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Abstract. For a given binary ideal autocorrelation sequence, we construct a perfect sequence
set by changing a few bits of the sequence. The set has a large size with respect to the period of
its sequences. Based on the constructed perfect sequence set, a new class of low correlation zone
sequence sets whose low correlation zone length can be chosen flexibly are obtained. Moreover,
the new constructed low correlation zone sequence sets can attain Tang-Fan-Matsufuji’s bound
with suitably chosen parameters.
Index Terms—Perfect sequence set, Almost perfect sequence set, LCZ sequence set

1 Introduction

Sequences with good properties of autocorrelation and cross-correlation are widely used in the
engineering application such as CDMA systems. Constructing sequence sets with desirable
properties is very important.

Low correlation zone(LCZ) sequences are useful in approximately synchronized CDMA
systems. There are many approaches[1-5] for constructing LCZ sequence sets. Unfortunately,
in the most known constructions, except for Kim and Zhou’s works[3, ?], the length of the
LCZ can not be flexibly chosen. In this paper, we give a new method to construct the LCZ
sequence set whose length of the LCZ can be chosen freely. Besides, some of new constructed
LCZ sequence sets can attain Tang-Fan-Matsufuji’s bound[6].

Recently, Cai et al.[7] presented some new concepts called the almost perfect sequence
set(APSS) and the perfect sequence set(PSS). A set is called an APSS if it has both low
autocorrelation magnitudes and cross-correlation magnitudes except for a few exceptional
shifts, and when there is only one exceptional shift, the set is called a PSS. In paper [7],
the APSSs are used to construct the LCZ sequence sets. However, their method to construct
APSSs is based on the assumption of the existence of the PSS. Although some PSSs have
been constructed by them, all of these PSSs share a weakness that their size is quite small.
They proposed some problems, one of which is how to efficiently construct the PSS with
large size. In this paper, we obtain a new family of PSSs with large size by modifying a
few bits of the ideal two-level autocorrelation sequences. As far as we known, it is the first
construction of a family of PSSs with large size in the literature.

The ideal autocorrelation sequences have good properties, and they are usually used to
construct the other sequences. For a given binary ideal autocorrelation sequence, we find
that the set comprised of the sequences which are constructed by modifying a few bits of
the ideal autocorrelation sequence is a PSS. Moreover, the PSS has a large size. Based on
the constructed PSS, we obtain a new class of LCZ sequence sets by shifting technology.
The low correlation zone length of the sets can be chosen flexibly, and some of the sets are
optimal with respect to Tang-Fan-Matsufuji’s bound. Without loss of generality, we will just
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discuss how to construct the PSSs and the LCZ sequence sets based on the binary ideal
autocorrelation sequences with period N(≡ −1 mod 4).

The following paper is organized as follows. In section II, we introduce some basic notions.
In section III, we give a new method to construct the PSS by modifying a few bits of a binary
ideal autocorrelation sequence. In section IV, a new class of LCZ sequence sets which are
optimal with respect to Tang-Fan-Matsufuji’s bound are obtained based on the constructed
PSS. Finally we conclude this paper in section V.

2 Preliminaries

In this section, we review some basic notions. Binary ideal autocorrelation sequences are the
foundation of this paper, and we will give a detailed introduction.

2.1 Correlation

The cross-correlation function of two binary periodic sequences u = (u0, u1, · · · , uN−1) and
v = (v0, v1, · · · , vN−1) is defined by

Cu,v(τ) =

N−1∑
i=0

(−1)ui+vi+τ ,

where ui, vi ∈ {0, 1} and τ ∈ ZN . If the sequences u and v are identical, then it is called the
autocorrelation function of sequence u, and we denote it by Cu(τ).

2.2 Binary ideal autocorrelation sequence

A binary sequence u with period N(≡ −1 mod 4) is called an ideal two-level autocorrelation
sequence if the autocorrelation function of u satisfies

Cu(τ) =

{
N, if τ = 0;

− 1, if τ 6= 0.

There are many examples of binary ideal two-level autocorrelation sequences such as m
sequences, Legendre sequences, Hall’s sextic residue sequences[8], Kasami power function
sequences[9], Welch-Gong(WG) sequences[10], GMW sequences[11], hyperoval sequences[12]
et al..

Legendre Sequence: Let p = 4t− 1 be a prime. The sequence s = (s0, s1, · · · , sp−1) is
called Legendre sequence if

si =

{
0, if i ≡ x2 mod p for some x 6= 0;

1, otherwise.

