
A Framework for the Cryptographic Verification
of Java-like Programs

Technical Report

Ralf Küsters
University of Trier, Germany

kuesters@uni-trier.de

Tomasz Truderung
University of Trier, Germany

truderung@uni-trier.de

Jürgen Graf
KIT, Germany

graf@kit.edu

Abstract—We consider the problem of establishing cryp-
tographic guarantees—in particular, computational indis-
tinguishability—for Java or Java-like programs that use cryp-
tography. For this purpose, we propose a general framework
that enables existing program analysis tools that can check
(standard) noninterference properties of Java programs to
establish cryptographic security guarantees, even if the tools a
priori cannot deal with cryptography. The approach that we
take is new and combines techniques from program analysis
and simulation-based security. Our framework is stated and
proved for a Java-like language that comprises a rich fragment
of Java. The general idea of our approach should, however, be
applicable also to other practical programming languages.

As a proof of concept, we use an automatic program analysis
tool for checking noninterference properties of Java programs,
namely the tool Joana, in order to establish computational
indistinguishability for a Java program that involves clients
sending encrypted messages over a network, controlled by an
active adversary, to a server.

I. INTRODUCTION

In this paper, we consider the problem of establishing
security guarantees for Java or Java-like programs that use
cryptography, such as encryption. More specifically, the
security guarantees we are interested in are computational
indistinguishability properties: Two systems S1 and S2 coded
in Java, i.e., two collections of Java classes, are compu-
tationally indistinguishable if no probabilistic polynomially
bounded environment (which is also coded as a Java pro-
gram) is able to distinguish, with more than negligible
probability, whether it interacts with S1 or S2. As a special
case, S1 and S2 might only differ in certain values for certain
variables. In this case, the computational indistinguishability
of S1 and S2 means that the values of these variables are
kept private, a property referred to as privacy, anonymity, or
strong secrecy. Indistinguishability is a fundamental security
property relevant in many security critical applications, such
as secure message transmission, key exchange, anonymous
communication, e-voting, etc.

Our goal. The main goal of this paper is to develop a
general framework that allows us to establish cryptographic
indistinguishability properties for Java programs using ex-
isting program analysis tools for analyzing (standard) non-

interference properties [16] of Java programs, such as the
tools Joana [19], KeY [1], a tool based on Maude [3], and
Jif [28], [29]. As such, our work also contributes to the
problem of implementation-level analysis of crypto-based
software (such as cryptographic protocols) that has recently
gained much attention (see Sections X and XI).

A fundamental problem that we face is that existing
program analysis tools for noninterference properties cannot
deal with cryptography directly. In particular, they typi-
cally do not deal with probabilities and the noninterference
properties that they prove are w.r.t. unbounded adversaries,
rather than probabilistic polynomially bounded adversaries.
For example, if a message is encrypted and the ciphertext is
given to the adversary, the tools consider this to be an illegal
information flow (or a declassification), because a compu-
tationally unbounded adversary could decrypt the message.
This problem has long been observed in the literature (see,
e.g., [35] and references therein).

Our approach. Our approach to enabling these tools to
nevertheless deal with cryptography and in the end pro-
vide cryptographic security guarantees is to use techniques
from simulation-based security (see, e.g., [9], [34], [23]).
The idea is to first analyze a (deterministic) Java program
where cryptographic operations (such as encryption) are
performed within ideal functionalities. Such functionalities
typically provide guarantees even in the face of unbounded
adversaries and can often be formulated without probabilistic
operations. As we show as part of our framework, we can
then replace the ideal functionalities by their realizations,
obtaining the actual Java program (without idealized com-
ponents) and with cryptographic guarantees.

Our contribution in more detail. More precisely, our
approach and the contribution of this paper are as follows.

Our framework is formulated for a language we call
Jinja+ and is proven w.r.t. the formal semantics of this
language. Jinja+ is a Java-like language that extends the
language Jinja [22] and comprises a rich fragment of Java,
including classes, inheritance, (static and non-static) fields
and methods, the primitive types int, boolean, and byte

(with the usual operators for these types), arrays, exceptions,



and field/method access modifiers, such as public, private,
and protected.

Along the lines of simulation-based security, we formu-
late, in Jinja+, rather than in a Turing machine model, what
it means for two systems to be computationally indistin-
guishable, and for one system to realize another system.
We then prove a composition theorem that allows us to
replace ideal functionalities (formulated as Jinja+ systems)
by their realizations (also formulated as Jinja+ systems) in
a more complex system. The definitions and proofs need
care because interfaces between different Jinja+ systems
are classes with their fields and methods, and hence, these
interfaces are very different and much richer than in the case
of interactive Turing machines, where machines are simply
connected by tapes on which bit strings are exchanged.

As mentioned before, we are mainly interested in es-
tablishing computational indistinguishability properties for
crypto-based Java or Java-like programs (i.e., programs that
use cryptography) using existing analysis tools for language-
based information flow analysis. At the core of our ap-
proach, sketched above, is a theorem that says that if two
systems that both use an ideal functionality are perfectly
indistinguishable, then these systems are computationally
indistinguishable if the ideal functionality is replaced by
its realization, where perfect indistinguishability is defined
(for deterministic Java programs) just as computational in-
distinguishability but w.r.t. unbounded adversaries. Together
with another theorem that we obtain, and which states that
(termination-insensitive) noninterference [35] is equivalent
to perfect indistinguishability, we obtain that by proving
noninterference using existing program analysis tools, we
can establish computational indistinguishability properties.

Many program analysis tools can only deal with closed
Java programs. The systems we want to analyze are, how-
ever, open, because they interact with a network or use
some libraries that we do not (have to) trust, and hence,
do not have to analyze. In our setting, the network and
such libraries are simply considered to be part of the
environment. As part of our framework, we therefore also
propose proof techniques that help program analysis tools to
deal with these kinds of open systems, and in particular, to
proof noninterference properties about these systems. These
techniques are used in our case study (see below), but they
are rather general, and hence, relevant beyond our case study.

Since we use public-key encryption in our case study, we
also propose an ideal functionality for public-key encryption
coded in Jinja+, in the spirit of similar functionalities in the
simulation-based approach (see, e.g., [9], [24]), and prove
that it can be realized with any IND-CCA2 secure public-
key encryption scheme. This result is needed whenever a
Java system is analyzed that uses public-key encryption, and
hence, is relevant beyond our case study. We note that the
formulation of our ideal functionality is more restricted than
the one in the cryptographic literature in that corruption is

not handled within the functionality.
As a case study and as a proof of concept of our frame-

work and approach, we consider a simple Java program,
which in fact falls into the Jinja+-fragment of Java and in
which clients (whose number is determined by an active
adversary) encrypt secrets under the public key of a server
and send them, over an untrusted network controlled by the
active adversary, to a server who decrypts these messages.
Using the program analysis tool Joana [19], which is a
fully automated tool for proving noninterference properties
of Java programs, we show that our system enjoys the
noninterference property (with the secrets stored in high
variables) when the ideal functionality is used instead of
real encryption. The theorems proved in our framework
thus imply that this system enjoys the computational in-
distinguishability property (in this case strong secrecy of
the secrets) when the ideal functionality is replaced by its
realization, i.e., the actual IND-CCA2 secure public-key
encryption scheme.

Structure of the paper. The language Jinja+ is introduced
in Section II. Perfect and computational indistinguishability
for Jinja+ systems are formulated in Section III. In Sec-
tion IV, we define simulation-based security for Jinja+ and
present the mentioned composition theorem. The relation-
ship between computational and perfect indistinguishability
as well as noninterference is shown in Sections V and VI,
with the proof technique for noninterference in open systems
discussed in Section VII. The ideal functionality for public-
key encryption and its realization can be found in Section 7,
with the case study presented in Section IX. In Section X,
we discuss related work. We conclude in Section XI. More
details are provided in the appendix.

II. JINJA+: A JAVA-LIKE LANGUAGE

As mentioned in the introduction, our framework is stated
for a Java-like language which we call Jinja+. Jinja+ is
based on Jinja [22] and extends this language with some
additional features that are useful or needed in the context
of our framework.

Jinja+ covers a rich subset of Java, including classes,
inheritance, (static and non-static) fields and methods, the
primitive types int, boolean, and byte (with the usual op-
erators for these types), arrays, exceptions, and field/method
access modifiers, such as public, private, and protected.
Among the features of Java that are not covered by Jinja+
are: abstract classes, interfaces, strings, and concurrency.
We believe that extending our framework to work for these
features of Java, except for concurrency, is quite straightfor-
ward. We leave such extensions for future work.

A. Jinja

Syntax. Expressions in Jinja are constructed recursively and
include: (a) creation of a new object, (b) casting, (c) lit-
eral values (constants) of types boolean and int, (d) null,
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(e) binary operations, (f) variable access and variable as-
signment, (g) field access and field assignment, (h) method
call, (i) blocks with locally declared variables, (j) sequential
composition, (k) conditional expressions, (l) while loop,
(m) exception throwing and catching.

A program or a system is a set of class declarations.
A class declaration consists of the name of the class and
the class itself. A class consists of the name of its direct
superclass (optionally), a list of field declarations, and a
list of method declarations, where we require that different
fields and methods have different names. A field declaration
consists of a type and a field name. A method declaration
consists of the method name, the formal parameter names
and types, the result type, and an expression (the method
body). Note that there is no return statement, as a method
body is an expression; the value of such an expression is
returned by the method.

In what follows, by a program we will mean a complete
program (one that is syntactically correct and can be exe-
cuted). We assume that a program contains a unique static
method main (declared in exactly one class); this method is
the first to be called in a run. By a system we will mean a set
of classes which is correct (can be compiled), but possibly
incomplete (can use not defined classes). In particular, a
system can be extended to a (complete) program.

Some construction of Jinja (and the richer language
Jinja+, specified below) are illustrated by the program in
Figure 1, where we use Java-like syntax (we will use this
syntax as long as it translates in a straightforward way to a
Jinja/Jinja+ syntax).

Jinja comes equipped with a type system and a notion of
well-typed programs. In this paper we consider only well-
typed programs.

Semantics. Following [22], we briefly sketch the small step
semantics of Jinja. The full set of rules, including those for
Jinja+ (see the next subsection) can be found in Appendix B.

A state is a pair of heap and a store. A store is a map from
variable names to values. A heap is a map from references
(addresses) to object instances. An object instance is a pair
consisting of a class name and a field table, and a field table
is a map from field names (which include the class where a
field is defined) to values.

The small step semantics of Jinja is given as a set of
rules of the form P ` 〈e,s〉 → 〈e′,s′〉, describing a single
step of the program execution (reduction of an expression).
We will call 〈e,s〉 (〈e′,s′〉) a configuration. In this rule, P is
a program in the context of which the evaluation is carried
out, e and e′ are expressions and s and s′ are states. Such a
rule says that, given a program P and a state s, an expression
e can be reduced in one step to e′, changing the state to s′.

B. Jinja+

As a basis of our formal results we take a language
that extends Jinja with: (a) the primitive type byte with

1 class A extends Exception {
2 protected int a; // field with an access modifier
3 static public int[] t = null; // static field
4 static public void main() { // static method
5 t = new int[10]; // array creation
6 for (int i=0; i<10; i++) // loops
7 t[i] = 0; // array assignment
8 B b = new B(); // object creation
9 b.bar(); // method invocation

10 }
11 }
12 class B extends A { // inheritance
13 private int b;
14 public B() // constructor
15 { a=1; b=2; } // field assignment
16 int foo(int x) throws A { // throws clause
17 if (a<x) return x+b; // field access (a, b)
18 else throw (new B()); // exception throwing
19 }
20 void bar() {
21 try { b = foo(A.t[2]); } // static field access
22 catch (A a) { b = a.a; } // exception catching
23 }
24 }

Figure 1. An example Jinja+ program (in Java-like notation).

natural conversions from and to int, (b) arrays, (c) abort

primitive, (d) static fields (with the restriction that they can
be initialized by literals only), (e) static methods, (f) access
modifier for classes, fields, and methods (such as private,
protected, and public), (g) final classes (classes that cannot
be extended), (h) the throws clause of a method declaration.

Exceptions, which are already part of Jinja, are particu-
larly critical for the security properties we are interested in
because they provide an additional way information can be
transfered from one part of the program to another.

We assume that Jinja+ programs have unbounded mem-
ory. The reason for this modeling choice is that the formal
foundation for the security notions adopted in this paper
are based on asymptotic security. This kind of security
definitions only makes sense if the memory is not bounded,
since the security parameter grows indefinitely.

Randomized programs. So far, we have considered deter-
ministic programs. We will also need to consider random-
ized programs in our framework. For this purpose, Jinja+
programs may use the primitive randomBit() that returns
a random bit each time it is used. Jinja+ programs that do
not make use of randomBit() are (called) deterministic, and
otherwise, they are called randomized.

As already mentioned, when presenting program code, we
will use Java-like syntax, as long as it translates in an
straightforward way to the syntax of Jinja+. In this sense,
the code presented in Figure 1 can be considered as a valid
Jinja+ program.

Semantics and runs of Jinja+ programs. As already
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mentioned, the full set of rules of the small step semantics
of Jinja+ can be found in Appendix B.

Definition 1. A run of a deterministic program P is a
sequence of configurations obtained using the (small step)
Jinja+ semantics from the initial configuration of the form
〈e0,(h0, l0)〉, where e0 =C.main(), for C being the (unique)
class where main is defined, h0 = /0 is the empty heap, l0 is
the store mapping the static (global) variables to their initial
values (if the initial value for a static variable is not specified
in the program, the default initial value for its type is used).

A randomized program induces a distribution of runs in
the obvious way. Formally, such a program is a random
variable from the set {0,1}ω of infinite bit strings into
the set of runs (of deterministic programs), with the usual
probability space over {0,1}ω , where one infinite bit string
determines the outcome of randomBit(), and hence, induces
exactly one run.

The small step semantics of Jinja+ provides a natural
measure for the length of a run of a program, and hence, the
runtime of a program. The length of a run of a deterministic
program is the number of steps taken using the rules of the
small-step semantics. Given this definition, for a randomized
program the length of a run is a random variable defined in
the obvious way.

For a run r of a program P containing some subprogram
S (a subset of classes of P), we define the number of steps
performed by S or the number of steps performed in the
code of S in the expected way. To define this notion, we
keep track of the origin of (sub)expressions, i.e., the class
they come from. If a rule is applied on a (sub)expression
that originates from the class C, we label this step with C
and count this as a step performed in C (see Appendix B-B
for details).

III. INDISTINGUISHABILITY

We now define what it means for two systems to be indis-
tinguishable by environments interacting with those systems.
Indistinguishability is a fundamental relationship between
systems which is interesting in its own right, for example,
to define privacy properties, and to define simulation-based
security, as we will see in the subsequent sections.

For this purpose, we first define interfaces that systems
use/provide, how systems are composed, and environments.
We then define the two forms of indistinguishability already
mentioned in the introduction, namely perfect and compu-
tational indistinguishability. Since we consider asymptotic
security, this involves to define programs that take a security
parameter as input and that run in polynomial time in the
security parameter.

