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Abstract. Hardware devices can be protected against side-channel at-
tacks by introducing one randommask per sensitive variable. The compu-
tation throughout is unaltered if the shares (masked variable and mask)
are processed concomitantly, in two distinct registers. Nonetheless, this
setup can be attacked by a zero-offset second-order CPA attack. The
countermeasure can be improved by manipulating the mask through a
bijection F , aimed at reducing the dependency between the shares. Thus
dth-order zero-offset attacks, that consist in applying CPA on the dth
power of the centered side-channel traces, can be thwarted for d ≥ 2 at
no extra cost. We denote by n the size in bits of the shares and call F
the transformation function, that is a bijection of Fn

2 . In this paper, we
explore the functions F that thwart zero-offset HO-CPA of maximal or-
der d. We mathematically demonstrate that optimal choices for F relate
to optimal binary codes (in the sense of communication theory). First,
we exhibit optimal linear F functions. Second, we note that for values
of n for which non-linear codes exist with better parameters than linear
ones. These results are exemplified in the case n = 8, the optimal F
can be identified: it is derived from the optimal rate 1/2 binary code of
size 2n, namely the Nordstrom-Robinson (16, 256, 6) code. This example
provides explicitly with the optimal protection that limits to one mask of
byte-oriented algorithms such as AES or AES-based SHA-3 candidates.
It protects against all zero-offset HO-CPA attacks of order d ≤ 5. Even-
tually, the countermeasure is shown to be resilient to imperfect leakage
models.
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1 Introduction

Hardware implementations of block-oriented cryptographic functions are vulner-
able to side-channel attacks. Yet their lack of algebraic structure makes them
hard to protect efficiently. Boolean masking is one answer to secure them, be-
cause it can be adapted to any function implemented. Early masking schemes
involved only one mask per data to protect [26]. Nonetheless, straightforward
implementations of this “first-order” countermeasure (CM) happened to be vul-
nerable to zero-offset “second-order” attacks [29,17]. We call a “first-order” CM
an implementation where one single mask protects the sensitive data. Zero-offset
attacks use one sample of side-channel trace, and are thus monovariate. They ap-
ply when the masked variable and the mask are consumed simultaneously by the
implementation, which is commonplace in hardware. Indeed, this architectural
strategy allows to keep the throughput unchanged. Zero-offset second-order at-
tacks consider not the plain observations themselves, but their variance instead.
The variance of the leakage function, that involves its squaring (second-order mo-
ment), does depend strongly on the sensitive data, which allows for an attack.
Consequently, a branch of the research on masking CMs has evolved towards
masking schemes with multiple masks. Besides, another improvement direction
consists in the adaptation of the first-order CMs to resist attacks that use high-
order moments of one single side-channel observation (commonly referred to as
zero-offset HO-CPA, of order d > 1). Such result can be obtained by trans-
forming the mask before it is latched in register [7]. Concretely, a bijection F is
applied to the mask, in a view to reduce its dependency with the masked data.
The goal of this article is to find bijections F that protect against zero-offset
attacks of order d as high as possible.

The rest of the paper is structured as follows. In Sec. 2, the first-order mask-
ing scheme that involves the bijection F is described, and its leakage is explained
under the Hamming distance model. In Sec. 3, the best zero-offset HO-CPA is
derived for all orders d; also, a necessary and sufficient condition on F for the
CM to resist all zero-offset HO-CPA of orders 1, 2, · · · , d is formulated. Based
on this formal statement of the problem, optimal solutions for F are researched
and given in Sec. 4. The characterization of some optimal bijections F is con-
ducted in Sec. 5, where both a security analysis against zero-offset HO-CPA
and a leakage analysis with an information theoretic metric are conducted. This
analysis is carried out both with a perfect and an imperfect leakage model. The
conclusions are in Sec. 6. To ease the reading of the article, some long proofs,
secondary results (such as the leakage statistical moments) and some simulation
graphs (such as the information leakage in the imperfect model) have been put
in appendix. The article is self-contained without those appendices; however,
they bring interesting insights to support the article’s body.

2 Studied Implementation and its Leakage

The sensitive variable is noted x and the mask m. The two shares manipulated
in a Boolean first-order CM are (x ⊕ m,m). In the CM we study, a bijection
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F is applied on the mask share. Thus, the shares are now (x ⊕m,F (m)). The
schematic of this scheme is illustrated in Fig. 1. The variables x and x′ are the
two consecutive values of the sensitive variable. Similarly, m and m′ are the two
consecutive values of the mask. This figure highlights two registers, able to hold
each one n-bit word. The left register hosts the masked data, x⊕m, whereas the
register on the right holds F (m), the mask m passed through the bijection F .
In this article, we are concerned with the leakage from those two registers only.
Indeed, they are undoubtedly the resource that leaks the most. Also, the rest
of the logic can be advantageously hidden in tables, thereby limiting their side-
channel leakage [22]. It is referred to as “tabulated round logic” in Fig. 1. This
figure provides with an abstract description of the round, since it usually splits
nicely into independent datapaths of smaller bitwidth. Typically, an AES can be
pipelined to manipulate only bytes. However, in practice, article [16] (resp. [20])
shows how to handle AES substitution box with 4 bit (resp. 2 bit) non-linear
data transformations.

n bits n bits

x⊕m F (m)
a b

Tabulated round logic
a′ b′

F (m′)x
′ ⊕m

′

Memory

simultaneous
leakage

Fig. 1. Setup of the first-order masking countermeasure with bijection F .

The computation of the bijection F shall not leak. Actually, F can be merged
into memories, hence being totally dissolved. Therefore, the two shares (x ⊕
m,F (m)) remain manipulated concomitantly only once, namely at the clock
rising edge. For the sake of illustration, we provide with a typical functionality
of this combinational logic hidden in memory. If we denote by C the round
function and by R the mask refresh function, then the table implements:

– a′ = C(a⊕ F−1(b))⊕R(F−1(b)) and

– b′ = F (R(F−1(b))).

The detail of the tabulated round logic is represented in Fig. 2.

In the context of a side-channel attack against a block cipher, either the
first round or the last round is targeted. Thus either the input x (plaintext) or
the output x′ (ciphertext) is known by the attacker. We make the assumption
that the device leaks in the Hamming distance model. This model is realistic
and customarily assumed in the literature related to side-channel analysis [2,25].
Therefore, the sensitive variable to protect is x⊕x′, noted z. The leakage of the
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n bits

x⊕m F (m)
a b

n bits

C R

F

a′ b′

F (m′)x
′ ⊕m

′

Memory

simultaneous
leakage

F
−1

Fig. 2. Detail of the function implemented in the tabulated round logic shown in Fig. 1.

studied hardware (Fig. 1) is thus:

HD(x⊕m,x′ ⊕m′) + HD(F (m), F (m′))

= HW(z ⊕m⊕m′) + HW(F (m)⊕ F (m′)) . (1)

In this equation, the Hamming distance operator HD and the Hamming weight
operator HW are defined as HD(a, b) = HW(a⊕b)

.
=
∑n

i=1(a⊕b)i. F is a constant
bijection that will contribute to increase the security of the CM. In addition, F
is a public information, that we assume known by an attacker.

