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Abstract

The goal of this paper is to assess the feasibility of
two-party secure computation in the presence of a ma-
licious adversary. Prior work has shown the feasibil-
ity of billion-gate circuits in the semi-honest model, but
only the 35k-gate AES circuit in the malicious model,
in part because security in the malicious model is much
harder to achieve. We show that by incorporating the
best known techniques and parallelizing almost all steps
of the resulting protocol, evaluating billion-gate circuits
is feasible in the malicious model. Our results are in
the standard model (i.e., no common reference strings
or PKIs) and, in contrast to prior work, we do not use the
random oracle model which has well-established theoret-
ical shortcomings.

1 Introduction

Protocols for secure computation allow two or more mu-
tually distrustful parties to collaborate and compute some
function on each other’s inputs, with privacy and cor-
rectness guarantees. Andrew Yao showed that two-party
secure protocols can be constructed for any computable
function, and laid out a framework for general purpose
secure computation systems [32]. Yao’s protocol in-
volves representing the function as a boolean circuit, and
having one party (called the generator) encrypt the cir-
cuit in such a way that it can be selectively decrypted
by the other party (called the evaluator) to compute the
output, a process called “garbling.” Oblivious transfer is
used by the evaluator to obtain a subset of the decryption
keys that can be used to compute the output of the func-
tion for the evaluator’s input. The first implementation
of Yao’s protocol, the Fairplay framework [25], involves
describing functions using a high-level language, which
is compiled into a circuit description that can be used by
the generator for the garbling process.

Yao’s protocol is of great practical significance. In

many real-world situations, the inputs to a function may
be too valuable or sensitive to share. Huang et al. ex-
plored the use of secure computation for biometric iden-
tification [14] in national security applications, in which
it is desirable for individual genetic data to be kept pri-
vate but still checked against a classified list. In a similar
security application, Osadchy et al. described how facial
recognition could be performed in a privacy-preserving
manner [28]. The more general case of multiparty com-
putation has already seen real-world use in computing
market clearing prices in Denmark [2].

Yao’s original protocol ensures that the privacy of each
party’s input and the correctness of the output will be pre-
served if both parties follow the protocol honestly. This
assumption is often made in other protocols, such oblivi-
ous transfer or protocols based on homomorphic encryp-
tion, and has been the basis for a number of scalable se-
cure computation systems [4, 10, 12, 17, 22, 28, 31]. It is
conceivable, however, that one of the parties may devi-
ate from the protocol in an attempt to violate security or
correctness. Participants in an auction may attempt to
manipulate the output in their favor; spies may attempt
to obtain sensitive information; a computer being used
for secure computation may be infected with malware.
Securing against malicious participants in an efficient,
practical manner is more technically challenging.

Implementations of practical systems with security
against active, malicious adversaries have been presented
by others. Nielsen et. al. presented the LEGO+ sys-
tem [27], which uses an approach based on oblivious
transfer to achieve efficient 2-party computation in the
malicious model. Lindell and Pinkas presented an ap-
proach based on garbled circuits that uses the cut-and-
choose technique [23], with an implementation of this
system having been given by Pinkas et. al. [29]. The
protocol compiler presented by Ishai, Prabhakaran, and
Sahai [16] also uses an approach based on oblivious
transfer, and was implemented by Lindell, Oxman, and
Pinkas [21]. In all these cases, AES was used as a bench-
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mark for performance tests. These protocols are proved
secure in the random oracle model.

Protocols for general multiparty computation with se-
curity against a malicious majority have also been pre-
sented. Canetti et. al. gave a construction of a uni-
versally composable protocol in the common reference
string model [5]. The protocol compiler of Ishai et. al.,
mentioned above, can be used to construct a multiparty
protocol with security against a dishonest majority in the
UC model [16]. Bendlin et. al. showed a construction
based on homomorphic encryption [1], which was im-
proved upon by Damgård et. al. [7]; these protocols were
also proved secure in the UC model, and require addi-
tional setup assumptions. The protocol of Damgård et.
al. is based on a preprocessing model, which improves
the amortized performance of the protocol. Damgård et.
al. presented an implementation of their protocol, which
could evaluate the function (x�y)�z in about 3 seconds
with a 128 bit security level, but with an amortized time
of a few milliseconds.

This paper presents a scalable two-party secure com-
putation system which guarantees privacy and correct-
ness in the presence of a malicious party. The system
we present can handle circuits with hundreds of millions
or even billions of gates, while requiring relatively mod-
est computing resources. Our system follows the Fair-
play framework, allowing general purpose secure com-
putation starting from a high level description of a func-
tion. We present a system with numerous technical ad-
vantages over the Fairplay system, both in our compiler
and in the secure computation protocol. Unlike previ-
ous work, we do not rely solely on AES circuits as our
benchmark; our goal is to evaluate circuits that are orders
of magnitude larger than AES in the malicious model,
and we use AES only as a comparison with other work.
We prove the security of our protocol assuming circular
2-correlation robust hash functions and the hardness of
the elliptic curve discrete logarithm problem, and require
neither additional setup assumptions nor the random or-
acle model.

2 Contributions

Our principal contribution is to build a high perfor-
mance secure two-party computation system that inte-
grates state-of-the-art techniques for dealing with ma-
licious adversaries efficiently. Although some of these
techniques have been reported individually, we are not
aware of any attempt to incorporate them all into one sys-
tem, while ensuring that a security proof can still be writ-
ten for that system. Even though some of the techniques
are claimed to be compatible, it is not until everything is
put together and someone has gone through all the details
can a system as a whole be said to be provably secure.

We start by using Yao’s garbled circuit [32] proto-
col for securely computing functions in the presence of
semi-honest adversaries, and Shelat and Shen’s cut-and-
choose-based transformation [30] that converts Yao’s
garbled circuit protocol into one that is secure against
malicious adversaries.

We then modify the above to use Ishai et al.’s obliv-
ious transfer extension [15] that has efficient amortized
computation time for oblivious transfers secure against
malicious adversaries, and Lindell and Pinkas’ random
combination technique [23] that defends against selec-
tive failure attacks. We implement Kiraz’s randomized
circuit technique [18] that guarantees that the genera-
tor either gets no output or an authentic output (in other
words, the evaluator cannot trick the generator into ac-
cepting a random output).

For evaluating garbled circuits, we incorporate
Kolesnikov and Schneider’s free-XOR technique [20]
that minimizes the computation and communication cost
for XOR gates in a circuit. To reduce communication
costs, we adopt Pinkas et al.’s garbled-row-reduction
technique [29] that reduces the communication cost for
k-fan-in non-XOR gates by 1/2k, which means at least a
25% communication saving in our system since we only
have gates of 1-fan-in or 2-fan-in. Finally, we implement
Goyal et al.’s technique [11] for reducing communication
as follows: during the cut-and-choose step, the check-
circuits are given to the evaluator by revealing the ran-
dom seeds used to produce them rather than the check-
circuits themselves. Thus, along with the 60%-40%
check-evaluation ratio proposed by Shelat and Shen [30]
this technique provides a near 60% saving in communi-
cation. As far as we know, although these techniques ex-
ist individually, ours is the first system to incorporate all
of these mutually-consistent state of the art techniques.