Our definitions of indistinguishability follow the spirit
of definitions of (computational) indistinguishability in the
cryptographic literature (see, e.g., [9], [23], [20]), but, of
course, instead of interactive Turing machines, we consider

Jinja+ systems/programs. In particular, the simple commu-
nication model based on tapes is replaced by rich object-
oriented interfaces between subsystems.

A. Interfaces and Composition

Before we define the notion of an interface, we emphasize
that it should not be confused with the concept of interfaces
in Java; we use this term with a different meaning.

Definition 2. An interface I is defined like a (Jinja+) system
but where all method bodies as well as static field initializers
are dropped.

If I and I′ are interfaces, then I′ is a subinterface of I,
written I′v I, if I′ can be obtained from I by dropping whole
classes (with their method and field declarations), dropping
methods and fields, dropping extends clauses, and/or adding
the final modifier to class declarations.

Two interfaces are called disjoint if the set of class names
declared in these interfaces are disjoint.

If S is a system, then the public interface of S is obtained
from S by (1) dropping all private fields and methods from S
and (2) dropping all method bodies and initializers of static
fields.

Definition 3. A system S implements an interface I, written
S : I, if I is a subinterface of the public interface of S.

Clearly, for every system S we have that S : /0.

Definition 4. We say that a system S uses an interface I,
written I ` S, if S, besides its own classes, uses at most
classes/methods/fields declared in I. We always assume that
the public interface of S and I are disjoint.

We note that if I v I′ and I ` S, then I′ ` S. We write
I0 ` S : I1 for I0 ` S and S : I1. If I = /0, i.e., I is the empty
interface, we often write ` S instead of /0 ` S. Note that ` S
means that S is a complete program.

Definition 5. Interfaces I1 and I2 are compatible if there
exists an interface I such that I1 v I and I2 v I.

Intuitively, if two compatible interfaces contain the same
class, the declarations of methods and fields of this class in
those interfaces must be consistent (for instance, a field with
the same name, if declared in both interfaces, must have the
same type). Note that if I1 and I2 are disjoint, then they
are compatible. Systems that use compatible interfaces and
implement disjoint interfaces can be composed:

Definition 6 (Composition). Let IS, IT , I′S and I′T be inter-
faces such that IS and IT are disjoint and I′S and I′T are
compatible. Let S and T be systems such that not both S
and T contain the method main, I′S ` S : IS, and I′T ` T : IT .
Then, we say that S and T are composable and denote by
S · T the composition of S and T which, formally, is the
union of (declarations in) S and T . If the same classes are
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defined both in S and T (which may happen for classes not
specified in IS and IT ), then we always implicitly assume
that these classes are renamed consistently in order to avoid
name clashes.

We emphasize that the interfaces between subsystems as
considered here are quite different and much richer than the
interfaces between interactive Turing machines considered in
cryptography. Instead of plain bit strings that are send over
tapes between different machines, objects can be created,
data of different types, including references pointing to
possibly complex objects, can be passed between different
objects, and classes of the another subsystem can be ex-
tended by inheritance. Also, the flow of control is different.
While in the Turing machine model, sending a message gives
control to the receiver of the message and this control might
not come back to the sender, in the object-oriented setting
communication goes through method calls and fields. After
a method call, control comes back to the caller, provided
that potential exceptions are caught and the execution is not
aborted.

We also emphasize that while a setting of the form
` S : I and I ` T , i.e., in S · T the system T uses the
interface I implemented by S, suggests that the initiative
of accessing fields and calling methods always comes from
T , it might also come from S by using callback objects:
T could extend classes of S by inheritance, create objects
of these classes and pass references to these objects to S
(by calling methods of S). Then, via these references, S can
call methods specified in T . (This, in fact, is a common
programming technique.)

B. Environments

An environment will interact with one of two systems
and it has to decide with which system it interacted (see
Section III). Its decision is written to a distinct static boolean
variable result.

Definition 7. A system E is called an environment if it
declares a distinct private static variable result of type
boolean with initial value false.

In the rest of the paper, we (often implicitly) assume that
the variable result is unique in every Java program, i.e., it
is declared in at most one class of a program, namely, one
that belongs to the environment.

Definition 8. Let S be a system with S : I for some interface
I. Then an environment E is called an I-environment for S
if there exists an interface IE disjoint from I such that (i)
IE ` S : I and I ` E : IE and (ii) either S or E contains main().

Note that E and S, as in the above definition, are com-
posable and E ·S is a (complete) program.

For a finite run of E ·S, i.e., a run that terminates, we call
the value of result at the end of the run the output of E or

the output of the program E ·S. For infinite runs, we define
the output to be false. If E · S is a deterministic program,
then we write E ·S true if the output of E ·S is true. If
E ·S is a randomized program, we write Prob{E ·S true}
to denote the probability that the output of E ·S is true.

Definition 9 (same interface). The systems S1 and S2 use
the same interface if (i) for every IE , we have that IE ` S1 iff
IE ` S2, and (ii) S1 contains the method main iff S2 contains
main.

Observe that if S1 and S2 use the same interface and we
have that S1 : I and S2 : I for some interface I, then every
I-environment for S1 is also an I-environment for S2.

C. Programs with security parameter

As mentioned at the beginning of this section, we need
to consider programs that take a security parameter as input
and run in polynomial time in this security parameter.

To ensure that all parts of a system have access to the
security parameter, we fix a distinct interface ISP consist-
ing of (one class containing) one public static variable
securityParameter. We assume that, in all the considered
systems/programs, this variable (after being initialized) is
only read but never written to. Therefore, all parts of the
considered system can, at any time, access the same, initial
value of this variable.

For a natural number η , we define a system SPη that
implements the interface ISP by setting the initial value of
securityParameter to η . We do not fix here how this value
is represented because the representation is not essential for
our results; it could be represented as a linked list of objects
or an array (see also the discussion below).

We will call a system P such that ISP ` P a program with
a security parameter or simply a program if the presence of
a security parameter is clear from the context. Note that by
this, SPη ·P is a complete program, which we abbreviate by
P(η).

Although as far as asymptotic security is concerned,
our framework works fine with the definitions we have
introduced so far, they are not perfectly aligned with the
common practice of programming in Java. More specifically,
messages, such as keys, ciphertexts, digital signatures, etc.,
are typically represented as arrays of bytes. However, this
representation is bounded by the maximal length of an
array, which is the maximal value of an integer (int).
Therefore, following common programming practice, there
would be a strict bound on, for example, the maximal size
of keys (if represented as arrays of bytes). Since we consider
asymptotic security, the size of keys should, however, grow
with the security parameter.

One solution could be to use another representation of
messages, such as lists of bytes. This, however, would
result in unnatural programs and we, of course, want to
be able to analyze programs as given in practice. Another
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solution could be to use concrete instead of asymptotic
security definitions. However, most results in simulation-
based security are formulated w.r.t. asymptotic security, and
hence, we would not be able to reuse these results and avoid,
for example, reproving from scratch realizations of ideal
functionalities.

Therefore, we prefer the following solution. We parame-
terize the semantics of Jinja+ with the maximal (absolute)
value integers can take. So if P is a deterministic program,
the run of P with integer size s ≥ 1 is a run of P where
the maximal (absolute) value of integers is s; analogously
for randomized programs. We write P s true if the output
of such a run is true; analogously, we define Prob{P s
true}. In our asymptotic formulations of indistinguishabil-
ity, we will let the size of integers grow with the security
parameter.

D. Perfect Indistinguishability

We now formulate (termination-insensitive) perfect in-
distinguishability, which, as we will prove in Section V,
implies computational indistinguishability. We say that a
deterministic program P terminates for integer size s, if the
run of P with integer size s is finite.

Definition 10 (Perfect indistinguishability). Let S1 and S2
be deterministic systems with a security parameter and such
that S1 : I and S2 : I for some interface I. Then, S1 and S2
are perfectly indistinguishable w.r.t. I, written S1 ≈I

perf S2,
if (i) S1 and S2 use the same interface and (ii) for every
deterministic I-environment E for S1 (and hence, S2) with
security parameter, for every security parameter η and every
integer size s ≥ 1, it holds that if E · S1(η) and E · S2(η)
terminate for integer size s, then E · S1(η) s true iff E ·
S2(η) s true.

E. Polynomially Bounded Systems

As already mentioned at the beginning of this section, in
order to define the notion of computational indistinguisha-
bility we need to define programs and environments whose
runtime is polynomially bounded in the security parameter.

For this purpose, we fix now and for the rest of this
section a polynomially computable function intsize that takes
a security parameter η as input and outputs a natural number
≥ 1. We require that the numbers returned by this function
are bounded by a fixed polynomial in the security parameter.
All notions defined in what follows are parameterized by
that function. However, due to ease of notion this will not
be made explicit.

Our runtime definitions follow the spirit of definitions
in cryptographic definitions of simulation-based security, in
particular, [20].

We start with the definition of almost bounded programs.
These are programs that, with overwhelming probability,
terminate after a polynomial number of steps.

Definition 11 (Almost bounded). A program P with secu-
rity parameter is almost bounded if there exists a polynomial
p such that the probability that the length of a run of P(η)
(with integer size intsize(η)) exceeds p(η) is a negligible
function in η .1

It is easy to see that an almost bounded program P
can be simulated by a probabilistic polynomial time Turing
machine that simulates at most p(η) steps of a run of P(η)
(with integer size intsize(η)) and produces output that is
distributed the same up to a negligible difference.

We also need the notion of a bounded environment. The
number of steps such an environment performs in a run is
bounded by a fixed polynomial independently of the system
the environment interacts with.

Definition 12 (Bounded environment). An environment E
is called bounded if there exists a polynomial p such that,
for every system S such that E is an I-environment for S
(for some interface I) and for every run of E · S(η) (with
integer size intsize(η)), the number of steps performed in
the code of E does not exceed p(η).

This definition makes sense since E can abort a run by
calling abort(), and hence, E can prevent to be called by
S, which would always require to execute some code in
E. (Without abort(), E can, in general, not prevent that
code fragments of E are executed, e.g., S could keep calling
methods of classes of E.)

If an environment E is both bounded and an I-environment
for some system S, we call E a bounded I-environment for
S.

For the cryptographic analysis of systems to be mean-
ingful, we study systems that run in polynomial time (with
overwhelming probability) with any bounded environment.

Definition 13 (Environmentally I-bounded). A system S
is environmentally I-bounded, if S : I and for each bounded
I-environment E for S, the program E ·S is almost bounded.

It is typically easy to see that a system is environmentally
I-bounded (for all functions intsize).

F. Computational Indistinguishability

Having defined polynomially bounded systems and pro-
grams, we are now ready to define computational indistin-
guishability of systems, where, again, we fix the function
intsize. (However, computational guarantees for Java pro-
grams will be independent of a specific function intsize.) We
start with the notion of computationally equivalent programs.

Definition 14 (Computational Equivalence). Let P1 and P2
be (complete, possibly probabilistic) programs with security
parameter. Then P1 and P2 are computationally equivalent,

1As usual, a function f from the natural numbers to the real numbers is
negligible, if for every c > 0 there exists η0 such that f (η) ≤ 1

ηc for all
η > η0. A function f is overwhelming if 1-f is negligible.
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written P1 ≡comp P2, if |Prob{P1(η)  intsize(η) true} −
Prob{P2(η) intsize(η) true}| is a negligible function in the
security parameter η .

Definition 15 (Computational indistinguishability). Let
S1 and S2 be environmentally I-bounded systems. Then S1
and S2 are computationally indistinguishable w.r.t. I, written
S1 ≈I

comp S2, if S1 and S2 use the same interface and for
every bounded I-environment E for S1 (and hence, S2) we
have that E ·S1 ≡comp E ·S2.

Typically, this definition is applied to systems S1 and S2
that do not use the statement abort(). However, our results
also work in this case.

We also note that this definition of indistinguishability is
w.r.t. uniform environments. A definition w.r.t. non-uniform
environments can be obtained in a straightforward way by
giving the environment additional auxiliary input (besides
the security parameter).

Furthermore, we point out that in the above definition two
cases can occur: (1) main() is defined in E or (2) main() is
defined in both S1 and S2. In the first case, E can freely
create objects of classes in the interface I (which is a subset
of classes of S1/S2) and initiate calls. Eventually, even in
case of exceptions, E can get back control (method calls
return a value to E and E can catch exceptions if necessary),
unless S1/S2 uses abort. The kind of control E has in the
case (2), heavily depends on the specification of S1/S2. This
can go from having as much of control as in case (1) to
being basically a passive observer. For example, main() (as
specified in S1/S2) could call a method of E and from then
on E can use the possibly very rich interface I as in case (1).
The other extreme is that I is empty, say, so E cannot create
objects of (classes of) S1/S2 by itself, only S1/S2 can create
objects of (classes of) E and of S1/S2. Hence, S1/S2 has more
control and can decide, for instance, how many and which
objects are created and when E is contacted. Still even in
this case, if so specified, S1/S2 could give E basically full
control by callback objects (see Section III-A). (As a side
note, illustrating the richness of the interfaces, compared to
Turing machine models, E could also extend classes of S1/S2
and by this, if not properly protected, might get access to
information kept in these classes.)

IV. SIMULATABILITY

We now formulate what it means for a system to re-
alize another system, in the spirit of the simulation-based
approach.

As before, we fix a function intsize (see Section III-E) for
the rest of this section. Typically, one would prove that one
system realizes the other for all such functions.

Our formulation of the realization of one system by
another follows the spirit of strong simulatability in the
simulation-based approach (see, e.g., [23]). In a nutshell,
the definition says that the (real) system R realizes an (ideal)

system F if there exists a simulator S such that R and S ·F
behave almost the same in every bounded environment.

Definition 16 (Strong Simulatability). Let Iin, Iout , IE , IS
be disjoint interfaces. Let F and R be systems. Then R
realizes F w.r.t. the interfaces Iout , Iin, IE , and IS, written
R ≤(Iout ,Iin,IE ,IS) F or simply R ≤ F , if i) IE ∪ Iin ` R : Iout
and IE ∪ Iin∪ IS ` F : Iout , ii) either both F and R or neither
of these systems contain the method main(), iii) R is an
environmentally Iout -bounded system (F does not need to
be), and iv) there exists a system S (the simulator) such that
S does not contain main(), IE ` S : IS, S ·F is environmentally
Iout -bounded, and R ≈Iout

comp S ·F .

The intuition behind the way the interfaces between the
different components (environment, ideal and real function-
alities, simulator) are defined is as follows: Both R and F
provide the same kind of functionality/service, specified by
the interface Iout . They may require some (trusted) services
Iin from another system component and some services from
an (untrusted) environment, for example, networking and
certain other libraries. In addition, the ideal functionality
F may require services from the simulator S, which in turn
may require services from the environment. Recall from the
discussion in Section III-A that the interfaces can be very
rich—they allow for communication and method calls in
both directions.

In the applications we envision, with our case study being
the first example, F will typically be an ideal functionality
for one or more cryptographic primitives and its realization
R will basically be the actual cryptographic schemes.

