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Abstract

In the presence of a quantum adversary, there are two possible definitions of security for a
pseudorandom function. The first, which we call standard-security, allows the adversary to be
quantum, but requires queries to the function to be classical. The second, quantum-security,
allows the adversary to query the function on a quantum superposition of inputs, thereby giving
the adversary a superposition of the values of the function at many inputs at once. Existing
proof techniques for proving the security of pseudorandom functions fail when the adversary can
make quantum queries. We give the first quantum-security proofs for pseudorandom functions
by showing that some classical constructions of pseudorandom functions are quantum-secure.
Namely, we show that the standard constructions of pseudorandom functions from pseudorandom
generators or pseudorandom synthesizers are secure, even when the adversary can make quantum
queries. We also show that a direct construction from lattices is quantum-secure. To prove
security, we develop new new tools to prove the indistinguishability of distributions under
quantum queries.

In light of these positive results, one might hope that all standard-secure pseudorandom
functions are quantum-secure. To the contrary, we show a separation: under the assumption
that standard-secure pseudorandom functions exist, there are pseudorandom functions secure
against quantum adversaries making classical queries, but insecure once the adversary can make
quantum queries.
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1 Introduction

In their seminal paper, Goldreich, Goldwasser, and Micali [GGM86] define what it means for a func-
tion to be pseudorandom, and construct pseudorandom functions (PRFs) from any pseudorandom
generator. Since then, pseudorandom functions have also been built from pseudorandom synthesiz-
ers [NR95], as well as directly from hard problems [NR97, NRR00, DY05, LW09, BMR10, BPR11].
Pseudorandom functions have become an important tool in cryptography: for example, they are
used in the construction of block ciphers and message authentication codes.

To define pseudorandom functions in the presence of a quantum adversary, two approaches are
possible. The first is what we call standard-security: the quantum adversary can only make classical
queries to the function, but all the computation between the queries may be quantum. The second,
which we call quantum-security, allows the adversary to make quantum queries to the function. We
call pseudorandom functions that are secure against quantum queries Quantum Pseudorandom
Functions, or QPRFs. Constructing secure QPRFs will be the focus of this paper.

Quantum-secure pseudorandom functions (QPRFs) have several applications. Whenever a
pseudorandom function is used in the presence of a quantum adversary, security against quantum
queries captures a wider class of attacks. Thus, the conservative approach to crpytosystem design
would dictate using a quantum-secure pseudorandom function. Further, in any instance where
a pseudorandom function might be evaluated on a superposition, quantum-security is required.
Lastly, quantum-secure pseudorandom functions can be used to simulate quantum-accessible random
oracles [BDF+11]. Unlike the classical setting, where a random oracle can be simulated on the fly,
simulating a quantum-accessible random oracle is simulated by defining the entire function up front
before any queries are made. Zhandry [Zha12] observes that if the number of queries is a-priori
bounded by q, 2q-wise independent functions are sufficient. However, whenever the number of
quantum queries is not known in advance, quantum-secure pseudorandom functions seem necessary
for simulating quantum-accessible random oracles.

1.1 Proving Quantum Security

One might hope that a proof of standard-security would imply a proof of quantum-security. However,
all existing proofs of security for pseudorandom functions are inherently classical in nature and do
not immediately imply quantum-security. For example, we consider the Goldreich et al. construction
of a pseudorandom function PRF from a pseudorandom generator G:

At a high level, implicit in the definition of PRF is a binary tree of depth n+ 1, where each leaf
corresponds to an input/output pair of PRF. To evaluate PRF, we start at the root, and follow
the path from root to the leaf corresponding to the input. The key to proving security is that any
efficient adversary can only make a polynomial number of queries, and can thus the evaluations of
PRF visit only a polynomial number of nodes in the tree. This allows any adversary A which breaks
the security of PRF with non-negligible probability to be converted into an adversary breaking the
security of G also with non-negligible probability.

In the quantum setting, A may query on a superposition of all inputs, so the response could
“visit” all exponentially many nodes in the tree. Therefore, the argument above no longer applies,
and there is no obvious way to adapt it to the quantum setting. All existing security proofs for
pseudorandom functions from standard assumptions suffer from similar weaknesses.
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1.2 Our Results

We investigate the quantum-security of pseudorandom functions. Our results are as follows:

• We show that there are standard-secure pseudorandom functions that are not quantum-secure,
thus a standard-secure PRF may not be secure as a QPRF.
• We show that specific constructions of pseudorandom functions are quantum-secure:

– The construction from length-doubling pseudorandom generators (PRGs) due to Goldre-
ich, Goldwasser, and Micali [GGM86].

– The construction from pseudorandom synthsizers due to Naor and Reingold [NR95].
– The direct construction based on the Learning With Errors problem due to Banerjee,

Peikert, and Rosen [BPR11].

• The main technical tool used in the above proofs is the following: let D1 and D2 be two
distributions over a set Y. Let X be another set, and let O1 and O2 be the distributions of
functions from X to Y where for each x ∈ X , Oi(x) is chosen independently according to
Di. We show that if D1 and D2 are computationally (resp. statistically) indistinguishable,
then the oracles O1 and O2 are computationally (resp. statistically) indistinguishable by any
algorithm making a polynomial number of quantum queries. We this tool, for example, to
argue that a stronger notion of PRG security is equivalent to the standard PRG security
definition.

2 Preliminaries and Notation

We say that ε = ε(n) is negligible if, for all polynomials p(n), ε(n) < 1/p(n) for large enough n.
For an integer k, we will use non-standard notation and write [k] = {0, ..., k− 1} to be the set of

non-negative integers less than k. We write the set of all n bit strings as [2]n. Let x = x1...xn be a
string of length n. We write x[a,b] to denote the substring xaxa+1...xb.

2.1 Functions and Probabilities

Given two sets X and Y, define YX as the set of functions f : X → Y. Notice that the set of
functions f : Z → X × Y can be written both as (X × Y)Z and as

(
XZ

)
×
(
YZ
)
. In other words,

we can think of f as a pair of functions f = (f0, f1) where f0 : Z → X and f1 : Z → Y.
Given f ∈ YX and g ∈ ZY , let g ◦ f be the composition of f and g. That is, g ◦ f(x) = g(f(x)).

If F ⊆ YX , let g ◦ F be the set of functions g ◦ f for f ∈ F . Similarly, if G ⊆ ZY , G ◦ f is the set of
functions f ◦ g where g ∈ G. Define G ◦ F accordingly.

We define a weight assignment on a set X as a function D : X → R such that
∑
x∈X D(x) = 1.

For some event event, we write Prx←D[event] to represent the sum of the weights of all x consistent
with that event. A distribution on X is a weight-assignment D such that D(x) ≥ 0 for all x ∈ X . If
D is a distribution, we say that x occurs with probability D(x). We will sometimes abuse notation
and write X to denote the uniform distribution on X .

Given a weight assignment D on YX and a function g ∈ ZY , define the weight assignment g ◦D
over ZX where the weight of a function h is the sum of D(f) for all f where h = g ◦ f . Given
f ∈ YX and a weight assignment E over ZX , define E ◦ f and E ◦D accordingly.
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Given a weight assignment D on YX , and a subset W of X , we define the marginal weight
assignment DW on YW where the weight of each function f :W → Y is the sum of all weights of
functions f ′ : X → Y consistent with f on W. In other words,

DW(f) = Pr
f ′←D

[f(w) = f ′(w)∀w ∈ W]

We say that D is k-wise equivalent to another distribution D′ if, for all subsets W of size k,
DW = D′W . We write this as D k= D′. We say that D is k-wise independent if it is k-wise equivalent
to the uniform distribution.

Given a weight assignment D on a set Y , and another set X , define DX as the weight assignment
on YX where DX (f) =

∏
x∈X D(f(x)). When D is a distribution, this corresponds to the distribution

over YX where the output for each input is chosen independently according to D.
The distance between two weight assignments D1 and D2 over a set X is

|D1 −D2| =
∑
x∈X
|D1(x)−D2(x)|

If |D1 −D2| ≤ ε, we say D1 and D2 are ε-close. If |D1 −D2| ≥ ε, we say they are ε-far.

2.2 Quantum Computation

Here we state some basic facts about quantum computation needed for the paper, and refer the
reader to Nielsen and Chuang [NC00] for a more in depth discussion.

Fact 1. Any classical efficiently computable function f can be implemented efficiently by a quan-
tum computer. Moreover, f can be implemented as an oracle which can be queried on quantum
superpositions.

