
On Secure Two-party Integer Division

Morten Dahl1, Chao Ning2,3?, and Tomas Toft1

1 Aarhus University, Denmark ?? ? ? ? †

{mdahl,ttoft}@cs.au.dk
2 Institute for Interdisciplinary Information Sciences (IIIS)

Tsinghua University, Beijing, P.R. China
ncnfl@mail.tsinghua.edu.cn

3 School of Computer Science and Technology
Shandong University, Jinan, China

Abstract. We consider the problem of secure integer division: given two
Paillier encryptions of `-bit values n and d, determine an encryption of
bn
d
c without leaking any information about n or d. We propose two new

protocols solving this problem.

The first requires O(`) arithmetic operation on encrypted values (se-
cure addition and multiplication) in O(1) rounds. This is the most ef-
ficient constant-rounds solution to date. The second protocol requires
only O

(
(log2 `)(κ+ loglog `)

)
arithmetic operations in O(log2 `) rounds,

where κ is a correctness parameter. Theoretically, this is the most effi-
cient solution to date as all previous solutions have required Ω(`) oper-
ations. Indeed, the fact that an o(`) solution is possible at all is highly
surprising.

Keywords: Secure two-party computation, Secure integer division, Constant-
rounds, Bit-Length

1 Introduction

Secure multiparty computation (MPC) allows two or more mutually mistrusting
parties to evaluate a function on private data without revealing additional infor-
mation. Many potential appliations are motivated by business needs, e.g. running

? This work was supported in part by the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
China Grant 61033001, 61061130540, 61073174 and 61173139.

?? The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within which
part of this work was performed.

? ? ? The authors acknowledge support from the Center for research in the Foundations of
Electronic Markets (CFEM), supported by the Danish Strategic Research Council.
† The authors acknowledge support from Confidential Benchmarking (COBE), sup-

ported by The Danish Research Council for Technology and Production.

auctions where no-one gains any information on non-winning bids, or basing de-
cisions on aggregate data from multiple sources. Examples include benchmarking
and supply chain management [NT07,CK08].

Classic results show that any function can be computed with polynomial
overhead [Yao86,GMW87,BGW88,CCD88] but specialised protocols are often
used to improve efficiency: integer arithmetic can for instance be simulated us-
ing ZM arithmetic. On the other hand, this makes non-arithmetic operations
difficult, including determining which of two sums is the larger (as needed in the
double auction of Bogetoft et al. [BCD+09]), or performing an integer division of
sums (essentially the computation of the mean problem of Kiltz et al. [KLM05]).
Surprisingly many applications become possible given only a small number of
primitives – equality, greater-than, and integer division – and improving any
primitives immediately allows more efficient high-level protocols.

When the number of parties providing data is large, executing a full MPC
protocol may be infeasible. In this case, an alternative is to have the parties
(clients) provide their input in, say, encrypted form to two or more servers,
S1, . . . , SN , who then execute the secure computation. In this case privacy is
maintained when we assume that some subset of the servers remain honest.
Indeed, such a setting has seen practical use in the Danish “sugar beet auction”
[BCD+09] which had more than one thousand bidders and three servers. Further,
even if all servers collude it can still be possible to guarantee correctness of the
result by publishing a transcript of the MPC protocol and using non-interactive
zero-knowledge (NIZK) to demonstrate that the execution was correct, and even
if privacy was breached.

In this paper we consider the problem of secure integer division – computing
bn/dc given n and d – in the two-party setting. Immediate applications include
statistics on data from companies in the same business, as well as data-mining
tasks, e.g. the k-means clustering protocol of Jagannathan and Wright [JW05].
Further, since the problem of secure integer division is equivalent to that of secure
modulo reduction – n mod m = n−m·bn/mc – any such protocol may be utilized
in joint key-generation protocols as e.g. done by Algesheimer et al. [ACS02].

Related work. Algesheimer et al. introduced the problem of secure integer di-
vision in the context of passively secure RSA-modulus generation with honest
majority [ACS02]; they also noted that standard techniques may provide active
security. Their solution was based on Newton iteration and required O(`) work
and communication (using the notation of the present paper) in O(log `) rounds,
where ` is the bit-length of the inputs. The protocols were later implemented
by Jakobsen and From in the passively secure three-party setting [JF05]. Re-
cently, Catrina and Dragulin have applied similar ideas to constructing secure
fixed-point arithmetic [CD09].

Regarding constant-rounds solutions to secure integer division, Kiltz et al. pro-
posed specialised protocols based on Taylor series for the related, but simpler,
problem of computing the means in a two-party setting [KLM05]. Damg̊ard
et al. [DFK+06] later noted that combining the ideas of [ACS02] and [KLM05]
with the bit-decompositon (BD) of [DFK+06] implied a general, constant-rounds

modulo reduction (and hence also integer division). The construction was not
presented in any detail and no explicit complexity measure was presented, though
naturally it at least equalled that of BD, O(` log `). We remark that BD has later
been improved in [Tof09,RT10] to O(`) work.

The simpler problem where d is known to all parties (a single party) has been
studied by Guajardo et al. [GMS10] and Ning and Xu [NX10] (Veugen [Veu10]).

Finally, we remark that it is possible to “switch technique” mid-protocol
and use homomorphic encryption for arithmetic and (small) Yao circuits for
primitives such as integer division as done by Henecka et al. [HKS+10]. How-
ever, achieving active security in this setting typically requires the use of cut-
and-choose techniques. And, while it is possible to use generic NIZK proofs to
demonstrate correct protocol execution to the clients, this will be much more
expensive than making the non-generic zero-knowledge proofs of our solution
non-interactive, e.g., using the Fiat-Shamir heuristic [FS86].

Contribution. We present two two-party protocols for the problem of secure in-
teger division: given Paillier encryptions of `-bit values n and d, compute an
encryption of bn/dc without leaking any information. Both are based on Taylor
series. The first protocol requires O(`) encryptions to be exchanged between the
parties in a constant number of rounds; this is quite practical for small inputs,
e.g., up to 40 bits. The second protocol communicates O

(
(log2 `)(κ+ loglog `)

)
encryptions inO(log2 `) rounds. Moreover, we are able to avoid bit-decomposition;
indeed, as the latter complexity is sub-linear in the bit-length, it precludes the
use of bit-decompositon entirely. That a sub-linear solution is possible at all is
quite surprising, but is of theoretical rather than practical interest. Moreover,
in the appendix, we present a protocol for computing the exact bit-length of
an encrypted value, which is constructed without replying on bit-decomposition
and which may be of independent interest.

We remark that though our protocols are presented in the two-party Pailier-
based setting, they are easily converted to both the multiparty setting as well
as to other forms of secure arithmetic, e.g. unconditionally secure multiparty
computation based on Shamir’s secret sharing scheme and the protocols of Ben-
Or et al. [Sha79,BGW88]. Note that due to the underlying primitives, security
of the sub-linear solution requires the presence of two mutually incorruptible
parties, at least with current state-of-the-art knowledge.