The notion of strong simulatability, as introduced above,
enjoys important basic properties, namely, reflexivity and
transitivity, and allows to prove a fundamental composition
theorem. To prove these results, we need the following
lemma, with the proof provided in Appendix C-A.

Lemma 1. Let IE and I be disjoint interfaces and let S1 and
S2 be environmentally I-bounded systems such that S1 ≈I

comp

S2 (in particular, S1 and S2 use the same interface) and
IE ` S1 : I, and hence, IE ` S2 : I. Let E be a (not necessarily
bounded) I-environment for S1 (and hence, S2) with I `E : IE
such that E · S1 is almost bounded. Then E · S2 is almost
bounded and E ·S1 ≡comp E ·S2.

Now we can prove reflexivity and transitivity of strong
simulatability.

Lemma 2 (Reflexivity of strong simulatability). Let Iout ,
Iin, and IE be disjoint interfaces and let R be a system such
that IE ∪ Iin ` R : Iout and R is environmentally Iout -bounded.
Then, R≤ R, i.e., R realizes itself.

Proof: We define S = /0 and immediately obtain that
R ≈Iout

comp R = S ·R.

Lemma 3 (Transitivity of strong simulatability). Let Iout ,
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Iin, IE , I0
S , and I1

S be disjoint interfaces and let R0, R1, and R2

be environmentally I-bounded systems. If R1 ≤(Iout ,Iin,IE∪I1
S ,I0

S )

R0 and R2 ≤(Iout ,Iin,IE ,I1
S ) R1, then R2 ≤(Iout ,Iin,IE ,I0

S∪I1
S ) R0.

Proof: Under the assumption of the lemma, we know
that there exist S0 and S1 such that IE ∪ I1

S ` S0 : I0
S , IE ` S1 :

I1
S , S0 ·R0 and S1 ·R1 are environmentally Iout -bounded, and

R1 ≈Iout
comp S0 ·R0 and R2 ≈Iout

comp S1 ·R1. We define S = S0 ·S1.
Obviously, we have that IE ` S : I0

S ∪ I1
S . Now let E be a

bounded Iout -environment for R2. Then, we obtain:

E ·R2 ≡ E ·S1 ·R1 ≡ E ·S1 ·S0 ·R0 = E ·S ·R0 .

The first equivalence holds because of our assumptions. For
the second equivalence, first note that E · S1 ·R1 is almost
bounded and R1 ≈Iout

comp S0 ·R0. By Lemma 1, we now obtain
that E · S1 · S0 ·R0 is almost bounded and that the second
equivalence holds.

In short, the following composition theorem says that if
R0 realizes F0 and R1 realizes F1, then the composed real
system R0 ·R1 realizes the composed ideal system F0 ·F1. In
other words, it suffices to prove the realizations separately
in order to obtain security of the composed systems.

Theorem 1 (Composition Theorem). Let I0, I1, IE , I0
S , and

I1
S be disjoint interfaces and let R0, F0, R1, and F1 be systems

such that R0 ≤(I0,I1,IE ,I0
S ) F0, R1 ≤(I1,I0,IE ,I1

S ) F1, not both R0
and R1 contain main(), and R0 ·R1 are environmentally (I0∪
I1)-bounded. Then, R0 ·R1 ≤(I0∪I1, /0,IE ,I0

S∪I1
S ) F0 ·F1.

Proof: Under the assumptions of the theorem, there
exist S0 and S1 such that IE ` Si : Ii

S, Si ·Fi is environmentally
Ii-bounded and Ri ≈Ii

comp Si ·Fi for i ∈ {0,1}.
We define S = S0 ·S1, R = R0 ·R1, F = F0 ·F1, I = I0∪ I1,

and IS = I0
S ∪ I1

S . In order to show that R ≤(I, /0,IE ,IS) F it
suffices to prove that a) S ·F is environmentally I-bounded
and b) R ≈I

comp S ·F ; the remaining conditions are obvious.
Let E be a bounded I-environment for R. Similarly to the

proof of Lemma 3, by Lemma 1 we obtain the following
equivalences:

E ·R = E ·R0 ·R1

≡ E ·R0 · (S1 ·F1)
≡ E · (S0 ·F0) · (S1 ·F1) = E ·S ·F,

This implies b). By Lemma 1 we, in particular, get that all
the above systems are almost bounded. Since we quantified
over all bounded I-environments for R (and hence, S ·F) it
follows that S ·F is environmentally I-bounded, thus a).

Note that with R0 ·R1 ≤(I0∪I1, /0,IE ,I0
S∪I1

S ) F0 ·F1 we in partic-
ular have the realization for all subinterfaces of I0∪ I1.

For simplicity, the theorem is stated in such a way that
the trusted service that Ri may use is completely provided
by Ri−1, namely through Ii−1. It is straightforward (only
heavy in notation) to state and prove the theorem for the

more general case that the trusted service is only partially
provided by the other system.

V. FROM PERFECT TO COMPUTATIONAL
INDISTINGUISHABILITY

We now prove that if two systems that use an ideal func-
tionality are perfectly indistinguishable, then these systems
are computationally indistinguishable if the ideal function-
ality is replaced by its realization. As already explained
in the introduction, this is a central step in enabling pro-
gram analysis tools that cannot deal with cryptography and
probabilistic polynomially bounded adversaries to establish
computational indistinguishability properties. As before, we
fix a function intsize (see Section III-E) for the rest of this
section.

The proof is done via two theorems. The first says that
if two systems that use an ideal functionality are computa-
tionally indistinguishable, then they are also computationally
indistinguishable if the ideal functionality is replaced by its
realization.

Theorem 2. Let I, J, IE , IS, and IP be disjoint interfaces
with J v IP ∪ I. Let F, R, P1, and P2 be systems such that
(i) IE ∪ I ` P1 : IP and IE ∪ I ` P2 : IP, (ii) R ≤(I,IP,IE ,IS) F,
in particular, IE ∪ IP ` R : I and IE ∪ IP ∪ IS ` F : I, (iii) P1
contains main() iff P2 contains main(), (iv) not both P1 and
F (and hence, R) contain main(), (v) F ·Pi and R ·Pi, for i ∈
{1,2}, are environmentally J-bounded. Then, F ·P1 ≈J

comp

F ·P2 implies R ·P1 ≈J
comp R ·P2.

Proof: Assume that F ·P1 ≈J
comp F ·P2. In particular,

F ·P1 and F ·P2 use the same interface and, therefore R ·P1
and R ·P2 use the same interface as well.

Let E be a bounded J-environment for R ·P1. We need to
show that E ·R ·P1 ≡comp E ·R ·P2.

Because R ≤(I,IP,IE ,IS) F , there exists a simulator S such
that IE ` S : IS, S ·F is environmentally I-bounded and

R ≈I
comp S ·F (1)

Now, because R ·Pi, i∈{1,2}, is environmentally J-bounded,
the system E ·R ·Pi is almost bounded. By (1) and Lemma 1
we can conclude that E ·S ·F ·Pi is almost bounded and

E ·R ·Pi ≡comp E ·S ·F ·Pi . (2)

As we have assumed that F ·P1 ≈J
comp F ·P2, by Lemma 1

we obtain

E ·S ·F ·P1 ≡comp E ·S ·F ·P2. (3)

Combining (2) and (3), we obtain E ·R ·P1 ≡comp E ·R ·P2.

For simplicity of presentation, the theorem is formulated
in such a way that Pi, i ∈ {1,2}, only uses I as a (trusted)
service and F /R uses IP. It is straightforward to also allow
for other external services.
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We now show that perfect indistinguishability implies
computational indistinguishability (see Appendix C-B) for
details.

Theorem 3. Let I be an interface and let S1 and S2 be
deterministic, environmentally I-bounded programs such that
Si : I, for i ∈ {1,2}, and S1 and S2 use the same interface.
Then, S1 ≈I

perf S2 implies S1 ≈I
comp S2.

By combining Theorem 2 and Theorem 3, we obtain the
desired result explained at the beginning of this section.

Corollary 1. Under the assumption of Theorem 2 and more-
over assuming that P1 ·F and P2 ·F are deterministic systems,
it follows that P1 ·F ≈J

perf P2 ·F implies P1 ·R ≈J
comp P2 ·R.

Recall that P1 · R ≈J
comp P2 · R is (implicitly) defined

w.r.t. the integer size function intsize(η). However, since
the statement P1 ·F ≈J

perf P2 ·F does not depend on any
integer size function, we obtain that computational indistin-
guishability holds independently of a specific integer size
function.

VI. PERFECT INDISTINGUISHABILITY AND
NONINTERFERENCE

In this section we prove that perfect indistinguishability
and noninterference are equivalent for an appropriate class of
systems. Hence, in combination with Corollary 1 it suffices
for tools to analyze systems that use an ideal functionality
w.r.t. noninterference in order to get computational indis-
tinguishability for systems when the ideal functionality is
replaced by its realization. As already mentioned in the
introduction, many tools can analyze noninterference for
Java programs.

The (standard) noninterference notion for confidentiality
[16] requires the absence of information flow from high to
low variables within a program. In this paper, we define
noninterference for a (Jinja+) program P with some static
variables ~x of primitive types that are labeled as high. Also,
some other static variables of primitive types are labeled
as low. We say that P[~x] is a program with high and low
variables. By P[~a] we denote the program P where the
high variables ~x are initiated with values ~a and the low
variables are initiated as specified in P. We assume that the
length of ~x and ~a are the same and ~a contains values of
appropriate types; in such a case we say that ~a is valid. Now,
noninterference for a (deterministic) program is defined as
follows.

Definition 17 (Noninterference for Jinja+ programs). Let
P[~x] be a program with high and low variables. Then, P[~x]
has the noninterference property if the following holds: for
all valid ~a1 and ~a2 and all integer sizes s ≥ 1, if P[~a1] and
P[~a2] terminate for integer size s, then at the end of these
runs, the values of the low variables are the same.

We note that the noninterference property is quite pow-
erful: P could have just one high variable of type boolean.
Depending on the value of this variable P could run one of
two systems S1 and S2, illustrating that the noninterference
property can be as powerful as perfect indistinguishability.

The above notion of noninterference deals with complete
programs (closed systems). We now lift this definition to
open systems.

Definition 18 (Noninterference in an open system). Let
I be an interface and let S[~x] be a (not necessarily closed)
deterministic system with a security parameter, high and low
variables, and such that S : I. Then, S[~x] is I-noninterferent
if for every deterministic I-environment E for S[~x] and every
security parameter η noninterference holds for the system
E · S[~x](η), where the variable result declared in E is
considered to be a low variable.

Now, equivalence of this notion and perfect indis-
tinguishability follows easily by the definitions of I-
noninterference and perfect indistinguishability:

Theorem 4. Let I and S[~x] be given as in Definition 18 with
no variable of S labeled as low (only the variable result

declared in the environment is labeled as low). Then the
following statements are equivalent:
(a) For all valid ~a1 and ~a2, we have that S[~a1] ≈I

perf S[~a2].
(b) I-noninterference holds for S[~x].

As already explained in the introduction and at the be-
ginning of this section, in combination with Corollary 1,
this theorem reduces the problem of checking computational
indistinguishability for systems that use real cryptographic
schemes to checking noninterference for systems that only
use ideal functionalities.

VII. A PROOF TECHNIQUE FOR NONINTERFERENCE IN
OPEN SYSTEMS

There are many tools that can deal with classical nonin-
terference (noninterference of a complete program). In our
case study, we demonstrate that at least one of these tools
can also deal with noninterference in certain open systems.
In the remainder of this section we develop some techniques
that help with this process and that should also enable other
tools to deal with relevant open systems. We start with a
simple case when the communication between P and E is
restricted to primitive types only. Then we generalize our
result to the case where P and E can communicate using
also exceptions, arrays of bytes, and simple objects.

A. Communication through Primitive Types Only

In this section we assume that a system S communicates
with an environment E only through static functions with
primitive types. More precisely, we consider programs S
such that (1) method main is defined in S and (2) IE ` S, for
some interface IE , where all methods are static, use primitive
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1 class Node {
2 int value;
3 Node next;
4 Node(int v, Node n) { value = v; next = n; }
5 }
6 private static Node list = null;
7 private static boolean listInitialized = false;
8 private static Node initialValue()
9 { return new Node(u1, new Node(u2, ...)); }

10 static public int untrustedInput() {
11 if (!listInitialized)
12 { list = initialValue(); listInitialized = true; }
13 if (list==null) return 0;
14 int tmp = list.value;
15 list = list.next;
16 return tmp;
17 }
18 static public void untrustedOutput(int x) {
19 if (untrustedInput()==0) {
20 result = (x==untrustedInput());
21 abort();
22 }
23 }

Figure 2. Implementation of untrustedInput and untrustedOutput in
Ẽ~u. We assume that class Node is not used anywhere else.

types only (for simplicity of presentation we will consider
only the type int), and have empty throws clause. We will
consider indistinguishability w.r.t. the empty interface (i.e.
environments we consider do not directly call S).

The above assumptions will allow us to show, in the proof
of Theorem 5, that E and S do not share any references: their
states are in this sense disjoint.

For a finite sequence ~u = u1, . . . ,un of values of type int,
we denote by ẼIE

~u the following system.
First, ẼIE

~u contains static methods: untrustedOutput and
untrustedInput, as specified in Figure 2. The method
untrustedInput() returns consecutive values of ~u and, after
the last element of~u has been returned, it returns 0. Note that
the consecutive values returned by this method are hardwired
in line 9 (determined by ~u) and do not depend on any input
to ẼIE

~u .
The method untrustedOutput, depending on the values

given by untrustedInput(), either ignores its argument or
compares its value to the next integer it obtains, again, from
untrustedInput() and stores the result of this comparison
in the (low) variable result. The intuition is the following:
untrustedOutput will get, as we will see below, all the data
the environment gets from S. If the two variants of S (with
different high values) behave differently, then there must
be some point where the environment gets different data
from the two systems in the corresponding runs. By choosing
an appropriate ~u this can be detected by untrustedOutput,
which will assign different values to result.

Finally, for every method declaration m in IE , the system
ẼIE

~u contains the implementation of m as illustrated by the
example in Figure 3. As we can see, the defined method

24 static public int foo(int x) {
25 untrustedOutput(FOO_ID);
26 untrustedOutput(x);
27 return untrustedInput()
28 }

Figure 3. ẼIE
~u : the implementation of a method of IE with the signature

static public int foo(int x), where FOO_ID is an integer constant
serving as the identifier of this method (we assign different identifier to
every method).

forwards all its input data to untrustedOutput and let
untrustedInput determine the returned value.

This completes the definition of Ẽ~u. The next theorem
(see Appendix D-A for the proof) states that, to prove I-
noninterference, it is enough to only consider environments
Ẽ~u. In this way we only need to study almost closed systems,
namely systems that differ in only one expression (line 9).

Theorem 5. Let IE be an interfaces with only static methods
of primitive (argument and return) types as introduced
above. Let S be a system with high and low variables such
that main is defined in S and IE ` S. Then, I-noninterference,
for I = /0, holds for S if and only if for all sequences ~u as
above noninterference holds for ẼIE

u ·S.