The most important new technique that we use is to
exploit the embarrassingly parallel nature of the Shelat
and Shen protocol for achieving security in the mali-
cious model, in particular, the circuit-level parallelism.
We parallelize all computation-intensive operations such
as oblivious transfers or circuit construction by splitting
the generator-evaluator pair into hundreds of slave pairs.
Each of the pairs works on one copy of the circuit in a
parallel but synchronized manner as synchronization is
required by the Shelat and Shen’s transformation [30].

For the running time of a secure computation, there are
two main contributing factors: the input processing time
I (due to oblivious transfers) and the circuit processing
time C (due to garbled circuit construction and evalua-
tion). In the semi-honest model, the system’s running
time is simply I +C. Security in the malicious model,
however, requires several extra checks. In the first in-
stantiation of our system, through heavy use of circuit-
level parallelism, our system needs at most I + 2C to
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compute hundreds of copies of circuit. In other words,
when the circuit size is sufficiently larger than the in-
put size, our system (secure in the malicious model)
needs roughly twice as much computation time as that
needed by the original Yao protocol (secure in the semi-
honest model). This is a tremendous improvement over
prior work [29, 30] which needed 100x more time than
the semi-honest Yao. In a second instantiation of our
scheme, we are able to achieve I +C computation time,
albeit at the cost of moderately more communication.

To get a sense of our improvements, we list the exper-
imental results of the benchmark function—AES-128—
from the most recent literature and our system. The lat-
est reported system in the semi-honest model is built by
Huang et al. [13] and needs 1.3 seconds (where I = 1.1
and C = 0.2) to complete a block of secure AES-128
computation. The fastest known system in the malicious
model is proposed by Nielson et al. [27] and has an amor-
tized performance 1.6 seconds per block (or more pre-
cisely, I = 79 and C = 6 for 54 blocks). Our system
provides security in the malicious model and needs 1.1
(= I+2C, where I = 0.7 and C = 0.2) seconds per block.
It is worth mentioning that both the prior systems require
the full power of a random oracle, while ours requires a
weaker cryptographic primitive called 2-circular correla-
tion robust function, which was recently proven by Choi
et al. [6] to be sufficient for the free-XOR technique’s
security.

Challenges of Parallelism Integrating existing tech-
niques with circuit-level parallelism, however, requires
careful engineering in order to achieve good performance
while maintaining security. In Fairplay [25], a garbled
circuit is fully constructed before being sent over a net-
work for the other party to evaluate. Huang et al. [13]
pointed out that keeping the whole garbled circuit in
memory is unnecessary. The generation and evaluation
of garbled gates could be conducted in a pipeline manner.
Consequently, not only do both parties spend less time
idling, but merely a constant amount of garbled gates
need to reside in memory at one time, even when dealing
with large circuits. However, this pipelining idea does
not work trivially with other optimization techniques for
the following two reasons:

• The cut-and-choose technique requires the gener-
ator to finish constructing circuits before the coin
flipping (which is used to determine check-circuits
and evaluation-circuits), but the evaluator cannot
start checking or evaluating before the coin flipping.
A naive approach would ask the evaluator to hold
the circuits and wait for the results of the coin flip-
ping before she proceeds to do her jobs. When the
circuit is of large size, keeping hundreds of copies

of such a circuit in memory is undesirable.

• Similarly, the random seed checking technique [11]
requires the generator to send the hash for each gar-
bled circuit, and later on send the random seeds for
check-circuits so that the communication for check-
circuits is vastly reduced. Note that the hash for an
evaluation-circuit is given away before the garbled
circuit itself. However, a hash is calculated only af-
ter the whole circuit is generated. So the generation-
evaluation pipelining cannot be applied directly.

Our system, however, integrates the pipelining idea and
both aforementioned techniques with a price of I + 2C
computation time. We also propose an alternative that
does not enjoy the benefits of the random seed checking
technique (thus, no 60% saving in communication) but
needs only as much computation time as that in the semi-
honest setting, that is, I +C.

Besides the improvements by the algorithmic means,
the latest hardware technologies are adopted in our sys-
tem too. In particular, we incorporate the Intel Advanced
Encryption Standard Instructions (AES-NI) in our sys-
tem. While the encryption is previously suggested to be

EncX ,Y (Z) = H(X ||Y )⊕Z

in the literature [6, 20], where H is a 2-circular corre-
lation resistant function instantiated either with SHA-
1 [13] or SHA-256 [29], we propose an alternative that

Enck
X ,Y (Z) = AES-256X ||Y (k)⊕Z,

where k is the index of the garbled gate. With the help
of the latest instruction set, an AES-256 operation could
take as little as 30% of the time for SHA-256. Since
this operation is heavily used in circuit operations, with
the help of the hardware optimized AES instructions, we
are able to reduce the circuit computation time C by at
least 20%. Unfortunately, we are unable to find a grid of
hundreds of nodes that all support AES-NI, and thus, we
are unable to provide experimental results in the mali-
cious setting. However, recall that for certain circuits the
running time in the semi-honest setting is roughly half
of that in the malicious setting. Thus, the results in the
semi-honest setting are reported as an estimation to that
in the malicious setting.

Scalable Circuit Compiler One of the major bottle-
necks that prevents large-scale secure computation is the
need for a scalable compiler that generates a circuit de-
scription from a function written in a high-level program-
ming language. Prior tools could barely handle circuits
with 50,000 gates, requiring significant computational
resources to compile such circuits. While this is just
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enough for an AES circuit, it is not enough for the large
circuits that we evaluate in this paper.

We present a scalable boolean circuit compiler that can
be used to generate circuits with hundreds of millions
of gates, with moderate hardware requirements. This
compiler performs some simple but highly effective opti-
mizations, and tends to favor XOR gates. The toolchain
is flexible, allowing for different levels of optimizations
and can be parameterized to use more memory or more
CPU time when building circuits.

As a first sign that our compiler advances the state
of the art, we observe that it automatically generates a
smaller boolean circuit for the AES cipher than the hand-
optimized circuit reported by Pinkas et al. [29]. AES
plays an important role in secure computation, and obliv-
ious AES evaluation can be used as a building block in
cryptographic protocols. Not only is it one of the most
popular building blocks in cryptography and real life se-
curity, it is often used as a benchmark in secure com-
putation. With the textbook algorithm, the well-known
Fairplay compiler can generate an AES circuit that has
15,316 non-XOR gates. Pinkas et al. were able to de-
velop an optimized AES circuit that has 11,286 non-
XOR gates. By applying an efficient S-box circuit [3]
and using our compiler, we were able to construct an
AES circuit that has 9,100 non-XOR gates. As a result,
our AES circuit only needs 59% and 81% of the commu-
nication needed by the other two, respectively.

