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Abstract. The energy industry has recently begun using smart meters to take fine-
grained readings of energy usage. These smart meters enable flexible time-of-use
billing, forecasting, and demand response, but they also raise serious user privacy
concerns. We propose a novel technique for provably hiding sensitive power con-
sumption information in the overall power consumption stream. Our technique re-
lies on a rechargeable battery that is connected to the household’s power supply. This
battery is used to modify the household’s power consumption by adding or subtract-
ing noise (i.e., increasing or decreasing power consumption), in order to establish
strong privacy guarantees in the sense of differential privacy. To achieve these pri-
vacy guarantees in realistic settings, we first investigate the influence of, and the
interplay between, capacity and throughput bounds that batteries face in reality. We
then propose an integrated method based on noise cascading that allows for recharg-
ing the battery on-the-fly so that differential privacy is retained, while adhering to
capacity and throughput constraints, and while keeping the additional consumption
of energy induced by our technique to a minimum.

1 Introduction

The energy industry has recently begun using smart meters to take fine-grained readings of
energy usage, enabling flexible time-of-use billing, forecasting, and demand response [8].
The underlying incentive for energy providers is the ability to accurately match energy
consumption with its generation in a fine-grained manner, thereby saving electricity and
enabling dynamic tariffs with higher rates during peak consumption times. Moreover, the
fine-grained metering of energy consumption enables more accurate forecasts, which is
expected to lead to an overall saving of energy. Smart metering is currently being widely
promoted in the United States, European Union, and Asia as part of the modernization
of the electronic grid [1, 2]; to this end, $4.3 billion dollars has been allocated by the U.S
government for the smart grids [21], with similar programs in progress in the EU and Asia.

In addition to all these undisputed advantages, smart meters also raise serious user
privacy concerns [5]: Smart meters provide highly accurate consumption data to the cor-
responding electricity provider. These data naturally include personal, privacy-sensitive
data, e.g., information about when certain devices were active, or which TV program was
watched. If metering is performed sufficiently long in small time intervals, personal in-
formation can be disaggregated from the overall consumption stream. For instance, non-
intrusive appliance load monitoring techniques [15, 18, 19] already allow for identifying
common electronic devices such as personal computers, laser printers, or light bulbs in the
overall consumption stream [7], and even to tell apart different TV programs [14].

To address these privacy concerns, privacy-aware solutions for smart metering are cur-
rently receiving increasing attention both in the research community and in ongoing stan-
dardization processes, e.g., [23]. In fact, the current absence of accepted solutions to tackle
these privacy concerns caused a deadlock in the mandatory deployment of smart meters



in the Netherlands [9], because of the common belief that smart metering is necessarily
privacy-invasive. In this paper, we join the line of research that is working on changing
this belief: we present a privacy-aware technique for smart metering that achieves strong
privacy guarantees while simultaneously preserving the promises of smart metering.

1.1 Our Contributions
We propose a novel technique for provably hiding sensitive power consumption infor-
mation in the overall power consumption stream. Our technique relies on a rechargeable
battery that is connected to the household’s power supply, and that appropriately modi-
fies the overall consumption stream by suitably adding or subtracting noise, in order to
establish strong privacy guarantees in the sense of differential privacy. Even though some
general-purpose techniques exist for masking privacy-sensitive information by the addi-
tion of (typically large quantity of) noise, these techniques are not suited to our setting:
For smart metering, noise corresponds to additional energy consumption, i.e., in contrast
to existing general-purpose works on differential privacy, noise corresponds to a resource
that one seeks to minimize for economic reasons.

In addition to economic considerations, any solution must respect the fact that a battery
adheres to hard resource constraints, such as its capacity (bounding the overall amount of
energy that can be stored) and its throughput (bounding the amount of energy that can
be charged/retrieved within a given time interval). Moreover, a battery will naturally get
depleted over time if it constantly provides energy that is used as noise; a depleted battery
will eventually put all privacy guarantees at stake. These limitations in particular ren-
der existing general-purpose approaches infeasible, because they typically require higher
capacity and throughput than what a real-life battery can offer; moreover privacy-aware
battery recharging is not considered in these approaches.

To achieve strong privacy guarantees in such realistic settings, we propose a novel tech-
nique for provably hiding sensitive power consumption information in the overall power
consumption stream, using a rechargeable battery as a buffer and applying Laplacian noise
to the consumption itself by either providing (discharging) or consuming (recharging) en-
ergy by the battery. We first investigate the influence of, and the interplay between, ca-
pacity and throughput bounds of the battery to the overall approach (while still ignoring
battery recharging issues), and develop a technique that achieves privacy guarantees in
such resource-bounded settings. Since battery depletion is not prevented, the privacy guar-
antees are naturally strongest if only metering over a short time interval is considered, and
they become weaker for longer time intervals.