B. Communication through Arrays, Simple Objects, and
Exceptions

The result stated in Theorem 5 can be extended to
cover some cases where, E and S exchange information
not only through values of primitive types, but also arrays,
simple object, and throwing exceptions. Some restrictions,
however, have to be imposed on IE and the program S.
These restrictions guarantee that, although references are
exchanged between E and S, the communication resembles
exchange of pure data.

More precisely, our result works for the following class of
systems S. Let IE be the minimal interface such that IE ` S.
We assume that:
1. Methods of classes in IE are static and their arguments

are of primitive types or of type byte[]. (Let us notice
that this only restricts the way S uses the environment;
an environment that implements the interface IE can have
arbitrary fields and methods. Note also that methods of
IE can throw exceptions.)

2. Fields of classes in IE are non-static and of primitive
types or of type byte[]. (Again, a system implementing
IE is not restricted to such fields).

3. Whenever an array (i.e. the reference to an array) is
passed to the environment, this reference is not used by S
afterwards. (This property can be easily guaranteed by a
syntactical restriction to pass only fresh copies of arrays
to the environment).

4. If S calls a (static) method of IE which returns a reference
r, the way S can use r is subject to the following
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1 static public byte[] foo(int x, byte t[]) throws C {
2 // consume the input:
3 untrustedOutput(FOO_ID);
4 untrustedOutput(x);
5 untrustedOutput(t.lenght);
6 for( int i=0; i<t.length; ++i )
7 untrustedOutput(t[i]);
8 // decide whether to throw some exception:
9 if(untrustedInput()==0) throw new C1();

10 ...
11 if(untrustedInput()==0) throw new Ck();
12 // determine the array to return:
13 int len = untrustedInput();
14 if (len<0) return null;
15 byte[] result = new byte[len];
16 for( int i=0; i<len; ++i)
17 result[i] = (byte) untrustedInput();
18 return result;
19 }

Figure 4. Ẽ~u: the implementation of a method with the sig-
nature static public byte[] foo(int x, byte[] t) throws C, where
C1, . . . ,Ck are all subclasses of C, including C itself, which are either
standard exceptions or empty classes in IE .

restrictions: (1) If r is a reference of type byte[], then S
is only allowed to immediately clone r; r is not used
afterwards. (2) If r is a reference to an object, then
S is only allowed to immediately clone the fields of r
(of primitive types and of type byte[]); r is not used
afterwards. S cannot use r in any way not specified
explicitly above.

5. For every try-catch statement in S of the form

try { ... } catch (C r) { B }

if C or a subclass of C is listed in the throws clause
of some method in IE (and thus this statement may
potentially catch an exception thrown by E), then r is
subject to the same restrictions as in item 4. case (2)
above.

For such programs we can, as in the previous section,
construct a fixed Ẽ~u such that it is enough to consider only
these system (for all ~u). This system consists of the static
methods untrustedInput and untrustedOutput as defined
above and, for every class C of IE , the declaration of C with
the implementation of (static) methods as illustrated by the
example given in Figure 4. This example illustrates the case
when an array is returned. When an object of class D is to
be returned, then a fresh object of this class is created and
the values of its fields that are specified in IE are filled using
untrustedInput, as for the array in the example.

The following theorem is a generalisation of Theorem 5
to the richer family of progarms considered in this section
(see Appendix D-B for the proof).

Theorem 6. Let S be as above. I-noninterference holds for
S if and only if for all sequences ~u as above noninterference

holds for Ẽu ·S.

VIII. PUBLIC-KEY ENCRYPTION

In our case study, we will analyze a system that
uses public-key encryption. We therefore now provide an
ideal functionality for public-key encryption, denoted by
IdealPKE, based on which our example program will be
analyzed (see Section IX); details of IdealPKE are given
in Appendix A-A. We also prove that this functionality
can be realized by a system, which we call RealPKE,
that implements, in the obvious way, an IND-CCA2-secure
public-key encryption scheme.

The interface implemented by IdealPKE and RealPKE,
denoted by IPKE, consists of two classes:

1 public final class Decryptor {
2 public Decryptor(); // class constructor
3 public Encryptor getEncryptor();
4 public byte[] decrypt(byte[] message);
5 }
6 public final class Encryptor {
7 public byte[] getPublicKey();
8 public byte[] encrypt(byte[] message);
9 }

An object of class Decryptor is supposed to encapsulate
a public/private key pair. These keys are created when the
object is constructed. It allows a party who owns such an
object to decrypt messages (for which, intuitively, the private
key is needed) by the method decrypt. This party can also
obtain an encryptor which encapsulates the related public
key and encrypts messages via the method encrypt. The
encapsulated public key can be obtained by the method
getPublicKey. Typically, the party who creates (owns) a
decryptor gives away only an associated encryptor.

Our ideal functionality IdealPKE is in the spirit of ideal
public-key functionalities in the cryptographic literature (see,
e.g., [9], [24]). However, it is more restricted in that we do
not (yet) model corruption in that functionality, and hence,
in its realization. So far, corruption, if considered, needs
to be modeled in the higher-level system using IdealPKE.
In particular, whenever an encryptor object is used, it is
guaranteed that the public key encapsulated in this object
was honestly generated and no party has direct access to the
corresponding private key.

While this might be too restricted and inconvenient in
some scenarios (and it is interesting future work to extend
this functionality), we took this design choice because our
functionality facilitates the automated verification process
and is nevertheless useful in interesting scenarios. We em-
phasize that the theorem for the realization of IdealPKE
(Theorem 7) would hold for more expressive functionali-
ties, in particular, those that model corruption and exactly
resemble the ones that can be found in the cryptographic
literature.

Our ideal functionality IdealPKE : IPKE is defined on
top of the interface IEnc (which, in a complete system,
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is implemented by the environment or the simulator), i.e.
IEnc ` IdealPKE, where IEnc is as follows:

10 class KeyPair {)
11 public byte[] publicKey;
12 public byte[] privateKey;
13 }
14 class Encryption {
15 static public KeyPair generateKeyPair();
16 static public byte[]
17 encrypt(byte[] publKey, byte[] message);
18 static public byte[]
19 decrypt(byte[] privKey, byte[] message);
20 }

In a nutshell, IdealPKE works as follows: On initializa-
tion, via Decryptor(), a public/private key pair is created by
calling generateKeyPair() in IEnc. IdealPKE also maintains
a list of message/ciphertext pairs; this list is shared with all
associated encryptors (objects returned by getEncryptor).
When method encrypt in IPKE is called for a message m,
the ideal functionality calls encrypt in IEnc to encrypt a se-
quence of zeros of the same length, obtaining the ciphertext
m′, and stores (m,m′) in the list. The method decrypt in
IPKE called for m′ looks for a pair (m,m′) in the list and,
if it finds it, returns m; otherwise, it decrypts m′ (calling
decrypt in IEnc) obtaining m′′ and returns this message. The
idea behind this functionality is that the ciphertext returned
by encryption is not related in any way (except for the length
of the message) to the plaintext.

As already mentioned, RealPKE is defined in a straight-
forward way using any IND-CCA2-secure encryption
scheme. The following theorem, which says that RealPKE
in fact realizes IdealPKE, is proved in Appendix E.

Theorem 7. If RealPKE uses an IND-CCA2-secure encryp-
tion scheme, then RealPKE≤(IPKE , /0, /0,IEnc) IdealPKE.

IX. CASE STUDIES

In our case study and as a proof of concept of our
framework, we consider a simple system that uses public-key
encryption: clients send secrets encrypted over an untrusted
network, controlled by an active adversary, to a server who
decrypts the messages. This can be seen as a rudimentary
way encryption can be used. Based on our framework, we
use the Joana tool (see below), to verify strong secrecy of
the messages sent over the network, i.e., noninterference
is shown using Joana for the system when it runs with
IdealPKE and by our framework we then obtain compu-
tational indistinguishability guarantees when IdealPKE is
replaced by RealPKE.

Clearly, the system itself is quite trivial from a cryp-
tographic point of view. However, the point of language-
based analysis in general and the point of our case study in
particular is to show that the system is implemented in a way
that the expected security guarantees actually hold true (there
are more than enough opportunities to make implementation
errors in even simple systems).

We emphasize that while the code of client and server
are quite small, the actual code that needs to be analyzed
is longer because it includes the ideal functionality and the
code that results from applying the techniques developed
in Section VII-B (we note the verified program is in the
family of systems considered in this section); altogether the
code, which in our case study comprises 376 LoC in a
rich fragment of Java. Moreover, the adversary model we
consider in the case study is strong in that the (active)
adversary dictates the number of clients, sends a pair of
messages to every client of which one is encrypted (in the
style of a left-right oracle), and controls the network.

The verification of the program took just a few seconds
(see below), and hence, our approach, in conjunction with
Joana, should also work for bigger programs and more
complex settings.

A. The Analyzed Program

We now describe the analyzed program in more detail (see
Appendix A-B for the code).

Besides the code for client and server, the program also
contains a setup class which contains the methods main()
and creates instances of protocol participants and organizes
the communication. This setup first creates a public/private
key pair (encapsulated in a decryptor object) for the server.
In a while-loop it then expects, in every round, i) two input
messages from the network (adversary), ii) depending on a
static boolean variable secret (which will be declared to
be high), one of the two messages is picked, iii) a client is
created and it is given the public key of the server and the
chosen message (the client will encrypt that message and
send it over the network to the server), iv) a message from
the network is expected, and v) given to the server, who will
then decrypt this message and assign the plaintext to some
variable.

We denote the class setup by Setup[b], where b ∈
{false,true} is the value with which secret is initialized
in Setup. By Sreal [b], for b ∈ {false,true}, we denote the
system consisting of the class Setup[b], the class Client, the
class Server, and the system RealPKE. This system is open:
it uses unspecified network (and untrusted input from the
environment) which is controlled by the adversary. Anal-
ogously, Sideal [b] contains IdealPKE instead of RealPKE.
Note that Sideal [b] is even more open in that the ideal
functionality asks the environment to encrypt and decrypt
some messages (see the definition of IdealPKE).

We note that for the analysis with Joana we consider a
variant of the ideal functionality where the ideal encryption
is done always with the zero byte, and hence, the ideal
functionality does not reveal the length of the encrypted
message. (This is reasonable if only messages of fixed length
are supposed to be encrypted.)
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B. The Property to be Proven

The property we want to show is

Sreal [false] ≈ /0
comp Sreal [true], (4)

that is, the two variants of the system are indistinguishable
from the point of view of an adversary who implements the
networking, but does not call (directly) methods of Sreal [b];
he, however, through the setup class, determines the number
of clients that are created and the message pair for every
client.

By our framework, to prove (4) it is enough to show I-
noninterference of the system Sideal [b]. Since the system
Sideal [b] is in the class of systems considered in Sec-
tion VII-B, we can use the results from this section which
say that we only need to show (classical) noninterference of
the system T~u[b], for all ~u, which extends Sideal [b] by ẼIE

u ,
where IE is the interface IdealPKE extended with methods
for network input and output.

To show that, for all ~u, noninterference holds for T~u[b],
we used the Joana tool, as described in the next section.

The carried out verification establishes (4), under the
(reasonable) assumption that Joana is sound with respect
to the subset of Java covered in Jinja+ (as explained in the
next section, Joana has been proved to be sound with respect
to the semantics of Jinja).

C. Analysis with Joana

Joana [19] is a static analysis tool. It uses a technique
called slicing for program dependence graphs (PDG)—a
graph-based representation of the program—to detect illegal
information flows. It can handle full Java bytecode including
exceptions. A machine-checked proof [36] provides a formal
specification of PDGs and shows that slicing can be used
to obtain a sound approximation of the information flows
inside a program. Additional work [37], [38] verified that a
variant of the slicing algorithm used by Joana can help to
guarantee classical Goguen/Meseguer noninterference [15]
(which is the kind of noninterference we are interested in)
for the semantics of the Jinja language. The technique used
by Joana does not depend on such details of the semantics
as the maximum value of integers. Therefore, the guarantees
Joana gives apply to all variants of the semantics that differ
on this maximum value.

Joana is a whole-program analysis tool that analyses an
explicit version of a program and thus cannot reason about
the security of a family of programs in general. We show,
however, that this is possible for the specific families of
(closed) programs Ẽ~u ·S (parametrized by ~u), considered in
Section VII-B (see Appendix F for details). In particular,
Joana can verify (absence of) information flow for the family
T~u defined in the previous section. We want to emphasize
that the results of Appendix F are not specific to the protocol
analyzed in this case study; they enable Joana to reason

about any systems that comply with the restrictions of
Section VII-B, and hence they are of general interest.

In the verification process we have carried out, we
have marked the initialization of the variable secret as
high input and modifications to the result variable of
unstrustedOutput as low output. Then Joana automatically
has built the PDG model of the program, marked the
corresponding nodes in the graph with high and low, and
checked if no information flow is possible from high input
to low output through a data flow analysis on the graph. (In
case an illegal flow is detected Joana issues a violation of
the security property and returns the set of all possible paths
(slice) of illegal flow in the program.)

Because of various precision enhancements in Joana—
especially detection of impossible NullPointerExceptions

and object-sensitivity—we were able to analyze the given
family of programs (without any false positives that might
have stemmed from the involved overapproximations) and
thus to guarantee the absence of information flow.

Joana took about 11 seconds on a standard PC to finish
the analysis of the program (with a size of 376 LoC). PDG
computation took 10 seconds and only 1 second was needed
to detect the absence of illegal flow inside the PDG.

The complete source code that was analyzed can be
download from [26].

X. RELATED WORK

As already mentioned in the introduction, our work con-
tributes to the area of language-based analysis of software
that uses cryptography, such as cryptographic protocols, an
area that recently has gained much attention. We discuss
some of the more closely related work in this area in what
follows.

The work most closely related to our work is the work
by Fournet et al. [13]. Fournet et al. also aim at establish-
ing computational indistinguishability properties for systems
written in a practical programming language; this work, in
fact, seems to be the first to study such strong properties
in the area of language-based cryptographic analysis, other
work considers trace properties, such as authentication and
weak secrecy. However, there are many differences between
the work by Fournet et al. and our work, in terms of the
results obtained, the approach taken, and the programming
language considered. Fournet et al. consider a fragment of
the functional language F#, while we consider a fragment
of Java. Their approach, with theorems of the form “if
a program type-checks, then it has certain cryptographic
properties”, is strongly based on type checking (with re-
finement types), while the point of our framework is to
enable different techniques and tools that a priori cannot
deal with cryptography to establish cryptographic guaran-
tees. While the results of Fournet et al. concern specific
cryptographic primitives, we establish general results for
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ideal functionalities and their realizations. While simulation-
based techniques are used in the proofs of the theorems in the
work of Fournet et al., in our approach, ideal functionalities
are part of the program to be analyzed by the tools; by our
framework, the ideal functionalities can then be replaced by
their realizations and for the resulting systems we obtain
computational indistinguishability.