Most importantly, with our system and the scalable
compiler, we are able to run experiments on circuits with
sizes in the range of hundreds of millions of gates. To
the best of our knowledge, secure computation with such
large circuits has never been run in the malicious model
before. These circuits include 256-bit RSA (266,150,119
gates) and 1023-bit edit distance (242,594,574 gates). As
the circuit size grows, resource management becomes
crucial. A circuit of hundreds of millions of gates can
easily result in several GB of data stored in memory or
sent over network. Special care is required to handle
these difficulties.

The organization of this paper is as follows. A variety
of security decisions and optimization techniques will be
covered in Section 3 and Section 4, respectively. Then,
our system, including a compiler, will be introduced in
Section 5 and Section 6. Finally, the experimental results
are presented in Section 7 followed by the conclusion and
future work in Section 8.

3 Techniques Regarding Security

The Yao protocol, albeit efficient, assumes honest be-
haviors. To achieve security in the malicious model, a
method to enforce honest behaviors is necessary. The
cut-and-choose technique is one of the most efficient

methods in literature and is used in our system. Its main
idea is for the generator to prepare multiple copies of
the garbled circuit with independent randomness, and the
evaluator picks a random fraction of the received circuits,
whose randomness is then revealed. If any of the cho-
sen circuits (called check-circuits) is not correctly gener-
ated with the revealed randomness, the evaluator aborts;
otherwise, she evaluates the remaining circuits (called
evaluation-circuits) and takes the majority of the outputs,
one from each evaluation-circuit, as the final output.

The intuition is that to pass the check, a malicious gen-
erator can only sneak in a few faulty circuits, and the
influence of these (supposedly minority) faulty circuits
will be eliminated by the majority operation at the end.
On the other hand, if a malicious generator wants to ma-
nipulate the final output, she needs to construct faulty
majority among evaluation-circuits, but then the chance
that none of the faulty circuits is checked will be negli-
gible. So with the help of the cut-and-choose method,
a malicious generator either constructs many faulty cir-
cuits and gets caught with high probability, or constructs
merely a few and has no influence on the final output.

However, the cut-and-choose technique is not a cure-
all. Several subtle attacks have been reported and would
be a problem if not properly handled. These attacks in-
clude the generator’s input inconsistency attack, the se-
lective failure attack, and the generator’s output authen-
ticity attack, which are discussed in the following sec-
tions. Note that in this section, n denotes the input size
and s denotes the number of copies of the circuit.

Generator’s Input Consistency Recall that in the cut-
and-choose step, multiple copies of a circuit are con-
structed and then evaluated. A malicious generator
is therefore capable of providing altered inputs to dif-
ferent evaluation-circuits. It has been shown that for
some functions, there are simple ways for the gen-
erator to extract information about the evaluator’s in-
put [23]. For example, suppose both parties agree
to compute the inner-product of their input, that is,
f ([a2,a1,a0], [b2,b1,b0]) 7→ a2b2 + a1b1 + a0b0 where
ai and bi is the generator’s and evaluator’s i-th input
bit, respectively. Instead of providing [a2,a1,a0] to
all evaluation-circuits, the generator could send [1,0,0],
[0,1,0], and [0,0,1] to different copies of the evaluation-
circuits. After the majority operation from the cut-and-
choose technique, the generator learns major(b2,b1,b0),
the majority bit in the evaluator’s input, which is not what
the evaluator agreed to reveal in the first place.

There exist several approaches to deter this attack.
Mohassel and Franklin [26] proposed the equality-
checker that needs O(ns2) commitments to be computed
and exchanged. Lindell and Pinkas [23] developed an
approach that also requires O(ns2) commitments. Later,
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Lindell and Pinkas [24] proposed a pseudorandom syn-
thesizer that relies on efficient zero-knowledge proofs
for specific hardness assumptions and requires O(ns)
group operations. Shelat and Shen [30] suggested the
use of malleable claw-free collections, which also uses
O(ns) group operations, but they showed that witness-
indistinguishability suffices, which is more efficient than
zero-knowledge proofs by a constant factor.

In our system, we incorporate the malleable claw-free
collection approach because of its efficiency. Although
the commitment-based approaches can be implemented
using lightweight primitives such as collision-resistant
hash functions, they incur high communication overhead
for the extra complexity factor s, that is, the number of
copies of the circuit. On the other hand, the group-based
approach could be more computationally intensive, but
this discrepancy is compensated again due to the param-
eter s.1 Hence, with similar computation cost, group-
based approaches enjoy lower communication overhead.

Selective Failure A more subtle attack is selective fail-
ure [19, 26]. A malicious generator could use inconsis-
tent keys to construct the garbled gate and OT so that
the evaluator’s input can be inferred from whether or not
the protocol completes. In particular, a cheating genera-
tor could assign (K0,K1) to an input wire in the garbled
circuit while using (K0,K∗1 ) instead in the corresponding
OT, where K1 6= K∗1 . As a result, if the evaluator’s input
is 0, she learns K0 from OT and completes the evalu-
ation without complaints; otherwise, she learns K∗1 and
gets stuck during the evaluation. If the protocol expects
the evaluator to share the result with the generator at the
end, the generator learns whether or not the evaluation
failed, and therefore, the evaluator’s input is leaked.

Lindell and Pinkas [23] proposed the random input re-
placement approach that involves replacing each of the
evaluator’s input bits with an XOR of s additional in-
put bits, so that whether the evaluator aborts due to a se-
lective failure attack is almost independent (up to a bias
of 21−s) of her actual input value. Both Kiraz [18] and
Shelat and Shen [30] suggested a solution that exploits
committing OTs so that the generator commits to her in-
put for the OT, and the correctness of the OTs can later
be checked by opening the commitments during the cut-
and-choose. Lindell and Pinkas [24] also proposed a so-
lution to this problem using cut-and-choose OT, which
combines the OT and the cut-and-choose steps into one
protocol to avoid this attack.

Our system is based on the random input replacement

1To give concrete numbers, with an Intel Core i5 processor and 4GB
DDR3 memory, a SHA-256 operation (from OpenSSL) requires 1,746
cycles, while a group operation (160-bit elliptic curve from PBC library
with preprocessing) needs 322,332 cycles. It is worth-mentioning that
s is at least 256 in order to achieve security level 2−80.

approach due to its scalability. It is a fact that the com-
mitting OT or the cut-and-choose OT does not alter the
circuit while the random input replacement approach in-
flates the circuit by O(sn) additional gates. However,
it has been shown that max(4n,8s) additional gates suf-
fice [29]. Moreover, both the committing OT and the cut-
and-choose OT require O(ns) group operations, while
the random input replacement approach needs only O(s)
group operations. Furthermore, we observe that the ran-
dom input replacement approach is in fact compatible
with the OT extension technique. Therefore, we were
able to build our system which has the group operation
complexity independent of the evaluator’s input size, and
as a result, our system is particularly attractive when han-
dling a circuit with a large evaluator input.

