
Differential propagation analysis of K

Joan Daemen and Gilles Van Assche

STMicroelectronics

Abstract. In this paper we introduce new concepts that help read and understand low-weight
differential trails in K . We then propose efficient techniques to exhaustively generate
all 3-round trails in its largest permutation below a given weight. This allows us to prove
that any 6-round differential trail in K - f [1600] has weight at least 74. In the worst-case
diffusion scenario where the mixing layer acts as the identity, we refine the lower bound to 82
by systematically constructing trails using a specific representation of states.

Keywords: cryptographic hash function, K , differential cryptanalysis, computer-aidedproof

1 Introduction

The goal of cryptanalysis is to assess the security of cryptographic primitives. Finding a acks
or properties not present in ideal instances typically contributes to the cryptanalysis of a given
primitive. Building upon previous results, a acks can be improved over time, possibly up to a
point where the security of the primitive is severely questioned.

In contrast, cryptanalysis can also benefit from positive results that exclude classes of a acks,
thereby allowing research to focus on potentially weaker aspects of the primitive. Interestingly,
weaknesses are sometimes revealed by challenging the assumptions underlying positive results.
Nevertheless, both a acks and positive results can be improved over time and together contribute
to the understanding and estimation of the security of a primitive by narrowing the gap between
what is possible to a ack and what is not.

Differential cryptanalysis (DC) is a discipline that a empts to find and exploit predictable dif-
ference propagation pa erns to break iterative cryptographic primitives [6]. For ciphers, this typi-
cally means key retrieval, while for hash functions, this is the generation of collisions or of second
preimages. The basic version makes use of differential trails (also called characteristics or differ-
ential paths) that consist of a sequence of differences through the rounds of the primitive. Given
such a trail, one can estimate its differential probability (DP), namely, the fraction of all possible
input pairs with the initial trail difference that also exhibit all intermediate and final difference
when going through the rounds.

Amore natural way to characterize the power of trails in unkeyed primitives is by their weight
w. In general the weight of a trail is is the sum of the weight of its round differentials, where the
la er is the negative of its binary logarithm. Formany round functions, including that of K - f
and Rĳndael, the weight equals the number of binary equations that a pair must satisfy to follow
the specified differences. Assuming that these conditions are independent, the weight of the trail
relates to its DP as DP = 2−w and exploiting such a trail becomes harder as the weight increases.
For a primitivewith, say, b input and output bits, the number of pairs that satisfy these conditions is
then 2b−w. The assumption of independence does not always apply. For instance, a trail withw > b
implies redundant or contradictory conditions on pairs, for which satisfying pairs may ormay not
exist. Another example where this independence assumption breaks down are the plateau trails
that occur in Rĳndael [9]. These trails, with weight starting from w = 30 for 2 rounds, have a DP
equal to 2z−w with z > 0 for a fraction 2−z of the keys and zero for the remaining part. In general,
they occur in primitiveswith strong alignment [4] and amixing layer based onmaximum-distance
separable (MDS) codes.

In the scope of DC, positive results can be established by finding a lower bound on the weight
of any trail over a specified number of rounds. For instance, the structure of Rĳndael and the
properties of its diffusion operations allow to analytically derive such lower bounds [8]. Such
results can be transposed to the permutations underlying the hash function Grøstl [12]. Other

examples include a lower bound on the number of active S-boxes in JH [17] or computer-aided
proofs on the weight of trails in N [7] and on the minimum number of active AND gates
in MD6 [16,13].

K is a sponge function submi ed to the SHA-3 contest [15,5,2]. Recently, new resultswere
published on the differential resistance of this function and among those heuristic techniqueswere
proposed to build low-weight differential trails [11,14]. These gave the currently best trails for 3,
4 and 5 rounds of the underlying permutation K - f [1600]. In particular, Duc et al. found a
trail of weight 32 for 3 rounds, and this motivated us to systematically investigate whether trails of
lower weight exist. Also, there are some similarities between K and MD6, but unlike MD6,
the permutation used in the proposed SHA-3 candidate K has no significant lower bounds
on the weight of trails. So the philosophy behind [16,13] was another source of inspiration and
motivation for our research.

Lower bounds on symmetric trailswere already proven in [5]. They provide lower boundswith
weight above the permutation width on K - f [25] to K - f [200] but only partial bounds
in the case of K - f [1600]. Thanks to the Matryoshka structure [5], a lower bound W on trails
in K - f [25w] implies a lower bound W ′ = W w′

w on w-symmetric trail in K - f [25w′] for
w′ > w. These are summarized in Table 1.

w Lower bound for K - f [25w] Lower bound for K - f [1600]
1 30 per 5 rounds 1920 per 5 rounds tight
2 54 per 6 rounds 1728 per 6 rounds tight
4 146 per 16 rounds 2336 per 16 rounds non-tight
8 206 per 18 rounds 1648 per 18 rounds non-tight

Table 1. Lower bounds above the permutation width on 1- to 8-symmetric trails [5].

In this paper, we report on techniques to efficiently generate all the trails in K - f [1600]
up to a given weight. We implemented these techniques in a computer program, which allowed
us at this point to completely scan the space of 3-round differential trails up to weight 36. This
confirmed that the trail found by Duc et al. has minimum weight and allowed us to demonstrate
that there are no 6-round trails with weight below 74. These results are summarized in Table 2.
The source code of the programwill be made available in an updated version of the K T
package [3].

As a by-product of this trail search, this paper proposes new techniques to relate the properties
of the θ mapping in K to the weight of differential trails. In the worst-case diffusion scenario
where θ acts as the identity, we build upon the results of [5] and [14] to systematically construct
so-called in-kernel trails using an efficient representation of states.

Rounds Lower bound Best known
3 32 (this work) 32 [11]
4 - 134 (Appendix B)
5 - 510 [14]
6 74 (this work) 1360 [5]

24 296 (this work) -

Table 2.Weight of differential trails in K - f [1600].

Further discussions on how to exploit differential trails in K can be found in [4]. Also,
the a acks in [10] combine algebraic techniques with a differential trail.

The paper is organized as follows. In Section 2, we recall the structure of K and map-
pings inside its round function. Section 3 focuses on how to represent and extend the differential

2

trails of K . Section 4 sets up the overall strategy and Section 5 introduces a basic trail gen-
eration technique. The advanced techniques are covered in Sections 6 and 7, which address two
complementary cases. Finally, Section 8 extends the results from 3 to 6 rounds.