The structure of this paper. Section 2 briefly introduces Paillier’s encryption
scheme, as well as the basic protocols for secure computation. Then Section 3
presents the main idea, i.e. the Taylor series which defines the desired compu-
tation, and the overall protocol is presented in Section 4. Sections 5 and 6 then
present the two solutions. Concluding, we elaborate on variations in Section 7.

Acknowledgements. The authors would like to thank the anonymous reviewers
for their comments and suggestions.

2 Preliminaries

After presenting Paillier encryption and secure two-party computations we in-
troduce a set of protocols used in our constructions. All sub-protocols are secure
against malicious (i.e., potentially deviating) attackers. Regarding complexity,
we shall use Rπ and Cπ to denote respectively the number of rounds used and
the number of ring elements communicated during a single run of protocol π.

Paillier encryption. Paillier’s encryption scheme [Pai99] is an additively homo-
morphic, sematically secure public key encryption scheme based on the decisional
composite residuosity assumption (DCRA) of RSA-moduli, i.e. ultimately based
on the hardness of factoring. The construction is based on the observation that
for M = p · q being the product of two large primes we have Z∗M2

∼= Z∗M × ZM .
A ciphertext c ∈ Z∗M2 thus contains a random element R ∈ Z∗M and message
m ∈ ZM . Encryption is defined as EM (r,m) = rM · gm mod M2, where r is
uniformly random in Z∗M2 , and g generates the subgroup of Z∗M2 of order M .
For integer d, decryption then consists of computing cd where

d ≡ 1 mod M ∧ d ≡ 0 mod φ(M)

and solving a discrete logarithm base g (which can be done efficiently in this
setting). Suppressing the randomness used, we write [m] to denote an encryption
of m ∈ ZM below.

Secure computation. Secure multi-party computation can be based on Paillier en-
cryption with a shared threshold key using the protocols of Cramer et al. [CDN01].
The threshold sharing can be constructed using the ideas of Damg̊ard and Jurik
[DJ01]. Though not explicitly stated, apart from guaranteed termination, the
protocols of [CDN01] are still valid even if all but a single party are corrupt. In
particular this allows the two-party setting. We assume the following setting:

– Alice and Bob know a public Paillier key and share the decryption key.
– Inputs and intermediary values are held in encrypted form by both parties.

For secure computation, note that given [m] and [m′] both parties may compute
an encryption [m+m′] by multiplying the ciphertexts. For readability we de-
note this operation by infix operations in the plaintext space and hence write
[m+m′]← [m] + [m′] instead of [m+m′]← [m] · [m′].

To perform a multiplication the parties first convert [m] to an additive sharing
of m in ZM : Alice picks her share mA uniformly at random, encrypts it, and
sends [mA] to Bob. The parties then compute [mB] ← [m] − [mA] and decrypt
this towards Bob. Then Alice uses the homomorphic property to compute an
encryption of [mA ·m′]← mA ·[m′], and Bob does likewise to compute [mB ·m′].
The parties send these to each other. As the final step, both parties compute

[m ·m′]← [mA ·m′] + [mB ·m′] = [(mA +mB) ·m′] .

Assuming through-out the entire paper that decryption to a party is a con-
stant round and communication procedure, the complexity of πmult is also con-
stant in both parameters. Finally, note that zero-knowledge (ZK) proofs may be
used to ensure correct behavior, e.g. that Alice knows the plaintext of [mA] and
that [mA ·m′] and [mB ·m′] have been computed correctly. These can be made
non-interactive – and hence globally verifiable – using the Fiat-Shamir heuristic
[FS86]: The challenge is computed as a hash of the initial message, which can
be proven secure in the random oracle model.

Zero-knowledge proof of boundedness. In addition to secure arithmetic in ZM
we require a zero-knowledge proof of boundedness, i.e. that Alice and Bob may
demonstrate to each other that the plaintext of an encryption [m] sent to the
other party (where the sender knows m) is smaller than some public bound B.
For Paillier encryption this can be achieved with O(1) communication (of ring
elements) using integer commitments and the fact that any non-negative integer
can be written as a sum of four squares. See [Bou00,Lip03] for further discussion.

Computing the greater-than relation. Given encryptions [m] and [m′] of `-bit
values, obtain an encryption [b] of a bit b such that b = 1 iff m > m′. A
constant-rounds protocol πc>? for this can be based off of the comparison protocol
of Nishide and Ohta [NO07]; communication complexity is Cπc>?

= O(`) ring
elements. We use πc≤? as syntactic sugar for running πc>? with inputs swapped.

A sub-linear protocol, denoted πs>? and πs≤?, is possible due to Toft [Tof11]. Its
complexity is Cπs>?

= O ((log `)(κ+ loglog `)) ring elements in Rπs>?
= O(log `)

rounds, where κ is a correctness parameter.

Computing the inverse of an element. Given an encryption [x] of x ∈ Z∗M ,
compute an encryption

[
x−1

]
of its inverse. We use the protocol from [BB89]

which performs this task in a constant number of rounds and communicating
a constant number of field elements. We shall use this protocol in both the
constant-rounds and the sub-linear protocol and hence simply denote it by πinv.

Bit-decompositon. Decomposing an encrypted `-bit value [m] into binary form,
i.e. determining encryptions [m`−1] , . . . , [m0] such that mi ∈ {0, 1} and m =∑`−1
i=0 2i · mi, is not strictly required as shown in Appendix A. However, for

clarity we will use bit-decomposition below. By πcBD we denote the O(1) rounds
protocol of Reistad and Toft [RT10]; this protocol communicates CπcBD

= O(`)
encryptions (and ring elements).

Prefix-or of a sequence of bits. Given encrypted bits [x`−1] , . . . , [x0], compute

encrypted bits [y`−1] , . . . , [y0] such that yi =
∨`−1
j=i xj . An O(1)-rounds protocol

communicating Cπcpre-∨ = O(`) elements, πcpre-∨, is provided in [DFK+06].

Powers of a number. Given an encrypted number [x] and public ω ∈ Z, compute[
x1
]
,
[
x2
]
, . . . , [xω]. This can be accomplished using a prefix-product protocol

[BB89,DFK+06] by giving [x] for all ω inputs. The protocol πcpre-Π runs in O(1)
rounds and uses Cπcpre-Π

= O(ω) communication.

3 The Intuition Behind the Constructions

In this section we take a high-level view and present the ideas behind the desired
computation. The following sections then explain how to do this securely in the
stated complexity. Assume in the following that n and d are `-bit integers, and
let k be a suitable large, public integer. Our solutions then consist of two steps:

I. Compute an encrypted approximation [ã] of a = b2k/dc
II. Compute [bn/dc] as

⌊
([ã] · [n])/2k

⌋
Step I is explained over the reals in Section 3.1. This is then converted to in-
teger computation in Section 3.2 and finally realised using ZM arithmetic in
Section 3.3. Note that the integer division in step II is simpler as 2k is public.