3 Optimal Function in Zero-Offset dth-Order CPA

3.1 Optimal Function fopt Definition

Prouff et al. have shown in [19] that an attacker can optimize a CPA [2] against
a device leaking L by computing the correlation between the random variables
L and fopt(Z), where Z is the sensitive variable. The function fopt( · ) is called
the “optimal function”, and is defined as fopt(z) = E[L− E[L] | Z = z]. In this
definition, the capital letters denote random variables, and E is the expectation
operator. If z 7→ fopt(z) is constant (i.e. fopt(Z) is deterministic), then [19]
shows that the correlation coefficient of the attack is null, which means that the
attack fails.

This result can be applied on the studied leakage function of Eqn. (1), without
F (i.e. with F equal to the identity function Id). The leakage function therefore
simplifies in HW(Z ⊕M ′′) + HW(M ′′), where M ′′ .

= M ⊕M ′ is a uniformly
distributed random variable in Fn

2 .
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– In a zero-offset first-order attack, the attacker uses fopt(Z) = E[HW(Z ⊕
M ′′) + HW(M ′′)− n | Z] = 0, which is deterministic,

– whereas in a zero-offset second-order attack, the attacker uses fopt(Z) =

E[(HW(Z ⊕M ′′) + HW(M ′′)− n)
2
| Z] = n−HW(Z), which depends on Z.

This result is easily obtained by developing the square. The only non-trivial
term in this computation is E[HW(z ⊕M ′′)×HW(M ′′)], which is proved to

be equal to n2+n
4 − 1

2HW(z) in [19, Eqn. (19)].

In summary, without F , a first-order attack is thwarted, but a second-order
zero-offset attack will succeed. In the sequel, when mentioning HO-CPA attacks,
we implicitly mean “zero-offset HO-CPA”, i.e. a mono-variate attack that uses
a high-order moment of the traces instead of the raw traces. Nonetheless, as
explained in [29], this second-order attack requires more traces than a first-order
attack on an unprotected version that do not use any mask. Indeed, the noise is
squared and thus its effect is exacerbated. More generally, the higher the order d
of a HO-CPA attack, the greater the impact of the noise. Thus, attacks are still
possible for small d, but get more and more difficult when d increases. Therefore,
our objective is to improve the masking CM so that the zero-offset HO-CPA
fails for orders J1, dK, with d being as high as possible. This translates in terms

of fopt(Z) by having E[(HW(Z ⊕M ⊕M ′) + HW(F (M)⊕ F (M ′))− n)
d
| Z]

deterministic (i.e. independent of random variable Z) for the highest possible
values of the integer d. Thus, when developing the sum raised at the power d,
we are led to study terms of this form:

Term[p, q](fopt)(z)
.
= E[HWp[z ⊕M ⊕M ′]× HW

q[F (M)⊕ F (M ′)]

= E[HWp[z ⊕M ′′]× HW
q[F (M)⊕ F (M ⊕M ′′)] , (2)

where p and q are two positive integers. If either p or q is null, then trivially,
Term[p, q](fopt) is constant. We are thus interested more specifically in p and
q values that are strictly positive. We note that in order to resist d-th order
zero-offset HO-CPA, Term[p, q](fopt)(z) must not depend on z for all p and q
that satisfy p+ q ≤ d.

3.2 Condition on F for the Resistance Against 2nd-Order CPA

To resist zero-offset second-order CPA, the term in Eqn. (2) must be constant
for p + q ≤ 2. As just mentioned, the cases (p, q) = (2, 0) and (0, 2) are trivial.
This subsection thus focuses on the case where p = q = 1.

The term F (m)⊕F (m⊕m′′) is also known as the value at m of the derivative
of F in the directionm′′, and notedDm′′F (m). This notion is for instance defined
in the Definition 8.2 in §8.2.2 of [5]. It can be observed that Eqn. (2) also writes as
a convolution product: Term[p, q](fopt)(z) = 1

2n

(
HW ⊗ E[HW(D(·)F (M))]

)
(z).

An appealing property of the Walsh-Hadamard transform is that it turns a
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convolution into a product. So, we have:

fopt(z) = cst ⇐⇒ f̂opt(a) ∝ δ(a)
// where ∝ means “is proportional to”
// and δ( · ) is the Kronecker symbol.

⇐⇒ ĤW(a)× ̂E[HW ◦D(·)F (M)](a) =
(
n× 2n−1

)2
× δ(a)

⇐⇒ ∀a 6= 0, ĤW(a) = 0 or ̂E[HW ◦D(·)F (M)](a) = 0 . (3)

To prove the second line, we note that on the one hand: ĤW(0) =
∑

z HW(z)·
(−1)0·z = n

2 2
n and on the other hand:

̂E[HW ◦D(·)F (M)](0)

=
∑

z E[HW(DzF (M))(−1)0·z]

= E[
∑

z HW(F (M)⊕ F (M ⊕ z))]

= E[
∑

z′ HW(z′)] // Because ∀m, z 7→ F (m)⊕ F (m⊕ z) is bijective

= E[n2 2
n] = n

2 2
n .

Now, if we denote by ei the lines of the identity matrix In of size n× n,

ĤW(a) =
∑

z

1

2

n∑

i=1

(1− (−1)zi) (−1)a·z

= n · 2n−1δ(a)− 1
2

∑
z

∑n
i=1(−1)

(a⊕ei)·z

=





n · 2n−1 if a = 0,
−2n−1 if ∃i ∈ J1, nK, such that a = ei,
0 otherwise.

(4)

Thus, the problem comes down to finding a function F such that:
̂E[HW ◦D(·)F (M)](a) = 0 for all a = ei. This condition rewrites:

∀a = ei,
∑

z,m

HW(F (m)⊕ F (m⊕ z))(−1)a·z = 0 . (5)

Let a 6= 0. Then:

∑
z,m HW(F (m)⊕ F (m⊕ z))(−1)a·z

=
∑

z,m
1
2

∑n
i=1

(
1− (−1)Fi(m)⊕Fi(m⊕z)

)
(−1)a·z

=
�
�
�

�
��X

X
X

X
XX

n22n−1δ(a)− 1
2

∑n
i=1

∑
z,m(−1)Fi(m)⊕Fi(m⊕z)⊕a·z

= − 1
2

∑n
i=1

∑
m(−1)Fi(m)

∑
z(−1)

a·z⊕Fi(m⊕z)

= − 1
2

∑n
i=1

∑
m(−1)Fi(m)

∑
z(−1)

a·(z⊕m)⊕Fi(z) // z ← z ⊕m

= − 1
2

∑n
i=1

∑
m(−1)a·m⊕Fi(m)

∑
z(−1)

a·z⊕Fi(z)

= − 1
2

∑n
i=1

(∑
m(−1)a·m⊕Fi(m)

)2

= − 1
2

∑n
i=1

(
(̂−1)Fi(a)

)2
.
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Thus, this quantity is null if and only if ∀i ∈ J1, nK, (̂−1)Fi(a) = 0. Thus, if we
generalize the Walsh-Hadamard transform on vectorial Boolean functions (by
applying the transformation component-wise), and use the notation fχ for the
sign function of f (also component-wise), then Eqn. (5) is equivalent to: ∀a =

ei, F̂χ(a) = 0. Now, as F is balanced (since bijective), this equality also holds for
a = 0. This means that every coordinate of F is 1-resilient. Constructions exist,
as explained in [4, Sec. 8.7].