2 K

K combines the sponge construction with a set of seven permutations denoted K - f [b],
with b ranging from 25 to 1600 bits [1,5]. In this paper, we concentrate on the permutation used in
the SHA-3 submission, namely, K - f [1600].

The state of K - f [1600] is organized as a set of 5× 5× 64 bits with (x, y, z) coordinates.
The coordinates are always considered modulo 5 for x and y and modulo 64 for z. A row is a set
of 5 bits with given (y, z) coordinates, a column is a set of 5 bits with given (x, z) coordinates and
a slice is a set of 25 bits with given z coordinate.

The round function of K - f [1600] consists of the following steps, which are only briefly
summarized here. For more details, we refer to the specifications [5].

– θ is a linearmixing layer, which adds a pa ern that depends solely on the parity of the columns
of the state. Its properties with respect to differential propagation will be detailed and ex-
ploited in Section 6.

– ρ and π displace bits without altering their value. Jointly, their effect is denoted by (x, y, z)
π◦ρ−→

(x′, y′, z′), with (x, y, z) a bit position before ρ and π and (x′, y′, z′) its coordinates a erward.
– χ is a degree-2 non-linear mapping that processes each row independently. It can be seen as
the application of a translation-invariant 5-bit S-box. The differential propagation properties
will be detailed below.

– ι adds a round constant. As it has no effect on difference propagation, we will ignore it in the
sequel.

3 Representing and extending trails

In general, for a function f with domain Zb
2, we define the weight of a differential (u

′, v′) as

w(u′
f→ v′) = b− log2

∣∣{u : f (u)⊕ f (u⊕ u′) = v′
}∣∣ .

If the argument of the logarithm is non-zero (i.e., the DP is non-zero), we say that u′ and v′ are
compatible. Otherwise, the weight is undefined.

The weight of a trail is the sum of the weight of the differentials that compose this trail. In
K - f , we specify differential trails with the differences before each round function. For clarity,
we adopt a redundant description by also specifying the differences before and a er the linear
steps λ = π ◦ ρ ◦ θ. An n-round trail is of the following form, where each bi must be equal to λ(ai),

Q = a0
π◦ρ◦θ−→ b0

χ→ a1
π◦ρ◦θ−→ b1

χ→ a2
π◦ρ◦θ−→ . . .

χ→ an, (1)

and has weight w(Q) = ∑i w(ai
χ◦π◦ρ◦θ−→ ai+1). Since bi = λ(ai), this expression simplifies to

w(Q) = ∑i w(bi
χ→ ai+1).

3.1 Extending forward and trail prefixes

Given a trail as in (1), it is possible to characterize all states that are compatible with bn = λ(an)
through χ and thus to find all n + 1-round trails Q′ that have Q as its leading part. This process is
called forward extension.

The χ mapping has algebraic degree 2 and, for a given input difference bn, the space of com-
patible output differences forms a linear affine varietyA(bn)with |A(bn)| elements [5]. For a com-
patible an+1, the weight w(bn

χ→ an+1) depends only on bn and is equal to w(bn) ≜ log2 |A(bn)|,
with the symbol ≜ denoting a definition. As χ operates on each row independently, the weight

3

forward propagation
Difference offset base elements w(·) wrev(·) || · ||
00000 00000 0 0 0
00001 00001 00010 00100 2 2 1
00011 00001 00010 00100 01000 3 2 2
00101 00001 00010 01100 10000 3 2 2
10101 00001 00010 01100 10001 3 3 3
00111 00001 00010 00100 01000 10000 4 2 3
01111 00001 00011 00100 01000 10000 4 3 4
11111 00001 00011 00110 01100 11000 4 3 5

Table 3. Space of possible output differences, weight, minimum reverse weight and Hamming
weight of all row differences, up to cyclic shi s.

w(b) can also be computed on each row independently and summed. To constructA(b), the bases
resulting from each active row are gathered. Table 3 displays offsets and bases for the affine spaces
of all single-row differences.

As a consequence, the weight of a n-round trail Q is w(Q) = ∑n−1
i=0 w(bi) and depends only on

the n-tuple (b0, . . . , bn−1). We call the la er a trail prefix. All n-round trails sharing this trail prefix
and with an compatible with bn−1 through χ have the same weight.

3.2 Extending backward and trail cores

Similarly, given a trail as in (1), it is possible to construct all states that are compatible with a0
through χ−1 and thus to find all n + 1-round trails Q′ that have Q as its trailing part. This process
is called backward extension. In contrast to χ, its inverse has algebraic degree 3 and the space of
compatible differences is not an affine variety in general. Yet, compatible values can be identified
per active row and combined.

For a difference a a er χ, we define theminimum reverse weight wrev(a) as the minimumweight
over all compatible b before χ. Namely,

wrev(a) ≜ min
b : a∈A(b)

w(b).

Like for the restrictionweight, theminimum reverse weightwrev(a) can be computed on each row
independently and summed. Values are also shown in Table 3.

Given a n− 1-round trail prefix Q = (b1, . . . , bn−1), it is easy to construct a difference b0 such
that the trail prefix Q′ = b0||Q has weight given by w(Q′) = w(Q) + wrev(λ−1(b1)). This is
the smallest possible weight a n-round trail can have with Q as its trailing part. It follows that a
sequence of n− 1 state values Q̃ = (b1, . . . , bn−1) defines a set of n-round trails with a weight at
least

w̃(Q̃) ≜ wrev(λ−1(b1)) +
n−1

∑
i=1

w(bi).

Wedenote the former by the term trail core and the la er by itsweight.Note that a n-round trail core
is determined by only n− 1 states, although its weight takes n individual weights into account.

4 Towards a bound for trails in K - f [1600]

To find a lower bound on differential trail weights in K - f [1600], our strategy is the following.

– First, we exhaustively generate all 3-round trails up to a given weight T3. There exists a trail of
weight 32 as found by Duc et al. [11]. So by scanning the space of trails up to weight T3 ≥ 32,
we are sure to hit at least one trail and the trail with minimum weight yields a tight lower
bound on 3-round trails.

