uses the secret lexicographic order as well.

Our contribution: We show that the proposed scrambled BWT with MTF is
completely insecure and can be attacked easily (in the sense of chosen plaintext
as well as known plaintext attacks).

We briefly introduce the “standard” BWT, the MTF, and the scrambled
BWT in Section 2. Section 3 contains our analysis of the proposal, and shows
chosen-plaintext and known-plaintext attacks on the scrambled BWT with MTF.

2 Preliminaries

Let A be an alphabet with size L = |A|. Let N denotes a block length. A cyclic
rotation of string/block x = x0x1 . . . xN−1 ∈ AL with offset k is string/block
x(k) = xkxk+1 . . . xk+N where all the indices are computed modulo N . The w-th

symbol of x(k) is denoted as x
(k)
w , for 1 ≤ w < N .

For real-world scenarios one can expect L = 256 (using bytes as an alphabet)
and the block size N several hundreds kilobytes (e.g. bzip2 uses block of size
900kB as default).

2.1 “Standard” BWT

Let x = x0x1 . . . xN−1 ∈ AL be an input block. The BWT sorts all cyclic rota-
tions x(0), x(1), . . . , x(N−1) of input block x in lexicographic order. Let j0, j1, . . . , jN−1
be a permutation of {0, 1, . . . , N − 1} such that

x(j0) < x(j1) < . . . < x(jN−1).

Then the result of the BWT is a string consisting of the last symbols from each
of the sorted cyclic rotations:

y = x
(j0)
N−1, x

(j1)
N−1, . . . , x

(jN−1)
N−1 .

In order to facilitate the inversion transformation, an additional pointer is used
to remember the position of the original string x = x(0), i.e. t such that jt = 0.

2.2 MTF

The MTF transforms an input string x = x0x1 . . . xN−1 ∈ AL into sequence
of N numbers {pi}N−1i=0 , where pi ∈ {0, 1, . . . , L − 1}. The algorithm maintains
a table T [0, . . . , N − 1] of all symbols from A, initially sorted in lexicographic
order. For each i = 0, 1, . . . , N − 1 the symbol xi is processed as follows:

1. pi is the position of xi in table T ;
2. T is modified: xi is moved to the front/top of the table

It is easy to see that the MTF is invertible. The main idea of MTF is that
the recently used symbols are encoded as small integers. This makes its output
a suitable data for subsequent compression by simple entropy coders such as
Huffman or arithmetic coding.

2.3 Scrambled BWT with MTF

Oğuzhan Külekci [4] proposed scrambled BWT, where a secret (encryption) key
is a secret lexicographic order of symbols in A. One of the claimed advantages
is a large key space, for L = 256 it is 256! keys. The author observed, that
using scrambled BWT is not secure enough, and can be attacked by exploit-
ing known statistical relationships among plaintext symbols (e.g. digram fre-
quencies). Therefore he accompanied the scrambled BWT (sBWT) with MTF,
where the secret lexicographic order is applied as well (i.e. the initialization of
T depends on this order):

“. . . Thus, initializing the alphabet ordering in MTF with the secret lex-
icographic order used in sBWT provides protection against that statis-
tical attack.”

Remark 1. The paper [4] uses a variant of the BWT with special symbol denoting
the end of block. It that case, there is no need to remember the position of the
original block among sorted cyclic rotations. The analysis done in Sect. 3 is valid
for this modification as well.

3 Security analysis

Let us denote the secret lexicographic order as k and the corresponding scram-
bled BWT as sBWTk. Similarly, the MTF with secret lexicographic order is
denoted as MTFk. Let x be an input. The author proposes [4] the same secret
key (secret lexicographic order) for both transformations: MTFk(sBWTk(x)).

Let us note that attacks described in this sections will work even for situ-
ation with two independent secret keys: MTFk2

(sBWTk1
(x)). The attack will

“undo” the MTF (revealing the value of sBWTk1(x)), and the sBWT part can
be attacked by exploiting the statistical properties of plaintext as suggested in
[4].

Remark 2. We can ignore other pre- and post-processing steps in the compres-
sion algorithm, since they do not depend on the key.

The main observations are the following:

1. The scrambled BWT, with secret lexicographic order as a key, keeps the
frequencies of symbols intact, i.e. when symbol ‘a’ appears l times in an
input block, then ‘a’ will appear exactly l times in the output block.

2. For any input x and any two lexicographic orders k1, k2, performing y =
MTF−1k2

(MTFk1
(x)) can permute the symbols but it does not change the

frequencies. For example, ‘a’ can become ‘w’, ‘b’ can become ‘f’ . . . but in
such case the number of a’s in x is the same as the number of w’s in y, the
number of b’s in x is the same as the number of f’s in y etc.

For the rest of the section we denote an input block x and the resulting block
y = MTFk(sBWTk(x)). Our analysis is done with single data block (it is suf-
ficient for most scenarios). However, it can be extended to multiple blocks in a
straightforward manner.