Generator’s Output Authenticity It is not uncom-
mon that both the generator and evaluator receive out-
puts from a secure computation, that is, the goal func-
tion is f (x,y) = ( f1, f2), where the generator with in-
put x gets output f1, and the evaluator with input y gets
f2.2 In this case, the security requires that both the in-
put and output are hidden from the other player. In
the semi-honest setting, the straightforward solution is
to let the generator choose a random number c as an ex-
tra input, convert f (x,y) = ( f1, f2) into a new function
f ∗((x,c),y) = (λ ,( f1⊕ c, f2)), run the original Yao pro-
tocol for f ∗, and instruct the evaluator to pass the en-
crypted output f1⊕c back to the generator, who can then
retrieve her real output f1 with the secret input c chosen
in the first place. However, the situation gets complicated
when either of the participants could potentially be mali-
cious. Note that the two-output protocols we consider are
not fair since the evaluator always learns her own output
and may refuse to send the generator’s output. However,
they can satisfy the notion that the evaluator cannot trick
the generator into accepting arbitrary output.

Lindell and Pinkas [23] proposed a solution similar to
the aforementioned solution in the semi-honest setting,
where the goal function is modified while everything else
remains the same, with the price of adding O(n2) gates
to the circuit. Kiraz [18] presented a two-party com-
putation protocol in which a zero knowledge proof of
size O(s) is conducted at the end to assure the authen-
ticity of the generator’s output. Shelat and Shen’s [30]
signature-based solution, similar to Kiraz’s, adds n ad-
ditional gates to the circuit, but however, requires only
a witness-indistinguishable proof of size O(s+ n) at the
end.

2Here f1 and f2 are abbreviations of f1(x,y) and f2(x,y) for sim-
plicity.
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4 Techniques Regarding Performance

Yao’s garbled circuit has been studied for decades. It
has been drawing a lot of attention for its simplicity,
constant round complexity, and computational efficiency
(since circuit evaluation only requires fast symmetric op-
erations). The fact that it incurs high communication
overhead has provoked interest that has led to the devel-
opment of fruitful results.

In this section, we will first briefly present the Yao
garbled circuit, and then discuss the optimization tech-
niques that greatly reduce the communication cost while
maintaining the security. These techniques include free-
XOR, garbled row reduction, random seed checking, and
large circuit pre-processing. In addition to these original
ideas, practical concerns involving large circuits and par-
allelization will be addressed.

4.1 Baseline Yao’s Garbled Circuit

Given a circuit consists of AND and XOR gates, the
generator constructs a corresponding garbled circuit as
follows: For each wire w, the generator randomly picks
w0,w1 ∈ {0,1}k−1, respectively, and πw ∈ {0,1} as a per-
mutation bit. Let W0 = w0||πw and W1 = w1||(πw⊕ 1),
which are associated with value 0 and 1 for wire w.
Next, level by level, for each gate g ∈ {XOR,AND} ⊂
{ f | f : {0,1} × {0,1} 7→ {0,1}} that has input wire x
with (X0,X1,πx), input wire y with (Y0,Y1,πy), and out-
put wire z with (Z0,Z1,πz). The garbled truth table for
this gate has four entries:

GT Tg


Enc(X0⊕πx ||Y0⊕πy , Zg(0⊕πx,0⊕πy))

Enc(X0⊕πx ||Y1⊕πy , Zg(0⊕πx,1⊕πy))

Enc(X1⊕πx ||Y0⊕πy , Zg(1⊕πx,0⊕πy))

Enc(X1⊕πx ||Y1⊕πy , Zg(1⊕πx,1⊕πy))

where Enc(k,m) denotes message m encrypted with key
k. Note that the key is a concatenation of two messages
and the message refers to the concatenation of the ran-
dom key and the corresponding permutation bit hereafter.
Intuitively, πx and πy permute the entries in GT Tg so that
for ix, iy ∈ {0,1}, the (2ix + iy)-th entry represents the
input pair (ix⊕πx, iy⊕πy) for gate g, in which case out-
put value g(ix⊕πx, iy⊕πy) along with the corresponding
permutation bit for the output wire should be retrieved.
In practice, to evaluate the garbled gate GT Tg, let X ||bx
and Y ||by be the retrieved messages for input wire x and
wire y, respectively. The evaluator will use X ||bx||Y ||by
to decrypt the (2bx + by)-th entry in GT Tg and retrieve
message Z||bz, which is then used to evaluate next-level
gates. As a result, the introduction of the permutation
bit helps to identify the correct entry, and thus, only one,
rather than all, of the four entries will be decrypted.

4.2 Free-XOR

Kolesnikov and Schneider [20] proposed the free-XOR
technique that aims for removing the communication
cost and decreasing the computation cost for XOR gates.

The idea is, instead of randomly picking W0 and W1
for wire w, the generator first randomly picks a global
key R, where R = r||1 and r ∈ {0,1}k−1. This global
key has to be hidden from the evaluator. Then for each
wire w, either W0 or W1 is randomly chosen from {0,1}k,
and the other key is determined by Wb =W1⊕b⊕R. Note
that πw remains the rightmost bit of W0. Moreover, for
an XOR gate having input wire x with (X0,X0⊕R,πx),
input wire y with (Y0,Y0⊕R,πy), and output wire z, the
generator lets Z0 = X0⊕Y0 and Z1 = Z0⊕R. Observe
that

X0⊕Y1 = X1⊕Y0 = X0⊕Y0⊕R = Z0⊕R = Z1

X1⊕Y1 = X0⊕R⊕Y0⊕R = X0⊕Y0 = Z0.

This means that during the circuit evaluation, XORing
the messages for the two input wires of an XOR gate will
directly retrieve the message for the output wire. There-
fore, no garbled truth table is needed, and the price of
evaluating a garbled XOR gate is reduced from a decryp-
tion operation to a bitwise XOR operation.

This technique is secure when Enc(K,m)=H(K)⊕m,
where H : {0,1}2k 7→ {0,1}k is a random oracle. Fur-
thermore, Choi et. al [6] have shown that a weaker
cryptographic primitive, 2-circular correlation robust
functions, suffices. Our system instantiates this prim-
itive either with H(X ||Y ) = SHA-256(X ||Y ). How-
ever, when AESNI instructions are available, our system
automatically instantiates the function as Hk(X ||Y ) =
AES-256(X ||Y,k), where k is the gate index.

On a machine with 2.53 GHz Intel Core i5 processor
and 4GB 1067 MHz DDR3 memory, it takes 784 clock
cycles to run a single SHA-256 (with OpenSSL), while
it needs only 225 cycles for AES-256 (with AES-NI). To
measure the benefits of AES-NI, we use two instantia-
tions to construct various circuits, listed in Table 1, and
observe a consistant 20% saving in circuit construction.3

4.3 Garbled Row Reduction

The GRR (Garbled Row Reduction) technique suggested
by Pinkas et. al [29] is used to reduce the communication
overhead for non-XOR gates. In particular, it reduces the
size of the garbled truth table for 2-fan-in gates by 25%.