In most of the work on language-based analysis of crypto-
based software the analysis is carried out based on a sym-
bolic (Dolev-Yao), rather than a cryptographic model (see,
e.g., [17], [5], [10], [7]). Some works obtain cryptographic
guarantees by applying computational soundness results [4],
[2], where the usual restrictions of computational soundness
results apply [12], or by compiling the source code to
a specification language that then can be analyzed by a
specialized tool, namely CryptoVerif [8], for cryptographic
analysis [6]. In contrast, our approach, just as the one
by Fournet et al. discussed above, does not take a detour
through symbolic models in combination with computational
soundness results. Also, our approach does not rely on
specialized tools for cryptographic analysis.

The existing works on the security analysis of crypto-
based software has mostly focussed on fragments of F#
and C, including the above mentioned works. Some works
consider (fragments of) Java [21], [32], but in a symbolic
model and without formal guarantees.

Our framework might also be applicable in the context
of computational noninterference (see, e.g., [14], [27]) since
computational noninterference can be seen as a specific form
of computational indistinguishability. It is interesting future
work to investigate the connection between these works and
our work further.

Our work also contributes to the mostly unexplored field
of noninterference for interactive/open systems [31], [11].
Our technique presented in Section VII enables program
analysis tools for checking noninterference of closed systems
to deal with open/interactive systems in a practical program-
ming language, namely Java. Existing works on noninterfer-
ence for interactive systems [31], [11] are orthogonal to our
work in that on the one hand they consider abstract system
models (labeled transition systems with input and output),
rather than a practical programming language, and on the
other hand they study systems w.r.t. a more general lattice
of security labels for input/output channels.

XI. CONCLUSION

We have presented a general framework for establishing
computational indistinguishability properties for Java(-like)
programs using program analysis tools that can check
(standard) noninterference properties of Java programs but
a priori cannot deal with cryptography and cryptographic
adversaries, i.e., probabilistic polynomial-time adversaries.
The approach we proposed is new and combines techniques
from program analysis and simulation-based security. Our

framework is stated and proved for the Java-like language
Jinja+, which comprises a rich fragment of Java.

As a proof of concept, the usefulness of our framework
was demonstrated in a case study, where we used an auto-
matic tool, namely Joana, to check the noninterference of
a Java program. By our framework, this analysis implied
computational indistinguishability for that program (w.r.t. an
active adversary). The analysis performed by Joana was
very fast and suggests that more complex systems can be
analyzed within our framework using this tool. Our case
study thus demonstrated, for the first time, that general
program analysis tools that a priori are not designed to
perform cryptographic analysis of Java programs, can in fact
be used for that purpose.

Our work contributes to the field of language-based anal-
ysis of crypto-based software, which recently has gained
much attention, in that i) a new approach is proposed, ii)
our approach works for a (rich fragment of a) practical
programming language, namely Java, which has not gotten
much attention so far in this area, and iii) computational
indistinguishability guarantees are obtained, rather than only
guarantees in more abstract symbolic (Dolev-Yao) models
and rather than trace properties, such as authentication
and weak secrecy, as in most other works, and iv) these
guarantees are obtained directly without taking a detour
through symbolic models in combination with computational
soundness results, as in most other works.

There are many directions for future work. We briefly
mention a few. First, we are confident that, besides Joana,
also other program analysis tools can be used within our
framework to establish cryptographic security properties of
Java programs, with possible candidates being the interactive
theorem prover KeY [1], a tool based on Maude [3], and Jif
[28], [29].
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APPENDIX A.
PROGRAMS

A. Public Key Encryption

Real Functionality. By RealPKE we denote the system
consisting of the following classes and the system CCA2Enc.

1 class Encryptor {
2 private byte[] publKey = null;
3

4 Encryptor(byte[] pubk)
5 { publKey = pubk; }
6 public byte[] getPublicKey()
7 { return publKey; }
8 public byte[] encrypt(byte[] message)
9 { return Encryption.encrypt(publKey, message); }

10 }
11 class Decryptor {
12 private byte[] privKey;
13 private byte[] publKey = null;
14

15 public Decryptor() {
16 KeyPair kp = Encryption.generateKeyPair();
17 privKey = kp.privateKey;
18 publKey = kp.publicKey;
19 }
20 public Encryptor getEncryptor()
21 { return new Encryptor(publKey); }
22 public byte[] decrypt(byte[] message)
23 { return Encryption.decrypt(privKey, message); }
24 }

Ideal Functionality. By IdealPKE we denote the following
system.
25 public final class Decryptor {
26 private byte[] privKey;
27 private byte[] publKey;
28 private MessagePairList log;
29

30 public Decryptor() {
31 KeyPair keypair = CryptoLib.generateKeyPair();
32 publKey = copyOf(keypair.publicKey);
33 privKey = copyOf(keypair.privateKey);
34 }
35 public Encryptor getPublicInterface() {
36 return new Encryptor(log,publKey);
37 }
38 public byte[] decrypt(byte[] message) {
39 byte[] messageCopy = copyOf(message);
40 if (!log.contains(messageCopy)) {
41 return copyOf(
42 Encryption.decrypt(copyOf(privKey),
43 messageCopy) );
44 } else {
45 return copyOf( log.lookup(messageCopy) );
46 }
47 }
48 }
49
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50 public final class Encryptor {
51 private MessagePairList log;
52 private byte[] publKey;
53

54 Encryptor(MessagePairList mpl, byte[] publicKey) {
55 log = mpl;
56 publKey = publicKey;
57 }
58

59 public byte[] getPublicKey() {
60 return copyOf(publKey);
61 }
62

63 public byte[] encrypt(byte[] message) {
64 byte[] messageCopy = copyOf(message);
65 byte[] randomCipher = copyOf(
66 CryptoLib.encrypt(getZeroMessage(message.length),
67 copyOf(publKey)));
68 if( randomCipher == null ) return null;
69 log.add(messageCopy, randomCipher);
70 return copyOf(randomCipher);
71 }
72 }

We omit here the declarations of (a) method getZeroMessage

that for a integer n returns a message of length n consisting
of zeros, (b) method copyOf that returns a copy of the
given message, (c) class MessagePairList that stores pairs of
messages an offers natural methods: add (to add a message
pair), contains (to check, for a message m, whether there is
a pair (m′,m) in the list), and lookup (which, for a message
m, returns m′ as above, if it exists). The declaration of these
methods can be found in [26].

B. The Case Study

We provide here complete code of the essential compo-
nents (classes) of our case study: the client, the server, and
the setup.

73 final public class Client {
74 private Encryptor BobPKE;
75 private byte[] message;
76

77 public Client(Encryptor BobPKE, byte message) {
78 this.BobPKE = BobPKE;
79 this.message = new byte[] {message};
80 }
81

82 public void onInit() throws NetworkError {
83 byte[] encMessage = BobPKE.encrypt(message);
84 Network.networkOut(encMessage);
85 }
86 }

87 final public class Server {
88 private Decryptor BobPKE;
89 private byte[] receivedMessage = null;
90

91 public Server(Decryptor BobPKE) {
92 this.BobPKE = BobPKE;
93 }
94

95 public void onReceive(byte[] message) {
96 receivedMessage = BobPKE.decrypt(message);
97 }
98 }

99 public class Setup {
100 static private boolean secret = b; // b ∈ {true,false}
101

102 public static void main() throws NetworkError {
103 // Public-key encryption functionality for Server
104 Decryptor serverDec = new Decryptor();
105 Encryptor serverEnc = serverDec.getPublicInterface();
106 Network.networkOut(serverEnc.getPublicKey());
107

108 // Creating the server
109 Server server = new Server(serverDec);
110

111 // The adversary decides how many clients we create
112 while( Network.networkIn() != null ) {
113 byte s1 = Network.networkIn()[0];
114 byte s2 = Network.networkIn()[0];
115 // and one of them is picked depending
116 // on the value of the secret bit
117 byte s = secret ? s1 : s2;
118 Client client = new Client(serverEnc, s);
119 // trigger the client
120 client.onInit();
121 // read a message from the network...
122 byte[] message = Network.networkIn();
123 // ... and deliver it to the server
124 server.onReceive(message);
125 }
126 }
127 }

This program uses class Network (which we do not
provide, as it is part of the environment) with the following
interface:

128 class NetworkError extends Exception {
129

130 class Network {
131 public static void networkOut(byte[] outEnc)
132 throws NetworkError;
133 public static byte[] networkIn()
134 throws NetworkError;
135 }

APPENDIX B.
JINJA+

A. Jinja+ Extensions

As a basis of our formal results we take language Jinja+
that extends Jinja with: (a) the primitive type byte with
natural conversions from and to int, (b) arrays, (c) abort

primitive, (d) static fields (with the restriction that they can
be initialized by literals only), (e) static methods, (f) access
modifier for classes, fields, and methods (such as private,
protected, and public), (g) final classes (classes that cannot
be extended), (h) the throws clause of a method declaration
(that declare which exceptions can be thrown by a method).

For the last three extensions—access modifiers, final
classes, and throws clauses—we assume that they are pro-
vided by a compiler that, first, ensures that the policies
expressed by access modifiers, the final modifier, and throws

clauses are respected and then produces pure Jinja+ code
(without access modifiers, the final modifier, and throws

clauses). In the similar manner we can deal with construc-
tors: a program using constructors can be easily translated
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to one without constructors (where creation and initialisation
of an object is split into two separate steps).

The remaining extensions are described below:

Primitive types. The Jinja language, as specified in [22],
offers only boolean and integer primitive types. For our
purpose, we find it useful to also include type byte with
natural conversions from and to int. Also, the set of oper-
ators on primitive types is extended to include the standard
Java operators (such as multiplication). This extensions can
be done in very straightforward way and, thus, we skip its
detailed description.

Arrays. We will consider only one-dimensional arrays
(an extension to multi-dimensional arrays is then quite
straightforward; moreover multi-dimensional arrays can be
simulated by nested arrays). To extend the Jinja language
with one-dimensional arrays, we adopt the approach of [30].

First, we extend the set of types to include array types
of the form τ[], where τ is a type. Next, we extend the
set of expressions by: (a) creation of new array: new τ[e],
where e is an expression (that is supposed to evaluate to
an integer denoting the size of the array) and τ is a type,
(b) array access: e1[e2], (c) array length access: e.length,
and (d) array assignment: e1[e2] := e3.

For this extension, following [30], we redefine a heap to
be a map from references to objects, where an object is
either an object instance, as defined above, or an array. An
array is a triple consisting of its component type, its length
l, and a table mapping {0, . . . , l−1} to values.

Extending (small step) semantic rules to deal with arrays
is quite straightforward (see the appendix).

The abort primitive. Expression abort, when evaluated,
causes the program to stop. (Technically this expression
cannot be reduced and causes the program execution to get
stuck.)

Static methods and fields. Fields and methods can be
declared as static. However, as can be seen below, to keep
the semantics of the language simple, we impose some
restrictions on initializers of static fields.

A static method does not require an object to be invoked.
The syntax of static method call is C.f(args), where C is
the name of a class that provides f.

Extending Jinja with with static methods is straightfor-
ward. The rule for static method invocation is very similar
to the one for non-static method invocation: the difference
is that the variable this is not added to the context (block)
within which the method body is executed (a static method
cannot reference non-static fields and methods).

We assume that static fields can be initialized only with
literals (constants) of appropriate types. If there is no ex-
plicit initializer, then a static variable is initialized with the
default value of its type. For example, while static int x = 7

and static int[] t are valid declarations, the declaration
static A a = new A() and static int y = A.foo() are not.

Dealing with more general static initializers is not dif-
ficult in principle, but it would require a precise—and
quite complicated—model of the initialisation process, the
complication we want to avoid.

Extending Jinja with static filed requires only a very
little overhead: for a static field f declared in class C we
introduce a global variable C.f (note that names of this form
do not interfere with names of local variables and method
parameters). These global variables are initialized before
actual program (expression) is executed, as described in the
definition of a run below.

Exceptions. A method declaration can contain a throws

clause in which classes of exceptions that can be propagated
by the method are listed. Such a clause can be omitted, in
which case the above mentioned list is considered empty.
When the meaning of throws clauses is considered, standard
subtyping rules are applied (if class A is listed in such a
clause, then the method can propagate exceptions of class A
or any subclass of A).

As mentioned, we assume that the compiler (or a static
verifier) statically checks whether the program complies with
throws clauses.

Unlike in Java, however, we can assume without loss of
generality that all exceptions must be declared in a throws

clause if they are propagated by a method (in the Java
terminology, we can say that all exceptions are checked).
This will give us more control on the information which is
passed between program components.

We consider the following hierarchy of standard (sys-
tem) exceptions. In the root of this hierarchy we place
(empty) class Exception. We require that only object of
this class (and its subclasses) can be used as exceptions.
Class SystemException, also empty, is a subclas of class
Exception, and is a base class for the following system
exceptions (exceptions which are not thrown explicitly,
but may occur in result of some standard operations on
expressions):
ArrayStoreException — trown to indicate an attempt to

store an object of the wrong type into an array,
IndexOutOfBoundsException — thrown to indicate that an

array has been indexed with an index being out of
range,

NegativeArraySizeException — thrown to indicate an at-
tempt to create an array with negative size,

NullPointerException — thrown if the null reference is
used when an object is required,

ClassCastException — thrown to indicate an illegal cast.

We will assume that the above classes are predefined, and
can be used in any program.

For completeness of the presentation, in this section we
summarize all the rules of Jinja+. We start with rules of
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Jinja, following [22] (see this paper for the details on the
used symbols). In particular, the syntactical convention used
in these rules is that an application of a function f to an
argument a is denoted by f a.

The rules assume a function binop that provides semantics
for operations on atomic types. The exact definition of
this function depends on the maximal size of integers that
we consider (recall that we consider different variants of
semantics for different size of integers given by intsize(η)
where η is the security parameter).

B. Rules of Jinja

There are two point where our presentation rules diverge
from the ones of [22]. First, as we assume unbounded
memory, we do not have rules which throw OutOfMemoryError

(and we assume that (new-Addr h) is never None). Second,
we added labels to rules. These labels allow us to count
the number of steps performed within (by) a given class or
subsystem. A label D in a step

〈e,s〉 D→ 〈e′,s′〉

means, informally, that the step was executed by the code of
class D. More precisely, the expression that was selected to
be reduced by an elementary rule comes from a method
of D. We use the label − if the origin of the reduced
expression is not known (because, at that point, the context
of this expression is not known; typically this empty label
is overwritten by a subexpression reduction rule for blocks,
that is rules (12)–(14)).

To define labeling of transitions, labels are also added to
blocks that are obtained from the method call rule (a block is
labeled by the name of the class from which the body of the
method comes). Then, the labels of transitions are, roughly
speaking, inherited from the innermost block within which
the reduction takes place.

Now, for the run of a program P with a subsystem S, we
say that a step 〈s1,e1〉

D→〈s2,e2〉 is performed by S and write
〈s1,e1〉

S→ 〈s2,e2〉, if D is the name of a class defined in S.