4

– Second,we derive a lower bound, not necessarily tight, on theweight of 6-round trails by using
the 3-round trails found. Any 6-round trail of weight 2T3 + 1 or less satisfies either w(b0) +
w(b1) + w(b2) ≤ T3 or w(b3) + w(b4) + w(b5) ≤ T3. We thus use forward and backward
extension from 3-round trails up to weight 2T3 + 1. If such trails are found, the one with the
smallest weight defines the lower bound, which is naturally tight. Otherwise, this establishes
a lower bound for the weight of 6-round trails to 2T3 + 2. In the la er case no trail with weight
2T3 + 2 is known so the bound is not necessarily tight.

The reason for targeting 3-round trails in the first phase is the following. Theminimumweight
of a 1-round trail is 2, with a single active bit in b0. For the 24 rounds of K - f [1600], this
amounts to a lower bound of 24× 2 = 48. Constructing a state a with only two active bits in the
same column leads to 2-round trail corewithweight 8. Hence, if we base ourselves only on 2-round
trail, we reach a lower bound of 12× 8 = 96. If the 3-round trail of weight 32 found by Duc et al.
[11] has minimumweight, this would mean that a 24-round trail has weight at least 8× 32 = 256.
Also, 3-round trail cores can be constructed by taking into account conditions across one layer of
χ. Generating exhaustively trails of 4 rounds or more up to some weight would probably yield
be er bounds, but at the same time it is more difficult as several layers of χ must be dealt with.
Instead, the two-step approach described above can take advantage of the exhaustive set of trails
covered (i.e., all up to weight T3) to derive a bound based on T3 instead of on the minimumweight
over 3 rounds.

4.1 Generating all 3-round trails up to a given weight

In our approach we generate all 3-round differential trails of the form

Q = a0
π◦ρ◦θ−→ b0

χ→ a1
π◦ρ◦θ−→ b1

χ→ a2
π◦ρ◦θ−→ b2

χ→ a3, (2)

up to some weight limit w(Q) ≤ T3. We call this the target space. We do this by searching for all
trail cores (b1, b2)with weight below T3. Each such trail core (b1, b2) thus represents a set 3-round
trails of the form of Eq. (2) with weight not below that of its core. In the scope of this paper, we
limited ourselves to T3 = 36.

We covered the set of all 3-round trails up to weight T3 in three sub-phases:

1. In Section 5, we start with all cores such that wrev(λ−1(b1)) ≤ 7, w(b1) ≤ 7 or w(b2) ≤ 7.
2. In Section 6, we generate all remaining cores, except where both a1 and a2 are in the kernel.
3. In Section 7, we finish by generating all cores where both a1 and a2 are in the kernel.

4.2 Too many states to generate and extend, even when exploiting symmetry

A way to generate all trails in the target space is to first generate all states up to a given weight
and then do backward and forward extensions to obtain trail cores. If we define T1 ≜

⌊
T3
3

⌋
, then

for w̃(b1, b2) ≤ T3 either wrev(λ−1(b1)) ≤ T1, w(b1) ≤ T1 or w(b2) ≤ T1. To cover the target space,
we need to consider these cases:

– wrev(λ−1(b1)) ≤ T1, so we have to generate all states a1 with wrev(a1) ≤ T1, compute b1 =
λ(a1) and extend forward the 2-round trail cores (b1) to get 3-round trail cores.

– w(b1) ≤ T1, so we have to generate all states b1 with w(b1) ≤ T1 and extend forward the
2-round trail cores (b1).

– w(b2) ≤ T1, so we have generate all states b2 with w(b2) ≤ T1 and extend backward the
2-round trail cores (b2).

Unfortunately, this brute-force strategy requires a high number of states to cover the whole space
for an interesting target weight. E.g., if T3 = 36, then T1 = 12 and there are about 1.42× 1015 ≈ 250

states with weight up to 12 in K - f [1600].
We can reduce this number by taking the z symmetry into account. Except for ι, which does not

influence difference propagation, all the stepmappings of K - f are invariant when translated

5

along z. Hence, for each trail Q = (b0, b1, . . . , bn) there exists a trail Q′ = (z(b0), z(b1), . . . , z(bn))
of same weight, with z the translation operator along the z axis. In the sequel, we will always
consider trails up to translations in z. This reduces the search space by approximately a factor
w = 64—not exactly a factor w because of states that are periodic in z. Yet, the number of states to
extend forward and backward is still about 244.

5 Generating trails with a low number of active rows

In this section, we generate and extend states with weight up to T′1 = 7. This does not cover the
whole target space with T3 = 36 but the remaining portion of the target space is limited to trails
with a more flat weight profile, i.e., they satisfy w(bi) ≥ T′1 + 1 = 8 for all i ∈ {0, 1, 2} and
w(bi) + w(bi+1) ≤ T′2 = T3 − (T′1 + 1) = 28 for all i ∈ {0, 1}.

More specifically, in this phase we look at the number of active rows in order to generate all
trail cores such that wrev(λ−1(b1)) ≤ T′1, w(b1) ≤ T′1 or w(b2) ≤ T′1, for T′1 = 7. According to
Table 3, each active row contributes for at least 2 to the weight. Hence,

w(b) ≥ 2∥b∥row and wrev(b) ≥ 2∥b∥row,

and we can cover all the states up to weight 7 by generating all states with up to ⌊ T′1
2 ⌋ = 3 active

rows.
This approach can be refined by looking at the number of active rows not only for one state

but for two consecutive states. With χ, the minimum weight a round differential can have is 2.
So, wrev(λ−1(b1)) ≥ 2 implies that wrev(λ−1(b2)) + w(b2) ≤ w(b1) + w(b2) ≤ T3 − 2 = 34 and
similarly w(b2) ≥ 2 implies that wrev(λ−1(b1)) + w(b1) ≤ T3 − 2 = 34. Hence,

wrev(λ−1(bi)) + w(bi) ≤ T3 − 2 = 34 ⇒ ∥λ−1(bi)∥row + ∥bi∥row ≤
⌊

T3 − 2
2

⌋
= 17.

In practice, what we did was the following.
– Generate B = {b : (∥b∥row ≤ 3 or ∥λ−1(b)∥row ≤ 3) and ∥λ−1(b)∥row + ∥b∥row ≤ 17}. This
is done by first generating all states b with up to 3 active rows and filter on ∥λ−1(b)∥row, and
then generate all states a with up to 3 active rows, compute b = λ(a) and filter on ∥b∥row.