3The reason that saving 500+ cycles does not lead to more improve-
ments is that this encryption operation is merely one of the contributing
factors to generating a garbled gate. Other factors, for example, in-
clude GNU hash map table insertion (∼1,200 cycles) and erase (∼600
cycles).
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size (gates) AES-NI SHA-256 Ratio

AES-128 31,112 0.08 0.10 0.80
EDT-255 12,183,494 33.84 42.50 0.80
Dot256

64 29,721,019 84.79 106.73 0.80
RSA-256 266,150,889 710.71 889.63 0.79

Table 1: Garbled circuit construction time (in seconds)
with different implementations (AES-NI vs SHA-256).
The circuits are for AES-128 encryption, 255-bit edit
distance computation, 256-dimensional dot-product over
64-bit field, and 256-bit RSA encryption.

Recall that in the baseline Yao’s garbled circuit, both
the 0-key and 1-key for each wire are randomly chosen.
After the free-XOR technique is integrated, the 0-key and
1-key for an XOR gate’s output wire depend on input key
and R, but the 0-key for a non-XOR gate’s output wire is
still free. The GRR technique is to make a smart choice
for this degree of freedom, and thus, reduce one entry in
the garbled truth table to be communicated over network.

In particular, the generator picks (Z0,Z1,πz) by letting
Zg(0⊕πx,0⊕πy) = H(X0⊕πx ||Y0⊕πy), that is, either Z0 or Z1
is assigned to the encryption mask for the 0-th entry of
the GT Tg, and the other one is computed by the equa-
tion Zb = Z1⊕b⊕R. Therefore, when the evaluator gets
(X0⊕πx ,Y0⊕πy), both X0⊕πx and Y0⊕πy have rightmost bit
0, indicating that the 0-th entry needs to be decrypted.
However, with GRR technique, she is able to retrieve
Zg(0⊕πx,0⊕πy) by running H(·) without inquiring GT Tg.

Pinkas et al. claimed that this technique is compatible
with the free-XOR technique [29]. For rigorousness pur-
poses, we carefully went through the details and came
up with a security proof for our protocol that confirms
this compatibility. The proof will be included in the full
version of this paper.

4.4 Random Seed Checking
Recall that the cut-and-choose approach requires the
generator to construct multiple copies of the garbled cir-
cuit, and more than half of these garbled circuits will
be fully revealed, including the randomness used to con-
struct the circuit. Goyal, Mohassel, and Smith [11] there-
fore pointed out an insight that the evaluator could exam-
ine the correctness of those check-circuits by receiving
a hash of the garbled circuit first, acquiring the random
seed, and reconstructing the circuit and hash by herself.

This technique results in the communication overhead
for check-circuits independent of the circuit size. This
technique has two phases that straddle the coin-flipping
protocol. Before the coin flipping, the generator con-
structs multiple copies of the circuit as instructed by
the cut-and-choose procedure. Then the generator sends
to the evaluator the hash of each garbled circuit, rather

than the circuit itself. After the coin flipping, when
the evaluation-circuits and the check-circuits are deter-
mined, the generator sends to the evaluator the full de-
scription of the evaluation-circuits and the random seed
for the check-circuits. The evaluator then computes the
evaluation-circuits and tests the check-circuits by recon-
structing the circuit and comparing its hash with the one
received earlier. As a result, even for large circuits, the
communication cost for each check-circuit is simply a
hash value plus the random seed. Our system provides
that 60% of the garbled circuits are check-circuits. As a
result, this optimization significantly reduces communi-
cation overhead.

4.5 Working with Large Circuits
A circuit for a reasonably complicated operation can eas-
ily consist of hundreds of millions of gates. For example,
a 1023-bit edit distance has 242 million gates. When cir-
cuits grow to such a size, the task of achieving high per-
formance secure computation becomes challenging.

An (I + 2C)-time solution Our solution for handling
large circuits is based on Huang et. al’s work [13], which
is the only prior work capable of handling large circuits
(of up to 1.2 billion non-XOR gates) in the semi-honest
setting. Intuitively, the generator could work with the
evaluator in a pipeline manner so that small chunks of
gates are being processed at a time. The generator could
start to work on the next chunk while the evaluator is
still processing the current one. However, this technique
does not work directly with the random seed checking
technique described above in §4.4 because the generator
has to finish circuit construction and hash calculation be-
fore the coin flipping, but the evaluator could start the
evaluation only after the coin flipping. As a result, the
generator needs a way to construct the circuit first, wait
for the coin flipping, and send the evaluation-circuits to
the evaluator without keeping them in memory the whole
time. We therefore propose that the generator constructs
the evaluation-circuits all over again after the coin flip-
ping, with the same random seed used before and the
same keys for input wires gotten from OT.

We stress that when fully parallelized, the second con-
struction of an evaluation-circuit does not incur overhead
to the overall execution time. Although we suggest to
construct an evaluation-circuit twice, the fact is that ac-
cording to the random seed checking, a check-circuit is
already being constructed twice—once before the coin
flipping by the generator for hash computation and once
after by the evaluator for correctness verification. As a
result, when each generator-evaluator pair is working on
a single copy of the garbled circuit, the constructing time
for a evaluation-circuit totally overlaps with that for a
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check-circuit. We therefore achieve the overall computa-
tion time I+2C mentioned earlier, where the first C is for
the generator to calculate the circuit hash, and the other
C is either for the evaluator to reconstruct a check-circuit
or for both parties to work on an evaluation-circuit in a
pipeline manner as suggested by Huang et. al [13].

Achieving an (I +C)-time solution We observe that
there is a way to achieve I +C computation time, which
exactly matches the running time of Yao in the semi-
honest setting. This idea, however, is not compatible
with the random-seed technique, and therefore incurs a
tradeoff with communication size. Recall that the gener-
ator has to finish circuit construction and hash evaluation
before the coin flipping, whereas the evaluator could start
evaluating only after getting the result of the coin flip-
ping. The idea is to run the coin flipping in the way that
only the evaluator gets the result and does not reveal it to
the generator until the circuit construction is completed.
Since the generator is oblivious to the coin flipping re-
sult, she sends every garbled circuit to the evaluator, who
could then either evaluate or check the received circuit.
Moreover, in order for the evaluator to get the generator’s
input keys for evaluation-circuits and the random seed
for the check-circuits, they run an OT, where the evalua-
tor uses the coin flipping result as input and the generator
provides either the random seed (for the check-circuit) or
his input keys (for the evaluation-circuit). After the gen-
erator completes circuit construction and gives away the
circuit hash, the evaluator compares the hash with her
own calculation, if the hashes match, she proceeds with
the rest of the original protocol. Note that this approach
comes with a price that it does not enjoy the benefits pro-
vided by the random seed checking technique, that is, the
60% saving in communication.

Working Set Optimization Another problem encoun-
tered while dealing with large circuits is the working
set minimization problem. Note that the circuit value
problem is log-space complete for P. It is suspected that
L 6= P, that is, there exist some circuits that can be eval-
uated in polynomial time but require more than logarith-
mic space. This open problem captures the difficulty of
handling large circuits during both the construction and
evaluation, where at any moment there is a set of wires,
called working set, that are available and will be refer-
enced in the future. For some circuits, the working set
is inherently super-logarithmic. A naive approach is to
keep the most recent D wires in the working set, where
D is the upper bound of the input-output distance of all
gates. However, there may be wires which are used as
inputs to gates throughout the entire circuit, and so this
technique could easily result in adding almost the whole

circuit to the working set, which is especially problem-
atic when there are hundreds of copies of circuit of bil-
lions of gates. While reordering the circuit or adding
identity gates to minimize D would mitigate this prob-
lem, doing so while maintaining the topological order of
the circuit is known to be an NP-complete problem, the
graph bandwidth problem [9].