Sextic residue sequence: Let p = 4t−1 = 4a2+27 be a prime, u be a primitive element
of Zp, and let G = {a ∈ Z∗p|x6 ≡ a mod p, x ∈ Z∗p}. The sequence s = (s0, s1, · · · , sp−1) is
called Hall’s sextic residue sequence if

si =

{
0, if i ∈ G ∪ u3G ∪ ui0G;

1, otherwise,
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where ui0G is the coset containing 3.
Kasami power function sequence: Let k be an integer satisfying 1 ≤ k ≤ bn2 c and

gcd(k, n) = 1. For d = 4k − 2k + 1, consider a set Bk = {(x + 1)d + xd + 1| x ∈ F2n}. The
sequence s = (s0, s1, · · · , s2n−1) is called Kasami power function sequence if

si =

{
0, if αi ∈ Bk;
1, otherwise,

where α is a primitive element of F2n .
WG sequence: Let n = 3k ± 1, d = 22k − 2k + 1, and let δk(x) = (x + 1)d + xd be a

map on F2n . Consider a set

Wk =

{
{δk(x)|x ∈ F2n}, if n is even;

F2n − {δk(x)|x ∈ F2n}, if n is old.

Then, the sequence s = (s0, s1, · · · , s2n−1) is called WG sequence if

si =

{
0, if αi ∈Wk;

1, if αi 6∈Wk,

where α is a primitive element of F2n .
GMW sequence: Let α be a primitive element of F2n , m|n, and g(x) be an orthogonal

function from F2m to F2. Then the sequence s = (s0, s1, · · · , s2n−1) is called GMW sequence
if si = f(αi), where f(x) is a composition of Trnm(xk) and g(x), f(x) = g(x) ◦ Trnm(xk),
gcd(k, 2n − 1) = 1. Trnm(x) is the trace function from F2n to F2m , and it is defined by

Trnm(x) =
∑n/m−1

k=0 x2
mk

.
Hyperoval sequence: Let n be an odd integer, consider a set Mk = {x + xk|x ∈ F2},

where k is given as follows:
(1) Singer type: k = 2, Segre type: k = 6;
(2) Glynn type I: k = 2σ + 2τ where σ = n+1

2 and 4τ ≡ 1 mod n;
(3) Glynn type II: k = 3 · 2σ + 4 with σ = n+1

2 .
Then, the sequence s = (s0, s1, · · · , s2n−1) is called hyperoval sequence if

si =

{
0, if αi ∈Mk;

1, if αi 6∈Mk,

where α is a primitive element of F2n .

2.3 PSS and LCZ sequence set

APSS and PSS. A sequence set V is called an (N,K, c,m)-almost perfect sequence set(APSS),
if V contains K shift-distinct sequences of period N and satisfies the following two condi-
tions:
(1) For each u ∈ V and each 1 ≤ τ ≤ N − 1, |Cu(τ)| ≤ c except for at most (m− 1) τ ′s;
(2) For each u 6= v ∈ V and each 0 ≤ τ ≤ N − 1, |Cu,v(τ)| ≤ c except for at most m τ ′s.
Moreover, when m = 1, V is called an (N,K, c)-perfect sequence set(PSS).

LCZ sequence set. A sequence set V is called an (N,M,L, δ)-low correlation zone(LCZ)
sequence set, if V contains M shift-distinct sequences of period N and satisfies the following
two conditions:
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(1) For each u ∈ V and each 0 < |τ | ≤ L, |Cu(τ)| ≤ δ;
(2) For each u 6= v ∈ V and each |τ | ≤ L, |Cu,v(τ)| ≤ δ.

For two subsets of ZN , A and B, let A 4 B denote (A ∪ B) − (A ∩ B), and A ± τ =
{x± τ |x ∈ A}.

3 Construction of perfect sequence set

The PSS is a new concept proposed by Cai et al.[7]. They have constructed some PSSs,
but all of these sets have a small size. As our best known, there are no other people have
researched this problem. In this section, we construct a PSS by changing a few bits of an
ideal two-level autocorrelation sequence. And the size of the PSS may be quite large.