– Do forward extension of all b1 ∈ B and keep the cores Q̃ = (b1, b2) with w̃(Q̃) ≤ T3.
– Do backward extension of all b2 ∈ B and keep the cores Q̃ = (b1, b2) with w̃(Q̃) ≤ T3.

We found a trail core (b1, b2) with wrev(λ−1(b1)) + w(b1) + w(b2) = 4 + 4 + 24 = 32 (see also
Table 4). It contains the 3-round trail found by Duc et al. [11], of which a trail prefix is displayed
in Figure 3 in Appendix A.

There are (320
n)(31)n states with n active rows. As this function grows very quickly, it was not

reasonable to extend this search beyond 3 active rows.

6 Generating trails using the properties of θ

To investigate the remaining part of the target space, we look at the properties of states a with
respect to θ, and specifically the parity of its columns, to limit the weight of two-round trails. An
important parameter to classify the states a is their column parity, so as to study states in sets of
parities. From the column parity, we derive the θ-gap, defined below. With θ-gap g, the effect of θ
is to flip 10g bits. There are thus at least 10g active bits, each either in a or in θ(a). So, the higher the
θ-gap the higher wrev(a) + w(λ(a)) is likely to be. We can efficiently compute a lower bound for
wrev(a) + w(λ(a)) over all a with a given parity. For the target weights considered in this paper,
this allows us to limit the states to consider to those with a parity belonging to a mere handful of
values.

We then use the generated states a are to build trail cores by forward and backward exten-
sion. As the θ-gap increases, the number of states a to consider decreases since more states a can
immediately be excluded. An important case is when all the columns of a have even parity, i.e.,
a is in the kernel. In this case, the θ-gap is zero and a high number of states must be generated
and extended. For this reason, this section focuses only the case where either a1 or a2 is not in the
kernel. The complementary case is covered in Section 7.

6

z

x

Fig. 1. Example of parity pa ern. Each square represents a column. An odd column contains a
circle, while an affected column is denoted by a dot. A column can be both odd and affected. The
odd columns of a run are connected with a line. The affected columns due to a run are located at
the right (resp. top le) of the start (resp. end) column of the run.

6.1 Properties of θ

As θ is a linear function, its properties are the same whether applied on a state absolute value or
on a difference, so we just write “value”. The following definitions are from [5].

The column parity (or parity for short) P(a) of a value a is defined as the parity of the columns
of a, namely P(a)[x][z] = ∑y a[x][y][z]. A column is even (resp. odd) if its parity is 0 (resp. 1). The
parity can also be defined on a slice, namely P(az)[x] = ∑y a[x][y][z]. When the parity of a state or
of a slice is zero (i.e., all its columns are even), we say it is in the column-parity kernel (or kernel for
short).

The mapping θ consists in adding a pa ern to the state, which we call the θ-effect. The θ-effect
of a value a is E(a)[x][z] = P(a)[x− 1][z] + P(a)[x + 1][z− 1]. For a fixed θ-effect e[x][z], θ comes
down to adding the y-symmetric pa ern e[x][y][z] ≜ e[x][z](∀y). So θ depends only on column
parities and always affects columns symmetrically in y.

A column of coordinates (x, z) is affected iff E(a)[x][z] = 1; otherwise, it is unaffected. Note that
the θ-effect always has an even Hamming weight so the number of affected columns is even.

The θ-gap is defined as the Hamming weight of the θ-effect divided by two. Hence, if the θ-gap
of a value at the input of θ is g, the number of affected columns is 2g and applying θ to it results
in 10g bits being flipped.

We have introduced the θ-gap via the θ-effect, but it can be defined directly using the parity
itself. For this we introduce an alternative, single-dimensional, representation of a parity p[x][z].
We map the (x, z) coordinates to a single coordinate t as t → (x, z) = (−2t, t) and denote the
result by p[t]. In this representation a run is a sequence of ones delimited by zeroes. As illustrated
on Figure 1, each run induces two affected columns. First, if it starts in coordinates (x, z), it implies
an affected column in its right neighbor (x + 1, z). And if it ends in (x′, z′) it implies an affected
column in its top-le neighbor (x′ − 1, z′ + 1). Another example can be found in Figure 3. The
following lemma links the number of runs to the θ-gap.

Lemma 1. The parity p has θ-gap g iff p[t] has g runs.

7

6.2 The propagation branch number

The propagation branch number of a parity p is the minimum weight of the 2-round trail core (b)
among states with this parity. More formally,

B(p) ≜ min{w̃(b) : P(λ−1(b)) = p}.

Owing to the portion of the target space already covered in Section 5, we can limit the propagation
branch number to T′2 = 28. The strategy is as follows:

– First, we identify and exclude parity pa erns p such that the propagation branch number can
be proven to exceed T′2 = 28.

– Then, for the remaining parity pa erns p we look for all states b = λ(a) with P(a) = p and
w̃(b) ≤ T′2 = 28.

– Finally, we forward and backward extend the states seen as 2-round trail cores up to weight
T3 = 36.

Clearly, the kernel states, i.e., states such that P(a) = 0must be considered. For instance, a state
a with just two active bits in the same column will have wrev(a) = 4. Then, b = λ(a) = π(ρ(a))
since θ has no effect in this case, and b also has two active bits. For K - f [1600], all the rotation
constants in ρ are different and these two bits will not be in the same slice, so not in the same row
and wrev(a) + w(b) = 8. Hence, the propagation branch number of the all-zero parity is at least 8
and thus the all-zero parity pa ern must be included.

States that are out of the kernel are likely to have a higher propagation branch number.We now
concentrate on how to find a lower bound on the propagation branch number of a given parity
pa ern.

6.3 Bounding the row branch number

The row branch number of a parity p is the minimum number of active rows before and a er λ
among states with this parity. More formally,

Brows(p) ≜ min{∥λ−1(b)∥row + ∥b∥row : P(λ−1(b)) = p}.

Since an active row has at least propagation weight 2, this means that B(p) ≥ 2Brows(p). We can
thus use the rowbranch number as away to limit the search to parity pa erns forwhich w̃(b) ≤ T′2.

For a given parity pa ern, we classify the columns as either affected, unaffected odd or unaf-
fected even. We make use of the following properties to find a lower bound on the row branch
number.

Lemma 2. In terms of active rows, θ satisfies the following properties:

– An active bit in an affected column before θ will be passive a er θ, and vice-versa. So, for each bit
(x, y, z)

π◦ρ−→ (x′, y′, z′) of an affected column, at least one of row (y, z) in λ−1(b) and row (y′, z′) in
b will be active.