We subsequently explore the more involved case of recharging the battery. The com-
plication which arises here is that recharging corresponds to additional energy consump-
tion, which is observable to the adversary by assumption. Thus simply fully recharging
the battery enables an observer to determine the amount by which we are recharging the
battery, causing our differential privacy guarantees to degenerate over time, similar to the
case without battery recharging. To counter this effect, we propose an integrated method
that allows for recharging the battery on-the-fly so that differential privacy is retained,
while adhering to capacity and throughput constraints, and while keeping the additional
consumption of energy induced by our technique to a minimum. The central idea is to fol-
low a novel cascading approach for generating differentially private noise: we consider the
added noise for recharging the battery as a function that one makes differentially private by
appropriately adding (a much smaller amount of) noise. To avoid that this small amount of
noise is observable, we impose the assumption that this small additional energy consump-
tion can be hidden in the overall consumption stream. Among other options, this can be
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achieved by continuously drawing a small, constant amount of energy that is sufficient for
the recharging process, and by discarding all energy that exceeds the actual noise demand
for recharging the battery in a differentially private manner.1

We show that meaningful differential privacy guarantees in such resource-bounded
settings can be achieved, in particular using privacy-aware battery recharging. Moreover,
we provide a correspondence between the parameters of the battery such as capacity and
throughput with the obtained privacy guarantees, and we evaluate the applicability of our
techniques by means of examples.

1.2 Further Related Work

Privacy concerns in smart metering have been studied in several existing works in the re-
cent past. Anderson and Fuloria [5,6] analyze the security economics of electricity meter-
ing, in particular the conflicting interests among stakeholders. Quinn [24] and Cavoukian
et al. [8] investigate legal aspects of smart meters. The privacy of billing is investigated
by Danezis et al. [17, 26] and Molina-Markham et al. [22]. They in particular identify
the private information that current meters might leak, and propose protocol adaptations
for anonymizing individual measurements. In contrast to our work, these works require a
trusted third party for anonymization, as well as changes in the existing communication
protocols; moreover, in contrast to differential privacy guarantees, the resulting privacy
assurances and the overall consequences are less clear. Similarly, Garcia and Jacobs [13]
propose to use homomorphic encryption to achieve privacy for individual measurements,
but the lack of a proper perturbation of the aggregate does not make the result differentially
private, and the resulting privacy interpretations are again unclear.

Prior work on differential privacy in smart metering or on the smart use of batteries to
achieve privacy guarantees comprises [3, 4, 10, 12, 17, 20, 25, 27, 28].

The paper that we consider most closely related to ours is the promising contribution of
Acs et al. [4]. They were first to propose the smart use of a battery in order to achieve and
rigorously show differential privacy guarantees. In contrast to our work, they do not con-
sider battery recharging, and hence only obtain meaningful privacy guarantees if battery
exhaustion is not an issue, and hence if metering is performed over a short period of time.
Moreover, the magnitude of noise that they apply in their Laplacian technique depends on
which appliances will be activated in the stream in the future, which only works in settings
in which future activations can be accurately predicted, or at least reasonably estimated.

Papers that strive for differential privacy guarantees, yet without considering a battery
(and hence in particular without the corresponding benefits gained from privacy-friendly
recharging) include [3, 10, 25, 27]. Acs and Castelluccia [3] use aggregation over a large
number of smart meters, add noise to the smart meter output, and encrypt the result before
delivery to the energy provider. Danezis et al. [10] propose to add noise to customer bills
to hide the user consumption behavior. Rastogi and Nath [25] pursue a similar approach
but add noise in a distributed manner to improve performance. These approaches require
the currently deployed smart meters to be replaced by new, provably trustworthy ones. Shi
et al. [27] investigate untrusted aggregators of data. Their approach induces a separation
between billing and the actual consumption of electricity; this allows for cheating behav-
iors, e.g., by applying noise with a slightly positive attitude, corresponding to seemingly
increased energy consumption.

1 We stress that we wish to avoid wasting any energy in general. Our solution discharges only the
small amount of energy that arises for generating the noise of the battery recharging process.
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The use of a battery for privacy-preserving smart metering is discussed in [20,28]. Var-
odayan and Khisti [28] consider a simplistic model where both the battery and the load of
the appliances have Boolean state; differential privacy is not considered there. McLaugh-
lin et al. [20] propose to radically smooth the consumption level to counter some com-
mon techniques for non-intrusive appliance load monitoring techniques. We consider this
a promising approach; however, it currently still lacks any formalized privacy guarantees.