In the next subsection, we use P -resilient functions F : by definition, they are
functions that are balanced when up to P input bits are fixed.

3.3 Condition on F for the Resistance Against dth-Order CPA

A generalization of the previous result for arbitrary p, q ∈ N∗ .
= N\{0} is pre-

sented in this section. We have the following theorem, whose proof is given in
Appendix A.

Theorem 1. Let P and Q be two positive integers, and F a bijection of Fn
2 .

Eqn. (2) is constant for all p ∈ J0, P K and q ∈ J0, QK if and only if:

∀a, b ∈ Fn
2 , 0 < HW(a) ≤ P, 0 ≤ HW(b) ≤ Q, ̂(b · F )χ(a) = 0 . (6)

An (n,m)-function is defined as a vectorial Boolean function from Fn
2 to Fm

2 .

Proposition 1. The condition expressed in Eqn. (6) of theorem 1 can be re-
formulated as follows. Every restriction of the bijective (n, n)-function F to Q
components is an (n,Q)-function that is P -resilient.

4 Existence of Bijections Meeting Eqn. (6)

In this section, we find bijections that meet Eqn. (6).
The condition expressed in Eqn. (6) for theorem 1 rewrites: ∀b ∈ Fn

2
∗ .
=

Fn
2\{0} and ∀a ∈ Fn

2 , if HW(a) ≤ d− HW(b) then ̂(b · F )χ(a) = 0.

4.1 Optimal Linear Bijections

F can be chosen linear. All linear (n, n)-functions write F (x) = (x·v1, · · · , x·vn),
where vi are elements of Fn

2 . F is bijective if and only if (v1, · · · , vn) is a basis
of Fn

2 . We have:

̂(b · F )χ(a) = 0 ⇐⇒
∑

x(−1)
b·F (x)⊕x·a = 0

⇐⇒
∑

x(−1)
⊕n

i=1bi(x·vi)⊕x·a = 0

⇐⇒
∑

x(−1)
x·⊕n

i=1(bivi)⊕x·a = 0

⇐⇒
⊕n

i=1 bivi 6= a .
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As this is true for all a such that HW(a) ≤ d − HW(b), we have the necessary
and sufficient condition:

∀b 6= 0, HW(
⊕n

i=1 bivi) > d− HW(b) . (7)

We notice that the set of ordered pairs {(b,
⊕n

i=1 bivi) , b ∈ Fn
2} forms a

vector subspace of F2n
2 . Therefore, it defines a [2n, n, δ] binary linear code, where

δ is its minimum distance. Because of Eqn. (7), the necessary and sufficient
condition becomes δ > d. Reciprocally, a [2n, n, δ] binary linear code (modulo a
permutation of its coordinates) can be spawned by a generator matrix (In G),
where G is an n × n matrix. This representation is the systematic form of the
code; such form is discussed on the n = 8 case-study in Appendix B.

Now, [2n, n, δ] binary linear codes have been well studied. They are also
referred to as 1/2-rate codes in the literature. Their greatest minimal distance
δmax(n) is known (refer for instance to [13]); corresponding codes are called
“optimal”. For some practical values of n, they are recalled in Tab. 1.

Table 1. Minimal distance of some binary optimal linear rate 1/2 codes.

Sboxes of algorithm DES n/a n/a n/a AES
2n 8 10 12 14 16

δmax(n) 4 4 4 4 5

Thus, the best achievable d using a linear bijection F is δmax(n) − 1. In
particular, this result proves that with linear F , it is possible to protect:

– DES against all zero-offset HO-CPA of order d ≤ 3, and
– AES against all zero-offset HO-CPA of order d ≤ 4.

4.2 Optimal Non-Linear Bijections

Under some circumstances, a non-linear bijection F allows to reach better per-
formances. The condition on F given by (Eqn. (6)) is satisfied for every P and
every Q such that P + Q = d if and only if the Boolean function equal to the
indicator of the graph {(x, F (x);x ∈ Fn

2} of F is d-th order correlation immune
(see definition in [3]). Given any (n, n)-function F , let C = {(x, F (x)), x ∈ Fn

2}.
The weight enumerator WC(X,Y ) and distance enumerator DC(X,Y ) of this
code are:

– WC(X,Y ) =
∑

x∈F
n
2
X2n−HW(x,F (x))Y HW(x,F (x)) and

– DC(X,Y ) = 1
|C|

∑
x,y∈F

n
2
X2n−HW(x⊕y,F (x)⊕F (y))Y HW(x⊕y,F (x)⊕F (y)).

We haveWC(X+Y,X−Y ) =
∑

a,b∈F
n
2

(∑
x∈F

n
2
(−1)b·F (x)+a·x

)
X2n−HW(a,b)Y HW(a,b)

andDC(X+Y,X−Y ) = 1
|C|

∑
a,b∈F

n
2

(∑
x∈F

n
2
(−1)b·F (x)⊕a·x

)2
X2n−HW(a,b)Y HW(a,b).
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Hence d + 1 is exactly the minimum value of the nonzero exponents of Y with
nonzero coefficients in DC(X + Y,X − Y ), called the dual distance of C in the
sense of Delsarte [8,14].

There is no non-linear code for n = 4 that has a better dual distance than
linear codes of the same length and size, but there are some for n = 8. A non-
linear optimal code for n = 8 is the Nordstrom-Robinson (16, 256, 6) code (see
more in [6]). With these parameters, this code coincides with Preparata and
Kerdock codes [23] and has same minimum distance and dual distance. Some
codewords, as obtained from Golay code in standard form [11], are listed in
Tab. 2.

Table 2. Some codewords of the Nordstrom-Robinson (16, 256, 6) code.

Bit index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Codeword x = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Codeword x = 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
Codeword x = 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Codeword x = 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Codeword x = 4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
Codeword x = 5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
Codeword x = 6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Codeword x = 7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Codeword x = 8 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
Codeword x = 254 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1
Codeword x = 255 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 1

It happens that the code cannot be trivially split into two halves that each
fill exactly Fn

2 . Indeed, if the codewords are partitioned with bits J15, 8K on the
one hand, and bits J7, 0K on the other,

– then 11111111 is present (at least) twice in the first half (from the high byte
of codewords x = 3 and x = 7),

– and 00000000 is present (at least) twice in the second half (from the low byte
of codewords x = 0 and x = 7).