3.1 The Taylor Series

Similarly to [KLM05] or the constant depth division circuit of Hesse et al. [HAB02],
we start with a geometric series to compute a “k-shifted” approximation of 1/d:

1

α
=

∞∑
i=0

(1− α)i =

ω∑
i=0

(1− α)i + εω (1)

where εω =
∑∞
i=ω+1(1−α)i. This is easily verified for any real 0 < α < 1. Further,

approximating 1/α by keeping only the first ω + 1 terms of the summation
introduces an additive error of εω. If 0 < 1− α ≤ 1/2 then this error is at most

εω =

∞∑
i=ω+1

(1− α)i = (1− α)
ω+1 ·

∞∑
i=0

(1− α)i ≤ 2−ω−1 · 1

α
≤ 2−ω. (2)

By picking ω sufficiently large this ensures an appropriately small error below.

3.2 Converting the Taylor Series to an Integer Computation

Multiplying 1/α by a power of two “shifts” the value; this ensures that each of
the ω + 1 terms of the finite sum of Eq. (1) are integer. The non-integer part of
the shifted value is entirely contained in εω, which will be discarded.

Let `d = blog2(d)+1c be the bit-length of d such that 2`d−1 ≤ d < 2`d . Define
`n similarly. For accuracy it is sufficient to use any ω ≥ max{`n−`d, 0}. However,
letting ω depend on `n or `d leaks information as ω must be public. Instead we
let ω = `, which clearly satisfies the accuracy condition. For α = d/2`d and

k = `2 + ` the following expression gives us 1/d shifted up by k bits:

2k

d
= 2k−`d · 1

d/2`d

= 2k−`d ·

(
ω∑
i=0

(
1− d

2`d

)i
+ εω

)

= 2k−`d(ω+1) ·
ω∑
i=0

(
1− d

2`d

)i
· 2`dω + 2k−`d · εω

= 2k−`d(ω+1)
ω∑
i=0

(
1− d

2`d

)i
·
(
2`d
)i · 2`d(ω−i) + 2k−`d · εω

= 2k−`d(ω+1)
ω∑
i=0

(
2`d − d

)i · 2`d(ω−i) + 2k−`d · εω.

We define the desired approximation of 2k/d as

ã = 2k−`d(ω+1) ·
ω∑
i=0

(
2`d − d

)i · 2`d(ω−i). (3)

Note that not only is this an integer since k ≥ `d(ω + 1) and 2`d > d, it may
also be computed as the product of 2k−`d(ω+1) and the evaluation of the integer
polynomial with coefficients 2`d(ω−i) for 0 ≤ i ≤ ω at point 2`d−d. Furthermore,
since 0 < 1− d/2`d ≤ 1/2 we have a bound on the additive error by Eq. (2):

2k−`d · εω ≤ 2k−`d−ω.

This ensures that the result computed in step II is off by at most 1: we have

⌊n
d

⌋
=

⌊
n ·
(
ã+ 2k−`d · εω

)
2k

⌋
=

⌊
n · ã
2k

+
n · 2k−`d · εω

2k

⌋
(4)

and see that the second summand is bound by

n · 2k−`d · εω
2k

≤ n · 2k−`d−ω

2k
<

2k

2k
= 1

since `n ≤ ω. It is clear that bn·ã
2k
c is the desired result except that the sum of

the error, n ·2k−`d ·εω, and the discarded bits of the approximation, n · ã mod 2k,
may be greater than 2k; i.e. the result may have an additive error of −1 due to
a lost carry-bit.

To recap: Given integers 2k−`d(ω+1), 2`d − d and 2`d(ω−i) for 0 ≤ i ≤ `,
performing step I yields an approximation ã of 2k/d using Eq. (3). Down-shifting
this almost gives the desired result, namely q̃ ∈ {q, q − 1}, where q = bn/dc.

3.3 Performing the Integer Computation Using ZM Arithmetic

The underlying primitives provide secure ZM arithmetic, with M = pq being
the Paillier key whose secret key is held jointly by the parties. We assume4 that

M � 2`
2+`+κs ,

where κs is a statistical security parameter, e.g. κs = 100. This implies that no
“overflow” modulo M occurs in Eq. (3), hence it can be seen as occurring in
ZM . However, for efficiency reasons we rephrase the expression as

ã = 2k−`d(ω+1) ·
ω∑
i=0

(
2`d − d

)i · 2`d(ω−i)
= 2k−`d(ω+1) ·

ω∑
i=0

(
2`d − d

)i · (2−`d)i · 2`dω
= 2k−`d ·

ω∑
i=0

((
2`d − d

)
· 2−`d

)i
(5)

where addition and multiplication occur in ZM . This should no longer be seen as
an integer computation, however, the key observation is that it is irrelevant how
the encryption [ã] is obtained; what matters is that the plaintext is correct. Es-
sentially this altered calculation can be viewed as using the encoding of rational
values suggested in [FSW02]. Note that this simplifies the desired calculation:
we now only need the values 2k−`d , 2`d − d, and 2−`d as well as the evaluation
of a ZM -polynomial with known coefficients (all equal to 1).

4 The Overall Division Protocol

Having presented the desired ZM -expression for computing the approximation
ã ≈ 2k/d in Section 3.3 above, the goal now is to give a high-level view of
the actual protocol. We first formalise the required sub-tasks, and then present
the overall protocol based on assumed protocols for these. Instantiating these
protocols with either the constant-rounds (Section 5) or the sub-linear (Section 6)
versions of the sub-protocols we obtain our two division protocols.

4.1 Sub-tasks and Sub-protocols

In addition to the basic primitives of Section 2 we require the following sub-
protocols:

– πBL: Given an encryption [d] of an `-bit value d, determine an encryption[
2`d
]

for `d = blog2(d) + 1c
4 M needs to be at least a thousand bits long to ensure security of the Paillier scheme

and hence this assumption is not as bad as it may appear at first glance.

– πpoly: Given an encryption [p] of p ∈ Z∗M , evaluate the known polynomial
A(x) =

∑ω
i=0 x

i over ZM securely at point p, i.e. compute encryption [A(p)]
– πtrunc: Given an encryption [q̂] of an (` + k)-bit value q̂ ∈ ZM , compute an

encryption [q̃] of an approximation of bq̂/2kc s.t. q̃ = bq̂/2kc+ε for ε ∈ {0, 1}.