Subexpression reduction rules (Figure 5) describe the order
in which subexpressions are evaluated. The relation [→]
it the extension of → to expression list (· is the list
constructor).

Expression reduction rules (Figure 6) are applied when
the subexpressions are sufficiently reduced. In the rule for
method invocation, the required nested block structure is
built with the help of the auciliary function blocks:

blocksC([], [], [],e) = e

blocksC(V ·V s,T ·T s,v · vs,e) =
= {V : T ; V :=v; blocks(V s,T s,vs,e)}C

(where · is the list constructor and [] denotes the empty list).

Exceptional reduction and exception propagation rules (Fig-
ure 7 and 8) describe how exception are thrown and propa-
gated.

Note that we do not have a rule reducing abort. That means
that, if this expression is to be reduced, the execution gets
stuck.

C. Rules for Jinja+

In this section we presents additional rules of Jinja+.
Theres rules concern static method invocation and arrays.
The rules are given in Fiture 10 and 9.

APPENDIX C.
PROOFS FOR SIMULATABILITY

A. Proof of Lemma 1

Let I, IE , S1, S2, and E be given as stated in the lemma.
We need to show that E · S2 is almost bounded and that
E ·S1 ≡comp E ·S2.

Since E ·S1 is almost bounded, there exists a polynomial
p such that the probability that the length of the run of
this system with security parameter η (and integer size
intsize(η)) exceeds p(η) is negligible. Now let us denote by
[E] the system that is defined just as E, but which in addition
has a private static counter (defined in some new class in E)
and where the code of E is modified such that whenever a
step in the code of E is performed (according to the small
step Jinja+ semantics), then the counter is increased. Once
the bound p(η) is reached, [E] performs abort().

By construction of [E] it is easy to see that [E] is a
bounded environment because [E] does not simulate more
than p(η) steps of E, where each step of E can be simulated
in a number of steps bounded by a constant. Also, [E]
behaves exactly like E up to the point where the bound
p(η) is reached. From this, as further explained below, we
obtain:

E ·S1 ≡comp [E] ·S1 ≡comp [E] ·S2 ≡comp E ·S2.

The first equivalence holds because E reaches the bound
p(η) when running with S1 only with negligible probability.
Hence, the assignment of E and [E] to result is the same
with overwhelming probability.

The second equivalence is true because S1 ≈I
comp S2 and

[E] is a bounded I-environment for S1 and S2.
The third equivalence holds because in the system E ·S2

the bound p(η) is reached also only with negligible prob-
ability: Otherwise, we could easily turn [E] into a bounded
environment E ′ that distinguishes S1 and S2, namely, E ′

works just as [E] but outputs true, i.e., assigns true to
the variable result iff the bound p(η) is reached. So, if,
when E interacts with S2, the bound were reached with non-
negligible probability, E ′ could distinguish between S1 and
S2. It follows that E ·S2 is almost bounded and that the last
equivalence holds.
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P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Cast C e,s〉 `→ 〈Cast C e′,s′〉
(5)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈V := e,s〉 `→ 〈V := e′,s′〉
(6)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.F{D},s〉 `→ 〈e′.F{D},s′〉
(7)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.F{D} := e2,s〉
`→ 〈e′.F{D} := e2,s′〉

(8)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Val v.F{D} := e,s〉 `→ 〈Val v.F{D} := e′,s′〉
(9)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e� bop� e2,s〉
`→ 〈e′� bop� e2,s′〉

(10)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈Val v1� bop� e,s〉 `→ 〈Val v1� bop� e′,s′〉
(11)

P ` 〈e,(h, l(V := None))〉 `→ 〈e′,(h′, l′)〉 l′ V = None ¬ assigned V e

P ` 〈{V : T ;e}D,(h, l)〉 f (l,D)→ 〈{V : T ;e′}D,(h′, l′(V := l V ))〉
(12)

P ` 〈e,(h, l(V := None))〉 `→ 〈e′,(h′, l′)〉 l′ V = v ¬ assigned V e

P ` 〈{V : T ;e}D,(h, l)〉 f (l,D)→ 〈{V : T ; V := Val v;e′}D,(h′, l′(V := l V ))〉
(13)

P ` 〈e,(h, l(V 7→ v))〉 `→ 〈e′,(h′, l′)〉 l′ V = v′

P ` 〈{V : T ;V := Val v;e}D,(h, l)〉 f (l,D)→ 〈{V : T ; V := Val v′;e′}D,(h′, l′(V := l V ))〉
(14)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e.M(es),s〉 `→ 〈e′.M(es),s′〉
(15)

P ` 〈es,s〉 [ `→] 〈es′,s′〉

P ` 〈Val v.M(es),s〉 `→ 〈Val v.M(es′),s′〉
(16)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e;e2,s〉
`→ 〈e′;e2,s′〉

(17)

P ` 〈e,s〉 `→ 〈e′,s′〉
P ` 〈if (e) e1 else e2,s〉 → 〈if (e′) e1 else e2,s′〉

(18)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e · es,s〉 [ `→] 〈e′ · es,s′〉

P ` 〈es,s〉 [ `→] 〈es′,s′〉

P ` 〈Val v · es,s〉 [ `→] 〈Val v · es′,s′〉
(19)

Figure 5. Subexpression reduction rules. We define f (l,D) = D, if l =−; otherwise f (l,D) = l.
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new-Addr h = a P `C has-fields FDT s

P ` 〈new C,(h, l)〉 −→ 〈addr a,(h(a 7→ (C, init-fields FDT s)), l)〉
(20)

hp s a = (D, fs) P ` D�∗ C

P ` 〈Cast C (addr a),s〉 −→ 〈addr a,s〉
(21)

P ` 〈Cast C null,s〉 −→ 〈null,s〉 (22)

lcl s V = v

P ` 〈Var V,s〉 −→ 〈Val v,s〉
(23)

P ` 〈V := Val v,(h, l)〉 −→ 〈unit,(h, l(V 7→ v))〉 (24)

binop (bop,v1,v2) = v

P ` 〈Val v1� bop� Val v2,s〉
−→ 〈Val v,s〉

(25)

hp s a = (C, f s) f s(F,D) = v

P ` 〈addr a.F{D},s〉 −→ 〈Val v,s〉
(26)

h a = (C, f s)

P ` 〈addr a.F{D} := Val v,(h, l)〉 −→ 〈unit,(h(a 7→ (C, f s((F,D) 7→ v))), l)〉
(27)

hp s a = (C, f s) P ` C sees M : T s→ T = (pns, body) in D |vs|= |pns| |T s|= |pns|
P ` 〈addr a.M(map Val vs),s〉 −→ 〈blocksD(this · pns, Class D ·T s, Addr a · vs, body),s〉

(28)

P ` 〈{V : T ; V := Val v; Val u}D,s〉 D→ 〈Val u,s〉 (29)

P ` 〈{V : T ; Val u},s〉 −→ 〈Val u,s〉 (30)

P ` 〈Val v; e2,s〉
−→ 〈e2,s〉 (31)

P ` 〈if(true) e1 else e2,s〉
−→ 〈e1,s〉 (32)

P ` 〈if( f alse) e1 else e2,s〉
−→ 〈e2,s〉 (33)

P ` 〈while(b) c,s〉 −→ 〈if(b) (c; while(b) c) else unit,s〉 (34)

Figure 6. Expression reduction

B. Proof of Theorem 3

Let E be a bounded I-environment for S1 (and hence,
S2). For a finite bit string r, let Er denote the deterministic
system obtained from E by fixing its randomness by r in
the following way: The primitive randomBit() is replaced by
a method (along with a new static field) declared within Er
such that the first |r| bits returned by the method are chosen
according to r; all the remaining bits returned by this method
are 0. It follows with S1 ≈I

perf S2 that (*) for all security
parameters η , for all r, and for all integer sizes s≥ 1 such

that Er ·S1(η) and Er ·S2(η) terminate for integer size s it
holds that Er · S1(η) s true iff Er · S2(η) s true. This
implies

E ·S1 ≡comp E ·S2

because: By assumption, E ·S1 and E ·S2 are almost bounded.
Hence, there exists a polynomial p such that the probability
that the length of a run (with integer size intsize(η)) of
E ·S1(η) or E ·S2(η) exceeds p(η) is negligible. So in all
runs, except for a negligible fraction, at most p(η) random
bits are needed. Moreover, for almost all bit strings r of
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hp s a = (D, f s) ¬ P ` D�∗ C

P ` 〈Cast C(addr a),s〉 −→ 〈THROW ClassCastException, s〉
(35)

P ` 〈null.F{D},s〉 −→ 〈THROW NullPointerException, s〉 (36)

P ` 〈null.F{D} := Val v,s〉 −→ 〈THROW NullPointerException, s〉 (37)

P ` 〈null.M(map Val vs),s〉 −→ 〈THROW NullPointerException, s〉 (38)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈throw e,s〉 `→ 〈throw e′,s′〉
(39)

P ` 〈throw null,s〉 −→ 〈THROW NullPointerException,s〉 (40)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈try e catch (C V ) e2,s〉
`→ 〈try e′ catch (C V ) e2,s′〉

(41)

P ` 〈try Val v catch (C V ) e2,s〉
−→ 〈Val v,s〉 (42)

hp s a = (D, f s) P ` D �∗ C

P ` 〈try THROW a catch (C V ) e2,s〉
−→ 〈{V : Class C; V := addr a; e2},s〉

(43)

hp s a = (D, f s) ¬ P ` D �∗ C

P ` 〈try THROW a catch (C V ) e2,s〉
−→ 〈Throw a,s〉

(44)

Figure 7. Exceptional expression reduction

length at most p(η) and integers of size intsize(η), we have
that the runs of Er ·S1(η) and Er ·S2(η) terminate for integer
size intsize(η). Now by (*) we know that for such r the
output of the runs of Er ·S1(η) and Er ·S2(η) with integer
size intsize(η) is the same.

Hence S1 ≈I
comp S2.

APPENDIX D.
A PROOF TECHNIQUE FOR NONINTERFERENCE IN OPEN

SYSTEMS

A. Proof of Theorem 5

Let IE and S be like in the theorem. Let /0 ` E : IE be an
environment for S. We start with some definition that will
be useful in the proof.

Below, we consider systems E · S such that the run of
E ·S is finite. We assume that E and S do not use the abort

primitive (this assumptions simplifies some notation, but is
not crucial; the proof without this assumption is similar).

Let ρ be the run of the system E ·S. Let (e,s) and (e′,s′)
be configurations in this run. We write (e,s) ∼ (e′,s′) if
these configurations are equal up to references (addresses)
remapping, i.e. if there exist a bijection f from references
to references that ( f (e), f (s)) = (e′,s′), where f (e) and f (s)

applies f to every reference in e and, respectively, in s. In
the analogous way we define relation s∼ s′ on states.

Let s = (h, l) be a state. By s|E = (h|E , l|E) we denote the
part of the state that is accessible from E through the static
variables that E uses. Formally, we leave in the domain of
l|E only those static variables of l that E can access; we
leave in the domain of h|E only those references that can be
reached from those static variables, where a reference can
be reached from l|E if (i) it is stored in one of the variables
of l|E or (ii) it is stored in an object that can be reached
from l|E .

In the analogous way we define s|S.
We can split the run ρ into segments

A1,B1,A2 . . . ,Bk−1,Ak

such that:
– Every Ai is a sequence of states (sub-run) where code of S

is executed (formally transitions within Ak are labeled by
names of classes from E). Moreover, every Ai except for
the last one ends with a state of the form (ei[Ci.mi(~ai)],si)
where the subexpression Ci.mi(~ai) is about to be rewritten
(with Ci defined in E). We will denote the tuple (Ci,mi,~ai)
by xi.
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P ` 〈Cast C (throw e),s〉 −→ 〈throw e,s〉 (45)

P ` 〈V := throw e,s〉 −→ 〈throw e,s〉 (46)

P ` 〈throw e.F{D},s〉 −→ 〈throw e,s〉 (47)

P ` 〈throw e.F{D} := e2,s〉
−→ 〈throw e,s〉 (48)

P ` 〈Val v.F{D} := throw e,s〉 −→ 〈throw e,s〉 (49)

P ` 〈throw e � bop� e2,s〉
−→ 〈throw e,s〉 (50)

P ` 〈Val v1 � bop� throw e,s〉 −→ 〈throw e,s〉 (51)

P ` 〈{V : T ;Throw a}D,s〉 D→ 〈Throw a,s〉 (52)

P ` 〈{V : T ;V := Val v; Throw a}D,s〉 D→ 〈Throw a,s〉 (53)

P ` 〈throw e.M(es),s〉 −→ 〈throw e,s〉 (54)

P ` 〈Val v.M(map Val vs @ (throw e · es′)),s〉 −→ 〈throw e,s〉 (55)

P ` 〈throw e; e2,s〉
−→ 〈throw e,s〉 (56)

P ` 〈if(throw e) e1 else e2,s〉
−→ 〈throw e,s〉 (57)

P ` 〈throw(throw e),s〉 −→ 〈throw e,s〉 (58)

Figure 8. Exception propagation

P ` 〈es,s〉 [ `→] 〈es′,s′〉

P ` 〈D.M(es),s〉 `→ 〈D.M(es′),s′〉
(59)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈e[e2], s〉 `→ 〈e′[e2], s′〉
(60)

P ` 〈e,s〉 `→ 〈e′,s′〉

P ` 〈(Val v)[e], s〉 `→ 〈(Val v)[e′], s′〉
(61)

P ` 〈D.M(map Val vs @ (throw e · es′)),s〉 −→ 〈throw e,s〉 (62)

P ` 〈(throw e)[e′],s〉 −→ 〈throw e,s〉 (63)

P ` 〈e′[throw e],s〉 −→ 〈throw e,s〉 (64)

Figure 9. Subexpression reduction and exception propagation rules for Jinja+.
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P ` D has-static M : T s→ T = (pns, body) |vs|= |pns| |T s|= |pns|
P ` 〈D.M(map Val vs),s〉 −→ 〈blocksD(pns,T s,vs, body),s〉

(65)

n≥ 0, new-Addr h = a
P ` 〈new τ[intg(n)], (h, l)〉 → 〈addr a,(h(a 7→ initArr(τ,n)), l)〉

(66)

P ` 〈null.F{D},s〉 −→ 〈THROW NullPointerException, s〉 (67)

n < 0
P ` 〈new τ[intg(n)], (h, l)〉 → 〈THROW NegativeArraySizeException, (h, l)〉

(68)

h a = (τ,m, t), 0≤ n < m, t(n) = v
P ` 〈(addr a)[intg n], (h, l)〉 → 〈Val v, (h, l)〉

(69)

h a = (τ,m, t), ¬(0≤ n < m),
P ` 〈(addr a)[intg n], (h, l)〉 → 〈THROW IndexOutOfBoundsException, (h, l)〉

(70)

h a = (τ,m, t),
P ` 〈(addr a).lenght, (h, l)〉 → 〈intg m, (h, l)〉

(71)

h a = (τ,m, t), 0≤ n < m, isOfType(v,τ), t ′ = arrayUpdate(t,n,v)
P ` 〈(addr a)[intg n] := Val v, (h, l)〉 → 〈Unit, (h(a 7→ (τ,m, t ′)), l)〉

(72)

h a = (τ,m, t), ¬(0≤ n < m),
P ` 〈(addr a)[intg n] := Val v, (h, l)〉 → 〈THROW IndexOutOfBoundsException, (h, l)〉

(73)

h a = (τ,m, t), 0≤ n < m, ¬isOfType(v,τ),
P ` 〈(addr a)[intg n] := Val v, (h, l)〉 → 〈THROW ArrayStoreException, (h, l)〉

(74)

Figure 10. (Exceptional) expression reduction rules for Jinja+, where: Function initArr(τ,n) returns an array of length n with elements initialized to the
default value of type τ . Expression P ` D has-static M : T s→ T = (pbs,body) means that in program P, class D contains declaration of static method M
with argument types T s, return type T , formal arguments pbs, and the body body.