We tested all the
(
16
8

)
partitionings. For 2760 of them, the code can be cut in

two bijections Fhigh and Flow of F8
2. This means that if we note x ∈ F8

2 the
codewords index in Tab. 2, the Nordstrom-Robinson (16, 256, 6) code writes as
Fhigh(x) ||Flow(x). The codewords can be reordered according to the first column,
so that the code rewrites x ||Flow(F

−1
high(x)) [6]. So the bijection F can be chosen

equal to F = Flow◦F
−1
high. For example, when Fhigh consists in bits J15, 9K∪{7} of

the code (and Flow in bits {8} ∪ J6, 0K), F takes the values tabulated as follows:
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{F (x), x ∈ F8
2} =

{ 0x00, 0xb3, 0xe5, 0x6a, 0x2f, 0xc6, 0x5c, 0x89,
0x79, 0xac, 0x36, 0xdf, 0x9a, 0x15, 0x43, 0xf0,
0xcb, 0x1e, 0xb8, 0x51, 0x72, 0xfd, 0x97, 0x24,
0xd4, 0x67, 0x0d, 0x82, 0xa1, 0x48, 0xee, 0x3b,
0x9d, 0x74, 0xd2, 0x07, 0xe8, 0x5b, 0x31, 0xbe,
0x4e, 0xc1, 0xab, 0x18, 0xf7, 0x22, 0x84, 0x6d,
0xa6, 0x29, 0x7f, 0xcc, 0x45, 0x90, 0x0a, 0xe3,
0x13, 0xfa, 0x60, 0xb5, 0x3c, 0x8f, 0xd9, 0x56,
0x57, 0xd8, 0x8e, 0x3d, 0xb4, 0x61, 0xfb, 0x12,
0xe2, 0x0b, 0x91, 0x44, 0xcd, 0x7e, 0x28, 0xa7,
0x6c, 0x85, 0x23, 0xf6, 0x19, 0xaa, 0xc0, 0x4f,
0xbf, 0x30, 0x5a, 0xe9, 0x06, 0xd3, 0x75, 0x9c,
0x3a, 0xef, 0x49, 0xa0, 0x83, 0x0c, 0x66, 0xd5,
0x25, 0x96, 0xfc, 0x73, 0x50, 0xb9, 0x1f, 0xca,
0xf1, 0x42, 0x14, 0x9b, 0xde, 0x37, 0xad, 0x78,
0x88, 0x5d, 0xc7, 0x2e, 0x6b, 0xe4, 0xb2, 0x01,
0xfe, 0x4d, 0x1b, 0x94, 0xd1, 0x38, 0xa2, 0x77,
0x87, 0x52, 0xc8, 0x21, 0x64, 0xeb, 0xbd, 0x0e,
0x35, 0xe0, 0x46, 0xaf, 0x8c, 0x03, 0x69, 0xda,
0x2a, 0x99, 0xf3, 0x7c, 0x5f, 0xb6, 0x10, 0xc5,
0x63, 0x8a, 0x2c, 0xf9, 0x16, 0xa5, 0xcf, 0x40,
0xb0, 0x3f, 0x55, 0xe6, 0x09, 0xdc, 0x7a, 0x93,
0x58, 0xd7, 0x81, 0x32, 0xbb, 0x6e, 0xf4, 0x1d,
0xed, 0x04, 0x9e, 0x4b, 0xc2, 0x71, 0x27, 0xa8,
0xa9, 0x26, 0x70, 0xc3, 0x4a, 0x9f, 0x05, 0xec,
0x1c, 0xf5, 0x6f, 0xba, 0x33, 0x80, 0xd6, 0x59,
0x92, 0x7b, 0xdd, 0x08, 0xe7, 0x54, 0x3e, 0xb1,
0x41, 0xce, 0xa4, 0x17, 0xf8, 0x2d, 0x8b, 0x62,
0xc4, 0x11, 0xb7, 0x5e, 0x7d, 0xf2, 0x98, 0x2b,
0xdb, 0x68, 0x02, 0x8d, 0xae, 0x47, 0xe1, 0x34,
0x0f, 0xbc, 0xea, 0x65, 0x20, 0xc9, 0x53, 0x86,
0x76, 0xa3, 0x39, 0xd0, 0x95, 0x1a, 0x4c, 0xff }.

Thus byte-oriented cryptographic implementations can be protected with this
code against all zero-offset HO-CPA of order d ≤ 5.

5 Security and Leakage Evaluations of the Optimal
Linear and Non-Linear Bijections

As argued in [24], the robustness evaluation of a CM encompasses two dimen-
sions: its resistance to specific attacks, and its amount of leakage irrespective
of any attack strategy. Indeed, a CM could resist some attacks, but still be
vulnerable to others. For instance, in our study, we have focused on zero-offset
HO-CPA, but we have disregarded other attacks, such as mutual information
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analysis (MIA [1]) or attacks based on generic side-channel distinguishers [28].
Therefore, in addition to a security evaluation conducted in Sec. 5.1, we will also
estimate the leakage of the CM in Sec. 5.2.

5.1 Verification of the Security for n = 8

In this section, we illustrate the efficiency of the identified bijection from an
zero-offset HO-CPA point of view. We focus more specifically on the n = 8 bit
case, because of its applicability to AES. We compute the values of fopt(z) for
the centered leakage raised at power 1 ≤ d ≤ 6 for four linear bijections (noted
F1, F2, F3 and F4) and the non-linear bijection given in Sec. 4.2 (noted F5).
The linear functions are defined from their matrix:

– G1 is the identity I8, i.e. the Boolean masking function without F ;

– G2 is a matrix that allows second-order resistance and is found without
method;

– G3 is the circulant matrix involved in the AES block cipher;

– G4 is non-systematic half of the [16, 8, 5] code matrix (see Appendix B).

The G2, G3 and G4 matrices are:

G2 =




0 0 0 0 0 1 1 1
0 0 0 1 1 0 1 1
1 0 1 0 0 0 1 1
0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1
1 0 1 0 1 1 0 0
0 1 0 1 0 1 1 0




, G3 =




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1




, G4 =




1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 1 0 1 0 1 1 1




.

It can be checked that they are invertible. Their inverses are:

G2−1 =




0 1 1 1 0 0 0 0
1 1 1 0 0 1 0 0
1 0 0 1 1 1 0 0
0 0 1 0 1 1 1 0
1 0 1 0 0 0 1 0
0 1 0 0 1 1 0 0
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1




, G3−1 =




0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0




, G4−1 =




1 1 1 0 1 0 1 1
1 0 0 1 1 1 1 0
0 1 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1




.