4.2 The High-level View

The full division protocol is seen in Figure 1 and proceeds by the following steps:

I. Compute an encryption [ã] of the approximation
(a) Determine

[
2`d
]

and in turn compute
[
2k−`d

]
and [p] =

[
(2`d − d) · 2−`d

]
(b) Evaluate the polynomial of Eq. (5) in [p] and securely multiply by

[
2k−`d

]
II. Compute [bn/dc]

(a) Obtain encryption [q̃] of q̃ ≈ bn/dc by computing and truncating [n · ã]
(b) Eliminate errors introduced by approximations, i.e., compute [q] from [q̃]

where the elimination of errors are performed by two secure comparions.

A: skA pk = M, [n] , [d] B: skB[
2`d
]
← πBL ([d])

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→[
2−`d

]
← πinv

([
2`d
])

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[p]← (

[
2`d
]
− [d]) ·

[
2−`d

]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[ã]← 2k ·
[
2−`d

]
· πpoly([p])

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[q̂]← [n] · [ã]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[q̃]← πtrunc([q̂] , k)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[r]← [n]− [d] · [q̃]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[ε+]← π≤? ([d] + [d] , [r] + [d])
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[ε−]← π>? ([d] , [r] + [d])
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[q]← [q̃] + [ε+]− [ε−]

Fig. 1. The full division protocol, πdiv([n] , [d]) 7→ [bn/dc]

Correctness. Correctness follows almost entirely from the previous section. For
the plaintext of [q̂], the most significant bits are off by at most 1:

bq̂/2kc ∈ {bn/dc, bn/dc − 1}.

The execution of πtrunc may introduce an additional additive error, i.e. we have

q̃ ∈ {bn/dc − 1, bn/dc, bn/dc+ 1}.

Using r = n − d · q̃ ∈ [−d; 2d[we can securely determine which case we are in.
Namely, q̃ + 1 = bn/dc when d ≤ r and q̃ − 1 = bn/dc when 0 > r. In order to
deal only with positive integers we scale these tests to respectively 2d ≤ r + d
and d > r + d. Letting ε+ and ε− denote the Boolean outcome of these tests, it
follows that q = q̃ + ε+ − ε− = bn/dc.

Privacy. The protocol reveals no information about the inputs (other than the
desired encryption of the result). This follows from the fact that no value is
ever decrypted and that we only invoke secure sub-protocols which do not leak
information. We note that πinv and πpoly require the input to be invertible –

this is indeed the case as M is the product of two odd primes, p, q ≈
√
M , while

2`d , 2`d − d ≤ 2` �
√
M . Further, the input [n · ã] for the truncation is `+ k-bit

long as n < 2` and ã ≤ 2k/d ≤ 2k, and hence the input is of the correct size.
A formal security proof using the real/ideal paradigm requires the construc-

tion of a simulator for each party. These are straightforward to construct from
the simulators of the sub-protocols; as our protocol consists of the sequential
evaluation of sub-protocols, the overall simulator simply consists of the sequen-
tial execution of the simulators of these.

Complexity. The complexity depends on the details of the sub-protocols πBL,
πpoly, πtrunc, and π>?. Formally we have

Rπdiv
= RπBL

+Rπinv
+Rπpoly

+Rπtrunc
+ 2 ·Rπ>?

+ 3 ·Rπmult

= RπBL
+Rπpoly

+Rπtrunc
+O(Rπ>?

) +O(1)

Cπdiv
= CπBL

+ Cπinv
+ Cπpoly

+ Cπtrunc
+ 2 · Cπ>?

+ 3 · Cπmult

= CπBL
+ Cπpoly

+ Cπtrunc
+O(Cπ>?

) +O(1)

(6)

such that for the constant-rounds instantiation we get Rπcdiv = RπcBL
+Rπcpoly

+

Rπctrunc
+O(1) and Cπcdiv

= CπcBL
+Cπcpoly

+Cπctrunc +O(`). Likewise, for the sub-

linear instantiation we get Rπsdiv = RπsBL
+Rπspoly

+Rπstrunc +O(log `) and Cπsdiv =

CπsBL
+ Cπspoly

+ Cπstrunc
+O ((log `)(κ+ loglog `)). Finally, a slight optimisation

regarding rounds is possible by invoking π>? and π≤? in parallel.

Active Security. The protocol in Figure 1 is only passively secure. However,
obtaining active security is straightforward by executing appropriate ZK proofs.
This increases the communication complexity by a constant factor.

5 The Constant-rounds Protocol

In this section we plug in protocols for the three sub-tasks. All protocols use
a constant number of rounds and linear communication. Combined with the
previous section this provides a constant-rounds protocol for division.

5.1 The constant-rounds πBL protocol

In Appendix A we give a πcBL protocol that, somewhat surprising, does not rely
on bit-decomposition. Here, for clarity the πcBL protocol presented in Figure 2 is
composed of two protocols introduced in Section 2: πcBD and πcpre-∨. To recap,
the former takes an encryption [d] as input and returns a set of encrypted bits

[x`−1] , . . . , [x0] for which it holds that
∑`−1
i=0 xi ·2i = d. The latter takes such a set

of encrypted bits and returns another set with the property that yi =
∨`−1
j=i xj .

A: skA pk = M, [d] B: skB

[x`−1] , . . . , [x0]← πcBD([d])
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[y`−1] , . . . , [y0]← πcpre-∨([x`−1] , . . . , [x0])
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→[

2`d
]
← 1 +

∑`−1
i=0 [yi] · 2i

Fig. 2. Constant-rounds bit-length protocol, πcBL([d]) 7→
[
2`d
]

Correctness. By the correctness of the two sub-protocols we only have to argue
the correctness of the final step. Note that the result of πcpre-∨ is a set such that

yi = 1 if and only if d ≥ 2i. This means that 1 +
∑`−1
i=0 yi · 2i is the desired 2`d .

Privacy and Active Security. Follows immediately by the privacy and security
guarantees of the two sub-protocols.

Complexity. Since the final step of πcBL is a local computation we simply have
that RπcBL

= RπcBD
+Rπcpre-∨ = O(1) and CπcBL

= CπcBD
+ Cπcpre-∨ = O(`).

5.2 The constant-rounds πpoly protocol

As shown in the protocol in Figure 3, we simply evaluate polynomial A(x) =∑ω
i=0 x

i in point p =
(
2`d − d

)
· 2−`d using the prefix-product protocol πcpre-Π .

This gives encryptions of p1, p2, . . . , pω – and knowing these all there is left to
do is to sum these together with p0 = 1 to form A(p).

Correctness, Privacy, Complexity, and Active Security. Noting that the second
step of πcpoly is a local computation, all properties directly reflect those of the
πcpre-Π subprotocol. Formally, Rπcpoly

= O(1) and Cπcpoly
= O(ω).