Our solution to this difficulty is to pre-process the cir-
cuit so that each gate comes with a usage count. Our
system has a compiler that converts a program in high-
level language into a boolean circuit. Since the compiler
is already using global optimization in order to reduce
the circuit size, it is easy for the global optimizer to an-
alyze the circuit and calculate the usage count for each
gate. With this information, it is easy for the genera-
tor and evaluator to decrement the counter for each gate
whenever it is being referenced and to toss away the gate
whenever its counter becomes zero. In Table 2, we show
that with the help of the usage count, it could still be
memory efficient to deal with even very large circuits.

size (gates) working set size

AES-128 31,112 323
EDT-255 12,183,494 2,829
Dot256

64 29,721,019 32,968
RSA-256 266,150,889 1,794

Table 2: The size of the working set for various circuits

5 System Setup

In our system, both the generator and the evaluator con-
sist of an equal amount of processes, including a root
process and many slave processes. A root process has re-
sponsibility for coordinating its own slave processes and
the other root process, while the slave processes work
together on repeated and independent tasks. There are
three pieces of code in our system: the generator, the
evaluator, and the IP exchange server. Both the gen-
erator’s and evaluator’s program are implemented with
Message Passing Interface (MPI) library. The reason for
the IP exchanger server is that it is normally easy to run
jobs on a cluster with dynamic working node assignment.
However, when the nodes are dynamically assigned, the
generator running on one cluster might have a hard find-
ing the evaluator running on another. Therefore, a fixed
location IP exchanger helps the matching up process as
shown in Figure 1. The process starts with the root eval-
uator process collecting addresses of its slaves and for-
warding them to a publicly known IP server. Then the
root generator process will come to acquire the addresses
and dispatch them to its slaves, who then proceed to pair
up with one of the slave evaluator processes. However,
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we glue the whole system into one MPI program due to
the ease of simulation purposes.

  

1 4

32

5

5
5

5

Evl Gen

IP server

Figure 1: The process of building network connections
between two parties, the generator and the evaluator,
each of which consists of a root process (solid dot) and
slave processes (hollow dots).

6 Boolean Circuit Compiler

Although the Fairplay circuit compiler can generate cir-
cuits, it requires a very large amount of computational
resources to generate even relatively small circuits. Even
on a machine with 48 gigabytes of RAM, Fairplay ter-
minates with an out-of-memory error after spending 20
minutes attempting to compile an AES circuit. This
makes Fairplay impractical for even relatively small cir-
cuits, and infeasible for some of the circuits tested in this
project. One goal of this project was to have a general
purpose system for secure computation, and so writing
application specific programs to generate circuits, a tech-
nique used by others [13], was not an option.

To address this problem, we have implemented a new
compiler that generates the same output format as Fair-
play, but which requires far lower computational re-
sources to do so. We were able to generate the AES
circuit on a typical laptop computer with only 1GB of
RAM, and were able to generate and test much larger
non-trivial circuits. We used the well-known flex and
bison tools to generate our compiler, and implemented
an optimizer as a separate tool. We also use the results
from [29] to reduce 3 arity gates to 2 arity gates.

As a design decision, we created an imperative, un-
typed language with static scoping. We allow code, vari-
ables, and input/output statements to exist in the global
scope; this allows very simple programs to be written
without too much extra syntax. Functions may be de-
clared, but may not be recursive. Variables do not need
to be declared before being used in an unconditional as-
signment; variables assigned within a function’s body
that are not declared in the global scope are considered
to be local. Arrays are a language feature, but array in-
dices must be constants or must be determined at compile

time. Variables may be arbitrarily concatenated, and bits
or groups of bits may be selected from any variable.

We use some techniques from the Fairplay compiler
in our own compiler. In particular we use the single as-
signment algorithm from Fairplay, which is required to
deal with assignments that occur inside of if statements.
Otherwise, our compiler has several distinguishing char-
acteristics that make it more resource efficient than Fair-
play. The front end of our compiler attempts to gener-
ate circuits as quickly as possible, using as little memory
as possible and performing only rudimentary optimiza-
tions before emitting its output. This can be done with
very modest computational resources, and the intermedi-
ate output can easily be translated into a circuit for evalu-
ation. The main optimizations are performed by the back
end of the compiler, which identifies gates that can be re-
moved.

Unlike the Fairplay compiler, we avoided the use of
hash tables in our compiler, and used Red-Black trees in-
stead. Although this multiplies the time complexity by a
logarithmic factor, it allows far more data to be stored in-
core, which greatly improves the scalability of our sys-
tem. For circuits that are too large to fit in core, we use
Berkeley DB as a key-value store.

In the following sections, we describe these contribu-
tions in more detail, and provide experimental results.

6.1 Circuit Optimizations

The front-end of our compiler tends to generate ineffi-
cient circuits, with large numbers of removable gates. As
an example, for some operations the compiler generates
large numbers of identity gates i.e. gates whose outputs
follow one of their inputs. It is therefore essential to op-
timize the circuits emitted by the front end, particularly
to meet our system’s overall goal of practicality.

Our compiler uses several stages of optimization, most
of which are global. As a first step, a local optimization
removes redundant gates, i.e. gates that have the same
truth table and input wires. This first step operates on
a fixed-size chunk of the circuit, but we have found that
there are diminishing improvements as the size of this
window is increased, as shown in figure 3. We also re-
move constant gates, identity gates, and inverters, which
are generated by the compiler and which may be inad-
vertently generated during the optimization process. Fi-
nally, we remove gates that do not influence the output,
which can be thought of as dead code elimination. The
effectiveness of each optimization on different circuits is
shown in figure 2. The circuit that was least optimizable
was the edit distance circuit, being reduced to only 82%
of its size from the front end, whereas the RSA circuit
was the most optimizable, being reduced to 16% of its
original size.
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RSA Size Circuit Size Time to Compile (s) Gates/sec Edit-Dist Size Circuit Size Time to Compile Gates/sec

16 31,539 1.71 18,444 15 21,081 0.403 52,310
32 257,139 15.51 16,579 31 113,733 1.703 66,784
64 2,076,960 141.05 14,725 127 2,707,308 48.574 55,736
96 7,032,181 595.56 11,808 255 12,182,984 260.22 46,818

128 16,696,353 1416.25 11,789 511 54,743,160 1398.00 39,158

Table 3: Time required to compile and optimize RSA and edit distance circuits on a workstation with an Intel Xeon
5506 CPU and 8GB of RAM, using the textbook modular exponentiation algorithm. Note that the throughput for edit
distance is much higher even for comparable sized circuits; this is because the front end generates a more efficient
circuit without any optimization.
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Figure 2: Average fraction of circuits remaining after each optimization is applied in sequence. We see that the relative
change in circuit sizes after each optimization is dependent on the circuit itself, with some circuits being optimized
more than others.