Table 4, in Appendix C, reports some values of the optimal functions. The
lines represented in gray are those for which the fopt(z) are the same for all the
values of the sensitive variable z ∈ Fn

2 . For the sake of clarity, we represent only
n + 1 values of z, i.e. one per value of HW(z). But we are aware that unlike
in the case where F = Id, the optimal functions are not invariant in the bits
reordering of x. If the line d is represented in gray, then a d-th order zero-offset
HO-CPA cannot succeed. The table shows that amongst the linear functions,
F4 : x 7→ G4×x is indeed the best, since it protects against zero-offset HO-CPA
of orders 1, 2, 3 and 4. It can also be seen that the non-linear function F5 further
protects against 5-th order zero-offset HO-CPA, as announced in Sec. 4.2.
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5.2 Verification of the Leakage of the Identified Bijections

As a complement to the security analysis carried out in Sec. 5.1, the leakage of
the CM using the bijections F1, F2, F3, F4 and F5 is computed. It consists in
the mutual information metric (MIM), defined as I[HW(Z⊕M ′′)+HW(F (M)⊕
F (M⊕M ′′))−n+N ;Z]. The random variable N is an additive noise, that follows
a normal law of variance σ2. The result of the MIM computation is shown in
Fig. 3.
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F=F4 (1 mask)
F=F5 (1 mask)

Fig. 3. Mutual information of the leakage with the sensitive variable Z for n = 8 bit.

It appears that the leakage agrees with the strength of the CM against HO-
CPA: the greater the order of resistance against HO-CPA, the smaller the mutual
information, at least for a reasonably large noise σ ≥ 1. This simulated charac-
terization validates (in the particular scheme of Fig. 2) the relevance of choosing
F based on a HO-CPA criterion.

Furthermore, Fig. 3 represents the leakage of a similar CM, where more
than two shares would be used. More precisely, the shares would be the triple
(x⊕m1 ⊕m2,m1,m2), where the masks mi are not transformed by bijections.
This CM is obviously more costly than our proposal of keeping one single mask,
but passed through F . We notice that all the proposed bijections (suboptimal
F2 and F3, optimal linear F4 and optimal non-linear F5) perform better, in
that they leak less irrespective of σ.
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5.3 Results in Imperfect Models

Masking schemes randomize more or less properly the leakage. In the straightfor-
ward example studied in this paper (Eqn. (1) with F = Id), when the sensitive
variable z has all its bits equal to ‘1’ (i.e. Z = 0xff), then the mask has no
effect whatsoever on the leakage. Indeed, this is due to a well-known property
of the Hamming weight function: ∀M ′′ ∈ Fn

2 ,HW(0xff ⊕M ′′) + HW(M ′′) =
HW(M ′′) + HW(M ′′) = n. To avoid this situation, the proposed CM based on
the bijection F consists in tuning the leakage, so that the masks indeed dis-
patch randomly the leakage for most (if not all [15]) values of the sensitive data.
The working factor of is improvement is the introduction of a specially crafted
Boolean function F aiming at weakening the link between the data to protect
and the leakage function.

This technique has been shown to be very effective in the previous sections.
Now, the analysis assumed a perfect leakage model. But the Hamming distance
leakage model is in practice an idealization of the reality. Indeed, the assumption
that all the bits leak identically, and without interfering, does not hold in real
hardware [27]. Also, it has been shown that with specific side-channel capturing
systems the attacker can distort the measurement. For instance, in [18], the
authors show that with a home-made magnetic coil probing the circuit at a
crucial location, the rising edges can be forced to dissipate 17% more than the
falling edges.

Therefore, we study how the CM is resilient to imperfections of the leakage
model. To do so, we define a general model that depends on random variables.
The variability is quantified in units of the side-channel dissipation of a bit-flip.
The model is affected by small imperfections (due to process variation, or small
cross-coupling) when the variability is about 10%. We also consider the 20%
case, that would reflect a distortion of the leakage due to measurements in weird
conditions. Eventually, the cases of a 50% and of a 100% deviation indicate that
the designer has few or no a priori knowledge about the device leakage’s model.

More precisely, the leakage model is written as a multivariate polynomial in
R[X1, · · · , Xn, X

′
1, · · · , X

′
n] of degree less or equal to τ ∈ J1, 2nK, where X =

(Xi∈J1,nK) and X ′ = (X ′
i∈J1,nK) are the initial and final values of the sensitive

variable. It takes the following form:

L
.
= P (X1, · · · , Xn, X

′
1, · · · , X

′
n) =

∑

(u,v)∈F
n
2×F

n
2 ,

HW(u)+HW(v)≤τ

A(u,v) ·

n∏

i=1

Xui

i X ′vi

i , (8)

where the A(u,v) are real coefficients. This leakage formulation is similar to that
of the high-order stochastic model [21]. For example, it is shown in [19, Eqn. (3)]
that P (X1, · · · , Xn, X

′
1, · · · , X

′
n) is equal to HW(X ⊕X ′) when the coefficients

A(u,v)
.
= aHD

(u,v) satisfy:

aHD

(u,v) =





+1 if HW(u) + HW(v) = 1 ,

−2 if HW(u) = 1 and v = u ,

0 otherwise .

(9)
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In the following experiments, we compute the mutual information between L
and Z = X ⊕X ′ when τ ≤ 2 and when the coefficients A(u,v) deviate randomly
from those of (9) or are completely random (i.e. deviate from a “Null” model).
More precisely, the coefficients A(u,v) are respectively drawn at random from one
of these laws:

AHD

(u,v) ∼ aHD

(u,v) + U(
[
− δ

2 ,+
δ
2

]
) ,

ANull

(u,v) ∼ 0 + U(
[
− δ

2 ,+
δ
2

]
) .

(10)

The randomness lays in the uniform law U(
[
− δ

2 ,+
δ
2

]
), that we parametrize by

the deviation δ ∈ {0.1, 0.2, 0.5, 1.0}. The mutual information I[L;Z] is computed
ten times for ten different randomized models. Four bit variables (case useful for
DES) are considered, because the computation time for the MI would have been
too long for n = 8. The study is conducted on three bijections:

F1′ : the identity (Id), that acts as a reference,
F2′ : one bijection that cancels the first-order leakage but not the second-order,
F3′ : another that cancels both first- and second-orders.

They are linear, i.e. write Fi′(x) = Gi′×x, where the generating matrix Gi′ are
given below:

G1′ = I4 =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, G2′ =

(
0 0 1 1
0 1 0 1
1 1 1 0
1 0 0 1

)
, G3′ = I4 =

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
.

In this section, we use bijections Fi′ from F4
2 to F4

2, noted with a prime,
to mark the difference with the bijections Fi : F8

2 → F8
2 that were studied in

Sec. 5.1 and 5.2.
The results are plotted in Tab. 5, 6 & 7 for the randomized HD model and

in Tab. 8, 9 & 10 for the randomized “Null” model.
In Tab. 5, 6 & 7, it can be seen that despite the HD model degradation, the

leakage of the CM:

– remains ordered (F3′ leaks less than F2′, and F2′ in turn leaks less than
F1′),

– and remains low, irrespective of δ.