A: skA pk = M, [x] B: skB[
p1
]
, . . . , [pω]← πcpre-Π([x] , . . . , [x])

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[y]← 1 +
∑ω
i=1 [pi]

Fig. 3. Constant-rounds polynomial evaluation protocol, πcpoly([x]) 7→ [A(x)]

5.3 The constant-rounds πtrunc protocol

Our constant-rounds protocol for truncation (shown in Figure 4) takes encryp-
tion [q̂] and public k as input and returns [q̃] such that q̃ ≈ bq/2kc. The result
may have an additive error c ≤ 1. It is possible to eliminate this error with a com-
parison [c]← ([q̃] · 2k >? [q̂]), and computing the correct result as [q]← [q̃]− [c].
However, instead of comparing two `2-bit numbers here, we handle the error in
the main protocol with a comparison of two `-bit numbers instead.

A: skA pk = M, [q̂] , k B: skB

r ∈R Z2k+`+κ

r> ← br/2kc
[z]← [q̂] + r

[z], [r>]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z ← decrA([z])
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

z> ← bz/2kc
[z>]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[q̃]← [z>]− [r>]

Fig. 4. Constant-rounds truncation protocol, πctrunc([q̂] , k) 7→
[
bq̂/2kc+ c

]

To perform the truncation, partyB first picks a random integer of a bit-length
sufficient for using it as a mask for q̂. He also stores the ` + κ most significent
bits of r as r> and computes an encryption of it. Upon receiving [z], the masked
value of q̂, A and B now decrypt [z] for A to see. After learning this value z, A
can locally perform the truncation to form z>. She sends an encryption of this
value to B and both can finally compute the output locally by [z>]− [r>].

Correctness. When computing z it may happen that r causes a carry bit c from
the k least significant bits to spill over into the ` + κ most significant bits. In
this case the truncation of z will maintain this carry bit, causing the result of
z> − r> to be bq̂/2kc+ 1 instead of bq̂/2kc. For efficiency we allow this error.

Privacy. The only point where information could potentially be leaked is through
A seeing z. However, since r is chosen uniformly at random and κ bit longer than
q̂, z leaks information about q̂ with probability negligible in κ.

Complexity. We see that the complexity of πctrunc is Rπctrunc = 2 +Rdecr = O(1)
where Rdecr is the round complexity of a decryption, assumed to be constant.
Likewise the communication complexity is Cπctrunc = 3 + Cdecr = O(1).

Active Security. To obtain active security B must also send
[
r⊥ = r mod 2k

]
to A, who in turn must also send

[
z⊥ = z mod 2k

]
. B can now append a zero-

knowledge proof that z = (r> ·2k+r⊥)+ q̂ as well as proofs that both r> and r⊥
are within the correct bounds. Similary, A also appends a proof of z = z> ·2k+z⊥
and that z> and z⊥ are within bounds.

5.4 Combined Protocol and Analysis

By plugging the protocols introduced in this section into the πdiv protocol of
Section 4 we obtain our constant-rounds division protocol πcdiv. Correctness, pri-
vacy, and active security follow from the discussions above. Using the complexity
expressions in Eq. 6 from Section 4 and the fact that ω = ` we get:

Rπcdiv
= RπcBL

+Rπcpoly
+Rπctrunc +O(1) = O(1)

Cπcdiv
= CπcBL

+ Cπcpoly
+ Cπctrunc +O(`) = O(ω) +O(`) = O(`).

6 The Sub-linear Protocol

In this section we give the protocols needed for giving the division protocol of
Section 3 a sub-linear communication complexity. We can reuse the truncation
protocol πctrunc from Section 5 and hence only present two new πBL and πpoly
protocols.

6.1 The sub-linear πBL protocol

To compute
[
2`d
]

from [d] in sub-linear communication complexity we take in-
spiration from [Tof11] and perform, in a sense, a binary search. Assuming we
have a protocol πs≤? for performing comparison of two encrypted numbers, we
give the protocol in Figure 5. For simplicity we assume that ` = 2γ for some
integer γ.

Intuitively, our construction recursively computes a pointer p into the binary
representation of d. Initially p points to the first bit position (p0 = 20). In the
first round we then ask in which half of the binary representation of d the most
significant 1 occurs and store the result in bit c1. Next we update p to point to
position `/21 if c = 1 (i.e. p1 = p0 · 2`/2

1

) and to the same position as before
if c = 0 (i.e. p1 = p0 · 1). Iterating in this way p will eventually point to the
position of the most significant bit of d. Shifting the position by one will give us
integer 2`d .

Correctness and Privacy. Correctness follows from the above description of the
protocol, and privacy follows immediately from the sub-protocols as we only
compute on encrypted values.

A: skA pk = M, [d] B: skB

[p0]← 1

[c1]← πs≤?

(
2`/2 · [p0] , [d]

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[p1]← [p0] ·
(

[c1] · (2`/2 − 1) + 1
)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
...

[cγ]← πs≤?

(
2`/2

γ

· [pγ−1] , [d]
)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
[pγ]← [pγ−1] ·

(
[cγ] · (2`/2

γ

− 1) + 1
)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→[
2`d
]
← 2 · [pγ]

Fig. 5. Sub-linear bit-length protocol, πsBL([d]) 7→
[
2`d
]

Complexity. The protocol requires γ = log2 ` iterations, each requiring one com-
parison and one multiplication (not counting multiplication by public values).
Hence we get round complexity RπsBL

= γ · (Rπs≤?
+Rπmult

) = O(log2 `) and com-

munication complexity CπsBL
= γ · (Cπs≤?

+ Cπmult
) = O

(
(log2 `)(κ+ loglog `)

)
.

Active Security. Since the sub-protocol is actively secure, we only have to append
zero-knowledge proofs of correctness to every multiplication in order to make the
protocol resistant against active attackers. This increases the number of messages
communicated but only by a constant factor.

6.2 The sub-linear πpoly protocol

Evaluating the A(x) =
∑ω
i=0 x

i polynomial at a point p can be done by a method
similar to “square and multiply”. We give the protocol in Figure 6 where for
simplicity we have assumed that ω = 2γ for some integer γ. The intuition behind

the notation is that σj =
∑2j

i=1 x
i and xj = x2

j

– it is not hard to see that

this is indeed the case. Specifically this gives us that σγ =
∑2γ

i=1 x
i and hence

σγ + 1 =
(∑ω

i=1 x
i
)

+ 1 =
∑ω
i=0 x

i as required.

Correctness, Privacy, and Complexity. The first two follow respectively from
the description above and from that fact that only arithmetical operations on

encryptions are performed. For complexity we have that the protocol requires
γ = log2 ω iterations with two multiplications in each. Hence the round com-
plexity is Rπspoly

= γ · (2 ·Rπmult
) = O(logω), and likewise for the communication

complexity Cπspoly
= γ · (2 · Cπmult

) = O(logω).

A: skA pk = M, [x] B: skB

[σ0]← [x]

[x0]← [x]
[σ1]← ([x0] + 1) · [σ0]

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
...