Gate Removal The front-end of the compiler emits
gates in topological order, and similar to Fairplay, our
compiler assigns explicit identifiers to each emitted gate.
To remove gates efficiently, we store a table that maps the
identifiers of gates that were removed to the previously
emitted gates, and for each gate that is scanned the inputs
are rewritten according to this table. The table itself is
then emitted, so that the identifiers of non-removed gates
can be corrected. This allows the optimization stages to
be Ω(n lgn), but requires Ω(n) space (with a relatively
small constant factor).

Removing Redundant Gates Some of the gates gen-
erated by the front end of our compiler have the same
truth table and input wires as previously generated gates;
such gates are redundant and can be removed. This re-
moval process has the highest memory requirement of
any other optimization step, since a description of ev-
ery non-redundant gate must be stored. However, we
found during our experiments that this optimization can
be performed on discrete chunks of the circuit with re-
sults that are very close to performing the optimization

on the full circuit, and that there are diminishing im-
provements in effectiveness as the size of the chunks is
increased. Therefore, we perform this optimization us-
ing chunks, and can use hash tables to improve the speed
of this step.

Removing Identity Gates and Inverters The front
end may generate identity gates or inverters, which are
not necessary. This may happen inadvertently, such as
when a variable is incremeneted by a constant, or as part
of the generation of a particular logic expression. While
removing identity gates is straightforward, the removal
of inverters requires more work, as gates which have in-
verted input wires must have their truth tables rewritten.
There is a cascading effect in this process; the removal of
some identity gates or inverters may transform later gates
into identity gates or inverters. This step also removes
gates with constant outputs, such as an XOR gate with
two identical inputs. Constant propagation and folding
occur as a side effect of this optimization.
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Figure 3: Size of the window used in redundant gate removal versus fraction of the circuit remaining after the opti-
mization. This levels off, and we found that for the circuits we worked with a window of size 1,000,000 was sufficient.

Removing Unused Gates Finally, some gates in the
circuit may not affect the output value at all. For this
step, we scan the circuit backwards, and store a table of
live gates; we then re-emit the live gates in the circuit
and skip the dead gates. Immediately following this step,
the circuit is prepared for the garbled circuit generator,
which includes generating a usage count for each gate.

Using Berkeley DB as a Key-Value Store Unfortu-
nately, even though our compiler is more resource effi-
cient than Fairplay, it still requires space that is linear
in the size of the circuit. For very large circuits, cir-
cuits with billions of gates or more, this may exceed the
amount of RAM that is available. Our system can make
use of Berkeley DB to store the tables, which can store
tables both on disc and in RAM. Although it is possible
to use Berkeley DB to manage an in-memory database,
we found that this was still slower than using red-black
trees (see table 4). However, by using Berkeley DB,
we are able to compile very large circuits like RSA-256
(266,150,119 gates) or edit distance 1023 (242,594,574
gates). While this allows such large circuits to be com-
piled on inexpensive hardware, it should be noted that in
both the RSA and edit distance cases more than 24 hours
of computer time was required to complete the circuits,
much of which was spent waiting on IO.

6.2 Compiler Testing Methodology
We tested the performance of our compiler using five cir-
cuits. The first was AES, to compare our compiler with
the Fairplay system. We also used AES with an improved

S-box, which results in a smaller AES circuit. We used
RSA with various key sizes to test our compiler’s han-
dling of large circuits; RSA circuits have cubic size com-
plexity, allowing us to generate very large circuits with
small inputs. We also used an edit distance circuit, which
was chosen because its inner loop is very different from
our other tests, having no multiplication subroutine. Fi-
nally we used a dot product with error, a basic sampling
function for the LWE problem, which is similar to RSA
in creating large circuits, but also demonstrates our sys-
tem’s ability to handle large input sizes.

Circuit Size R-B Trees Berkeley DB

AES 49,912 1.294s 5.025s

RSA-16 31,571 1.825s 6.594s

Dot64
4 460,018 10.675s 36.464s

Table 4: Compile times for in-memory Berkeley DB ver-
sus Red-Black trees for small circuits (sizes include input
gates).

6.3 Summary of Compiler Performance
Our compiler is able to emit and optimize large circuits
in relatively short periods of time, less than an hour for
circuits with tens of millions of gates on an inexpensive
workstation. In figure 2 we summarize the effectiveness
of the various optimization stages on different circuits;
in circuits that involve multiplication in finite fields or
modulo an integer, the identity gate removal step is the
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most important, removing more than half of the gates
emitted by the front-end. The edit distance circuit is the
best-case for our front end, as less than 1/5 of the gates
that are emitted can be removed by the optimizer. The
throughput of our compiler is dependent on the circuit
being compiled, with circuits which are more efficiently
generated by the front-end being compiled faster; in ta-
ble 3 we compare the generation of RSA circuits to edit
distance circuits. The main bottleneck in the compiler
is the key-value store, which leads to O(n lgn) perfor-
mance.

7 Experimental Results

In this section, we implement various real world applica-
tions with secure computation. The experiment environ-
ment is the Ranger cluster in Texas Advanced Comput-
ing Center. Ranger is a blade-based system, where each
node is a SunBlade x6240 blade running Linux kernel
and has four AMD Opteron quad-core 64-bit processors,
as an SMP unit. Each node in the Ranger system has
2.3 GHz core frequency and 32 GB of memory, and the
point-to-point bandwidth is 1 GB/sec.

Timing methodology When there is more than one
process on each side, care must be taken in measuring the
timings of the system. The numbers reported in Table 7 is
the time required by the root process at each stage of the
system. This was chosen because the root process will
always be the longest running process, as it must wait for
each slave process to run to completion. Moreover, in
addition to doing all the work that the slaves do, the root
processes also perform the input consistency check and
the coin tossing protocol.

AES We used AES as a benchmark to compare our
compiler to the Fairplay compiler, and as a test circuit
for our evaluator. We tested the full AES circuit, as spec-
ified in FIPS-97 [8].

In this experiment, two parties collaboratively com-
pute the function f : (x,y) 7→ (⊥,AESx(y)), where the
circuit generator owns the encryption key x, while the
evaluator has the message y to be encrypted. After
the computation, the generator will not get any output,
whereas the evaluator will get the eiphertext AESx(y).

In order to achieve security level of 2−80, that a ma-
licious player cannot successfully cheat with probability
better than 2−80, it requires at least 250 copies of the
garbled circuit [30]. For the balance between computing
nodes, we use 256 copies in the experiment. The results
reported in Table 6 and Table 7 come from an average of
30 experiment samples.