The average leakage is unchanged, and the leakage values are simply getting
slightly scattered. The reason for this resilience comes from the rationale of the
CM: the masked value and the mask are decorrelated as much as possible. The
dispatching is guided by a randomized pigeon-hole of the values in the image
of the leakage function. The CM thus looses efficiency only in the case where
two different values of leakage become similar due to the imperfection. This can
happen for some variables, but it is very unlikely that it occurs coherently for
all variables at the same time. Rather, given the way the imperfect model is
built (Eqn. (10)), it is almost as likely that two classes get nearer or further
away. This explains why, in average, the leakage is not affected: the model noise
acts as a random walk, that has an impact on the variance but not on the
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average. Of course, some samples (with a degraded model) will be weaker than
the others (because the variance of the MIA increases with the variance1 δ2/12
of the model).

It is interesting to contrast the leakage squeezing with the first-order leak-free
CM presented in [15]. This CM aims at leaking no information when the HD
leakage model is perfect. A study for model imperfection has also been conducted
(see right column of Tab. 5, 6 & 7). It appears that this CM is much less robust
to deviation from the ideal model. Indeed, the working factor of the CM is to
have one share leak nothing. But as soon as there is some imperfection, the very
principle of the CM is violated, and it starts to function less well. Concretely
the leaked information increases with the model variance, up to a point where
the CM is less efficient than the straightforward first-order Boolean masking
(starting from δ > 50%).

For the sake of comparison, we also computed the same curves when the
unnoised model is a constant one (called “Null” model in Eqn. (10)). The
simulation results are shown in Tab. 8, 9 & 10. The reference leakage (when
δ = 0) is null; consequently only the noisy curves are shown. It is noticeable that
despite this “Null” leakage model is random, the different CMs have clearly
distinguishable efficiencies. This had already been noticed by Doget et al. in [9].
In particular, it appears that our CM continues to work (F3 leaks less than F2,
that leaks less than F1), at least for large enough noise standard deviations σ.
At the opposite, the leak-free CM is not resilient to this random model: it leaks
more than the straightforward masking (i.e. with F1).

Eventually, the impact of the leakage degree τ can be studied. Results are
computed for τ in {1, 2, 3}. In all the cases, τ does not impact the general
conclusions.

Regarding the deviation from the HD model, the greater the multivariate
degree τ , the more possible deviations from the genuine ideal model. Indeed,
the number of random terms in Eqn. (8) is increasing with τ (and is equal to∑τ

t=0

(
2n
t

)
). This explains the greatest variability in the mutual information re-

sults. In the meantime, the argumentation for the robustness of the CM against
the model deviation still holds, which explains why the average leakage is un-
changed. In the Null model, the greater τ , the less singularities in the leakage.
This explains why the mutual information curves get smoother despite the ad-
ditional noise. But with the greater τ , the more leaking sources (because the
more non-zero terms in the polynomial), which explains why the leaked mutual
information increases in average with τ .

6 Conclusions

Masking is a CM against side-channel attacks that consists in injecting some
randomness in the execution of a computation. The sensitive value is split in

1 The variance of a uniform law of amplitude δ is indeed equal to

Var (U([−δ/2,+δ/2])) = 1

δ

∫ +δ/2

−δ/2
(u− 0)2 du =

[

u3

3δ

]u=+δ/2

u=−δ/2
= δ2

12
.
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several shares; altogether, they allow to reconstruct the sensitive data by an
adequate combination [12]. In this article, we focus on a Boolean masking CM
that uses two shares, computed concomitantly. Zero-offset HO-CPA attacks can
defeat this CM. They consist in computing a correlation with the centered side-
channel traces, raised at the power d ∈ N∗. We show that by storing F (m)
(the image of m by a bijection F ) instead of m in the mask register, the highest
order d of a successful zero-offset attack can be increased significantly. Typically,
when the data to protect are bytes, the state-of-the-art implementations with
one mask could be attacked with HO-CPA of order d = 2. We show how to
find optimal linear F , that protects against zero-offset HO-CPA of orders 1, 2,
3 and 4. We also show that optimal non-linear functions F protect against zero-
offset HO-CPA of orders 1, 2, 3, 4 and 5. This security increase also translates
into a leakage reduction. An information-theoretic study reveals that the mutual
information between the leakage and the sensitive variable is lower than the same
metric computed on a similar CM without F but that uses two masks (instead
of one).
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A Proof of Theorem 1

A.1 First Intermediate Result for the Proof of Theorem 1

Theorem 2. ∀a ∈ Fn
2 , ∀p ∈ N, ĤW

p(a) = 0 ⇐⇒ HW(a) > p.

Let us define the function H(n, p, h)
.
=
∑

z∈F
n
2
HW

p(z)(−1)z·⊕
h
i=1ei , for n ∈

N∗, p ∈ N and h ∈ J0, nK. It is tabulated for n = 4 in Tab. 3. The valueH(n, n, n),
indicated by dagger sign (i.e. “†”) in the table, is equal to (−1)nn!.

As the order of the bits of the dummy variable z is indifferent in the term∑
z HW

p(z)(−1)a·z, we have ĤW
p(a) = H(n, p,HW(a)).

Lemma 1.

H(n, p, n)





= 0 if p < n,
> 0 if p ≥ n and n is even,
< 0 if p ≥ n and n is odd.

Proof (of Lem. 1.).

H(n, p, n) =
∑

z

HW
p(z)(−1)z·⊕

n
i=1ei =

∑

z

HW
p(z)(−1)HW(z)

=

n∑

j=0

(
n

j

)
jp(−1)j = (−1)n

n∑

j=0

(
n

j

)
jp(−1)n−j = (−1)nn!

{
p
n

}
,
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Table 3. Some values of H(n = 4, p, h).

h

0 1 2 3 4

p

0 16 0 0 0 0

1 32 −8 0 0 0

2 80 −32 8 0 0

3 224 −116 48 −12 0

4 680 −416 224 −96 24†

... > 0 < 0 > 0 < 0 > 0

where

{
p
n

}
is a Stirling number of the second kind [10]. More precisely, it is

the number of ways of partitioning a set of p elements into n nonempty sets.

Consequently,

{
p
n

}
= 0 if n > p, because otherwise at least one set would be

empty. Also,

{
p
n

}
> 0 if n ≤ p. Now, the sign of H(n, p, n) depends on the

parity of n if n ≤ p. It is positive (resp. negative) if n is even (resp. odd). ⊓⊔

Lemma 2.

H(n, p, h)





= 0 if p < h,
> 0 if p ≥ h and h is even,
< 0 if p ≥ h and h is odd.

Proof (of Lem. 2.). This lemma has already been proved in Lem. 1 if h = n.
Thus, we assume in the remainder of this proof that h < n. For z ∈ Fn

2 , we note
z = (zL, zH), where zL ∈ Fh

2 and zH ∈ Fn−h
2 .