– Every Bi is a sequence of states where code of E is
executed. It begins with (ei[{e′i}Ci ],si), where {e′i}Ci is
the block obtained by the static method call rule applied
to Ci.mi(~ai) (it depends only on Ci, mi, and ~ai), and ends
with (ei[{yi}Ci ], ti), where yi is a value (that is return by
this method).

We will represent such a run as

ρ = A1[s1,x1]B1[t1,y1]A2[s2,x2] . . .Bk−1[tk−1,yk−1]Ak

The square brackets, intuitively, contain all the information
that is passed between S and E. We will write Aρ

i to denote
Ai, and similarly for Ai, Bi, xi, yi, si, and ti when it is
necessary to make it explicit which run we consider.

The following result states, so called, state separation of
E and S: for a representation of a run as above, Bi does not
change the part of the state that can be reached from S and,
similarly, Ai does not change the part of the state that can
be reached by E.

Lemma 4. We have:
1) si|S = ti|S,

2) ti|E = si+1|E .

Intuitively, this lemma holds true, because E and S do not
exchange references (they exchange only primitive values)
and do not share any static variables.

Because of this state separation, we can obtain the fol-
lowing two results. The first one states that the state of E
(the part of the state that E can access) and the values that E
returns depend solely on the input it explicitly gets from S
by method calls (recall that the values passed by such calls
are, by our assumption, of primitive types only).

Lemma 5. Let S, S′ and E be like in the theorem. Let ρ be
the run of E ·S and ρ ′ be the run of E ·S′. If

xρ

1 = xρ ′

1 , . . . ,xρ

k = xρ ′

k ,

then
tρ

k |E ∼ tρ ′

k |E and yρ

k = yρ ′

k .

Conversely, the state of S and the values it provides to E,
solely depend on the values that E returns to S:
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Lemma 6. Let S, E and E ′ be like in the theorem. Let ρ be
the run of E ·S and ρ ′ be the run of E ′ ·S. If

yρ

1 = yρ ′

1 , . . . ,yρ

k = yρ ′

k ,

then

sρ

k+1|S ∼ sρ ′

k+1|S and xρ

k+1 = xρ ′

k+1

Proof of Theorem 5. Implication from left to right is
obvious. So let us assume that, I-noninterference does not
hold for S. It means that there exists an I-environment E
for S such that noninterference does not hold for E ·S. This,
in turn, means that there are valid ~a1 and ~a2 such that the
run ρ of E · S[a1] and the run ρ ′ of E · S[a1] give different
results (i.e. both runs are finite and the final value of result
is different).

In the following, we only consider the case where the
number of blocks Bi in both runs is the same (the other
case can be handled in a similar way).

As the value of result in a state s is part of s|E , we
conclude from Lemma 5, that there exists an index k such
that xρ

k 6= xρ ′

k . Let k be the first such index. Note that yρ

i = yρ ′

i
for i ∈ {1, . . . ,k−1}. Let us assume that the first argument
in the call described by xρ

k has value z which is different
than the value z′ of the first argument in xρ ′

k (for the other
cases the proof is very similar).

We define now a sequence ~u as the sequence containing
only zeros with the following exceptions:

– In the system Ẽ~u ·S[ai], the consecutive (k−1) values that
methods of Ẽ~u return to S[ai] are determined by some
subsequence up1 , . . . ,upk . Therefore we set upi = yi for
i ∈ {1, . . . ,k−1} (that is, the values returned in Ẽ~u ·S[ai]
coincide with the values returned in E ·S[ai]).

– Let l be the integer such that ul decides whether to test
the first arguments in Bk-th block (then this argument
is compared to ul+1 to determine the result). We set
ul to 1 and ul+1 to z (as defined above). Note that
l /∈ {p1, . . . , pk−1}.

– As mentioned, for all remaining i we set ui = 0.

Now, to complete the proof it is enough to show that
Ẽ~u ·S[a1] and Ẽ~u ·S[a2] give different results.

Let σ be the run of the system Ẽ~u ·S[a1] and σ ′ be the run
of the system Ẽ~u ·S[a2]. As, by the definition of ~u, we know
that yρ

i = yρ ′

i = yσ
i = yσ ′

i for i ∈ {1, . . . ,k− 1}, we can use
Lemma 6 to obtain xσ

k = xρ

k and xσ ′
k = xρ ′

k . Therefore, the first
argument in xσ

k is z and it is different that the first argument
in xσ ′

k . Therefore, by the definition of ~u (more precisely,
by the values of ul and ul+1 the variable result is set to
true in Ẽ~u ·S[a1] and to false in Ẽ~u ·S[a2], after which both
systems terminate (the abort is executed immediately after
the assignment). Hence, these systems give different results,
which completes the proof.

B. Communication through Arrays, Simple Objects, and
Exceptions

The proof of Theorem 6 is very similar—and only slightly
more complicated–to the proof of Theorem 5. Indeed, the
assumptions we have taken about the program S guarantee
that—even if, technically, some reference are exchanged
between E and S—the communication between E and S is,
effectively, as if only pure values were exchanged.

Because of that we only mention those points in the
proof which differ from the analogous points in the proof
of Theorem 5.
1. There are the following changes in the representation

of a run: (a) xi now records not only primitive values
of arguments, but also values of arrays of bytes (not
the references to these arrays though); (b) yi may now
be a primitive value, a value of an array (but not the
reference), or a value of a simple object, that is a
collection of all values of the fields of a returned object
that are in IE .

2. Item 1) of Lemma 4 needs to be changed: ti|S can now
differ from si|S, but only on the values in the arrays that
S has passed to E (as references to these arrays are not
used by S anymore, this will not cause any problem in
the results that follow).

With the above changes in the definition of representation
(item 1. above) Lemma 5 and Lemma 6 stay true also for
S and E like in Theorem 6. Now, these facts can be used
to prove Theorem 6 in a very similar way as in the case of
Theorem 5.

APPENDIX E.
PROOF OF THEOREM 7

Before we give the proof of Theorem 7, we want to point
out some critical points and assumptions that are used in
this proof.
1. First, we assume that we have a system CCA2Enc provid-

ing the interface IEnc and such that it correctly implements
CCA2-secure public encryption scheme (we do not prove
correctness of this implementation). We assume that, in
particular, the above mentioned implementation does not
fail (i.e. always returns the expected result) unless the
expected result is too big to fit within an array (recall that
the maximum size of an array depends on the security
parameter and the function intsize).
We also assume that this encryption scheme is such that
the length of a ciphertext is the (polynomially com-
putable) function of the length of the encrypted plaintext
and vice versa.

2. It is critical to assume that the Jinja program has un-
bounded memory, as otherwise the asymptotic notion of
security our results are based upon does not make sense.

Now, we shortly present and ideal functionality F and a
real functionality R for public key encryption in the Turing
machine model following [25]
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TM functionalities: Different instances of functional-
ities are distinguished by different ID-s, sent with each
request. The functionalities accept the following requests
(where the request is written on the input tape of a TM)
1. Initialization-Decryptor: The functionality is supposed to

return a public key.
2. Initialization-Encryptor The functionality responds with

an comleted message.
3. Encryption(pk,m): The functionality is supposed to en-

crypt m with pk and return the result.
4. Decryption(m): The functionality is supposed to decrypt

m using the stored private key.
Both the real and the ideal functionality, on initialization,
obtain a corruption bit. Because, in our simulation, the
environment never corrupts functionalities, we will skip the
description of actions of these functionalities if this bit is
set to 1.

The real functionality R, on initialization (be it
Initialization-Decryptor or Initialization-Encryptor), gener-
ates a fresh public/private key pair and returns the public key.
Then, it uses the private key to decrypt message, and the key
pk provided in the encrypt request to encrypt messages.

The ideal functionality, on creation, asks the environment
(the simulator) for a crypto algorithm it will use, and creates
a key pair using one of the provided algorithms. On encrypt
requests, it, similarly to the considered Jinja+ functionality,
encrypts an unrelated message of the same length (provided
the functionality is not corrupted) and stores it along with
the plaintext. On decryption, if the key pk is the same as
the public key stored in the functionality, it tries to retrieve
the corresponding plaintext from the table (as the IdealPKE
does). Otherwise it uses the provided decryption algorithm
to decrypt the message.

See [25] for details.

We want to prove that RealPKE realizes IdealPKE w.r.t.
IPKE. In this proof we will use a result from [25] that R
realizes F . Let S be the simulator used in the realization
proof in [25]. The simulator for IdealPKE we will use in
the proof is S = CCA2Enc, as described above.

Let E be a bounded-environment with IPKE ` E.
Simulating E: We define a Turing machine ME that

simulates E. Clearly, every complete Jinja+ program can
be simulated by Turing machine. Moreover, if a program
is bounded (for a given intsize), then its simulation is also
polynomial (recall that a run with security parameter η uses
integers of maximal size intsize(η); operations on integers
of this size can be polynomially simulated by a Turing
machine).

In our case, however, the system E we consider is not a
complete Jinja+ program; it interacts with another system
(such as RealPKE or IdealPKE). Therefore we assume that
ME communicates with another Turing machine (or more
generally, a system of Turing machines).

The machine ME is defined in such a way that it maintains
a representation of a Jinja+ state, the state of E. In this
representation, references are represented by consecutive
identifiers. We distinguish two types of references: those
pointing to an internal object, that is instances of a classes
defined in E or an arrays, and those pointing to an ex-
ternal object which can be either instances of Encryptor
of Decryptor. For each reference to an internal object, a
representation of this object is remembered by ME . For
references to external objects this is not the case (some
additional information, however, can be stored along with
these references; see below). A method call for an internal
reference is modeled internally in ME ; a method call to
an external object is realized by triggering another Turing
machine.

When the simulation of E by ME if finished, this machine
outputs the value of the (simulated) variable result.

Method invocations for external references are simulated
in the following way:

1. Creating a new instance of Decryptor: ME creates a
new instance of Decryptor (Turing machine) by sending
the Initialization-Decryptor request with a fresh identifier
id. This identifier will be used as the reference to this
object. ME waits then for a response with a public key.
This key is stored together with id.

2. Decryptor.getEncryptor for an object represented by
id: ME creates a new instance of Encryptor (TM) by
sending the Initialization-Encryptor request with id and
a fresh identifier id′, which will serve as the reference to
this object. The identifier id′ is stored together with id .

3. Decryptor.decrypt for an object represented by id
and array r: ME sends Encryption request to machine
id with the data stored under r, and waits for the response.
A response is a sequence of bytes. ME simulates creation
of a new array and copies the obtained byte-sting to this
array.

4. Encryptor.encrypt for an object represented by id′

and array r: ME retrieves (the decryptor id and) the
public key associated with id′ and uses it in the request
Encrypt along with id, id′ and the data stored under r. A
response is a sequence of bytes. ME simulates creation
of a new array and copies the obtained byte-sting to this
array.

5. Encryptor.getPublicKey for an object represented
by id′: ME retrieves the public key associated with the
encryptor (without any external call).

Representing runs: Let T be either the system RealPKE
or the system (S · IdealPKE). Let u be a random input (a
sequence of bits) and η be a security parameter. Like in
Appendix D-A, the (deterministic) finite run ρ of E ·T with
random input u and security parameter η can be represented
as

A1[s1,x1]B1[t1,y1]A2 · · ·Bn−1[tn−1,yn−1]An[sn]
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where
– Every Ai is a part of the run (a sequence of configurations)

where only expressions originating from E are reduced,
i.e. all the transitions in Ai are labelled with names of
classes defined in E. Every Ai, except for the last one, ends
with a state of the form (ei[e′i],si) where the subexpression
e′i is about to be rewritten by a method invocation rule.

– Every Bi is a part of run where only expressions origi-
nating from T are reduced. It begins with (ei[{e′′i }D],si),
where {e′′i }D is the block obtained by applying the method
invocation rule to e′i for some class D defined in T (it
depends only on e′i), and ends with (ei[{vi}D], s̄i), where
v is a value (that is return by the method).

– si and ti are the states after Ai and Bi, respectively.
– By xi we denote the invocation data consisting of the

name of the called method and the values passed as
arguments (if an argument is of type byte[] then xi
contains the values in the array, not the reference to this
array). This data is determined by ei and si.

– By yi we denote the return value (again, if an array is
returned, then yi contains the values in this array, not the
reference). This return value is determined by vi and ti.

Similarly, we represent the (deterministic) execution ρ̃ of
the system of Turing machines ME |MT with random input
u and security parameter η , where ME is defined above and
MT is either R or (S |F ) as

Ã1[s̃1, x̃1]B̃1[t̃1, ỹ1]Ã2 · · · B̃n−1[t̃n−1, ỹn−1]Ãn[sn]

where
– Every Ãi is a part of the run of the system where ME is

active. Every Ãi, except for the last one, ends with ME
sending data x̃i to MT (and activating MT ).

– Every B̃i is a part of the run of the system where MT is
active. It ends with MT sending a response ỹi back to ME .

– s̃i is the state of ME after Ãi (notice the difference to si
which was the state of the whole system after Ai).

– t̃i is the state of MT after B̃i (notice, as above, the
difference to ti).

Let s = (h, l) be a Jinja+ state that occurs in the run ρ of
E ·T . We want to define the part of the state s that “belongs”
to E and the part that “belongs” to T .

We define h|E to be the restriction of h to only those
references that, in the run ρ , have been created by E or
have been obtained by E as a return value from a call to
T . By h|T we denote the restriction of s to the remaining
references, that is the references in the run ρ that have been
created by T but not returned to E.

We define l|E to be the restriction of l to those (static)
variables that are accessible from E. Similarly, l|T denotes
the restriction of l to those static variables that are accessible
from T . Note that these restrictions are disjoint except for the
read-only security parameter (T does not access any static
fields of E; E does not access any static fields of T ).