[xγ−1]← [xγ−2] · [xγ−2]
[σγ]← ([xγ−1] + 1) · [σγ−1]

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→[∑ω
i=0 x

i
]
← [σγ] + 1

Fig. 6. Sub-linear polynomial evaluation protocol, πspoly([x]) 7→ [A(x)]

Active Security. By appending zero-knowledge proofs of correctness to every
multiplication we make the protocol resistant against active attackers. This in-
creases the number of messages communicated but only by a constant factor.

6.3 The sub-linear πtrunc protocol

The truncation protocol πctrunc of Section 5 is efficient enought to be reused for
the sub-linear protocol πstrunc: only a single operation is performed, namely the
decryption of [z]. The remaining operations can be carried out locally.

6.4 Combined Protocol and Analysis

Our sub-linear division protocol πsdiv is obtained from the πdiv protocol of Sec-
tion 4. Correctness, privacy, and active security follow from the discussions in
the previous sections and in this section. As for complexity, since ω = `, we get:

Rπsdiv
= RπsBL

+Rπspoly
+Rπstrunc

+O(log `) = O(log2 `)+O(logω)+O(log `) = O(log2 `)

Cπsdiv
= CπsBL

+Cπspoly
+Cπstrunc

+O ((log `)(κ+ loglog `)) = O
(
(log2 `)(κ+ loglog `)

)
.

7 Variations and Extensions

The multiparty case. Though we have presented our protocols in the two-party
setting, the ideas are also applicable to the multiparty case, based e.g. on the
protocols of [CDN01]. Arithmetic operations on encrypted values are immediate,
hence we must only consider πBL, πtrunc, and the sublinear comparison π>?.

For the constant-rounds protocol we may use the arithmetic-based compar-
ison of [NO07] while πBL is essentially the bit-decomposition of [RT10]. Thus,
these immediately work in the multiparty setting. The πtrunc protocol in Fig-
ure 4 can be jointly played by the parties. Part A is played publicly and part
B is played using the protocols of [CDN01]. First each party Pi (1 ≤ i ≤ n)

supplies an encryption of a random value
[
r(i)
]

as well as
[
r
(i)
>

]
with plaintext⌊

r(i)/2k
⌋
. The parties then compute and decrypt [z]← [q̂] +

∑n
i=1

[
r(i)
]

and in

turn [q̂] ←
⌊
z/2k

⌋
−
∑n
i=1

[
r
(i)
>

]
. This is the right result plus an additive error

originating from a carry in the addition of r. Since r is a sum itself, the possible
error grows linearly in the number of parties. However, as in the main protocol
(Figure 1) this may be corrected using a number of secure comparisons.

With the additional requirement of two named and mutually incorruptible
parties, the sub-linear case follows analogously by the protocols of [Tof11]. Since
πBL is based on comparison and arithmetic, and πtrunc is the same as the
constant-rounds case, a sub-linear multiparty protocol is possible too.

Unconditionally secure integer division. Unconditionally secure variations of our
protocols are possible, based e.g. on Shamir’s secret sharing scheme and the
protocols of Ben-Or et al. [Sha79,BGW88]. The construction is straightforward
as all sub-protocols are applicable in this setting as well.

Improving the complexity of the sub-linear protocol. Using the other comparison
protocol given in [Tof11] we may obtain slightly better bounds on our division

protocol, namely O(log `) rounds and O
(

(log `)
√
`(κ+ log `)

)
communications.

References

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation
modulo a shared secret with application to the generation of shared safe-
prime products. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture
Notes in Computer Science, pages 417–432. Springer, 2002.

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in
a constant number of rounds of interaction. In Piotr Rudnicki, editor, Pro-
ceedings of the eighth annual ACM Symposium on Principles of distributed
computing, pages 201–209, New York, 1989. ACM Press.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas
Toft. Secure multiparty computation goes live. In Roger Dingledine and

Philippe Golle, editors, Financial Cryptography, volume 5628 of Lecture
Notes in Computer Science, pages 325–343. Springer, 2009.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
noncryptographic fault-tolerant distributed computations. In 20th Annual
ACM Symposium on Theory of Computing, pages 1–10. ACM Press, 1988.

[Bou00] F. Boudot. Efficient proofs that a committed number lies in an interval. In
Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume
1807, pages 431–444, 2000.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols. In 20th Annual ACM Symposium on Theory of Computing, pages
11–19. ACM Press, 1988.

[CD09] Octavian Catrina and Claudiu Dragulin. Multiparty computation of fixed-
point multiplication and reciprocal. Database and Expert Systems Applica-
tions, International Workshop on, 0:107–111, 2009.

[CDN01] R. Cramer, I. Damg̊ard, and J. Nielsen. Multiparty computation from
threshold homomorphic encryption. In Birgit Pfitzmann, editor, Advances
in Cryptology – EUROCRYPT 2001, volume 2045, pages 280–300, 2001.

[CK08] Octavian Catrina and Florian Kerschbaum. Fostering the uptake of secure
multiparty computation in e-commerce. In ARES, pages 693–700. IEEE
Computer Society, 2008.

[DFK+06] Ivan Damgaard, Matthias Fitzi, Eike Kiltz, Jesper Nielsen, and Tomas Toft.
Unconditionally secure constant-rounds multi-party computation for equal-
ity, comparison, bits and exponentiation. In Shai Halevi and Tal Rabin,
editors, Theory of Cryptography, volume 3876 of Lecture Notes in Computer
Science, pages 285–304. Springer Berlin / Heidelberg, 2006.

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In Kwangjo Kim,
editor, Public Key Cryptography, volume 1992 of Lecture Notes in Computer
Science, pages 119–136. Springer, 2001.

[FS86] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identi-
fication and signature problems. In A. Odlyzko, editor, Advances in Cryp-
tology - Crypto ’86, pages 186–194, Berlin, 1986. Springer-Verlag. Lecture
Notes in Computer Science Volume 263.

[FSW02] Pierre-Alain Fouque, Jacques Stern, and Jan-Geert Wackers. Cryptocom-
puting with rationals. In Matt Blaze, editor, Financial Cryptography, volume
2357 of Lecture Notes in Computer Science, pages 136–146. Springer, 2002.

[GMS10] Jorge Guajardo, Bart Mennink, and Berry Schoenmakers. Modulo reduction
for paillier encryptions and application to secure statistical analysis. In
Radu Sion, editor, Financial Cryptography, volume 6052 of Lecture Notes in
Computer Science, pages 375–382. Springer, 2010.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game.
In STOC ’87: Proceedings of the nineteenth annual ACM symposium on
Theory of computing, pages 218–229, New York, NY, USA, 1987. ACM.