Lemma 1. Let N ≡ −1 mod 4, r < N+1
4 be a positive integer and s = (s0, s1, · · · , sN−1)

be a binary ideal two-level autocorrelation sequence with period N . Consider a set V r
s =

{sB |B ⊂ ZN , |B| ≤ r}, where the sequence sB = (sB0 , s
B
1 , · · · , sBN−1) is defined by

sBi =

{
si + 1, if i ∈ B;

si, if i 6∈ B.

Then these sequences in V r
s are shift-distinct, and |V r

s | =
∑r

k=0C
k
N . Moreover, for any two

different sequences sB1 and sB2, |CsB1 ,sB2 (τ)| ≤ 4r + 1 holds for any τ 6= 0.

Proof. For each two different sequences sB1 , sB2 , they are shift-distinct if and only if for
each τ , their cross-correlation CsB1 ,sB2 (τ) 6= N . For a given τ , let A1, A2, A3, A4 denote
ZN − (B1 ∪ (B2 − τ)), B1 ∩ (B2 − τ), B1 − (B2 − τ), (B2 − τ) − B1 respectively. Then we
have the following result

CsB1 ,sB2 (τ) =
∑
i∈ZN

(−1)s
B1
i +s

B2
i+τ

=
∑
i∈A1

(−1)s
B1
i +s

B2
i+τ +

∑
i∈A2

(−1)s
B1
i +s

B2
i+τ

+
∑
i∈A3

(−1)s
B1
i +s

B2
i+τ +

∑
i∈A4

(−1)s
B1
i +s

B2
i+τ

=
∑
i∈A1

(−1)si+si+τ +
∑
i∈A2

(−1)si+si+τ

+
∑
i∈A3

(−1)si+si+τ+1 +
∑
i∈A4

(−1)si+si+τ+1

=
∑
i∈ZN

(−1)si+si+τ − 2
∑
i∈A3

(−1)si+si+τ − 2
∑
i∈A4

(−1)si+si+τ

=Cs(τ)− 2
∑

i∈B14(B2−τ)

(−1)si+si+τ .

(1)

If τ = 0, then CsB1 ,sB2 (0) = N−2|B14B2| ≤ N−2; if τ 6= 0, then −(1+4r) ≤ CsB1 ,sB2 (τ) ≤
4r− 1. So all the sequences in V r

s are shift-distinct, and |CsB1 ,sB2 (τ)| ≤ 4r+ 1 holds for any
τ 6= 0.

It is clear that |V r
s | =

∑r
k=0C

k
N .

By the above discussion, the lemma is proved.
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Lemma 2. Let V r
s be the sequence set defined in the Lemma 1, sB ∈ V r

s , τ 6= 0. Then

CsB (τ) ∈ {−2|B 4 (B − τ)| − 1 + 4t : 0 ≤ t ≤ |B 4 (B − τ)|}.

And clearly, |CsB (τ)| ≤ 4r + 1 holds when τ 6= 0.

Proof. Following a similar way in Lemma 1, we can get that

CsB (τ) = Cs(τ)− 2
∑

i∈B4(B−τ)

(−1)si+si+τ . (2)

Note that s is an ideal two-level autocorrelation sequence, the lemma is proved.

Theorem 1. Let V r
s be the sequence set defined in Lemma 1. Then V r

s is an (N,
∑r

k=0C
k
N , 4r+

1)-PSS.

Proof. According to Lemma 1 and Lemma 2, we can get that for each sB1 , sB2 ∈ V r
s , and

for each 1 ≤ τ ≤ N − 1, |CsB1 ,sB2 (τ)| ≤ 4r + 1. So the theorem is proved.

Theorem 2. For any positive integer n ≥ 3, there exists a (2n−1, 2n, 5)-PSS; for any prime
integer p = 4t− 1, there exists a (p, p+ 1, 5)-PSS.

Proof. For any positive integer n ≥ 3, let s be an m sequence or Kasami power function
sequence with period (2n − 1), and r = 1. According to Theorem 1, we can obtain a (2n −
1, 2n, 5)-PSS. For any prime integer p = 4t− 1, let s be a Legendre sequence with period p,
and r = 1. According to Theorem 1, we can obtain a (p, p+ 1, 5)-PSS.

Remark 1. Cai et al.[7] constructed some PSSs such as (p, 2, 3)-PSS and (p, 4, 3)-PSS. They
also discussed the sequence sets in the literatures[3][4] which can be considered as PSSs
or APSSs. However, all of these PSSs have a small size with respect to the period of the
sequences. According to Theorem 2, the size of the PSS constructed in our paper is large.