The following is a result from Zhandry [Zha12]:

Fact 2. For any sets X and Y, we can efficiently “construct” a random oracle from X to Y capable
of handling q quantum queries, where q is a polynomial. More specifically, the behavior of any
quantum algorithm making at most q queries to a 2q-wise independent function is identical to its
behavior when the queries are made to a random function.

Given an efficiently sampleable distribution D over a set Y, we can also “construct” a random
function drawn from DX as follows: Let Z be the set of randomness used to sample from D, and
let f(r) be the element y ∈ Y obtained using randomness r ∈ Z. Then DX = f ◦ ZX , so we first
construct a random function O′ ∈ ZX , and let O(x) = f(O′(x)).

2.3 Cryptographic Primitives

In this paper, we always assume the adversary is a quantum computer. However, for any particular
primitive, there may be multiple definitions of security, based on how the adversary is allowed to
interact with the primitive. Here we define pseudorandom functions and two security notions. The
definitions of pseudorandom generators and synthesizers appears in the relevant sections.

Definition 2.1 (PRF). A pseudorandom function is a function PRF : K ×X → Y, where K is the
key-space, and X and Y are the domain and range. K, X , and Y are implicitly functions of the
security parameter n. We write y = PRFk(x).
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Definition 2.2 (Standard-Security). A pseudorandom function PRF is standard-secure if no efficient
quantum adversary A making classical queries can distinguish between PRFk for a random k from a
truly random function. That is, for every such A, there exists a negligible function ε = ε(n) such
that ∣∣∣∣ Pr

k←K
[APRFk() = 1]− Pr

O←YX
[AO() = 1]

∣∣∣∣ < ε

Definition 2.3 (Quantum-Security). A pseudorandom function PRF is quantum-secure if no
efficient quantum adversary A making quantum queries can distinguish PRFk from a random k
from truly a random function.

We call such quantum-secure pseudorandom functions Quantum Random Functions, or QPRFs.

3 Separation Result

In this section, we show our separation result:

Theorem 3.1. If secure PRFs exist, then there are standard-secure PRFs that are not QPRFs.

Proof. Let PRF be a standard-secure pseudorandom function with key-space K, domain X , and
range Y . Interpret X as [N ], where N is the number of elements in X . We can assume without loss
of generality that Y contains at least N2 elements (if not, we can construct a new pseudorandom
function with smaller domain but larger range in a standard way).

We now construct a new pseudorandom function PRF′(k,a)(x) = PRFk(x mod a) where:

• The key space of PRF′ is K′ = K ×A where A = Z ∩ (N/2, N ]. That is, a key for PRF′ is a
pair (k, a) where k is a key for PRF, and a is an integer in the range (N/2, N ].
• The domain is X ′ = [N ′] where N ′ is the smallest power of 2 greater than 4N2.

The following two claims are proved in Appendix A:

Claim 1. If PRF is standard-secure, then so is PRF′

Sketch of Proof. The basic idea is that an algorithm making a polynomial number of classical
queries to PRF′ has negligible probability of querying on two points x and x′ such that x ≡ x′

mod a. As long as no such pair of points are queried, PRF′ will still look like a random function.

Claim 2. If PRF is quantum-secure, then PRF′ is not.

Sketch of Proof. If we allow quantum queries to PRF′, we can use the period finding algorithm of
Boneh and Lipton [BL95] to find a. With a, it is easy to distinguish PRF′ from a random oracle.

Thus one of PRF and PRF′ is standard-secure but not quantum-secure, as desired.

We have shown that for pseudorandom functions, security against classical queries does not
imply security against quantum queries. In the next sections, we will show, however, that several of
the standard constructions in the literature are nevertheless quantum-secure.
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4 Distinguishing Oracle Distributions

In this section, we describe some tools for arguing that a quantum algorithm cannot distinguish
between two oracle distributions. Let X and Y be sets. We start by recalling two theorems of
Zhandry [Zha12]:

Theorem 4.1. Let A be a quantum algorithm making q quantum queries to an oracle H : YX . If
we draw H from some weight assignment D, then for every z, the quantity PrH←D[AH() = z] is a
linear combination of the quantities PrH←D[H(xi) = ri∀i ∈ {1, ..., 2q}] for all possible settings of
the xi and ri.

Theorem 4.2. Fix q, and let Dλ be a family of distributions on YX indexed by λ ∈ [0, 1]. Suppose
there are integers d and ∆ such that for every 2q pairs (xi, ri) ∈ X × Y, the function p(λ) =
PrH←Dλ [H(xi) = ri∀i ∈ {1, ..., 2q}] satisfies:

• p is a polynomial in λ of degree at most d.
• p(i)(0), the ith derivative of p at 0, is 0 for each i ∈ {1, ...,∆− 1}.

Then for any quantum algorithm A making q quantum queries, the output distributions under Dλ

and D0 are 4∆

(2∆)!λ
∆d2∆-close.

We now show a similar result:

Theorem 4.3. Fix q, and let Er be a family of distributions on YX indexed by r ∈ Z+⋃{∞}.
Suppose there are integers d and ∆ such that for every 2q pairs (xi, ri) ∈ X × Y, the function
p(λ) = PrH←E1/λ [H(xi) = ri∀i ∈ {1, ..., 2q}] satisfies:

• p is a polynomial in λ of degree at most d.
• p(i)(0), the ith derivative of p at 0, is 0 for each i ∈ {1, ...,∆− 1}.

Then for any quantum algorithm A making q quantum queries, the output distributions under Er
and E∞ are 22−∆ζ(2∆)(1/r)∆d3∆-close, where ζ is the Riemann Zeta function.

Sketch of Proof. Let Dλ = E1/λ. We see that the conditions of Theorems 4.3 and 4.2 are
identical, with the following exception: Theorem 4.2 requires Dλ to be a distribution for all λ ∈ [0, 1],
while Theorem 4.3 only requires Dλ to be a distribution when 1/λ is an integer (or λ = 0). The
proof is thus similar in flavor to that of Theorem 4.2, except that we need to cope with the relaxed
assumptions. The proof is in Appendix B.

In the next section, we apply Theorem 4.3 to a new class of distributions.

4.1 Small-Range Distributions

We now apply Theorem 4.3 to a new distribution on oracles, which we call small-range distributions.
Given a distribution D on Y, define SRDr as follows:

• For each i ∈ [r], chose a random value yi ∈ Y according to the distribution D.
• For each x ∈ X , pick a random i ∈ [r] and set O(x) = yi.

The following is proved in Appendix C:
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Lemma 4.4. Fix k. The probabilities in each of the marginal distributions of SRDr over k inputs
are polynomials in 1/r of degree k.

An alternate view of this function is to choose a function g ← D[r] and a function f ← [r]X ,
and the output function is the composition g ◦ f . That is, SRDr = D[r] ◦ [r]X . Notice that, as r goes
to infinity, f will be injective with probability 1, and hence for each x, g(f(x)) will be distributed
independently according to D. That is, SRD∞ = DX . We can then use Theorem 4.3 with ∆ = 1 (and
the fact that ζ(2) = π2/6) to bound the ability of any quantum algorithm to distinguish SRDr from
SRD∞:

Corollary 4.5. The output distributions of a quantum algorithm making q quantum queries to an
oracle either drawn from SRDr or DX are `(q)/r-close, where `(q) = 2(π2/6)(2q)3 < 27q3.

We observe that this bound is tight: in Appendix D we show that the quantum collision finding
algorithm of Brassard, Høyer, and Tapp [BHT97] can be used to distinguish SRDr from DX with
optimal probability. This shows that Theorem 4.3 is tight for ∆ = 0.

4.2 Oracle-Indistinguishability

We now use the above techniques to prove our main tool for the rest of the paper. Let D1 and D2
be two distributions over a set Y. Recall that D1 and D2 are computationally indistinguishable if,
for all efficient (quantum) algorithms A,∣∣∣∣ Pr

y←D1
[A(y) = 1]− Pr

y←D2
[A(y) = 1]

∣∣∣∣ < ε

where ε is negligible. We now consider a new notion, which we call oracle-indistinguishability:

Definition 4.6 (Oracle-Indistinguishable). Two distributions D1 and D2 over a set Y are oracle-
indistinguishable if, for all sets X , no efficient quantum algorithm A can distinguish DX1 from DX2 .
That is, for all such A and X , there is a negligible function ε such that∣∣∣∣∣ Pr

O←DX1
[BO() = 1]− Pr

O←DX2
[BO() = 1]

∣∣∣∣∣ < ε

We now explore the relationship between standard- and oracle-indistinguishability. Clearly,
oracle- implies standard-indistinguishability: if A breaks the standard-indistinguishability of D1,
and D2, then BO() = A(O(x)) for any x ∈ X breaks the oracle-indistinguishability. In the other
direction, in the classical world, we can do a simple hybrid argument across the q oracle inputs any
adversary B makes queries to, resulting in an algorithm that breaks the standard indistinuishability.
However, in the quantum world, each query might be over a superposition of exponentially many
inputs. Therefore hybrid will be over exponentially many inputs, so the proof fails.