– An odd unaffected column always contains at least one active bit and this bit stays active a er θ. So, for
at least one bit (x, y, z)

π◦ρ−→ (x′, y′, z′) of an odd unaffected column, both rows (y, z) in λ−1(b) and
(y′, z′) in b will be active.

These properties are translated into Algorithm 1, which returns a lower bound of Brows(p). The
algorithm avoids counting twice an active row by marking (in the sets a and b) the row positions
already encountered.

6.4 Looking for candidate parity pa erns

To find trails such that any two consecutive rounds haveweight up to T′2 = 28, we have to consider
the parity pa erns listed in Lemma 3.

8

Algorithm 1 Computing a lower bound of Brows(p)
Let a and b be sets of row positions, which are initially empty
B← 0
for each affected column (x, z) do
for y ∈ Z5 do
Let (x, y, z)

π◦ρ−→ (x′, y′, z′)
if (y, z) /∈ a and (y′, z′) /∈ b then

B← B + 1
a← a ∪ {(y, z)} and b← b ∪ {(y′, z′)}

end if
end for

end for
for each unaffected odd column (x, z) do
Let (x, i, z)

π◦ρ−→ (x′i , y′i , z′i) for i ∈ Z5
if {(i, z), i ∈ Z5} ∩ a = ∅ then

B← B + 1
a← a ∪ {(i, z), i ∈ Z5}

end if
if {(y′i , z′i), i ∈ Z5} ∩ b = ∅ then

B← B + 1
b← b ∪ {(y′i , z′i), i ∈ Z5}

end if
end for
return B

Lemma 3. A 2-round differential trail Q = (b0, b1, b2) in K - f [1600] with w(Q) ≤ 28 necessarily
satisfies one of the following properties on the parity of a1 = λ−1(b1):
– a1 is in the kernel, i.e., P(a1) = 0;
– the θ-gap of a1 is 1 with a single run of length 1 or 2; or
– the θ-gap of a1 is 2 or 3 with runs of length 1 each, all starting in the same slice.

If parities are considered up to translation along z, we can restrict ourselves to parity pa erns with runs
starting in slice z = 0.

To prove this result, we conducted a recursive search as follows. Each parity is represented as
a set of runs. First, all parity pa erns p with a single run (so θ-gap 1) are investigated. All p with
Brows(p) ≤ T′2

2 = 14 are stored into a set S. Then, we recursively add runs not overlapping the
already added ones (so as to cover θ-gaps higher than 1), and all found p with Brows(p) ≤ T′2

2 = 14
are stored into a set S.

To limit the search, we use the following monotonicity property on the number of active rows.
Using Lemma 2, changing an unaffected even column into either an unaffected odd or an affected
column cannot decrease the number of active rows.

In the recursive search described above, adding a run to a parity pa ern p can turn an un-
affected odd column into an affected column. Hence, we cannot use the monotonicity property
directly on the runs. However, adding a run never turns an affected column back into an unaf-
fected one. So, before recursively adding a run to p, we apply a modified version of Algorithm 1
that does not take unaffected odd columns into account; this modified algorithm is monotonic in
the runs. If the value returned by this modified algorithm is already above T′2

2 = 14, then there is
no need to further add runs. This efficiently cuts the search.

Before being added to the candidate set S, the parity pa ern p is tested with the unmodified
Algorithm 1. For the remaining parity pa erns, we explicitly generated all states a with these
parities up to w̃(λ(a)) ≤ T′2 = 28. This allowed us to prove Lemma 3.

6.5 Starting from out-of-kernel states
For a given parity pa ern p, we can construct all states b = λ(a) with P(a) = p and w̃(b) ≤ T′2 =
28. We proceed in two phases.

9

– In a first phase, we generate all states a such that P(a) = p by assigning all possible 16 values
to affected (odd or even) columns and by assigning a single active bit in each unaffected odd
column. These states are such that ||a||+ ||λ(a)|| is exactly 10g + 2c, with g the θ-gap and c
the number of unaffected odd columns.

– In a second phase, we take the states generated in the first phase and add pairs of bits to all
unaffected columns. By adding a pair of bits, we do not alter P(a).

In both phases, we keep only the states b = λ(a) for which w̃(b) ≤ T′2 = 28. As can be seen in
Table 3, both the weight and the reverse minimum weight are monotonic, i.e., adding an active bit
to the state cannot decrease them. We can therefore limit the search by stopping adding pairs of
bits when w̃(b) is above T′2 = 28.

In practice, what we did was the following.
– Let P be the set of parity pa erns satisfying one of the conditions of Lemma 3 except p = 0.
– By the method described above, we construct all states in the set B = {b : P(λ−1(b)) ∈
P and w̃(b) ≤ T′2 = 28}.

– Finally, we forward and backward extend the states in B to 3-round trail cores up to weight
T3 = 36.

We again found the same trail core as in Section 5. The trail prefix of weight 32 has P(a1) = 0
(so a1 is in the kernel) and P(a2) has one run of length 2 (so a2 has θ-gap 1). No other trail cores
were found.

When extending the states in B, we exhaustively scan all compatible states, thereby including
cases where P(a1) = 0 or P(a2) = 0. Hence, we covered the whole target space, except for trails
such that both P(a1) = 0 and P(a2) = 0.

7 Generating in-kernel trails

To close the target space, wemust look at in-kernel trails of the form in Eq. (2) with both P(a1) = 0
and P(a2) = 0. In the case of in-kernel trails, we were able to be completely cover the space up to
weight T3 = 40, and we expect the techniques presented here can cover trails of higher weight. As
P(a1) = P(a2) = 0, the θ operation has no effect and therefore bi = π(ρ(ai)). So this comes down
to looking for states a = a1, b = b1, c = a2 and d = b2 connected as:

a
π◦ρ−→ b

χ→ c
π◦ρ−→ d, with P(a) = P(c) = 0. (3)

We now summarize how we can efficiently generate all in-kernel three-round trail cores up to
some weight and provide more details in following subsections. The key element in our method
is the observation that any state b with P(a) = 0 and for which there exists a state c with P(c) = 0
can be represented in a specific way. The states a and b are iteratively constructed by adding active
bits in the form of bit sequences called chains and vortices, defined in Section 7.2 below. Chains
and vortices have an even number of active bits per column in a by construction and hence ensure
P(a) = 0.