As an example, we give a (31, 32, 5)-PSS based on an m sequence with period 31.

Example 1. Let s = (1111100110100100001010111011000) be an m sequence with period 31
and r = 1, then the V 1

s defined in Lemma 1 is
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{(1111100110100100001010111011000), (0111100110100100001010111011000),

(1011100110100100001010111011000), (1101100110100100001010111011000),

(1110100110100100001010111011000), (1111000110100100001010111011000),

(1111110110100100001010111011000), (1111101110100100001010111011000),

(1111100010100100001010111011000), (1111100100100100001010111011000),

(1111100111100100001010111011000), (1111100110000100001010111011000),

(1111100110110100001010111011000), (1111100110101100001010111011000),

(1111100110100000001010111011000), (1111100110100110001010111011000),

(1111100110100101001010111011000), (1111100110100100101010111011000),

(1111100110100100011010111011000), (1111100110100100000010111011000),

(1111100110100100001110111011000), (1111100110100100001000111011000),

(1111100110100100001011111011000), (1111100110100100001010011011000),

(1111100110100100001010101011000), (1111100110100100001010110011000),

(1111100110100100001010111111000), (1111100110100100001010111001000),

(1111100110100100001010111010000), (1111100110100100001010111011100),

(1111100110100100001010111011010), (1111100110100100001010111011001)}.

Let Mµ =
∣∣{({sB1 , sB2}, τ) | CsB1 ,sB2 (τ) = µ

}∣∣, where sB1 , sB2 ∈ V r
s , τ ∈ ZN . The

distribution of correlation of the (31, 32, 5)-PSS is given in Table 1.

Table 1. Distribution of correlation of the (31, 32, 5)-PSS

µ −5 −3 −1 1 3 27 29 31

Mµ 3255 450 7935 480 3720 465 31 32

Remark 2. As shown in Table 1, M31 = 32 proves that all the sequences in (31, 32, 5)-PSS
are shift-distinct.

Let si denote the (i + 1)th sequence in V 1
s as shown in Example 1. Let Msi,sj (µ) =

|{τ |Csi,sj (τ) = µ, τ ∈ ZN}|. The distributions of correlation of some pairs of sequences in V 1
s

are given in Table 2.

Table 2. Distribution of correlation of some pairs of sequences in V 1
s

µ −5 −3 −1 1 3 27 29 31

Ms0,s1(µ) 0 15 0 15 0 0 1 0

Ms0,s6(µ) 0 14 0 16 0 0 1 0

Ms2,s3(µ) 8 0 13 0 9 1 0 0

Ms4,s4(µ) 6 0 18 0 6 0 0 1

Ms7,s7(µ) 4 0 20 0 6 0 0 1
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4 Construction of low correlation zone sequence set

In this section, we construct a new family of LCZ sequence sets based on the constructed PSS.
In our construction, the length of the low correlation zone can be chosen flexibly. Besides,
some of the sets can attain Tang-Fan-Matsufuji’s bound.

For a given ideal autocorrelation sequence s, let V r
s be a sequence set defined in Lemma

1, T denote the left shift operation such that Ts = (s1, · · · , sN−1, s0), L ≤ [N2 ] can be chosen
flexibly and M = [NL ]. We can construct an (N,M,L− 1, 4r+ 1)-LCZ sequence set based on
the set V r

s .

Theorem 3. Given arbitrary M different sequences sB0 , · · · , sBM−1 ∈ V r
s , let W = {s0, · · · , sM−1}

be a sequence set, where si = T iLsBi. Then W is an (N,M,L− 1, 4r+ 1)-LCZ sequence set.

Proof. Given arbitrary sequence si, sj ∈W and |τ | ≤ L− 1, we have

Csi,sj (τ) = C
T iLsBi ,T jLsBj

(τ)

= C
sBi ,sBj

(τ + (j − i)L).
(3)

Note that 0 ≤ i, j ≤ M − 1 and |τ | ≤ L − 1, so |τ + (j − i)L| ≤ ML − 1 < N . And
|τ + (j − i)L| = 0 if and only if τ = 0, i = j. By the above discussion, with Lemma 1 and
Lemma 2, we can get the following results:
(1) For each si ∈W and each 0 < |τ | ≤ L− 1, |Csi(τ)| ≤ 4r + 1 .
(2) For each si, sj ∈W (i 6= j) and each |τ | ≤ L− 1, |Csi,sj (τ)| ≤ 4r + 1.
So the theorem is proved.