Gate Type non-XOR XOR

Fairplay 15,316 35,084
Ours-A 15,300 34,228

Pinkas et al. 11,286 22,594
Ours-B 9,100 21,628

Table 5: The components of the AES circuits from differ-
ent sources. Ours-A comes from the textbook AES algo-
rithm, and Ours-B uses optimized S-box circuit. (Sizes
do not include input or output wires)

Gen Eval Comm Comm
(sec) (sec) (KB) (%)

OT Time
Comp. 157.8 33.8

5,516 16.0
Comm. 0.1 124.1

Const.
Comp. 40.2 –

3 <0.1
Comm. – 40.2

Inp. Check
Comp. – 1.7

266 0.8
Comm. – –

Eval.
Comp. 14.6 34.2

28,781 83.3
Comm. 21.1 3.2

Total 237.3 237.3 44,805 100.0

Table 6: The result of (x,y) 7→ (⊥,AESx(y)), where
x,y ∈ {0,1}128 with parameters k = 80 and s = 256.

In Table 6, both the computational and communica-
tional costs for each main stage are listed under the tra-
ditional setting, where there is only one process on each
side. These main stages include oblivious transfer, gar-
bled circuit construction, the generator’s input consis-
tency check, and the circuit evaluation. Each row in-
cludes both the computation and communication time
used. Note that network conditions could vary from
place to place. Our experiments run in a local area net-
work, and the data can merely give a rough idea on how
fast it could be in an ideal environment. However, we
also report how much information must be exchanged
during the process.

We see from Table 6 that the evaluator spends most of
the time in communication in both the oblivious transfer
and circuit construction stages, while there really is not
much data needed to be transmitted. This is because the
evaluator spends that time on waiting for the generator
to finish computation-intensive tasks. The same reason
explains that in the circuit evaluation stage the generator
spends more time in communication than the evaluator.
This waiting results from that the two parties need to run
the protocol in a synchronized manner, which explains
that the time both parties spend on each stage is about
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core #
2 4 8 16 32 64 128 256

Gen Evl Gen Evl Gen Evl Gen Evl Gen Evl Gen Evl Gen Evl Gen Evl

OT 79.1 16.8 39.5 8.4 19.8 4.2 9.9 2.1 4.9 1.1 2.5 0.6 1.3 0.3 0.6 0.2
Gen. 19.6 – 9.3 – 4.5 – 2.2 – 1.1 – 0.5 – 0.3 – 0.1 –

Inp. chk – 0.9 – 0.4 – 0.2 – 0.1 – – – – – – – –
Eval. 7.1 16.2 3.2 7.6 1.7 3.5 0.8 1.7 0.4 0.8 0.3 0.4 0.2 0.2 0.1 0.1

Inter-com 11.8 83.6 5.7 41.3 2.5 20.5 1.4 10.2 0.6 5.1 0.3 2.6 0.1 1.4 0.1 0.7
Intra-com 0.5 0.5 0.2 0.3 0.2 0.2 0.1 0.2 0.1 0.1 – 0.1 – 0.1 – 0.1

Total time 118.0 118.1 58.0 58.0 28.6 28.6 14.4 14.4 7.2 7.2 3.7 3.7 1.9 1.9 1.0 1.0

Table 7: The time (in seconds) of running AES circuit with security parameter k=80 and s=256. The number of nodes
represents the degree of parallelism on each side. “–” means that the time is smaller than 0.05 second and thus omitted.

the same. This synchronization is crucial since our pro-
tocol’s security is guaranteed only under sequential ex-
ecution. While the parallelization of the program intro-
duces high performance execution, it does not and should
not change this essential quality. Otherwise, a stronger
notion of security such as universal security will be re-
quired. By using TCP sockets in “blocking” mode, we
enforce this synchronization.

Note that the low communication during the circuit
construction stage is due to the random seed check-
ing technique. Also, the fact that the generator spends
more time in the evaluation stage than she traditionally
does comes from the second construction for evluation-
circuits. Recall that only the evaluation-circuits need to
be sent to the evaluator. Since only 40% of the garbled
circuits (102 out of 256) are evaluation-circuits, the ratio
of the generator’s computation time in the generation and
evaluation stage is 40.2:14.6 ' 5:2.

Table 7 shows that the Yao protocol really benefits
from the circuit-level parallelization. Starting from Ta-
ble 6, where each side only has one process, all the way
to when each side has 256 processes, as the degree of par-
allelism doubles, the total time reduces into a half. Note
that the communication costs between the generator and
evaluator remain the same, as shown in Table 6. It may
seem odd that the communication costs also reduce as
the number of processes increase. The real interpretation
of this data is that as the number of processes increases,
the “waiting time” decreases.

Notice that as the number of processes increases, the
ratio of the time the generator spends in the construc-
tion and evaluation stage decreases from 5:2 to 1:1. The
reason is that the number of garbled circuit each process
handles is getting smaller and smaller. Eventually, we
reach the limit of the benefits that the circuit-level paral-
lelism could possibly bring. In this case, each process is
dealing with merely a single copy of the garbled circuit,
and the time spent in both the generation and evaluation
stages is the time to construct a garbled circuit.

The intra-communication time in Table 7 is the com-
munication within each side.

To the best of our knowledge, completing an execution
of secure AES in malicious model within 1.1 seconds is
the best result that has ever been reported. The next best
result from Nielsen et al. [27] is 1.6 seconds, and it is
an amortized result (85 seconds for 54 blocks of AES
encryption in parallel).

RSA In this experiment, we run the 256-bit RSA en-
cryption circuit, that is, (x,y) 7→ (⊥,xy mod m), where
x,y,m ∈ {0,1}256 and m is a public number. The circuit
generated by our compiler has 266,150,119 gates, and
66,782,203 of which are non-XOR. Roughly, our system
can handle 125,000 gates per second. Note that Huang et
al.’s system is the only one, to the best of our knowledge,
that is capable of handling large circuits [13], in particu-
lar, at a rate of over 96,000 (non-XOR) gates per second
on an edit-distance circuit.

Gen Eval Comm Comm
(sec) (sec) (MB) (%)

OT
Comp. 1.4 1.1

11 <0.1
Comm. – 0.2

Gen.
Comp. 1210.7 –

<1 <0.1
Comm. – 1210.7

Evl.
Comp. 718.3 542.6

204,355 99.9
Comm. 199.2 375.5

Total 1930.6 2130.1 204,368 100.0

Table 8: The result of (x,y) 7→ (⊥,xy mod m), where
x,y,m ∈ {0,1}256 and m is public parameter. The secu-
rity parameters k = 80 and there are s= 256 copies of the
circuit. Each party is comprised of 256 cores in a cluster.
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8 Conclusion

We have presented a general purpose secure two party
computation system which offers security against mali-
cious adversaries and which can efficiently evaluate cir-
cuits with hundreds of millions of gates on affordable
hardware. Our compiler can generate large circuits us-
ing fewer computational resources than similar compil-
ers, and offers improved flexibility to users of the sys-
tem. Our evaluator can take advantage of parallel com-
puting resources, which are becoming increasingly com-
mon and affordable. As future work, we intend to extend
our work to allow for the generation and evaluation of
circuits with billions of gates, while maintaining security
against malicious adversaries. The source code for this
system can be downloaded from the authors’ website.
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