In b, there can be zero, one or more slices called knots, which contain three or more active bits.
Each of these active bits is the end point of a chain that leads to another knot or that connects back
to the same knot. The intermediate active bits of a chain appear pairwise in slices holding exactly
two active bits in one column (called orbital slices, see Section 7.1). On top of chains connecting
knots, a state b can exhibit a vortex, i.e., a cyclic sequence of active bits that appear pairwise both
in the columns of a and in the columns of b.

By starting with an empty state and progressively adding chains, knots and vortices, one can
quickly build states a and b that satisfy P(a) = 0 and for which there exist c with P(c) = 0, leading
to 3-round in-kernel trail cores. Any state leading to a in-kernel trail can be represented in this
way, and care is taken so that all possible states are generated, up to a given target weight. At each
step, a lower bound on the weight of 3-round trail cores containing a and b is computed so as to
efficiently limit the search.

As a final step, the generated states a and b are forward-extended to states c and d, limiting to
c values in the kernel. Thanks to the properties of χ (see Section 3.1), the compatible states c can
be expressed as a linear affine space. It is thereby easy to take the intersection of this affine space
with the set of states such that P(c) = 0.

10

7.1 Characterizing the slices in b

Definition 1. A state b is tame if P(λ−1(b)) = 0 and such that there exists at least one state c compatible
with b through χ such that P(c) = 0.

To characterize states b such that P(c) = 0, we can reason on the slices bz of b since χ and P
can be jointly described in terms of slices. In particular, each slice cz of c must be in the kernel,
namely, P(cz) = 0, and we have to characterize the slices bz under that constraint. First, if bz = 0
then cz = 0 and P(cz) = 0. Then, a slice bz with a single active bit cannot be in the kernel a er χ,
as at least one column of cz will have a single active bit. Finally, a slice bz with two active bits must
have its two active bits in the same column for cz to be in the kernel. By inspection of Table 3, a row
with a single active bit at coordinate x, e.g., 00100 transforms into an active row of the form uv100
with u, v ∈ {0, 1}, so the active bit stays active at x and zero, one or two active bits can appear at
x− 2 and x− 1 of the same row. So, if the two bits are not in the same column, one of the active
bits that stays a er χ will not find another active bit in the same column. We summarize this in
the next lemma.

Lemma 4. If b is tame, then each of its slices has either

– no active bit,
– two active bits in the same column, or
– three or more active bits.

We call an empty slice a slice with no active bit, and an orbital slice is a slice with two active bits
in the same column. A slice that is neither empty not an orbital slice is called a knot. We say that
a knot is tame if it can transform a er χ into a slice in the kernel. According to Lemma 4, a tame
knot has at least three active bits.

7.2 Characterizing the set of active bits

Since in the kernel θ acts as the identity, the active bits of a are just moved to other positions in b
and their number remains the same, i.e., ||a|| = ||b||. We can therefore represent a and b by a list of
active bit positions (pi)i=1...||a|| in either the coordinates (xi, yi, zi) in a or the coordinates (x′i , y′i, z′i)

in b, with (xi, yi, zi)
π◦ρ−→ (x′i , y′i, z′i).

First, we start with the active bits in a. We say that active bits pi and pj are peer if they are in
the same column in a, i.e., xi = xj and zi = zj. Since each column has an even number of active
bits when P(a) = 0, an active bit thus always has a peer.¹

Then, we move to the active bits in b. We say that the two active bits pi and pj are chained if
they both lie in the same orbital slice in b. So x′i = x′j and z′i = z′j and no other active bit is in slice
z′i.

A chain is a sequence of bit positions of even length (p0, p1, p2, . . . , p2n−1) such that p2k and
p2k+1 are peer (∀k ∈ {0, . . . , n− 1}) and that p2k+1 and p2k+2 are chained (∀k ∈ {0, . . . , n− 2}).
In addition, the first and last active bits p0 and p2n−1 must be in knots (either the same one or
different ones). The simplest possible chain has length 2 and consists only in two peer active bits.
Figure 2 depicts the concept of chain.

The definition of a vortex is the same as that of a chain (p0, p1, p2, . . . , p2n−1), except that the
first and last active bits p0 and p2n−1 must be chained. In other words, a vortex forms a cycle of
bit positions linked alternatively by peer and chained relationships, all in orbital slices.

In a tame state, each active bit position has exactly one peer position. The active bit positions
in knots are the end points of chains, while the active bits in orbital slices are chained and belong
to chains or vortices. Therefore, any tame state can be represented as a set of vortices and chains
connecting knots.

¹ While for columns with two active bits, the peer relationship is unambiguous, in the case of columns with
four active bits, we choose which pairs of active bits are peer. Thus we can see the representation of the
states as being augmented with additional a ributes specifying the peer relationship and there may be
several ways to represent the same state. By generating states via this representation, the only risk is to
generate more states than necessary.

11

0

1

2

3

4

5

y

x

z

ρ, π

0

1

2

3

4

5

Fig. 2. Schematic example of a chain. An active bit position is represented by a circle with its index.
Two active bits connected by a plain line (resp. dashed line) are peer (resp. chained).

7.3 Generating all tame states

To generate all tame states up to a target weight T3, we generate states a and b by representing
them using the concepts of Sections 7.1 and 7.2. The generation builds (initially empty) states a
and b by iterating the following nested loops:

– In the outer loop,we add chains to the existing state.When adding a chain (p0, p1, p2, . . . , p2n−1),
the slices that receive the end points p0 and p2n−1 must become knots if they are not already. If
n > 1, the pairs of (chained) active bits (i2k+1, i2k+2) are added to empty slices, which become
orbital slices. Active bits cannot be added to already constructed orbital slices, as it would
contradict the definition of an orbital slice. Enough chains must be added such that each knot
contains at least 3 active bits (see Lemma 4).

– For a fixed set of chains produced in the previous step, the inner loop iterates on the number
and position of vortices. In a vortex, all active bits are chained, so theymust be added to empty
slices, which become orbital slices.

With the monotonic lower bound function defined in the next section, we add chains and vortices
until this lower bound exceeds T3.