In the statistical setting, this question has been answered by Boneh et al. [BDF+11]. They show
that if a (potentially unbounded) quantum adversary making q queries distinguishes DX1 from DX2
with probability ε, then D1 and D2 must Ω(ε2/q4)-far.

Now, we extend their result to the computational setting:

Theorem 4.7. Let D1 and D2 be efficiently sampleable distributions over a set Y. Then D1 and
D2 are quantum indistinguishable if and only if they are also quantum oracle-indistinguishable.
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Proof. Let B be a quantum adversary that distinguishes DX1 from DX2 with probability ε, for
distributions D1 and D2 over Y. That is, there is some set X such that∣∣∣∣∣ Pr

O←DX1
[BO() = 1]− Pr

O←DX2
[BO() = 1]

∣∣∣∣∣ = ε

Choose r so that `(q)/r = ε/4, where `(q) is the polynomial from Corollary 4.5. That is,
r = 4`(q)/ε. No quantum algorithm can distinguish SRDir from DXi with probability greater than
`(q)/r = ε/4. Thus, it must be that∣∣∣∣∣ Pr

O←SRD1
r

[BO() = 1]− Pr
O←SRD2

r

[BO() = 1]
∣∣∣∣∣ ≥ ε/2

We now define r+1 hybrids Hi as follows: For j = 0, ..., i−1, draw yj from D1. For j = i, ..., r−1,
draw yj from D2. Then give B the oracle O where for each x, O(x) is a randomly selected yi. Hr is
the case where O ← SRD1

r , and H0 is the case where O ← SRD2
r . Hence H0 and Hr are distinguished

with probability at least ε/2. Let

εi = Pr
O←Hi+1

[BO() = 1]− Pr
O←Hi

[BO() = 1]

be the probability that B distinguishes Hi+1 from Hi. Then |
∑r
i=1 εi| ≥ ε/2.

We construct an algorithm A that distinguishes between D1 and D2 with probability ε/2r. A,
on inputs y, does the following:

• Choose a random i ∈ [r].
• Construct a random oracle O0 ← [r]X .
• Construct random oracles O1 ← D

{0,...,i−1}
1 and O2 ← D

{i+1,...,r−1}
2 .

• construct the oracle O where O(x) is defined as follows:

– Compute j = O0(x).
– If j = i, output y.
– Otherwise, if j < i, output O1(j) and if j > i, output O2(j).

• Simulate B with the oracle O, and output the output of B.

If y ← D1, B sees hybrid Hi+1. If y ← D2, B sees Hi. Therefore, we have that for fixed i,
Pry←D1 [A(y) = 1]− Pry←D2 [A(y) = 1] = εi. Averaging over all i,∣∣∣∣ Pr

y←D1
[A(y) = 1]− Pr

y←D2
[A(y) = 1]

∣∣∣∣ =
∣∣∣∣∣1r

r∑
i=1

εi

∣∣∣∣∣ ≥ ε

2r = ε2

8`(q)

Thus, A takes about the same time as B, and distinguishes D1 from D2 with a probability
polynomial in the probabilityB distinguishesDX1 fromDX2 . IfB breaks the oracle-indistinguishability
of DX1 and DX2 , then B is efficient and distinguishes the two with non-negligible probability. Hence,
A is also efficient and distinguishes D1 from D2 with non-negligible probability.

Notice that this proof works in the statistical setting as well, so that if any quantum algorithm
making q quantum queries distinguishes DX1 from DX2 with probability ε, then D1 and D2 must be
Ω(ε2/`(q)) = Ω(ε2/q3)-far, improving the result of Boneh et al. by a factor of q.
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5 Pseudorandom Functions from Pseudorandom Generators

We give the construction of pseudorandom functions from pseudorandom generators due to Goldreich,
Goldwasser, and Micali [GGM86]. Using the techniques of the previous section, we prove its security
in a new way that makes sense in the quantum setting. First, we define pseudorandom generators:

Definition 5.1 (PRG). A pseudorandom generator (PRG) is a function G : X → Y. X and Y are
implicitly indexed by the security parameter n.

Definition 5.2 (Standard-Security). A pseudorandom function G is standard-secure if the distri-
butions G ◦ X and Y are indistinguishable.

Construction 1 (GGM-PRF). Let G : K → K2 be a length-doubling pseudorandom generator.
Write G(x) = (G0(x), G1(x)) where G0, G1 are functions from K to K. Then we define the GGM
pseudorandom function PRF : K × [2]n → K where

PRFk(x) = Gx1(...Gxn−1(Gxn(k))...)

As described in the introduction, the standard proof of security fails to prove quantum-security.
With the techniques from Section 4, we show how to work around this problem. We first define a
stronger notion of security for pseudorandom generators, which we call oracle-security:

Definition 5.3 (Oracle-Security). A pseudorandom generator G : X → Y is oracle-secure if the
distributions G ◦ X and Y are oracle-indistinguishable.

Since both G ◦ X and Y are efficiently sampleable, Theorem 4.7 gives us:

Corollary 5.4. If G is a secure PRG, then it is also oracle-secure.

We now can prove the security of Construction 1.

Theorem 5.5. If G is a standard-secure PRG, then PRF from Construction 1 is a QPRF.

Proof. We adapt the security proof of Goldreich et al. to convert any adversary for PRF into an
adversary for the oracle-security of G. Then Corollary 5.4 shows that this adversary is impossible
under the assumption that G is standard-secure.

Suppose a quantum adversary A distinguishes PRF from a random oracle with probability ε.
Define hybrids Hi as follows: Pick a random function P ← K[2]n−i and give A the oracle

Oi(x) = Gx1(...Gxi(P (x[i+1,n]))...).

H0 is the case where A’s oracle is random. When i = n, P ← K[2]n−i is a random function from
the set containing only the empty string to K, and hence is associated with the image of the empty
string, a random element in K. Thus Hn is the case where A’s oracle is PRF. A simple hybrid
argument shows there for some i, A distinguishes Oi from Oi+1 with probability at least ε/n.

We now construct a quantum algorithm B breaking the oracle-security of G. B has quantum
access to an oracle P : [2]n−i−1 → K2, and distinguishes P ← G ◦ K[2]n−i−1 from P ←

(
K2)[2]n−i−1

:

• Interpret P as (P0, P1) where Pb ∈ [2]n−i−1 → K.
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• Construct the oracle O : [2]n → K where O(x) = Gx1(...Gxi(Pxi+1(x[i+2,n]))...).
• Simulate A with oracle O, and output the output of A.

In the case where P is truly random, so are P0 and P1, and thus O = Oi, the oracle in hybrid
Hi. When O is drawn from G ◦ K[2]n−i−1 , then Pb ← Gb ◦ K[2]n−i−1 , and we thus get that O = Oi+1,
the oracle in hybrid Hi+1. Since A distinguishes these with probability at least ε/n, B breaks the
oracle-security of G with the same probability.

6 Pseudorandom Functions from Synthesizers

In this section, we show that the construction of pseudorandom functions from pseudorandom
synthesizers due to Naor and Reingold [NR95] is quantum-secure.

Definition 6.1 (Synthesizer). A pseudorandom synthesizer is a function S : X 2 → Y. X and Y
are implicitly indexed by the security parameter n.

Definition 6.2 (Standard-Security). A pseudoreandom synthesizer S : X 2 → Y is standard-
secure if, for any set Z, no efficient quantum algorithm A making classical queries can distinguish
O(z1, z2) = S(O1(z1), O2(z2)) where Ob ← XZ from YZ×Z . That is, for any such A and Z, there
exists a negligible function ε such that∣∣∣∣∣ Pr

O1←XZ ,O2←XZ
[AS(O1,O2)() = 1]− Pr

O←YZ×Z
[AO() = 1]

∣∣∣∣∣ < ε

Where S(O1, O2) means the oracle that maps (z1, z2) into S(O1(z1), O2(z2)).