[HAB02] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform
constant-depth threshold circuits for division and iterated multiplication.
Journal of Computer and System Sciences, 65(4):695 – 716, 2002.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and
Immo Wehrenberg. TASTY: tool for automating secure two-party compu-
tations. In CCS ’10: Proceedings of the 17th ACM conference on Computer
and communications security, pages 451–462, New York, NY, USA, 2010.
ACM.

[JF05] T. Jakobsen and S. From. Secure multi-party computation on integers.
Master’s thesis, Aarhus University, 2005. Available at http://users-cs.

au.dk/tpj/uni/thesis/.
[JW05] Geetha Jagannathan and Rebecca N. Wright. Privacy-preserving distributed

k-means clustering over arbitrarily partitioned data. In Robert Grossman,
Roberto J. Bayardo, and Kristin P. Bennett, editors, KDD, pages 593–599.
ACM, 2005.

[KLM05] Eike Kiltz, Gregor Leander, and John Malone-Lee. Secure computation of
the mean and related statistics. In Joe Kilian, editor, TCC, volume 3378 of
Lecture Notes in Computer Science, pages 283–302. Springer, 2005.

[Lip03] H. Lipmaa. On diophantine complexity and statistical zero-knowledge
arguments. In Chi-Sung Laih, editor, Advances in Cryptology – ASI-
ACRYPT 2003, volume 2894, pages 398–415, 2003.

[NO07] T. Nishide and K. Ohta. Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol. In Tatsuaki Okamoto and
Xiaoyun Wang, editors, PKC 2007: 10th International Workshop on Theory
and Practice in Public Key Cryptography, volume 4450 of Lecture Notes in
Computer Science, pages 343–360, 2007.

[NT07] Kurt Nielsen and Tomas Toft. Secure relative performance scheme. In Xi-
aotie Deng and Fan Chung Graham, editors, WINE, volume 4858 of Lecture
Notes in Computer Science, pages 396–403. Springer, 2007.

[NX10] C. Ning and Q. Xu. Multiparty computation for modulo reduction with-
out bit-decomposition and a generalization to bit-decomposition. In ASI-
ACRYPT 2010, pages 483–500, 2010.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Jacques Stern, editor, Advances in Cryptology – EURO-
CRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 223–
238, 1999.

[RT10] Tord Reistad and Tomas Toft. Linear, constant-rounds bit-decomposition.
In Donghoon Lee and Seokhie Hong, editors, Information, Security and
Cryptology - ICISC 2009, volume 5984 of Lecture Notes in Computer Sci-
ence, pages 245–257. Springer Berlin / Heidelberg, 2010.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[Tof09] Tomas Toft. Constant-rounds, almost-linear bit-decomposition of secret
shared values. In Marc Fischlin, editor, Topics in Cryptology - CT-RSA
2009, volume 5473 of Lecture Notes in Computer Science, pages 357–371.
Springer Berlin / Heidelberg, 2009.

[Tof11] T. Toft. Sub-linear, secure comparison with two non-colluding parties. In
Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, edi-
tors, Public Key Cryptography, volume 6571 of Lecture Notes in Computer
Science, pages 174–191. Springer, 2011.

[Veu10] Thijs Veugen. Encrypted integer division. In IEEE Workshop on Informa-
tion Forensics and Security (WIFS’10), Seattle, 2010. IEEE, IEEE.

[Yao86] A. Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, pages 162–167.
IEEE Computer Society Press, 1986.

A Computing the Bit-length without Bit-decomposition

In this section we present an alternative way of computing an encryption of
the exact bit-length of [d], which is denoted as [`d] in the text. We name this
alternative protocol Bit-Length(); that is to say, we have

[`d]← Bit-Length([d])

The protocol performs this in a constant number of rounds using a linear
number of secure multiplications. We stress that most of the variables men-
tioned in this section are encrypted or bit-wise encrypted, denoted [·]B , but for
simplicity we often do not refer to this explicitly.

Initially, we generate a random, `-bit, bitwise encrypted value, [r]B . This can
be done by having each party supply ` random bits and computing the XOR:
b0⊕b1 = b0 +b1−2b0b1. This will be used as a random mask for [d]; to mask the

final carry each party supplies an additional κ-bit, random value,
[
r
(i)
>

]
which is

multiplied by 2` and added to the masked value.5

We then decrypt

[e]← [d] + [r] +

n∑
i=1

(
[r

(i)
>] · 2`

)
and reduce e modulo 2` to get ē = (e mod 2`). Since both d and r are at most
`-bit long, then it is easy to see that the integer sum of d and r (denoted as
ẽ = d+ r) has two possible values: ē and ē+ 2`; by comparing [r]B and ē (which
is public), we can decide which case it is and then select the correct (bitwise
encrypted) value for the integer sum ẽ = d + r. Note that the bit-length of ẽ
may reach `+ 1.

The addition process (over the integers) ẽ = d+ r can be seen in Figure 7.
For this addition process, we will use ci to denote the carry-bit generated in

bit-position i, i.e. ci = 1 means the (i+ 1)’th bit-position will get a “1” from the
i’th bit-position. After computing [ẽ]B , we perform [e′]B ← [ẽ]B ⊕ [r]B and set
[E]B ← πcpre-∨([e′]B).

Then, obviously, E must be of form

E = 000 · · · 000111 · · · 111

We use cur (which is a shorthand for “current”) to denote the index of the
left-most “1” in E. Obviously, we can get the encryption of cur easily from [E]B
(by adding up the bits of [E]B). Additionally, we use aim to denote the index
of the left-most “1” in d. Obviously, aim is essentially the desired index, as
`d = aim+ 1. Moreover, we have cur ≥ aim.

5 In this section, as in the text, we assume that d is of bounded bit-length `. In fact, for
d of unbounded size (or we can say “when d can be any value in ZM”), the discussions
in this section can still hold; all that we need are some minor modifications.

0 0 0 0 0 0 0 0 1 ? ··········· ?

0 ? ? 0 1 1 1 1 ? ? ··········· ?

aimcur 0

+

? ? ? 1 0 0 0 0 ? ? ··········· ?

[] :Br

[] :d

[] :Be

Fig. 7. The Addition Process

Below we define some necessary notations.

– Denote by ai ↔ j for i > j the sub-string of bit-vector a from i to j, i.e.

ai ↔ j = (ai, ai−1, ..., aj+1, aj) .

– For any bitwise encrypted variable [x]B , we defined an operation “shift”.
Specifically, when we say “right-shift [x]B 1 bit”, we mean “moving every bit
of [x]B to the right by 1 bit-position; dropping the right-most bit; setting the
left-most bit to be 0”. Although all the bits of x are encrypted, this “shift”

operation can be carried out. We use [
1−→
x]B to denote the obtained value by

“right-shifting [x]B 1 bit”. Other “shift” operations can be denoted similarly;

for example, we can use [
3−→
x]B and [

1←−
x]B to denote the obtained values by

“right-shifting [x]B 3 bits” and “left-shifting [x]B 1 bit”, respectively.