H(n, p, h) =
∑

(zL,zH)

HW
p((zL, 0)⊕ (0, zH))(−1)(zL·⊕h

i=1ei)⊕(zH ·0)

=
∑

(zL,zH)

(HW(zL) + HW(zH))
p
(−1)zL·⊕h

i=1ei

=
∑

(zL,zH)

p∑

j=0

(
p

j

)
× HW

j(zL)× HW
p−j(zH)(−1)zL·⊕h

i=1ei

=

p∑

j=0

(
p

j

)∑

zL

HW
j(zL)(−1)

zL·⊕h
i=1ei ×

∑

zH

HW
p−j(zH)

=

p∑

j=0

(
p

j

)
×H(h, j, h)×H(n− h, p− j, 0) . (11)
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Now, given Lem. 1, ∀j < h, H(h, j, h) = 0. Thus, if p < h, then all the terms
H(h, j, h) involved in Eqn. (11) are null, since j ∈ J0, pK is strictly inferior to h.

Besides, for all j ∈ J0, pK,
(
p
j

)
and H(n − h, p − j, 0) are strictly positive. If

p ≥ h, the terms H(h, j, h) for j ≤ p are

– either all strictly positive if h is even, or

– or all strictly negative if h is odd.

Hence, so is the sum in Eqn. (11). ⊓⊔

Proof (of theorem. 2.). As already noticed, ĤWp(a) = H(n, p,HW(a)). Accord-
ing to Lem. 2, this quantity is null if and only if p < HW(a). ⊓⊔

A.2 Second Intermediate Result for the Proof of Theorem 1

For every X ∈ Fn
2 , we have:

(
n∑

i=1

(−1)X·ei

)j

=
∑

i1,··· ,ij∈J1,nKj

j∏

l=1

(−1)X·eil

=
∑

i1,··· ,ij∈J1,nKj

(−1)X·⊕j

l=1
eil





Under this form,
some terms appear
multiple times.

=
∑

k1+···+kn=j

(
j

k1, · · · , kn

)
(−1)X·(⊕n

i=1kiei) , (12)

where each vector kiei in
⊕n

i=1 kiei is either ei if ki is odd or 0 otherwise. In the

Eqn. (12), the term
(

j
k1,··· ,kn

)
is a multinomial coefficient.

Then:

∑

z,m

HW
q(F (m)⊕ F (m⊕ z))(−1)a·z

=
1

2q

∑

z,m

(
n−

n∑

i=1

(−1)Fi(m)⊕Fi(m⊕z)

)q

(−1)a·z

=
1

2q

∑

z,m

q∑

j=0

(
q

j

)
nq−j(−1)j

(
n∑

i=1

(−1)Fi(m)⊕Fi(m⊕z)

)j

(−1)a·z

=
1

2q

q∑

j=0

(
q

j

)
nq−j(−1)j

∑

k1+···+kn=j

(
j

k1, · · · , kn

)∑

z,m

(−1)(F (m)⊕F (m⊕z))·(⊕n
i=1kiei)(−1)a·z

=
1

2q

q∑

j=0

(
q

j

)
nq−j(−1)j

∑

k1+···+kn=j

(
j

k1, · · · , kn

)(
̂((⊕n

i=1kiei) · F )
χ
(a)
)2

. (13)
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A.3 Complete Demonstration of Theorem 1

As requested by theorem 1, we introduce P and Q, two positive integers, and
F , a bijection of Fn

2 . With a reasoning close to that of Eqn. (3) for the case
p = q = 1, we get:

∀p ∈ J0, P K, ∀q ∈ J0, QK, the function fopt, defined in Eqn. (2), is constant

⇐⇒ ∀p ∈ J0, P K, ∀q ∈ J0, QK, ∀a ∈ Fn
2
∗, ĤWp(a) = 0 or ̂E[HWq ◦D(·)F (M)](a) = 0

⇐⇒ ∀p ∈ J0, P K, ∀q ∈ J0, QK, ∀a ∈ Fn
2
∗,

{
either HW(a) > p (See theorem 2)
or Eqn. (13) of Sec. A.2 is zero

⇐⇒ ∀p ∈ J0, P K, ∀q ∈ J0, QK, ∀a ∈ Fn
2
∗,HW(a) ≤ p =⇒ Eqn. (13) is zero

⇐⇒





∀p ∈ J0, P K,
∀q ∈ J0, QK,
∀a ∈ Fn

2
∗,

HW(a) ≤ p

=⇒





q = 1 : ∀b,HW(b) ≤ 1 =⇒ ̂(b · F )χ(a) = 0,

q = 2 : ∀b,HW(b) ≤ 2 =⇒ ̂(b · F )χ(a) = 0,
...

q = Q : ∀b,HW(b) ≤ Q =⇒ ̂(b · F )χ(a) = 0.

(14)

We provide with an explanation for the last part of Eqn. (14). The terms of
Eqn. (13) corresponding to a given j is a sum of squares (weighted by quantities
of the same sign). Thus, if those terms for j < q are null, then the ones for j = q
must also be null, because the complete sum (of squares) is null by hypothesis.

B Optimal Linear Solution for n = 8

As shown in Sec. 4.1, the optimal linear function in the case n = 8 is generated
by the non-identity half of the systematic matrix of [16, 8, 5] code. This matrix
is2:




1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 L1

0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 L2

0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 L3

0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 L4

0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 L5

0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 L6

0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 L7

0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 L8




.

It is already in row echelon form. Therefore, it can be turned into systematic
form with a Gauss-Jordan elimination. It involves the following linear operations

2 This code is a subcode of the BCH [17, 9, 5] code. For more details, please refer to:
http://www.math.colostate.edu/~betten/research/codes/BOUNDS/sub_16_8_5-7_2.code.

http://www.math.colostate.edu/~betten/research/codes/BOUNDS/sub_16_8_5-7_2.code
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on the rows:



1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 L′
1 ← L1 ⊕ L2 ⊕ L4 ⊕ L7

0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 L′
2 ← L2 ⊕ L3 ⊕ L5 ⊕ L8

0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 L′
3 ← L3 ⊕ L4 ⊕ L6

0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 L′
4 ← L4 ⊕ L5 ⊕ L7

0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 L′
5 ← L5 ⊕ L6 ⊕ L8

0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 L′
6 ← L6 ⊕ L7

0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 L′
7 ← L7 ⊕ L8

0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 L′
8 ← L8




,

which yields:




1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 L′
1 = 0x80 ‖ 0x9e

0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 L′
2 = 0x40 ‖ 0x4f

0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 L′
3 = 0x20 ‖ 0xcc

0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 L′
4 = 0x10 ‖ 0x66

0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 L′
5 = 0x08 ‖ 0x33

0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 L′
6 = 0x04 ‖ 0xf2

0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 L′
7 = 0x02 ‖ 0x79

0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 L′
8 = 0x01 ‖ 0xd7




,

that has the expected form (I8 B4). The bijection F4 : x 7→ B4 × x is the
optimal linear one for n = 8.