Construction 2 (NR-PRF). Given a pseduorandom synthesizer S : X 2 → X , let ` be an integer
and n = 2`. We let PRFk(x) = PRF(`)

k (x) where PRF(i) :
(
X 2×2i

)
× [2]2

i

→ X is defined as

PRF(0)
a1,0,a1,1(x) = a1,x

PRF(i)
a1,0,a1,1,a2,0,a2,1,...,a2i,0,a2i,1

(x) = S(PRF(i−1)
a1,0,a1,1,...,a2i−1,0,a2i−1,1

(x[1,2i−1]),

PRF(i−1)
a2i−1+1,0,a2i−1+1,1,...,a2i,0,a2i,1

(x[2i−1+1,2i]))

The following theorem is proved in Appendix E:

Theorem 6.3. If S is a standard-secure synthesizer, then PRF from Construction 2 is a QPRF.

Sketch of Proof. The proof is very similar to that of the security of the GGM construction:
we define a new notion of security for synthesizers, called quantum-security, and prove that
quantum-security implies that Construction 2 is quantum secure, following the techniques of Naor
and Reingold. Then, we prove the equivalence of quantum-security and standard-security for
synthesizers, completing the proof.
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7 Direct Construction of Pseudorandom Functions

In this section, present the construction of pseudorandom functions from Banerjee, Peikert, and
Rosen [BPR11]. We show that this construction is quantum-secure.

Let p, q be integers with q > p. Let bxep be the map from Zq into Zp defined by first rounding x
to the nearest multiple of q/p, and then interpreting the result as an element of Zp. More precisely,
bxep = b(p/q)xe mod p where the multiplication and division in (p/q)x are computed in R.

Construction 3. Let p, q,m, ` be integers with q > p. Let K = Zn×mq × (Zn×n)`. We define
PRF : K × [2]` → Zm×np as follows: For a key k = (A, {Si}), let

PRFk(x) =
⌊
At
∏̀
i=1

Sxii

⌉
p

Next is an informal statement of the security of PRF, whose proof appears in Appendix F:

Theorem 7.1. let PRF be as in Construction 3. For an appropriate chose of integers p, q,m, ` and
distribution χ on Z, if we draw A← Zn×mq and Si ← χn×n and the Learning With Errors (LWE)
problem is hard for modulus q and distribution χ, then PRF is a QPRF.

Sketch of Proof. We follow the ideas from the previous sections and define a new notion of
hardness for LWE, called oracle-hard, and show its equivalence to standard hardness. We then show
that if LWE is oracle-hard, PRF from Construction 3 is quantum-secure. This part is very similar to
the proof of Banerjee et al., with some modifications to get it to work in the quantum setting.

8 Conclusion

We have shown that not all pseudorandom functions secure against classical queries are also secure
against quantum queries. Nevertheless, we demonstrate the security of several constructions of
pseudorandom functions against quantum queries. Specifically, we show that the construction from
pseudorandom generators [GGM86], the construction from pseudorandom synthesizers [NR95], and
the direct construction based on the Learning With Errors problem [BPR11] are all secure against
quantum algorithms making quantum queries. We accomplish these results by providing more tools
for bounding the ability of a quantum algorithm to distinguish between two oracle distributions.
We leave as an open problem proving the quantum security of some classical uses of pseudorandom
functions. We have two specific instances in mind:

• Pseudorandom permutations (Block Ciphers) secure against quantum queries. We know how
to build pseudorandom permutations from pseudorandom functions in the classical setting
([LR88, NR99]). Classically, the first step to prove security is to replace the pseudorandom
functions with truly random functions, which no efficient algorithm can detect. The second
step is to prove that no algorithm can distinguish this case from a truly random permutation.
For this construction to be secure against quantum queries, a quantum-secure pseudorandom
function is clearly needed. However, it is not clear how to transform the second step of the
proof to handle quantum queries.
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• Message Authentication Codes (MACs) secure against quantum queries. MACs can be built
from pseudorandom functions and proven existentially unforgeable against a classical adaptive
chosen message attack. If we allow the adversary to ask for an authentication on a superposition
of messages, a new notion of security is required. One possible definition of security is that,
after q queries, no adversary can produce q + 1 classical valid message/tag pairs. Given a
pseudorandom function secure against quantum queries, proving this form of security reduces
to proving the impossibility of the following: After q quantum queries to a random oracle O,
output q + 1 input/output pairs of O with non-negligible probability.
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A Proof of the Separation Result

Here we finish the counter-example from Section 3 and the proof of Theorem 3.1 by proving Claims
1 and 2. Recall that we start with a pseudorandom function PRF with key-space K, domain [N ],
and range Y where |Y| ≥ N2. We then construct a new pseudorandom function PRF′ whose keys
are pairs (k, a) where k ∈ K and a ∈ A where A is the set of integers in (N/2, N ]. We let N ′ be the
smallest power of 2 greater than 4N2, and for x ∈ [N ′], define PRF′(k,a)(x) = PRFk(x mod a).

Proof of Claim 1. We prove that if PRF is standard-secure, so is PRF′. Suppose we have a
quantum adversary A making classical queries that distinguishes PRF′ from a random function with
non-negligible probability ε. That is,∣∣∣∣ Pr

k←K,a←A
[APRF′(k,a)() = 1]− Pr

O←YX
[AO() = 1]

∣∣∣∣ = ε

This is equivalent to∣∣∣∣ Pr
k←K,a←A

[APRFk(· mod a)() = 1]− Pr
O←YX

[AO() = 1]
∣∣∣∣ = ε

Consider the quantity∣∣∣∣∣ Pr
O←YX ,a←A

[AO(· mod a)() = 1]− Pr
O←YX

[AO() = 1]
∣∣∣∣∣

The left hand side is the case where O is a random function in YX , a is a random integer in
(N/2, N ], and we give A the oracle O′(x) = O(x mod a). As long as A never queries its oracle on
two points x and x′ such that x ≡ x′ mod a, this oracle will look random. If A makes q queries,
there are

(q
2
)

possible differences between query points. Each difference is at most 8N2, so for
large N it can only be divisible by at most 2 different moduli a. Notice that |A| ≥ (N − 1)/2.
Each difference thus has a probability at most 2/|A| ≤ 4/(N − 1) of being divisible by a, so the
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total probability of querying x and x′ such that x ≡ x′ mod a is at most 2q2/(N − 1). Thus this
probability, and hence the ability of A to distinguish O′ from a random oracle, is negligible.

A simple hybrid argument then shows that∣∣∣∣∣ Pr
k←K,a←A

[APRFk(· mod a)() = 1]− Pr
O←YX ,a←A

[AO(· mod a)() = 1]
∣∣∣∣∣ ≥ ε− 2q2/(N − 1)

Define a quantum algorithm B which distinguishes PRF from a random oracle. B has an oracle
O, chooses a random integer a ∈ (N/2, N ], and simulates A with the oracle O′(x) = O(x mod a).
When O = PRFk, we get the left side, and when O is random, we get the right side. Thus,∣∣∣∣ Pr

k←K
[BPRFk() = 1]− Pr

O←YX
[BO() = 1]

∣∣∣∣ ≥ ε− 2q2/(N − 1)

Since N is exponential, B breaks the standard-security of PRF.

Proof of Claim 2. We now show that PRF and PRF′ cannot both be quantum-secure. Suppose
PRF is quantum secure. We first consider the case where PRF′ is built from a truly random function
O : [N ]→ Y. That is, PRF′a(x) = O(x mod a).

Since |Y| ≥ N2, the probability that there is a collision (x, x′) where O(x) = O(x′) is less than
1/2. In this case, we then notice that PRF′ is periodic with period a, and we can use the results of
Boneh and Lipton [BL95] to find this period in polynomial time by making quantum queries to the
oracle. Thus, we get a distinguisher that works as follows, given access to an oracle O′:

• Use the period-finding algorithm of Boneh and Lipton to find the period a of O′.
• If a ∈ (N/2, N ], pick a random x ∈ [N ′ − a], and verify that O′(x) = O′(x+ a). If so, output

1. Otherwise, output 0.

If O′ = O(x mod a), then with probability at least 1/2, O will have no collisions, meaning we
will find a with probability 1 − o(1). O′(x) = O′(x + a) will always be true in this case, so we
output 1. If O′ is random, then for any x, the probability that there is any x′ ∈ x+ (N/2, N ] with
O′(x′) = O′(x) is negligible, so the random oracle will fail the test with all but negligible probability.
Therefore, we distinguish PRF′ from random with probability at least 1/2− o(1).

We now switch to the true definition of PRF′. That is, we replace the random oracle O with PRF.
Since PRF is quantum-secure, this only affects the behavior of our distinguisher negligibly. Therefore,
our distinguisher still distinguishes PRF′ from random with probability at least 1/2− o(1).