Tang Xiaohu et al.[6] have presented an upper bound on the size of the LCZ sequence
set. Their result is equivalent to the following lemma.

Lemma 3. (X.H. Tang, P.Z. Fan and S. Matsufuji) Let V be an (N,M,L, c)-LCZ sequence
set. Then

M ≤ N2 − c2

(N − c2)L
. (4)

Theorem 4. Let N ≥ 153, L ≥ N
2
3 , L|N, r ≤ N

1
3−3
12 . Then the (N,M,L − 1, 4r + 1)-LCZ

sequence set constructed in Theorem 3 is optimal with respect to Tang-Fan-Matsufuji’s bound.

Proof. Let Mo denote the Tang-Fan-Matsufuji’s bound. According to Lemma 3, we have

Mo ≤
N2 − (4r + 1)2

(N − (4r + 1)2)(L− 1)
=

N − 4r − 1

N − (4r + 1)2
N + 4r + 1

L− 1

=
N

L

N − 4r − 1

N − (4r + 1)2
N + 4r + 1

N

L

L− 1

<
N

L

N

N − (4r + 1)2
N + 4r + 1

N

L

L− 1
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≤N
L

(
1 +

(4r + 1)2

N − (4r + 1)2

)(
1 +

4r + 1

N

)(
1 +

1

L− 1

)
≤N
L

(
1 +

2(4r + 1)2

N

)(
1 +

4r + 1

N

)(
1 +

2

L

)
≤N
L

(
1 +

2(4r + 1)2

N
+

2

L

(
1 +

2(4r + 1)2

N

)
+

4r + 1

N

(
1 +

2(4r + 1)2

N
+

2

L
+

2(4r + 1)2

N

2

L

))
≤N
L

(
1 +

2(4r + 1)2

N
+

3

L
+

2(4r + 1)

N

)
≤N
L

(1 +
1

N
1
3

) ≤ N

L
+ 1.

(5)

So Mo =
[
N
L

]
= M . The theorem is proved.

Theorem 5. For any positive integer m > 3, let N = 23m − 1, L = 22m + 2m + 1 and
r ≤ 2m−4. Then we can construct an (N, 2m − 1, L − 1, 4r + 1)-LCZ sequence set which is
optimal with respect to Tang-Fan-Matsufuji’s bound.

Proof. For any positive integer m > 3, let s be an m sequence with period 23m−1. According
to Theorem 1, we can obtain an (N,

∑r
k=0C

k
N , 4r + 1)-PSS, where N = 23m − 1. According

to Theorem 3, based on the PSS, we can construct an (N,M,L−1, 4r+1)-LCZ sequence set,
where M = 2m− 1, L = 22m + 2m + 1 and r ≤ 2m−4. It is easy to check that the parameters
N , L, M and r satisfy the properties of Theorem 4. So the (N,M,L−1, 4r+1)-LCZ sequence
set is optimal with respect to Tang-Fan-Matsufuji’s bound.

We compute the sizes of some (N,M,L− 1, 5)-LCZ sequence sets which are constructed
based on m sequences. Even for N < 153, there are also many (N,M,L−1, 5)-LCZ sequence
sets which are optimal or almost optimal with respect to Tang-Fan-Matsufuji’s bound. Some
results are given in Table 3.

5 Conclusion

In this paper, we present a new method for constructing the PSS and the LCZ sequence
set. For a given binary ideal two-level autocorrelation sequence with period N , we obtain an
(N,

∑r
k=0C

k
N , 4r + 1)-PSS comprised of the sequences which are constructed by modifying

a few bits (no more than r) of the ideal autocorrelation sequence. Based on the PSS, a new
class of (N,M,L − 1, 4r + 1)-LCZ sequence sets are constructed, where L can be chosen
flexibly and M = [NL ]. Besides, the new constructed PSSs have a large size and the LCZ
sequence sets can attain Tang-Fan-Matsufuji’s bound with suitable parameters.

We just discuss constructing PSSs and LCZ sequence sets based on the binary ideal two-
level autocorrelation sequences with period N(≡ −1 mod 4). However, the method can be
generalized easily along the following two directions. On one hand, one can construct PSSs
and LCZ sequence sets based on binary ideal autocorrelation sequences with other types
period. On the other hand, one can similarly construct p-ary PSSs and LCZ sequence sets
once the p-ary ideal two-level autocorrelation sequences are provided.
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