1.3 Outline of the Paper
In Section 2, we review the concept and the definition of differential privacy. Section 3
presents our model of privacy-aware smart metering in the presence of a resource-bounded
battery. Section 4 investigates differential privacy guarantees in such resource-bounded set-
tings, yet without taking battery recharging into account. Section 5 proposes our technique
for privacy-aware battery recharging, and establishes corresponding differential privacy
guarantees. Section 6 highlights the relationship between the individual parameters (such
as the battery’s resource constraints and measurement times) and the obtained privacy
guarantees, and explores two concrete use cases. Section 7 concludes.

2 Preliminaries
In this paper we will use the notion of differential privacy, as introduced in [11], as a
measurement for the amount of private information leaked by a smart meter. Differential
privacy was originally invented as a measurement for the amount of information leaked by
answering a statistical query to a database.

In the original setting of statistical databases, differential privacy intuitively ensures
that adding a single entry to the database (or deleting one from it) does not significantly
change the answer given to differentially private statistical queries. Usually this is achieved
by adding noise to the output. From observing the (noisy) answer to the query, a pas-
sive observer cannot determine whether a specific entry is included in the data set or not.
Moreover, differential privacy guarantees that no matter which additional information an
observer might possess about the entries of the data set, the answer to the query will not
significantly help him in learning new information about this single entry.

A function that is differentially private guarantees that an observer does not learn new
information about individuals by observing the answer to a query. To ensure this, indepen-
dently from any prior knowledge the observer might possess, differential privacy is defined
as an indistinguishability notion. No matter which information is contained in a data set
D, the output distribution of the answer to a differentially private function F should be
essentially the same when adding a new data element d to the setD.

Definition 1 ((ε, δ)-Differential Privacy). A probabilistic function F : P(D) → R for a
set D provides (ε, δ)-differential privacy if for all sets D1,D2 ⊆ D, differing in at most
one element d ∈ D and all sets S ⊆ R,

Pr[F(D1) ∈ S ] ≤ eε · Pr[F(D2) ∈ S ] + δ.

The probability is taken over the randomness of F.

When using smart meters to compute and communicate electricity load, we consider
a stream of data containing information about which devices are activated in which time
interval, and we release as statistical information the sum of the consumption of all de-
vices in a particular timeslot. This approach constitutes a special case of hiding statistical
information about a set of data.
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Definitions:
∆t Time interval between measurements.
ti Point in time defined by ti = t0 + i · ∆t.
D Set of all possible devices.
Di Set of all active devices in i’th timeslot.
Φ Stream of active devicesD1,D2, . . .

f (Di) Consumption of all devices inDi.

F(Di) Noisy version of f ; no resource bounds.
Fb(Di) F with throughput bounds, and ≥ 0.
F(Di) F with capacity/throughput bounds.

= load measured by the smart meter.
bl(i) Battery level at time ti.
∆bl(i) Battery charging/discharging in step i.
∆ f Sensitivity of the function f .

Fig. 1. Notation overview, not including notation for privacy-aware battery recharging (Section 5).

Similar to the database setting, in our setting we want to guarantee that an observer
cannot figure out which devices are activated in which timeslot by observing the output of
a smart meter. The main difference is that we will not only be interested in single readings
of a smart meter, or, more formally, single applications of a function to a specific data
set. Instead, we wish to apply a function to a stream of data. We hence extend the basic
definition of differential privacy to streams in a standard way, similar to [16].

Definition 2 ((ε, δ)-Differential Privacy on Streams). A probabilistic algorithm F :
P(D) → R for a set D provides (ε, δ)-differential privacy on streams if for all (possi-
bly countably infinite) streams Φ,Φ′ of sets Dk,D

′
k ⊆ D, differing in at most one element

d ∈ D at one point i and all sets S of finite and countably infinite streams over R,

Pr[F(Φ) ∈ S ] ≤ eε · Pr[F(Φ′) ∈ S ] + δ,

where with F(Φ) we denote the stream we get when applying F to each element of the
stream Φ individually. The probability is taken over the randomness of F.

The smart meter will measure the energy load sum in every time interval, soD corresponds
directly to the set of all devices, while Dk and D′k correspond to the devices active in a
particular timeslot.

Note that we allow F to be non-functional, e.g., it can keep track of information via an
internal state. Nonetheless it is applied to each dataset Dk ⊆ D individually and it cannot
access information about future datasets (datasets occurring later in the stream).

3 A Model of Privacy-Aware Smart Metering
In this section we present our model of privacy-aware smart metering by means of a bat-
tery. We also introduce further notation used in the paper, specify the notion of a house-
hold, and define the information gained by the smart meter. We finally define two con-
straints that we will focus on in this paper: the battery’s resources throughput and capacity.