B Proof of Theorem 4.3

Here we prove Theorem 4.3. Recall that we have a family of distributions Er over YX parametrized
by r ∈ Z+⋃{∞}. For any 2q pairs (xi, ri), the function p(λ) = PrH←E1/λ [H(xi) = ri∀i ∈ {1, ..., 2q}]
satisfies:

• p is represented by a polynomial in λ of degree at most d.
• p(i)(0), the ith derivative of p at 0, is 0 for each i ∈ {1, ...,∆− 1}.
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Then we need to show that any q query quantum algorithm can only distinguish Er from E∞ with
probability at most 22−∆ζ(2∆)(1/r)∆(d)3∆.

Let λ = 1/r. We follow the same proof technique as in Zhandry [Zha12].
By Theorem 4.1, for a q-query quantum algorithm A, PrH←Er [AH() = z] is a linear combination

of the PrH←Er [H(xi) = ri∀i ∈ {1, ..., 2q}]. Thus, for any z, PrH←E1/λ [AH() = z] is a polynomial in
λ of degree d with the first ∆− 1 derivatives at λ = 0 being 0.

Now, suppose that A distinguishes E1/λ from E∞ with probability ε(λ). That is

∑
z

∣∣∣∣∣ Pr
H←E1/λ

[AH() = z]− Pr
H←E∞

[AH() = z]
∣∣∣∣∣ = ε(λ) .

Let Zλ be the set of z such that z is a more likely output under E1/λ than E∞. That is,
PrH←E1/λ [AH() = z] > PrH←E∞ [AH() = z]. It is not difficult to show that

Pr
H←E1/λ

[AH() ∈ Zλ]− Pr
H←E∞

[AH() ∈ Zλ] = ε(λ)/2 .

Fix λ0, and consider the quantity

pλ0(λ) ≡ Pr
H←E1/λ

[AH() ∈ Zλ0 ] =
∑
z∈Zλ0

Pr
H←E1/λ

[AH() = z] .

Then pλ(λ) − pλ(0) = ε(λ)/2. Further, for each λ0, pλ0 is a degree-d polynomial in λ such that
p

(i)
λ0

(0) = 0 for i ∈ {1, ...,∆− 1}. It also lies in the range [0, 1] when λ = 0 or 1/λ ∈ Z+. Thus, we
make use of the following theorem:

Theorem B.1. Let p(λ) be a polynomial in λ of degree d such that p(i)(0) = 0 for i ∈ {1, ...,∆− 1},
0 ≤ p(0) ≤ 1, and 0 ≤ p(1/r) ≤ 1 for all r ∈ Z+. Then |p(1/r)− p(0)| < 21−∆ζ(2∆)(1/r)∆d3∆ for
all r ∈ Z+.

Before proving this theorem, we use it to finish the proof of Theorem 4.3. For each λ0, pλ0

satisfies the conditions of Theorem B.1, so we must have that pλ0(λ)− pλ0(0) < 21−∆ζ(2∆)λ∆d3∆.
But then setting λ0 = λ, we get that

ε(λ) = 2(pλ(λ)− pλ(0)) < 22−∆ζ(2∆)λ∆d3∆ .

Replacing 1/λ with r, we have shown that the output distributions of any q query quantum
algorithm A under Er and E∞ are 22−∆ζ(2∆)(1/r)∆d3∆-close, as desired.

Proof of Theorem B.1. We have a polynomial p of degree d with p(i)(0) = 0 for i ∈ {1, ...,∆− 1}.
Further, for r ∈ Z+ ∩ {∞}, 0 ≤ p(1/r) ≤ 1. Now, let s(λ) = p(λ)−p(0)

λ∆ . Then s is a d −∆-degree
polynomial. We will now interpolate this polynomial at d−∆ + 1 points: let

λi = 1⌊
(d−∆+1)3

2i2
⌋ .

Then we can use the Lagrange interpolating polynomials to interpolate s(λ). Let si = s(λi). Then:

s(λ) =
d−∆+1∑
i=1

si`i(λ)
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where `i(λ) is the Lagrange polynomial

`i(λ) =
d−∆+1∏
j=1,j 6=i

(
λ− λj
λi − λj

)

Then we get

p(λ)− p(0) = λ∆
d−∆+1∑
i=1

p(λi)− p(0)
λ∆
i

`i(λ)

=
d−∆+1∑
i−1

ai(λ)(p(λi)− p(0))

where
ai(λ) =

(
λ

λi

)∆
`i(λ) .

Now, observe that 1/λi are integers, so 0 ≤ p(λi) ≤ 1 by assumption. Since 0 ≤ p(0) ≤ 1 as well,
we must have that |p(λi)− p(0)| ≤ 1. Therefore,

|p(λ)− p(0)| =
d−∆+1∑
i=1

|ai(λ)| .

We now need to bound this sum.

Claim 3. If λ ≤ λi for all i, then
∑
i |ai(λ)| < 21−∆ζ(2∆)λ∆d3∆

Before proving this claim, we note that it proves Theorem B.1 when λ ≤ λi for all i (equivalently,
λ ≤ λ1). If λ > λ1, then the bound we are trying to prove is at least

21−∆ζ(2∆)
(

(d−∆ + 1)3

b(d−∆ + 1)3/2c

)∆

> 2ζ(2∆) > 2 .

Which is already trivially satisfied by the assumption that p(1/r) ∈ [0, 1].

Proof of Claim 3. First, notice that
∣∣∣∣ai(λ)
λ∆

∣∣∣∣ =
( 1
λi

)∆ d−∆+1∏
j=1,j 6=i

(
|λ− λj |
|λi − λj |

)
≤
( 1
λi

)∆ d−∆+1∏
j=1,j 6=i

(
λj

|λi − λj |

)

Now, observe that λi ≥ 2i2
(d−∆+1)3 and that

|λi − λj | = λiλj

∣∣∣∣∣
⌊

(d−∆ + 1)3

2i2

⌋
−
⌊(d−∆ + 1)

2j2

⌋∣∣∣∣∣
≥ 2i2

(d−∆ + 1)3λj

(∣∣∣∣∣(d−∆ + 1)3

2i2 − (d−∆ + 1)3

2j2

∣∣∣∣∣− 1
)
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Which can be simplified to

|λi − λj | ≥ λj

∣∣i2 − j2∣∣− 2i2j2
(d−∆+1)3

j2

We notice that the numerator is minimized by making i and j as large as possible, which is when
they are d − ∆ + 1 and d − ∆. In this case, the quantity becomes λj

(
3− 2

d−∆+1

)
/j2, which is

greater than 0 as long as d−∆ + 1 ≥ 1 (if d−∆ < 0, then p(λ) is a constant, so the theorem is
trivial).

Thus ∣∣∣∣ai(λ)
λ∆

∣∣∣∣ ≤ ( 1
λi

)∆ d−∆+1∏
j=1,j 6=i

 j2

|i2 − j2| − 2i2j2
(d−∆+1)3


The (1/λi)∆ term is bounded by

(
(d−∆+1)3

2i2
)∆

. We now bound the other term:

Claim 4. For all integers D and i such that i ≤ D, αD,i ≤ 2 where

αD,i =
D∏

j=1,j 6=i

(
j2

|i2 − j2| − 2i2j2
D3

)

Proof. First, rewrite αD,i as

αD,i =
D∏

j=1,j 6=i

j2

|i2 − j2|

D∏
j=1,j 6=i

1
1− 2i2j2

|i2−j2|D3

The first term is
D∏

j=1,j 6=i

j2

|i2 − j2|
=

i−1∏
j=1

j2

(i+ j)(i− j)

D∏
j=i+1

j2

(i+ j)(j − i)

=
(

((i− 1)!)2

(2i−1)!
i! (i− 1)!

)
(
D!
i!

)2

(D+i)!
(2i)! (D − i)!


=

(
2(i!)2

(2i)!

)(
(D!)2(2i)!

(i!)2(D − i)!(D + i)!

)
= 2(D!)2/(D − i)!(D + i)!
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For the second term, we will decompose 2i2j2/(i2 − j2) as i2
(

i
i−j + i

i+j − 2
)
. Then

D∏
j=1
j 6=i

1
1− 2i2j2

|i2−j2|D3

<
D∏

j=1,j 6=i
1 + 2i2j2

|i2 − j2|D3 < 1 + 1
D3

D∑
j=1,j 6=i

2i2j2

|i2 − j2|

= 1 + i2

D3

i−1∑
j=1

(
i

i− j
+ i

i+ j
− 2

)
+

D∑
j=i+1

(
i

j − i
− i

j + i
+ 2

)
= 1 + i2

D3

 i−1∑
j1=1

i

j1
+

2i−1∑
j2=i+1

i

j2
− 2(i− 1) +

D−i∑
j3=1

i

j3
−

D+i∑
j4=2i+1

i

j4
+ 2(D − i)


< 1 + i2

D3

2(D − 2i+ 1) + i

2i−1∑
j=1

1
j

+
2i∑
j=1

1
j


< 1 + i2

D3

2D + 2 + 2i

 2i∑
j=1

1
j
− 1

 < 1 + 2i2

D3 (D + 1 + i log 2i)

Let βD,i = 2 D!2
(D−i)!(D+i)!