The following computation then determines `d (= aim+ 1).

I. First decide whether cur = aim, i.e. determine [cur
?
= aim]. This is done

based on the following observation:

– If cur = aim, then ccur−1 = caim−1 = 0. This follows from the fact that
cur = aim implies caim = 0, and then by the fact that daim = 1, we can
see raim = caim−1 = 0.

– Otherwise (i.e. cur > aim), we have ccur−1 = 1. In this case, caim = 1,
and therefore all the bits in rcur−1 ↔ aim+1 are “1”.

That is to say, “cur = aim”⇔ “ccur−1 = 0”. Hence, we need only compute
[ccur−1], which can be done by comparing the bit-decomposed rcur−1 ↔ 0 and

ẽcur−1 ↔ 0. Note the important fact that both rcur−1 ↔ 0 and ẽcur−1 ↔ 0

(padded with “0”s on the left such that they are ` bits long) can be obtained
easily using a componentwise logical AND (multiplication) with the vector
[E]B .

After determining [cur
?
= aim], we can compute `d in both the two cases

(cur = aim and cur > aim) and then select the correct one (using [cur
?
= aim]).

II. Below we will discuss the two cases in detail.
(a) cur = aim

In this case, we have caim = 0.
This case is very simple. We need only to sum up all the bits of [E]B to
get `d.

(b) cur > aim
In this case, we have caim = 1.
This case is somewhat involved. We need to compute the gap between
cur and aim (i.e. the number of the bits between bit-positions cur and
aim). We proceed as follows

i. First we denote by t an (` + 1)-bit long, bit-decomposed integer
satisfying “ti = 1” ⇔ “ri = 1 and ẽi = 0” for i ∈ 0, 1, · · · , l. This
can be obatined by setting ti = ri − ri · ẽi. It is easy to see that all
the bits in tcur−1 ↔ aim+1 are “1” and that the bits of t` ↔ cur are
“0”.

ii. For this integer t, we set all the bits in t` ↔ cur to “1” by adding the

all-1 vector and entrywise subtracting [

1−→
E]B . The resulting vector

will be denoted t′.
iii. We compute T = Prefix-∧ (t′) (using a protocol analogous to πcpre-∨,

[DFK+06]). We have the following two facts:
A. All the bits in T` ↔ aim+1 are “1”.

This is obvious because all the bits in t′` ↔ aim+1 are “1”.
B. All the bits in Taim−1 ↔ 0 are “0”.

This can be proven based on two cases:
– If t′aim = 0, then this is obvious.
– If t′aim = 1, then taim = 1 and this means raim = 1 and
ẽaim = 0. Recall that daim = 1, so we can see that caim−1 = 0.
Then we can say that “raim−1 = 1” and “ẽaim−1 = 0” can
not hold at the same time (because if this happens, we have
caim−1 = 1). So, we have t′aim−1 = 0 and the claim is proved.

iv. Then we need to decide the value of the bit Taim. We use a com-
parison to do this. We denote the index of the left-most “0” of [T]B
(or we can say “the first ‘0’ of [T]B”) as fir0. Then obviously, fir0
can be aim (when Taim = 0) or aim− 1 (when Taim = 1). It is easy
to see that, no matter what fir0 is, rfir0 ↔ 0 and ẽfir0 ↔ 0 can be
obtained with the help of [T]B . Below we discuss what will happen
when Taim is 0 or 1.
– When Taim = 0

In this case, we have fir0 = aim. Recall that we are discussing

the case where cur > aim which means caim = 1. From caim = 1,
we can get

ẽfir0 ↔ 0 = ẽaim ↔ 0 < raim ↔ 0 = rfir0 ↔ 0.

– When Taim = 1
In this case, fir0 = aim−1. Obviously, Taim = 1 means t′aim = 1
(because T = Prefix-And(t′)). Recall that

t′aim = 1⇒ raim = 1 ∧ ẽaim = 0⇒ caim−1 = 0.

So we can see that

ẽfir0 ↔ 0 = ẽaim−1 ↔ 0 ≥ raim−1 ↔ 0 = rfir0 ↔ 0.

Concluding the above two cases, we can say

“Taim = 0”⇔ “ẽfir0 ↔ 0 < rfir0 ↔ 0”

i.e. we have Taim = 1 − (ẽfir0 ↔ 0

?
<rfir0 ↔ 0). That is to say, to

compute [Taim] we need only to determine vectors, ẽfir0 ↔ 0 and
rfir0 ↔ 0, (using a logical AND with [T]B) and compare these.

v. Finally, we have

[`d] = (`+ 1)−
(∑

[T]B − [Taim]
)

in which (` + 1) is the total length of d and
∑

[T]B represents the
encryption of the sum of all the bits of T .

Below are some further discussions.

1. In the above discussion, we introduce a protocol for computing [`d] given
encryption [d]; we believe it a basic protocol and it will be useful for con-
structing complex protocols. However, in the text of this paper, we do not
need [`d] but only need [2`d] (See the πcBL protocol in Section 5.1). If we first
get [`d] and then compute [2`d] by using a private exponentiation protocol,
then it will be much too complex. To solve this problem, we can first get the
(bitwise-encrypted) prefix-or of d (denoted as [D]B hereafter) and then we
have [2`d] = [D]B + 1. For getting [D]B , we can modify the length protocol
as follows:
(a) In the case where cur = aim, obviously, we have [D]B = [E]B .

(b) In the case where cur > aim, after getting [T]B , we left shift it 1 bit to

get [

1←−
T]B , then we perform the following selection to get [D̄]B :

[D̄]B ←− [Taim] ? [

1←−
T]B : [T]B

Then, by using the all-1 vector to entrywise subtracting [D̄]B , we can get
[D]B .

Then, similar to the original length protocol, after getting both of the two
possible values of [D]B in the two case (cur = aim and cur > aim), we can

select the correct value for [D]B using [cur
?
= aim].

2. A surprising point is that, even in the case where cur = aim, by performing
the steps designed for the cur > aim case (i.e. all the steps in Part IIb, we can
also get the correct result! That is to say, Part I and IIa are both unnecessary
at all. Similar conclusion can also be arrived at when we are computing [D]B
in Part 1; that is to say, Part 1a is also unnecessary. We can simply ignore
whether cur > aim holds and perform the computations designed for the case
where it holds, and this will give us the correct result (both the length of d,
`d, and the prefix-or of d, [D]B). However, despite this, we still separate the
two cases in the protocol for readability and clarity.

3. All the discussions in this section can be carried over to the linear secret
sharing setting in which all the operations take place over a prime field, e.g.
Zp. All we need are some minor modifications and, in this setting, we can get
a constant-rounds, linear Bit-Length protocol with perfect security.