C Computation of the Optimal Function z 7→ fopt(z) for
Some Bijections F

Some fopt(z) have been computed in Tab. 4 for centered traces raised at power
d ∈ J1, 6K, for some representative bijections, including the optimal linear (F4)
and non-linear (F5) ones. The last column shows the optimal correlation co-
efficient ρopt that an attacker can expect (See definition in [19, Eqn. (15)]). It
can be seen that the first nonzero ρopt approximately decreases with the CM
strength: it is about 25% for F1, about 4% for F2 and F3, and about 2% for
F4 and F5.

D Information Leakage in the Imperfect Model

The information leakage plots are plotted in Tab. 5, 6 & 7 for the randomized
HD model and in Tab. 8, 9 & 10 for the randomized “Null” model.
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Table 4. Computation of fopt(z) for centered traces raised at several powers d, and
optimal correlation coefficient ρopt.

fopt(z) ρopt
z 0x00 0x01 0x03 0x07 0x0f 0x1f 0x3f 0x7f 0xff

Bijection F = F1 (reference F1 : x 7→ I8 × x = x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 8 7 6 5 4 3 2 1 0 0.258199

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 176 133 96 65 40 21 8 1 0 0.235341

d = 5 0 0 0 0 0 0 0 0 0 0.000000

d = 6 5888 3787 2256 1205 544 183 32 1 0 0.197908

Bijection F = F2 (linear F2 : x 7→ G2 × x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 −1.5 −1.5 −1.5 −1.5 0 0 0 0 1.5 0.036509

d = 4 49 49 49 49 49 46 49 46 46 0.015548

d = 5 −120 −75 −37.5 −30 7.5 22.5 15 22.5 67.5 0.051072

d = 6 1399 1061 949 971.5 971.5 821.5 971.5 821.5 979 0.027247

Bijection F = F3 (linear F3 : x 7→ G3 × x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 70 61 52 43 40 37 40 43 46 0.043976

d = 5 0 0 0 0 0 0 0 0 0 0.000000

d = 6 2584 1684 1144 694 544 484 544 694 664 0.067175

Bijection F = F4 (linear F4 : x 7→ G4 × x)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 46 46 46 46 46 46 46 46 46 0.000000

d = 5 −90 −37.5 −15 15 7.5 −22.5 7.5 7.5 0 0.023231

d = 6 1339 956.5 799 799 866.5 821.5 776.5 821.5 844 0.016173

Bijection F = F5 (non-linear F tabulated in Sec. 4.2)

d = 1 0 0 0 0 0 0 0 0 0 0.000000

d = 2 4 4 4 4 4 4 4 4 4 0.000000

d = 3 0 0 0 0 0 0 0 0 0 0.000000

d = 4 46 46 46 46 46 46 46 46 46 0.000000

d = 5 0 0 0 0 0 0 0 0 0 0.000000

d = 6 2104 1159 844 799 664 799 844 1159 844 0.023258
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Table 5. Leakage comparison of the proposed CM (left column) and the leak-free
CM [15] (right column) in the imperfect HD leakage model.
Please note: The smaller the mutual information, the better the countermeasure.

Our leakage squeezing CM (see Fig. 2) Leak-free CM (see reference [15])
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Table 6. Leakage comparison of the proposed CM (left column) and the leak-free
CM [15] (right column) in the imperfect HD leakage model.
Please note: The smaller the mutual information, the better the countermeasure.

Our leakage squeezing CM (see Fig. 2) Leak-free CM (see reference [15])
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Table 7. Leakage comparison of the proposed CM (left column) and the leak-free
CM [15] (right column) in the imperfect HD leakage model.
Please note: The smaller the mutual information, the better the countermeasure.

Our leakage squeezing CM (see Fig. 2) Leak-free CM (see reference [15])
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Table 8. Leakage comparison of the proposed CM (left column) and the leak-free
CM [15] (right column) in the imperfect “Null” leakage model.
Please note: The smaller the mutual information, the better the countermeasure.

Our leakage squeezing CM (see Fig. 2) Leak-free CM (see reference [15])
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Table 9. Leakage comparison of the proposed CM (left column) and the leak-free
CM [15] (right column) in the imperfect “Null” leakage model.
Please note: The smaller the mutual information, the better the countermeasure.

Our leakage squeezing CM (see Fig. 2) Leak-free CM (see reference [15])
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Table 10. Leakage comparison of the proposed CM (left column) and the leak-free
CM [15] (right column) in the imperfect “Null” leakage model.
Please note: The smaller the mutual information, the better the countermeasure.

Our leakage squeezing CM (see Fig. 2) Leak-free CM (see reference [15])

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

lo
g

2
(m

u
tu

a
l 
in

fo
rm

a
ti
o

n
)

Noise standard deviation (σ)

n = 4, Null model deviation δ = 10% of order τ ≤ 3

F1’ CM (noised Null model)
F2’ CM (noised Null model)
F3’ CM (noised Null model)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

lo
g

2
(m

u
tu

a
l 
in

fo
rm

a
ti
o

n
)

Noise standard deviation (σ)

n = 4, Null model deviation δ = 10% of order τ ≤ 3

1st-order CM (noised Null model)
Leak-free CM (noised Null model)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

lo
g

2
(m

u
tu

a
l 
in

fo
rm

a
ti
o

n
)

Noise standard deviation (σ)

n = 4, Null model deviation δ = 20% of order τ ≤ 3

F1’ CM (noised Null model)
F2’ CM (noised Null model)
F3’ CM (noised Null model)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

lo
g

2
(m

u
tu

a
l 
in

fo
rm

a
ti
o

n
)

Noise standard deviation (σ)

n = 4, Null model deviation δ = 20% of order τ ≤ 3

1st-order CM (noised Null model)
Leak-free CM (noised Null model)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

lo
g

2
(m

u
tu

a
l 
in

fo
rm

a
ti
o

n
)

Noise standard deviation (σ)

n = 4, Null model deviation δ = 50% of order τ ≤ 3

F1’ CM (noised Null model)
F2’ CM (noised Null model)
F3’ CM (noised Null model)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

lo
g

2
(m

u
tu

a
l 
in

fo
rm

a
ti
o

n
)

Noise standard deviation (σ)

n = 4, Null model deviation δ = 50% of order τ ≤ 3

1st-order CM (noised Null model)
Leak-free CM (noised Null model)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

lo
g

2
(m

u
tu

a
l 
in

fo
rm

a
ti
o

n
)

Noise standard deviation (σ)

n = 4, Null model deviation δ = 100% of order τ ≤ 3

F1’ CM (noised Null model)
F2’ CM (noised Null model)
F3’ CM (noised Null model)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

lo
g

2
(m

u
tu

a
l 
in

fo
rm

a
ti
o

n
)

Noise standard deviation (σ)

n = 4, Null model deviation δ = 100% of order τ ≤ 3

1st-order CM (noised Null model)
Leak-free CM (noised Null model)


	Optimal First-Order Masking  with Linear and Non-Linear Bijections [3mm] — Extended Version —