(
1 + 2i2

D3 (D + 1 + i log 2i)
)
. Then αD,i < βD,i. For fixed i, the quantity(

1 + 2i2
D3 (D + 1 + i log 2i)

)
is positive and converges to 1 for large D. Also for fixed i, 2(D!)2/(D −

i)!(D+ 1)! converges to 2. Thus, βD,i converges to 2 for for large D. We now show that βD,i < 2 by
showing that it is monotonically increasing in D. Indeed,

βD+1,i
βD,i

=
(D+1)!2

(D+i+1)!(D−i+1)!

(
1 + 2i2

(D+1)3 (D + 2 + i log 2i)
)

D!2
(D+i)!(D−i)!

(
1 + 2i2

(D)3 (D + 1 + i log 2i)
)

= D3

(D + i+ 1)(D − i+ 1)(D + 1)
(D + 1)3 + 2i2(D + 2 + i log 2i)
D3 + 2i2(D + 1 + i log 2i)

Using some algebraic manipulation, we get

βD+1,i
βD,i

= 1 + i2
D4 − 3D3 + c1D

2 + c2D + c3
(D + 1)(D + 1 + i)(D + 1− i)(D3 + 2i2(D + 1 + i log 2i))

Where

c1 = 2(i2 − 6− 3i log 2i)
c2 = 2(2i2 − 4− 3i log 2i+ i3 log 2i)
c3 = 2(i2 − 1)(1 + i log 2i)

Now, each of the ck is positive and increasing for large i. For each ck, we can find the minimum
with respect to i, assuming i ≥ 1.

• c′1(i) = 2(2i− 3 log 2i− 3), which is positive when i = 5. c′′1(i) = 2(2− 3/i), which is positive
for i ≥ 2. Therefore, c1(i) is strictly increasing for i ≥ 5. Testing i = 1, 2, 3, 4, 5 shows that
the minimum occurs at i = 5, and c1(5) ≥ −32
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• c′2(i) = 2((4i− 3) + i2 + 3(i2 − 1) log 2i), which is positive for i ≥ 1. Therefore, the minimum
is when i = 1, and c2(1) ≥ 7.
• c3 is trivially non-negative for all i ≥ 1.

The results are thus c1 > −32, c2 > −7, and c3 > 0. Thus,

βD+1,i
βD,i

> 1 + i2
D4 − 3D3 − 32D2 − 7D

(D + 1)(D + 1 + i)(D + 1− i)(D3 + 2i2(D + 1 + i log 2i))

The denominator is positive (since i ≤ D), so βD+1,i
βD,i

> 1 if D4 − 3D3 − 32D2 − 7D > 0. At D = 8,
this polynomial is positive, as are the first four derivatives (the rest being 0). This means the
polynomial is positive for all D ≥ 8. Thus, we have shown that βD,i approaches 2 for large D, and
for D ≥ 8, βD,i is strictly increasing in D. Therefore, for D ≥ 8, we have that αD,i ≤ βD,i < 2.
For the case where D < 8, we have 28 (D, i) pairs to check. Below, we have calculated αD,i for
1 ≤ i ≤ D < 8:

D = 1 2 3 4 5 6 7
i = 1 1.00 2.00 1.82 1.79 1.79 1.81 1.82

2 - 0.50 1.43 1.29 1.30 1.33 1.37
3 - - 0.23 0.86 0.79 0.82 0.87
4 - - - 0.10 0.46 0.43 0.47
5 - - - - 0.04 0.22 0.22
6 - - - - - 0.01 0.10
7 - - - - - - 0.01

All of these are at most 2, completing the proof of the claim.

With this proved, we can now complete the proof of Claim 3.

∣∣∣∣ai(λ)
λ∆

∣∣∣∣ ≤ ( 1
λi

)∆+1 d−∆+1∏
j=1,j 6=i

 j2

|i2 − j2| − 2i2j2
(d−∆+1)3

 ≤ ((d−∆ + 1)3

2i2

)∆

× 2 ≤ 2
(
d3

2i2

)∆

This gives
|ai(λ)| ≤ λ∆d3∆21−∆ 1

i2∆

Summing over all i from 1 to d−∆ + 1 gives

d−∆+1∑
i=1

|ai(λ)| ≤ λ∆d3∆21−∆
d−∆+1∑
i=1

1
i2∆

The sum on the right hand side is the truncated p series for p = 2∆. This series sums to ζ(p), so
the truncation is strictly less than this value. Therefore,

d−∆+1∑
i=1

|ai(λ)| < λ∆d3∆21−∆ζ(2∆)
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C Proof of Lemma 4.4

In this section, we prove Lemma 4.4.

Proof of Lemma 4.4. Our goal is to show that, for each of the marginal distributions over k
inputs to SRDr , each probability is a polynomial in 1/r of degree at most k.

Fix some xi and yi for i ∈ [k]. We consider the probability that O(xi) = yi for all i ∈ [k]. We can
assume without loss of generality that the xi are distinct. Otherwise, there are i, j such that xi = xj .
If yi 6= yj , then the probability is 0 (O is not a function in this case). If yi = yj , the O(xj) = yj
condition is redundant and can be removed, reducing this to the k − 1 case. By induction on k, the
resulting probability is a polynomial of degree at most k − 1 < k.

Recall that SRDr = D[r] ◦ [r]X and D is a distribution on Y . Let O1 ← [r]X and O2 ← D[r]. Let
O′1 be the restriction of O1 to {x0, ..., xk−1}. Each O′1 then occurs with probability 1/rk. Now,

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = Pr
O1←[r]X ,O2←D[r]

[O2(O1(xi)) = yi∀i ∈ [k]]

= Pr
O′1←[r]{x0,...,xk−1},O2←D[r]

Pr[O2(O′1(xi)) = yi∀i ∈ [k]]

= 1
rk

∑
O′1

Pr
O2←D[r]

[O2(O′1(xi)) = yi∀i ∈ [k]]

We now associate with each O′1 a partition P of [k] into r disjoint subsets Pj for j ∈ [r]. The
elements of Pj are the indicies i such that O′1(xi) = j. Thus:

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = 1
rk

∑
P=(Pj)

Pr[O2(j) = yi∀j ∈ [r], ∀i ∈ Pj ]

Since O2 ← D[r], the distribution of outputs of O2 for each j are independent. Thus the
probabilities Pr[O2(j) = yi∀i ∈ Pj ] are also independently distributed. Thus,

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = 1
rk

∑
P=(Pj)

∏
j∈[r]

Pr[O2(j) = yi∀i ∈ Pj ]

Since there are only k elements, at most k of the Pjs are non-empty. Thus, we can associate to
each partition P another partition Q of [k] into kQ ≤ k non-empty subsets, and a strictly increasing
function from fQ from [kQ]→ [r]. The association is as follows: Qj′ = PfQ(j′) and Pj = ∅ if j has
no pre-image under fQ. This allows us to write:

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = 1
rk

∑
Q=(Qj′ )

∑
fQ

∏
j′∈[kQ]

Pr[O2(fQ(j′)) = yi∀i ∈ Qj′ ]

We now notice that, for fixed j′, if the yi are all equal for i ∈ Qj′ , then since O2 ← D[r],
Pr[O2(fQ(j′)) = yi∀i ∈ Qj′ ] = D(yi) where i is any index in Qj′ . Otherwise, Pr[O2(j) = yi∀i ∈
Qj′ ] = 0 since O2 needs to be a function. Thus we can write Pr[O2(j) = yi∀i ∈ Qj′ ] = D(yi)σ(Qj′)
where σ(S) is 1 if yi are all equal for i ∈ S, and 0 otherwise. Thus,

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = 1
rk

∑
Q=(Qj′ )

∑
fQ

∏
j′∈[kQ]

D(yi)σ(Qj′)
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The summand does not depend on fQ, so let cQ be the number of fQ. Then we can write

Pr
O←SRDr

[O(xi) = yi∀i ∈ [k]] = 1
rk

∑
Q=(Qj′ )

cQ
∏

j′∈[kQ]
Pr[O2(j′) = yi∀i ∈ Qj′ ]

The Q we are summing over are independent of r, as is the product in the above expression. cQ
is equal to the number of ways of picking kQ distinct elements of [r], which is

( r
kQ

)
, and is thus

polynomial of degree kQ in r (and hence a polynomial of degree at most k). Therefore, performing
the sum, PrO←SRDr [O(xi) = yi∀i ∈ [k]] is a polynomial of degree at most k in r, divided by rk. The
result is a polynomial of degree at most k in 1/r.