We take s|E = (h|E , l|E) and s|T = (h|T , l|T ).
Let s̃ be a Jinja state as represented by ME and s be a

(real) Jinja state. We say that s̃ represents s = (h, l), written
s̃ |= s, if there is a function f from identifiers (that represent
references in ME ) to (Jinja) references (addresses) such that
– the domain of h is f (X) where X is the set of identifiers

used by ME to represent references,
– if r̃ ∈ X , then the representation of the object pointed

by r̃ agrees with the object pointed by r (in the Jinja
state) in the following sense: (i) corresponding fields
(in the TM representation and in the Jinja object) of
primitive types have the same values, (ii) if a filed of
the TM representation contains an identifier id, then the
corresponding field of the Jinja object contains f (id).

– The values of variables in l are—up to mapping f —the
same as the values in the TM representation of l.
We say that x̃i matches xi, where x̃i and xi are as above,

if the requests x̃i is the translation of the method invocation
xi, as specified in the simulation process above. In a similar
way, we can say that a response ỹi matches yi.

Relation between Jinja runs and TM runs: Now we are
ready to relate the runs of the corresponding Jinja programs
and Turing machine systems, as introduced above.

Lemma 7. For every random input u and every security
parameter η (and Ai, Ãi, . . . as above) we have:
(a) si|E = ti|E and ti|T = si+1|T ,
(b) x̃i matches xi,
(c) ỹi matches yi,
(d) s̃i |= si|E ,
(e) t̃i |= ti|T ,

Item (a) states that sub-states of E and T are separated
(the execution of Ai does not changes what T can access and
the execution of Bi does not change what E can access).

Items (b) and (c) state that the components E and T in
the Jinja run and the corresponding components in the TM
system exchange exactly the same data, up to the provided
translation.

Item (d) states that ME correctly simulates E (which is
given by the definition of ME ).

Item (e) states that the Jinja program T is functionally
equivalent to the corresponding Turing machine MT . In
particular, for the same input, R produces the same data as
RealPKE and S |F produces the same data as S · IdealPKE.
This is given by the definition of these systems.

In the reasoning below, we leverage the fact that, without
loss of generality, we can assume that E, when connected
with T , never makes requests to T that fail (i.e. never makes
method calls that return null). This is because E can com-
pute the expected size of the output message (recall that we
assumed that the length of a plaintext and a corresponding
ciphertext are polynomially related). Therefore E can predict
potential failure and avoid requests that would fail (E does
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not lose any information by not executing these requests, as
it knows the result up front).

Now, we can observe that a direct consequence of the
above lemma (more precisely, of the fact that s̃n |= sn|E ) is
that the final value of variable result in ρ and ρ̃ is the same
and, therefore, these (finite) runs output the same result. As
it holds for all random input u and all security parameters
η , up to some negligible function, the system E ·RealPKE
outputs true with the same probability the system ME |R
outputs 1 and the system E ·S · IdealPKE outputs true with
exactly the same probability the system ME |S |F outputs
1. Now, as we know that ME |R ≡ME |S |F , it follows that
the probability that true is output by E ·RealPKE and by
E ·S · IdealPKE is the same up to some negligible value.

APPENDIX F.
VERIFICATION USING JOANA

Program slicing is a well known static analysis technique
that is used to capture dependencies between program state-
ments. It can be applied to check a program for sequential
termination-insensitive non-interference. However, when the
program changes, the analysis has to be redone in order
to guarantee non-interference. In this subsection we sketch
a proof that under certain restrictions small changes to
the program do not change the analysis result with regard
to information flow and noninterference. The technique
proposed here allows Joana to verify families of programs
considered in Section VII.

A. Introduction to Information Flow Control with Slicing

The concept of program slicing was first introduced by
Weiser [39], where he argued about how a programmer tries
to determine the relevant program parts responsible for a
specific error: He identifies the program statement s where
the error occurred and subsequently infers all statements that
may have influenced the execution of s. These statements
are called the backward slice of s. Later, Ottenstein and
Ottenstein [33] proposed using program dependence graphs
(PDG) in order to compute program slices. PDGs are a
graph based representation of the program semantics, where
a node corresponds to a statement and edges correspond to
dependencies between statements.

The Joana project [19], [18] applies a very precise slicer
to information flow control for Java programs. It has been
developed and improved for several years and can analyze
medium sized programs up to 80.000 LoC. Joana takes a
set of secret (high) input statements and a set of untrusted
(low) output statements as arguments and checks if an illegal
flow from high to low is possible. Therefore it computes the
PDG representation from the program source and marks the
PDG nodes that correspond to high or low statements with
matching security labels. Then a dataflow analysis2 on the

2As Joana supports declassification and any kind of security labels that
form a lattice, a simple reachability analysis is not enough in general.

PDG propagates the input security labels along the graph
edges. Finally Joana checks if any high security label has
reached a statement labeled as low output. If no information
leaking low statements are found, the program is guaranteed
to be secure.

In case of a security violation slicing is used to determine
the high input statements involved: All high input statements
included in the backward slice of an information leaking low
statement are potentially leaked. So whenever information
flows from a high statement h to a low statement l, h must
be included in the backward slice of l. If l is not reachable
from h then the absence of information flow is guaranteed.

B. PDG Structure and Computation

1 class Node {
2 int value;
3 Node next;
4 Node(int v, Node n) {
5 value = v; next = n;
6 }
7 }
8 private static Node list = null;
9 private static boolean listInitialized = false;

10 private static Node initialValue() {
11 /* WILL BE MODIFIED */
12 return new Node(1, new Node(2, null)); // V2
13 // return new Node(1, null); // V1
14 }
15 static public int untrustedInput() {
16 if (!listInitialized) {
17 list = initialValue();
18 listInitialized = true;
19 }
20 if (list==null) return 0;
21 int tmp = list.value;
22 list = list.next;
23 return tmp;
24 }

Figure 11. Code that models unknown input in form of a linked list as
proposed in section VII.

25 public class P {
26 public static void main(String[] argv) {
27 int untrusted1 = untrustedInput();
28 int secret = 42;
29 int unstrusted2 = untrustedInput();
30 low = unstrusted1;
31 secret += 21;
32 low += unstrusted2;
33 }
34 }

Figure 12. An example of a program without illegal information flow
using untrusted input from Figure 11.

Figure 13 shows a PDG for the example program in
Figure 11 and 12. It contains a node for each statement
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and additional entry nodes (bold outline) that correspond to
method entries. Entry nodes have special fields IN and OUT
representing the input and output of the method. Nodes of
method call statements also include those fields representing
the values sent to and received from the called method. The
nodes of each single method form a subgraph that is only
connected to other methods through edges between calls and
entry nodes. We distinguish four kinds of edges through
which information flow may occur:
– control dependence edge: Statement n is control depen-

dent on m iff the outcome of the execution of m decides
if n is executed. E.g. all statements in the body of an if-
clause are control dependent on the condition statement.
Control dependencies are computed for each method
through an intraprocedural analysis on its control flow
graph. They capture implicit flow of information.

– data dependence edge: Statement n is data dependent on
statement m iff n reads a value that m has produced.
This includes the use and definition of variables as well
as referenced and modified values on the heap. Data
dependencies on heap values are computed with the help
of a points-to analysis. A points-to analysis computes
for each heap reference at which locations on the heap
it may point to. When statement m modifies the same
location statement n reads and n is executed after m, n
is data dependent on m. Data dependencies connect only
statements that belong to the same method. In order to
capture flow between methods, call and parameter edges
are used.

– call edge: A call edge connects a method call statement
to the entry node of the called method.

– parameter and heap dependence edge: Parameter and
heap dependence edges capture the flow of information
from a method call to the called method and back. They
include the parameters passed into the method and the
return value passed back to the callsite and also heap
locations referenced and modified by the method.

C. Problem: Parameterized initialization
We consider programs P~u consisting two parts: Pmain

and E~u, where Pmain is a system that meets the conditions
given below and E~u is as in Figure 11, for the variant of
the method initialValue~u0 determined by a sequence ~u,
as in Section VII. We require (which is consistent with
assumption of Section VII) that
– Pmain does not reference nor modify the variable list,
– Pmain does not create object of class Node,

Note that with these conditions the following statements
are true:
– Only untrustedInput references and modifies list.
– A single static method initialValue~u0 creates all list

elements and initializes the variable list.
– The constructor for elements of list is only called inside
initialValue~u0 .

– initialValue~u0 has no parameters and does not refer-
ence or modify any static variable.

– neither untrustedInput nor initialValue~u0 contain
statements that reference high (secret) or low variables.
Using these properties of programs P as described above,

we can prove the following result.

Proposition 1. For all Pmain such that P~u = Pmain ·E~u comply
with the requirements stated above, if P~u0 does not contain
illegal information flow, for some sequence ~u0, then P~u does
not contain illegal information flow for all ~u.

Proposition 1 enables us to reason about a family of pro-
grams by analysing only a singe instance of it. We take some
specification of ~u0 and analyze P~u0 If the analysis guarantees
security in this case, we know due to Proposition 1 that
the program is secure for all versions of initialValue~u0
fulfilling the restrictions.

Because programs T~u we consider in Section IX-B comply
with the assumptions of the above theorem, we can show
noninterference of this family of programs by showing
noninterference of only one specific instance. Indeed, we
have used Joana to verify that such an instance (and hence
the whole family of programs) is indeed secure.

D. Example

We can take the program from Figure 12 as Pmain. Indeed
all the above requirements are met for P~u = Pmain ·E~u.

This program includes reading and writing of untrusted
values as well as a computation on a secret value. Figure 13
contains the corresponding PDG for~u = 1,2. This program is
considered secure, because the PDG contains no connection
from the secret value in line 28 to a statement that leaks to
untrusted output (line 30 and 32).

E. Proof sketch of Proposition 1

Let us assume that the program P~u0 = Pmain · E~u0 , for
some ~u0 is secure. Note that we have assumed a set of
statements Ssecret ⊆ Pmain that refers to secret values in P~u0
and a set of statements Sout ⊆ Pmain that refer to untrusted
output (e.g. changing the value of a low variable). As P~u0 is
guaranteed to be secure, we also know that there is no path
in the corresponding PDGP~u0

from secret values to untrusted
output:

∀l ∈ Sout : slicePDGP~u0
(l)∩Ssecret = {}

If we use Path(PDGP~u0
) as the set of all possible paths in

PDGP~u0
we get:

∀h ∈ Ssecret ∀l ∈ Sout ∀p ∈ Path(PDGP~u0
) : h ∈ p =⇒ l /∈ p|h

Let

p|h =(p1→ . . .→ h→ pi→ . . .→ pn)|h =(h→ pi→ . . .→ pn)

We will use the following, auxiliary lemma:
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Figure 13. A PDG of the example program from Figure 11 and 12.
The colored nodes are the additional nodes that occur if version V 2 of
initialValue~u0 is chosen instead of V 1.

Lemma 8. Changes in the PDG local to initialValue~u0
are not affecting the security guarantee.

Proof: If the PDG local to initialValue~u0 has
changed, either previously existing nodes or edges were
removed or new ones were introduced. Removing nodes
or edges has no effect on the security guarantee as it
only reduces the number of possible paths in the whole
PDG. So no additional flow can be introduced. Additional
nodes or edges inside the PDG part of initialValue~u0
does increase the number of possible paths inside the
method, but not the number of paths leading to or leav-
ing from it. Because initialValue~u0 ∩ Ssecret = {} and
initialValue~u0 ∩ Sout = {} we get that no illegal flow
can not start or end inside of initialValue~u0 . Due to the
restrictions we know that initialValue~u0 does not take
any parameters as arguments and that it does not reference
any static variables. So no parameter and heap dependence
edges are connected to the entry node of initialValue~u0 .

The only possible paths from a secret source to an untrusted
output through initialValue~u0 have to enter through the
call edge and to leave through the parameter and heap
dependence of the OUT field. Because any output of a
method is dependent on the method execution, there is
always a path from the entry node to its OUT field. So
additional nodes or edges inside initialValue~u0 do not
introduce new flow from Ssecret to Sout .

Now we change initialValue~u0 of P~u0 to
initialValue~u, given by some ~u, and assume that
the resulting program P~u = Pmain ∪ E~u contains an illegal
flow. Then we show by contradiction that this is not
possible and thus P~u must be secure.

By the above assumption

∃h ∈ Ssecret ∃l ∈ Sout : h ∈ slicePDGP~u
(l)

which means there must be a path p from h to l in the
changed PDG that was not part of the original.

∃p ∈ Path(PDGP~u) : h ∈ p∧ l ∈ p|h∧ p /∈ Path(PDGP~u0
)

Path p is a list of instructions that are connected through
dependencies. We are now going to show that any of these
dependencies must already have been part of PDGP~u0

.
If p /∈Path(PDGP~u0

) then p must contain at least one edge
n1→ n2 that is not in PDGP~u0

.

p /∈ Path(PDGP~u0
) =⇒ ∃n1→ n2 ∈ p | n1→ n2 /∈ PDGP~u0

Now we consider four different cases.

Case n1 /∈ PDGP~u0
,n2 /∈ PDGP~u0

. Both nodes have not
been part of PDGP~u0

. Because initialValue~u is the only
changed part of P~u we know that n1,n2 ∈ initialValue~u.
Due to Lemma 8 this edge can not introduce new illegal
flow.

Case n1 /∈ PDGP~u0
,n2 ∈ PDGP~u0

. Because initialValue~u
is the only changed part of P~u we know that n1 ∈
initialValue~u. So due to Lemma 8 this edge cannot
introduce new illegal flow.

Case n1 ∈ PDGP~u0
,n2 /∈ PDGP~u0

. n2 ∈ initialValue~u so
no new illegal flow is introduced with this edge.

Case n1,n2 ∈ PDGP~u0
. Only the edge between n1 and n2

is new in PDGP~u . Because of Lemma 8 we only have to
consider the case n1→ n2 /∈ initialValue~u. The new edge
may be of four different kinds:
– control dependence edge: Control dependencies are com-

puted per method using the control flow graph. No method
in P~u0 \initialValue~u0 (that is no method of P~u0 except
for initialValue~u0 ) has been changed, so the control
flow is unchanged and thus no control dependencies have
changed. So n1→ n2 cannot be a control dependency.

– data dependence edge: Data dependencies are either
caused through use and definition of variables or
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references and modification to heap locations. P~u \
initialValue~u contains no new statements and thus no
additional uses and definitions of variables. So the addi-
tional data dependence cannot stem from them and has
to be introduced through accesses to heap locations. The
only heap locations that have changed are the elements
of list. Our restrictions forbid references to this list in
Pmain, so n1→ n2 cannot be a data dependency.

– call edge: P~u \ initialValue~u contains no new state-
ments and thus no new call statements. So n1→ n2 cannot
be a call dependency.

– parameter and heap dependence edge: These edges are
caused by passing parameters into methods and returning
method results. As P~u \ initialValue~u is not changed,
no method signatures and calls are altered. So n1 → n2
cannot be caused by additionally passed parameter or
returned results. The last remaining possibility is that the
edge is caused by a change in the referenced or modified
heap locations. Due to the restrictions we know that only
heap locations referring to elements of list may have
changed. As Pmain does not contain references to list or
its elements, n1→ n2 is no parameter or heap dependency.
We showed that n1→ n2 cannot exists, thus path p cannot

exist and so no illegal information flow can be introduced
by changes in initialValue~u0 .
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