7.4 Lower-bounding the weight of in-kernel trails

Wewish to determine a lower bound on the weight of 3-round in-kernel trail cores (b, d), namely,
on wrev(a) + w(b) + w(d) with a = λ−1(b), from a and b only, for use in our trail generation.
Since only d is unknown, this implies finding a lower bound on w(d). This can be done by first
determining a lower bound on the Hamming weight ||d|| and then bounding the weight of any
state with given Hamming weight.

To determine a lower-bound on ||d||, we work on each slice of b. If slice bz has u = ∥bz∥row
active rows, then the slice cz has at least u active bits. In addition, P(cz) = 0 implies that the
number of active bits must be even, so ||cz|| ≥ 2⌈ u

2 ⌉. Finally, we have ||d|| = ||c|| so

||d|| ≥ 2 ∑
z

⌈
∥bz∥row

2

⌉
.

From Table 3, it is easy to verify the following lower bound:

w(d) ≥ ŵ(||d||) ≜
⌈

4||d||
5

⌉
+ [1 if ||d|| = 1 or 2 (mod 5)].

Hence, we define the lower weight of b as

L(b) ≜ wrev(λ−1(b)) + w(b) + ŵ

(
2 ∑

z

⌈
∥bz∥row

2

⌉)
.

12

Number w̃(·) wrev(b1) w(b1) w(b2) P(a1) P(a2) Structure of a1, b1

1 32 4 4 24 kernel θ-gap 1
1 35 12 12 11 kernel kernel vortex of length 6
7 36 12 12 12 kernel kernel vortex of length 6
7 39 12 12 15 kernel kernel vortex of length 6
2 39 12 11 16 kernel kernel 2 knots connected by 3 chains

41 40 12 12 16 kernel kernel vortex of length 6
4 40 12 12 16 kernel kernel 2 knots connected by 3 chains

Table 4. Summary of all 3-round differential trail cores found in K - f [1600] up to weight 36,
and up to weight 40 for in-kernel trails. The number indicates the number of cores with the same
properties indicated in the other columns.

The lower weight yields a lower bound on the weight of 3-round in-kernel trail cores (b, d) regard-
less of d.

7.5 Limiting the search by lower-bounding the weight

At each level of the loop described in Section 7.3, the corresponding iteration is aborted, and el-
ements are not further added, if we can be sure that the lower weight L(b) will become larger
than the target weight T3. Adding a chain to the state can potentially bring new knots and/or new
orbital slices. Adding a vortex necessarily brings new orbital slices. Therefore, there is a limit in
the number of knots and orbital slices that must be considered for the generation to be complete
up to the target weight.

As a preliminary step, the minimum reverse weight satisfies the following inequality (see Ta-
ble 3):

wrev(a) ≥ ŵrev(||a||) ≜
⌈

3||a||
5

⌉
.

We see from Lemma 4 that each tame knot contributes to at least 3 active bits in a and in b.
Furthermore, the number of bits in each slice of a must be even (P(a) = 0), so ||a|| ≥ 2

⌈
3k
2

⌉
and

wrev(a) ≥ ŵrev(||a||), with k the number of knots. In b, each tame knot has at least 3 active bits on
at least 2 different active rows, hence contributing at least 5 to the weight, and so w(b) ≥ 5k. Each
active row in b contributes to at least one active bit in d so ||d|| ≥ 2k and w(d) ≥ ŵ(||d||).

For instance, k = 5 knots implies that ||a|| ≥ 16 and wrev(a) ≥ ŵrev(16) = 10, that w(b) ≥ 25
and that ||d|| ≥ 10 and w(d) ≥ ŵ(10) = 8, so a lower weight of at least 43. If T3 ≤ 42, looking for
configurations with from 0 to 4 knots is therefore sufficient, not even counting the orbital slices
that also compose chains.

We found cores of weight 35, 36, 39 and 40, as detailed in Table 4. For illustration purposes,
examples of trail prefixes are shown in Figures 4, 5 and 6 in Appendix A.

8 Extension to six-round trails

Table 4 summarizes all the 3-round cores found. These trail cores completely represent all the
3-round trails up to weight 36 (or 40 for in-kernel trails).

The second phase introduced in Section 4 consists in exhaustively extending forward and back-
ward all the 3-round trail cores into 6-round trails cores. As no 6-round trail of weight up to 73
were found, we conclude that a 6-round differential trail in K - f [1600] has at least weight
74. In the specific case of in-kernel trails, no 6-round trail of weight up to 81 were found and we
conclude that a 6-round in-kernel differential trail in K - f [1600] has at least weight 82.

For the 24 rounds of K - f [1600], a differential trail has at least weight 296, and an in-kernel
trail has at least weight 328.

13

9 Conclusions

Westudied and implemented the exhaustive generation of 3-rounddifferential trails in theK - f [1600]
permutation, which allowed us to prove a lower bound on the weight of differential trails. The
techniques developed in this paper exploit the properties of the mixing layer in its round function
to provide be er bounds than what a brute-force method could provide. Table 2 shows that there
remains a gap between the best known trails and the lower bound beyond three rounds that calls
for future work. Finally, the concepts introduced in this paper, such as chains, vortices, knots and
parity runs, help read trails and understand them.

References
1. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, On the indifferentiability of the sponge construction,

Advances in Cryptology – Eurocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol.
4965, Springer, 2008, http://sponge.noekeon.org/, pp. 181–197.

2. , Cryptographic sponge functions, January 2011, http://sponge.noekeon.org/.
3. , K T so ware, September 2011, http://keccak.noekeon.org/.
4. , On alignment in K , ECRYPT II Hash Workshop 2011, 2011.
5. , The K reference, January 2011, http://keccak.noekeon.org/.
6. E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems, CRYPTO (A. Menezes and

S. Vanstone, eds.), Lecture Notes in Computer Science, vol. 537, Springer, 1990, pp. 2–21.
7. J. Daemen, M. Peeters, G. Van Assche, and V. Rĳmen, Nessie proposal: the block cipher N , Nessie

submission, 2000, http://gro.noekeon.org/.
8. J. Daemen and V. Rĳmen, The design of Rĳndael — AES, the advanced encryption standard, Springer-Verlag,