D A Quantum Distinguisher for Small-Range Distributions

In this section, we give a quantum distinguisher that distinguishes SRYr from a random function
with probability (asymptotically) matching the bound of Corollary 4.5. Our algorithm is basically
the collision finding algorithm of Brassard, Høer, and Tapp [BHT97], with a check at the end to
verify that a collision is found. The algorithm has oracle access to a function O from X to Y , which
is either SRYr or a random function. It is given as input the integer r, the number of queries q, and
operates as follows:

• Let p = (q− 1)/2. Pick a set S of p points in X at random, and check that there is no collision
on S by making p classical queries to O. Sort the elements of S, and store the pairs (s,O(s))
as a table for efficient lookup.

• Construct the oracle O′(x) =
{

1 if x /∈ S and O(x) = O(s) for some s ∈ S
0 otherwise

• Run Grover’s algorithm [Gro96] on O′ for p iterations to look for a point x such that O′(x) = 1.
• Check that there is an s ∈ S such that O(x) = O(s) by making one more classical query to O.

Before analyzing this construction, we explain what Grover’s algorithm does. It takes as input
an oracle O′ mapping some space X into [2], and tries to find an x such that O′(x) = 1. Specifically,
if N points map to 1, then after q queries to O′, Grover’s algorithm will output an x such that
O′(x) = 1 with probability Θ(q2N/|X |)

We now analyze this construction. The first step takes p queries to O. If we find a collision,
we are done. Otherwise, we have p points that map to p different values. Call this set of values
T . The oracle O′ outlined in the second step makes exactly one query to O for each query to
O′. The number of points in x such that O′(x) = 1 is the number of points x in X \ S (which is
|X| − p) such that O(x) ∈ T . In the random oracle case, the probability that O(x) is one of p
random values is p/|Y|, so the expected number of such x is (|X | − p)p/|Y|. Thus, after p iterations,
Grover’s algorithm will output such an x with probability Θ(p3(|X | − p)/|X ||Y|)). In the SRYr case,
since there are only r possible outputs, the probability that x maps to T is p/r, so the expected
number of such x is p(|X | − p)/r. Thus, Grover’s algorithm will output such an x with probability
Θ(p3(|X | − p)/r|X |).
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The difference in these probabilities is Θ(p3(1/r − 1/|Y|)(|X | − p)/|X |. If we let |Y| be at least
2r and |X | at least 2p + 1 = q, we see that we distinguish SRYr from random with probability
Ω(p3/r) = Ω(q3/r), thus matching the bound of Corollary 4.5. This shows that the corollary is
optimal, and hence Theorem 4.3 is optimal for the case ∆ = 0.

E Security Proof for the Synthesizer-Based PRF

Here, we prove Theorem 6.3 by showing that PRF from Construction 2 is quantum secure if the
underlying synthesizer S is standard-secure.

Recall the definition of standard-security for a synthesizer S : X 2 → Y from Definition 6.2: for
all sets Z, no efficient quantum algorithm A making classical queries to an oracle O from Z2 → Y
can tell if O(z1, z2) = S(O1(z1), O2(z2)) for random oracles Oi ← XZ or if O is truly random.

Since all queries are classical, and only a polynomial number of queries are possible, a simple
argument shows that Definition 6.2 is equivalent to the case where |Z| ∈ nO(1). Further, if Z
is polynomial in size, we can query the entire set classically, so there is no advantage in having
quantum queries. Therefore, Definition 6.2 is equivalent to the following:

Definition E.1 (Standard-Security). A pseudoreandom synthesizer S : X 2 → Y is standard-secure
if, for any set Z where |Z| ∈ nO(1), no efficient quantum algorithm A making quantum queries can
distinguish O(z1, z2) = S(O1(z1), O2(z2)) where Ob ← XZ from O ← YZ×Z .

Before proving security, we define the quantum-security of a pseudorandom synthesizer. The
definition is similar to Definition E.1, except that there is no bound on the size of Z:

Definition E.2 (Quantum-Security). A pseudoreandom synthesizer S : X 2 → Y is quantum-
secure if, for any set Z, no efficient quantum algorithm A making quantum queries can distinguish
O(z1, z2) = S(O1(z1), O2(z2)) where Ob ← XZ from O ← YZ×Z

We now show that the two definitions are equivalent:

Lemma E.3. If S is standard-secure, then it is also quantum-secure.

Proof. Let’s define a new oracle distribution, which we will denote ARs, which stands for almost
random. ARs is defined as follows:

• Pick random oracles P1 and P2 from [s]Z .
• Pick a random oracle Q from Y [s]2 .
• Output the oracle O(z1, z2) = Q(P1(z1), P2(z2)).

Notice that as s goes to ∞, O1 and O2 become injective with probability approaching 1, and thus
AR∞ is the uniform distribution.

Now, let B be an adversary breaking the oracle-security of S with non-negligible probability ε.
Define ε(s) as the following quantity:

ε(s) =
∣∣∣∣∣ Pr
O1←XZ ,O2←XZ

[BS(O1,O2)() = 1]− Pr
O←ARs

[BO() = 1]
∣∣∣∣∣
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Then ε = lims→∞ ε(s). Let r be an integer such that `(q)/r = ε/8 where q in the number of queries
made by B. We now replace Oi with SRXr , and the Pi (as a part of ARs) with SR[s]

r . Each of these
changes will only change the behavior of A by ε/8. Thus, a simple argument shows that∣∣∣∣∣ Pr

Oi←SRXr
[BS(O1,O2)() = 1]− Pr

Pi←SR[s]
r ,Q←Y [s]2

[BQ(P1,P2)() = 1]
∣∣∣∣∣ ≥ ε(s)− ε/2

Notice that we can think of the oracle Q(P1, P2) as the oracle

O′(z1, z2) = Q(S1 ◦R1(z1), S2 ◦R2(z2)) = O(R1(z1), R2(z2))

Where Si ← [s][r], Ri ← [r]Z , and O(w1, w2) = Q(S1(w1), S2(w2)). As s goes to ∞, Si become
injective with probability converging to one, so O approaches a random function from [r]2 → Y.

We now describe a new algorithm A which tries to break the standard-security of S according
to Definition E.1. A takes as input a quantum-accessible oracle O from [r]2 to Y. A constructs
two random oracles R1 ← [r]Z and R2 ← [r]Z , gives B the oracle O′(z1, z2) = O(R1(z1), R2(z2)),
and simulates B. If O = S(T1, T2) for random oracles Ti ← X [r], then the oracle seen by A is
O′(z1, z2) = S(O1(z1), O2(z2)), where O1 and O2 are drawn from SRXr . If O is a random oracle, then
the oracle seen by A is O′(z1, z2) = O(R1(z1), R2(z2)), where Ri ← [r]Z . This corresponds to the
case where s =∞, and thus the advantage of A in distinguishing these two cases is ε(∞)− ε/2 = ε/2.
If ε is non-negligible, then there is a polynomial bounding r infinitely often, and in these cases, A
breaks the standard-security of S.

We are now ready to prove that Construction 2 is quantum-secure:

Proof of Theorem 6.3. Let A be a quantum adversary breaking the quantum-security of PRF
with probability ε. That is,∣∣∣∣ Pr

k←X 2n
[APRFk() = 1]− Pr

O←X [2]n
[AO() = 1]

∣∣∣∣ = ε

Let hybrid Hi be the game where the oracle seen by A is PRF, except that each instance of
PRF(i) is replaced with a truly random function from [2]2

i

into X . Since PRF(0) is already a random
function, H0 is equivalent to the case where the oracle is PRF. Similarly, H` is by definition the
case where the oracle is truly random. Thus a simple hybrid argument shows that there is an i such
that A can distinguish Hi from Hi−1 with probability at least ε/`.

We now describe an algorithm B which breaks the quantum-security of S. B is given an oracle
from P from

(
X × [2`−i]

)2
into X , which is either S(Q1, Q2) for random oracles Qb ← XX×[2`−i] or

a truly random oracle. It then constructs oracles

Py(x1, x2) = P ((x1, y), (x2, y))

Notice that there are 2`−i possible y values, and that for fixed y, Py is either a random oracle from
X 2 into X , or it is S(Qy,1, Qy,2) for random oracles Qy,b from X to X . We then construct the oracle
O which is PRF, except that we stop the recursive construction at PRF(i). There are 2`−i different
instances of PRF(i), so we use the 2`−i Py oracles in their place. If P is S(Q1, Q2), this corresponds
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to hybrid Hi−1, whereas if P is a random oracle, this corresponds to Hi. Thus, B distinguishes the
two cases with probability ε/`.