3.1 Chosen plaintext attack

The goal of the attack is to identify a secret key (lexicographic order):

1. Construct input block x, where symbols from A have unique frequencies.
2. Compute z∗ = MTF−1k′ (y) for an arbitrary lexicographic order k′.
3. Pair symbols in x and z∗ according their frequencies, and recover the correct

“middle” value z = sBWTk(x) = MTF−1k (y).
4. Reconstruct the key from z and y.

For example, let L = 256. Then taking frequencies 1, 2, . . . , 256 for symbols
in A, allow us to reconstruct the key from a single block as long as the block
size is (at least) 32 896.

Example 1. Let us illustrate the attack with the following toy example. Let
A = {a, b, c, d} and N = 10. We choose the input block x = abbcccdddd,
and observe the output y = 3133002202. We apply inverse MTF with natural

lexicographic order (a < b < c < d): z∗ = dacbbbdccb. Pairing symbols with
equal frequencies yields z = abcdddbccd. Knowing “middle” value z and the
result of MTFk(z), we can easily reconstruct the secret lexicographic order:
b < d < c < a.

3.2 Known plaintext attack

Known plaintext attack extend the previous attack assuming that the attacker
cannot control the frequencies of particular symbols in the input data. However,
considering the block sizes used in practice (e.g. default 900kB block size in
bzip2), the probability of equal frequencies of symbols is rather low.

Remark 3. Moreover, for short blocks, one can assume that the attacker will
known the input data for multiple blocks. Therefore he can combine results
from these blocks and significantly reduce the complexity of the attack further.
Since this generalization is straightforward, we will not discuss it here in greater
detail.

Let us denote by #v(x) the number of symbols v ∈ A in the string x. Let
C(x) = {#v(x) | v ∈ A} be the set of all distinct values of #v(x). For each value
r ∈ C(x) we define r̂ to be the number of symbols having exactly r occurrences
in x, i.e. r̂ = |{v ∈ A | #v(x) = r}|.

The attacker proceed similarly to the chosen plaintext attack, computing
z∗ = MTF−1k′ (y) for an arbitrary lexicographic order k′. Then he tries to pair
symbols in x and z∗ according their frequencies to recover the correct “middle”
value z = sBWTk(x) = MTF−1k (y). However, this time there in no guarantee
of unique frequencies, therefore the attacker can perform an exhaustive search
for all assignments of symbols in groups with equal frequencies. For each assign-
ment, the attacker computes a corresponding lexicographic order and performs
an inverse BWT with this order. Comparing the result with the original plaintext
gives a confirmation/rejection of particular assignment. The size of the search
space is

∏
r∈C(x) r̂!.

In order to estimate the complexity of this known plaintext attack, we per-
formed the following experiments:

RandBytes We generate the input block as a stream of randomly and inde-
pendently generated bytes (i.e. L = 256) with uniform distribution. Since
in real-world one can expect much more “compressible” input block (with
greater variation of symbols frequencies), our model makes the situation for
the attacker much worse. Therefore, the estimations can be viewed as an
upper bound for attacker’s complexity.

RandReduced This is a similar experiment as the previous one, but this time
we restrict possible symbols to the set of 100 symbols (generated with uni-
form distribution). The rest of the symbols are not generated.

RandText This is probably the most realistic of our experiments. We model
the input block as a stream of independently generated bytes, where the
probabilities of individual symbols correspond to the probabilities of symbols
in Crime and Punishment by F.M. Dostoevsky [2].

We gradually increased N in each experiment and computed the average
“bit security/complexity” of the attack: log2(

∏
r∈C(x) r̂!). The average value was

computed from 1000 samples. It is interesting to see the level of bit security
degradation from the theoretical level: log2(256!) ∼ 1684 bits of key length. The
values for RandReduced and RandText experiments show that the scrambled
BWT with MTF offers practically no security. The results are shown in Table 1.

Table 1. Bit security for single block KPA (with block size N)

N RandBytes RandReduced RandText

50 000 378.7 28.6 10.1
100 000 304.2 20.9 8.4
150 000 263.7 17.2 8.8
200 000 236.4 15.2 9.2

Conclusion. Usually, providing privacy (encryption) by modifying the data
compression techniques is not a good idea. The scrambled BWT is another ex-
ample of this kind.

Acknowledgment. This work was supported by VEGA 1/0001/12 and P12/1.

References

1. M. Burrows and D.J. Wheeler: A block-sorting lossless data compression algorithm,
Technical Report 124, Digital Equipment Corporation, 1994.

2. F.M. Dostoevsky: Crime and Punishment, Translated by C. Garnett, available at
http://www.gutenberg.org/ebooks/2554

3. bzip2 webpage, http://www.bzip.org/
4. M. Oğuzhan Külekci: On scrambling the Burrows-Wheeler transform to provide

privacy in lossless compression, Computers & Security, Vol. 31(1), Elsevier, pp.
26-32, 2012.