2002.
9. , Plateau characteristics and AES, IET Information Security 1 (2007), no. 1, 11–17.
10. I. Dinur, O. Dunkelman, and A. Shamir, New a acks on Keccak-224 and Keccak-256, Fast So ware Encryp-

tion 2012, 2012, to appear, dra available from Cryptology ePrint Archive, Report 2011/624.
11. A. Duc, J. Guo, T. Peyrin, and L. Wei, Unaligned rebound a ack: Application to Keccak, Fast So ware En-

cryption 2012, 2012, to appear, dra available from Cryptology ePrint Archive, Report 2011/420.
12. P.Gauravaram, L. R. Knudsen, K.Matusiewicz, F.Mendel, C. Rechberger,M. Schläffer, and S. S. Thomsen,

Grøstl – a SHA-3 candidate, Submission to NIST (round 3), 2011.
13. E. Heilman, Restoring the differential security of MD6, ECRYPT II Hash Workshop 2011, 2011.
14. M. Naya-Plasencia, A. Röck, andW.Meier, Practical analysis of reduced-round Keccak, Indocrypt 2011, 2011.
15. NIST, Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm (SHA-3)

family, Federal Register Notices 72 (2007), no. 212, 62212–62220, http://csrc.nist.gov/groups/ST/hash/
index.html.

16. R. Rivest, B. Agre, D. V. Bailey, S. Cheng, C. Crutchfield, Y. Dodis, K. E. Fleming, A. Khan, J. Krishna-
murthy, Y. Lin, L. Reyzin, E. Shen, J. Sukha, D. Sutherland, E. Tromer, and Y. L. Yin, TheMD6 hash function
– a proposal to NIST for SHA-3, Submission to NIST, 2008, http://groups.csail.mit.edu/cis/md6/.

17. H. Wu, The hash function JH, Submission to NIST (round 3), 2011.

A Some three-round differential trails

In this section, we give some examples of trails for illustration purposes. In the figures, trail pre-
fixes are depicted with b0, a1, b1, a2, b2 from top to bo om as in Eq. (2) and the weight of each
round is given before χ. The difference b0 was taken such that w(b0) = wrev(a1). At each step,
only the slices with non-zero difference are shown with their z coordinate. The x coordinate goes
from le to right with x = 0 at the center, while the y coordinate goes from bo om to top with
y = 0 at the center. Active bits are depicted in black.

When P(a1) = 0, the peer and chained relationships are shown with straight and dashed
lines, respectively, as in Figure 2. Examples of structures include a vortex of length 6, two knots
connected by three chains, and one knot connected to itself by two chains. In Figure 3, P(a2) ̸= 0
and the effect of θ is illustrated in details.

B A four-round differential trail

Figure 7 shows a 4-round differential trail of weight 134. This is the differential 4-round trail on
K - f [1600] with the lowest known weight at this time of writing. The uneven weight profile
(16, 13, 12, 93) suggests that trails with lower weight exist.

14

http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://gro.noekeon.org/
http://csrc.nist.gov/groups/ST/hash/index.html
http://csrc.nist.gov/groups/ST/hash/index.html
http://groups.csail.mit.edu/cis/md6/

z = 0

weight: 4

χ

z = 0

θ, ρ, π

z = 55 z = 56

weight: 4

χ

z = 55 z = 56 z = 57

θ

z = 55 z = 56 z = 57

ρ, π

z = 0 z = 6 z = 14 z = 18 z = 21 z = 34

z = 48 z = 49 z = 52 z = 53 z = 57 z = 61

weight: 24

parity and θ-effect:
z

x

odd column
affected column

Fig. 3. Trail prefix of weight 32. It contains the 3-round trail core with smallest weight. The state
a1 is in the kernel. A chain of length 2 connects the knots in z′ = 55 and z′ = 56. However, these
knots are not tame and a2 cannot be in the kernel. Instead, a2 has θ-gap 1 and contains a run of
length 2 with odd columns in (x, z) ∈ {(1, 55), (4, 56)}. The columns (x, z) ∈ {(2, 55), (3, 57)} are
affected and hence are flipped by θ.

15

z = 9 z = 43 z = 56

weight: 12

χ

z = 9 z = 43 z = 56

θ, ρ, π

z = 0 z = 6 z = 7

weight: 12

χ

z = 0 z = 6 z = 7

θ, ρ, π

z = 25 z = 26 z = 28 z = 33 z = 43

weight: 11

Fig. 4. Trail prefix of weight 35. It contains a vortex of length 6 in orbital slices z′ ∈ {0, 6, 7}.

16

z = 3 z = 21 z = 46

weight: 12

χ

z = 3 z = 21 z = 46

θ, ρ, π

z = 0 z = 18

weight: 11

χ

z = 0 z = 18

θ, ρ, π

z = 9 z = 20 z = 26 z = 38

z = 39 z = 43 z = 62

weight: 16

Fig. 5. Trail prefix of weight 39. It contains two knots, one in z′ = 0 and the other in z′ = 18. The
knots are connected with three chains of length 2, ensuring that each knot has three active bits.
There are no orbital slices.

17

z = 0 z = 21 z = 43 z = 54

weight: 16

χ

z = 0 z = 21 z = 43 z = 54

θ, ρ, π

z = 0 z = 18 z = 34

weight: 13

χ

z = 0 z = 18 z = 34

θ, ρ, π

z = 15 z = 35 z = 36 z = 38 z = 57 z = 62

weight: 12

Fig. 6. Trail prefix of weight 41. It contains a single knot in z′ = 0. Two chains of length 4 connect
this knot to itself, which has four active bits. The chains go through orbital slices z′ = 18 and
z′ = 34.

18

z = 8 z = 19 z = 28 z = 49

weight: 16

χ

z = 8 z = 19 z = 28 z = 49

θ, ρ, π

z = 0 z = 46 z = 63

weight: 13

χ

z = 0 z = 46 z = 63

θ, ρ, π

z = 0 z = 1 z = 2 z = 21 z = 55

weight: 12

χ

z = 0 z = 1 z = 2 z = 21 z = 55

θ, ρ, π

z = 1 z = 2 z = 3 z = 4 z = 6 z = 10 z = 15 z = 18 z = 19

z = 20 z = 21 z = 23 z = 27 z = 28 z = 29 z = 30 z = 33 z = 34

z = 35 z = 37 z = 39 z = 41 z = 42 z = 44 z = 45 z = 46 z = 48

z = 49 z = 52 z = 53 z = 56 z = 57 z = 58 z = 59 z = 60 z = 61

weight: 93

Fig. 7. A 4-round trail prefix of weight 134.

19

	Differential propagation analysis of Keccak