However, under the assumption that S is standard-secure, Lemma E.3 shows that it is quantum-
secure, meaning the algorithm B is impossible. Therefore, PRF is quantum-secure.

F Security Proof for the Direct Construction

Here we give a precise statement and proof for Theorem 7.1, which state’s that PRF from Construction
3 is quantum secure for the right parameters. First, we define the Learning With Errors (LWE)
problem:

Definition F.1 (Learning With Errors). Let q ≥ 2 an integer, n a security parameter, and
m = poly(n) and w = poly(n) be integers. For a distribution χ over Z and a secret matrix
S ∈ Zn×wq , the LWE distribution LWES,χ is the distribution over Zm×nq × Zm×wq defined as follows:

• Choose a random matrix A← Zn×mq .
• Choose a random error matrix E← χm×w

• Output (At,Bt = AtS + E mod q)

The LWE problem is then to distinguish between a polynomial number of samples from LWES,χ for a
fixed S← χn×w mod q from the same number of samples from the uniform distribution. The LWE
problem is hard if, for all efficient quantum adversaries A, the probability A distinguishes these two
cases is negligible in n.

We now define the oracle-LWE problem:

Definition F.2 (Oracle-LWE). The oracle-LWE problem is to distinguish an oracle O whose outputs
are generated by LWES,χ (for a fixed S← χn×w mod q) from a truly random oracle O. We say that
LWE is oracle-hard if, for all efficient adversaries A making quantum queries, A cannot distinguish
these two distributions with more than negligible probability.

Lemma F.3. If LWE is hard, it is also oracle-hard.

Proof. The proof is very similar to that of Theorem 4.7. Let A be an adversary breaking the
oracle-hardness of LWE using q quantum queries with probability ε. Let r be an integer such
that `(q)/r ≈ ε/4. We then construct an algorithm B, which takes as input r pairs (At

i,Bt
i), and

distinguishes when the pairs come from LWES,χ for some fixed S← χn×w from when the pairs are
random. B works as follows:

• Construct the oracle O where O(x) is selected at random from (At
i,Bt

i)
• Simulate A with oracle O, and output the output of A.

Using the same analysis as in the proof of Theorem 4.7, we get that B distinguishes the two
cases with probability ε/2. If ε is non-negligible, then there is a polynomial that bounds r infinitely
often, and in these cases, the number of samples received by B is a polynomial, and hence B breaks
the hardness of LWE.
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Next, we need to define the discrete Gaussian distribution:

Definition F.4 (Discrete Gaussian). Let DZ,r denote the discrete Gaussian distribution over Z,
where the probability of x is proportional to e−πx2/r2.

We are now ready to state and prove Theorem 7.1:

Theorem 7.1. Let χ = DZ,r, and q ≥ p · `(Cr
√
n+ `)`nω(1) for some suitable universal constant

C. Let PRF be as in Construction 3, and suppose each Si is drawn from χn×n. If the LWE problem
is hard for modulus q and distribution χ, then PRF from Construction 3 is a QPRF.

Proof. The proof is very similar to that of Banerjee et al. Notice that our theorem requires
q ≥ p · `(Cr

√
n+ `)`nω(1) whereas the original only requires q ≥ p · `(Cr

√
n)`nω(1). We will explain

why this is later. We first define a class of functions G : K × [2]k → Zm×nq to be PRF without
rounding. That is,

Gk(x) = At
∏̀
i=1

Sxii

Then PRFk(x) = bGk(x)ep. We also define a related class of functions G̃ where G̃ = G̃(`) and

• G̃(0) is a function from [2]0 into Zm×nq defined as follows: pick a random A ∈ Zn×mq , and set
G̃(0)(ε) = At.
• G̃(i) is a function from [2]i into Zm×nq defined as follows: pick a random G̃(i−1), pick Si ← χn×n

and for each x′ ∈ [2]i−1, pick Ex′ ← χm×n. Then

G̃(i)(x = x′xi) = G̃(i−1)(x′) · Sxii + xi ·Ex′ mod q

Let A be an adversary that distinguishes PRF from a random function with probability ε.
First, consider the case where A sees a truly random function U : [2]k → Zm×np . Replace U with

bU ′ep where U ′ is a truly random function from [2]k → Zm×nq . For each input, the bias introduced by
this rounding is negligible because q ≥ pnω(1). Thus, by Theorem 4.7, the ability of A to distinguish
these two cases is negligible.

Now, let B = `(Cr
√
n+ k)`. Let BAD(y) be the event that⌊

y + [−B,B]m×n
⌉
p 6= {byep}

That is, BAD(y) is the event that y is very close to another element in Zq that rounds to a different
value in Zp. Banerjee et al. show that for each x, the probability that BAD(U ′(x)) occurs is negligible.
Therefore, according to Theorem 4.7, BAD(U ′(x)) as an oracle with outputs in {True,False} is
indistinguishable from the oracle that always outputs False. Hence, it is impossible for an algorithm
making quantum queries to U ′ to find an x such that BAD(U ′(x)) occurs, except with negligible
probability.

The next step is to prove that U ′ and G̃ are oracle-indistinguishable. Once we have accomplished
this, we replace U ′ with G̃. Then the probability that A detects this change is negligible. Additionally,
it is also impossible to find an x such that BAD(G̃(x)) occurs, except with negligible probability.

Lastly, we replace G̃ with G. Banerjee et al. show that as long as BAD(G̃(x)) does not
occur,

⌊
G̃(x)

⌉
p

= bGk(x)ep = PRFk(x) with all but negligible probability. Our modification to the
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parameters of the theorem (replacing
√
n with

√
n+ k) allows us to choose C so that this probability

is actually 2−`σ for some negligible σ. Summing over all 2` different x, we get that, except with
negligible overall probability, PRFk(x) =

⌊
G̃(x)

⌉
p

whenever BAD(G̃(x)) does not occur.

Thus, if A distinguishes PRFk(x) from
⌊
G̃(x)

⌉
p

with non-negligible probability, it must be that
the sum over all queries made by A of the sum of the query magnitudes of all the x such that
BAD(G̃(x)) occurs is non-negligible (Theorems 3.1 and 3.3 of [BBBV97]). But this means we
can find an x such that BAD(G̃(x)) occurs with non-negligible probability (simply run A, and at
a randomly chosen query, halt and sample the query). But, as we have already shown, this is
impossible.

Hence, we have shown that PRF is indistinguishable from a random function.
It remains to show that U ′ and G̃ are oracle-indistinguishable. We show that this is true given

that the LWE problem is oracle-hard. Using Lemma F.3, we reach the same conclusion assuming
LWE is hard, thus completing the theorem.

Let B be an adversary that distinguishes U ′ from G̃ with probability ε. Define hybrid Hi as the
case where B is given the oracle Oi where Oi = G̃, except that, in the recursive definition of G̃, G̃(i)

is replaced with a truly random function. H0 corresponds to the correct definition of G̃, and Hk

corresponds to U ′. Thus, there exists an i such that B distinguishes Hi from Hi−1 with probability
ε/`.

Construct an adversary C with access to an oracle P : [2]i−1 → Zm×nq × Zm×nq . P is either
a random function or each output is chosen according to the LWE distribution. In other words,
P (x) = (At,Bt), where either A(x) and B(x) are chosen at random for all x, or there is a secret
S← χn×n and B(x)t = A(x)tS + E(x) mod q where E(x)← χm×n.

For each j > i, C constructs random oracles Qj : [2]j−1 → Zm×n where Qj(x)← χm×n. C also
generates Sj ← χn×n for j > i. Then C works as follows:

• Let G̃(i)(x = x′xi) =
{

A(x′)t if xi = 0
B(x′)t if xi = 1

• Let G̃(j)(x = x′xj) = G̃(j−1)(x′) · Sxjj + xj ·Qj(x′) mod q for j > i.

• Let O(x) = G̃(k)(x)
• Run B with oracle O.

When P is a random oracle, this corresponds to Hi. When P is the LWE oracle, this corresponds
to Hi−1. Thus, C distinguishes these two cases with probability at least ε/`. Under the assumption
that LWE is oracle hard, this quantity, and hence ε, are negligible. We then use Lemma F.3 to
complete the theorem.
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