3.1 Notation

A household, together with its appliances, is represented by a set of possibly active devices
D. We assume this set to be finite, fixed and known to adversaries, i.e., we are able to pro-
vide strong privacy guarantees even if D is known to the adversary. The set also includes
devices that are not always physically present.

In contrast to many other works on privacy-aware smart metering, our method does not
rely on changing the smart meter itself. (See Section 1.2 on related work for a discussion.)
The only assumption we make about smart meters is that they measure the energy load
on a regular basis. The time interval ∆t between two measurements of the smart meter is
assumed to be known. For our model we consider a starting time t0 and times ti = t0 + i ·∆t
for all natural numbers i ∈ N.
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In between two measurements of the smart meter, each device is assumed to be active
(thus consuming energy), or inactive (not consuming energy). We assume for simplicity in
this paper that a device can be either active or inactive throughout the whole interval, i.e.,
devices can only be activated/deactivated at times ti. We denote the devices that are active
in between ti−1 and ti as Di ⊆ D. We write Φ = [D1,D2, . . .] for the list/stream of active
devices over time. This assumption does not weaken our guarantees: if a device is only
partially active in between two timeslots, its consumption will be lower, which makes it
harder to link the information to the device.

To represent the energy the devices consume, we consider a consumption function
f : D → R that assigns to each device d ∈ D the amount of energy load it consumes
during one timeslot (of length ∆t). We assume that the consumption of devices d does not
vary over time, so f (d) is independent of the timeslot i in which the device is active. This
is without loss of generality since devices with varying consumption for different timeslots
can be modeled by different devices. The net consumption of all devices in a set X ⊆ D is
expressed by leveraging the function f to the powerset ofD, i.e., f : P(D)→ R, with

f (X) =
∑
d∈X

f (d).

This quantity, however, is not the final output we want the smart meter to present to the
energy provider, since it leaks all details about the consumption. To achieve differential
privacy, we add noise to the output of f . Without considering the limitations of our battery
at this stage, we define a probabilistic function F : P(D)→ R with

F(X) = f (X) + r with r ← Lap
(
∆ f
ε

)
,

i.e., where r is noise drawn from the Laplacian distribution Lap
(
∆ f
ε

)
. Here ∆ f denotes the

sensitivity of the function f , a measurement of how much information can be leaked by f :

∆ f = max
d∈D

f (d).

Adding noise in this manner corresponds to the common approach to guarantee (ε, δ)-
differential privacy with δ = 0. For λ = ε

∆ f , the noise added by the standard technique

is Lap( 1
λ
), the scaled symmetric exponential distribution with standard deviation of

√
2 1
λ

with a variance of 2
(
∆ f
ε

)2
. The probability density function is p(x) = λ

2 · e
−|x|·λ.

However, in contrast to the traditional setting, in our setting there is no possibility of
adding noise in a manner that cannot be observed by the adversary (since noise in our
setting corresponds to additional power consumption, that the smart meter, and hence the
adversary, can observe). We use a battery to apply this Laplace noise to the net consump-
tion in order to hide the devices. We denote the battery level at the end of a timeslot i (i.e.,
at time ti) with bl(i). Thus, the change during a timeslot is denoted ∆bl(i) = bl(i)−bl(i−1).

However, this battery needs to be recharged without invalidating the privacy guaran-
tee; we discuss the problems arising in privacy-aware battery recharging in Section 5.1.
Moreover, the battery faces limitations on throughput and capacity that might render this
approach impossible. We first formalize these limitations and then define a mechanism F
that respects these resource constraints while staying as close to F as possible.
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3.2 Modeling Throughput Restrictions
A battery’s throughput denotes the amount of energy we can draw out of the battery or
recharge into it during one timeslot. Since we use the battery only for generating the Lapla-
cian noise that we add to the net consumption, this means that the throughput constitutes
an inherent limit for the amount of noise that can be added in one step. For simplicity
reasons the battery behavior is considered linear, i.e., the throughput will be independent
of its current energy level. In practice this can be achieved, e.g., by using a slightly larger
battery and ensuring that it is does not reach the non-linear zones.

The Laplacian noise added by F can, although with small probability, reach values
of arbitrary magnitude, which cannot be achieved in deployed solutions. We thus define
a throughput-respecting function Fb based on F that takes into account the throughput
bound b of our battery. Moreover, we extend Fb to its 0-bounded variant Fb by capping
the load function for the smart meter at 0; this models that we do not permit to discard /

waste energy for economical reasons, which in particular excludes trivial approaches that
consume enormous amounts of energy to boost the application of noise.2

Definition 3 (Throughput-respecting and 0-bounded variant of F). Given a function
F with F(x) = f (x) + R for a deterministic function f and a random variable R. Given a
bound for the throughput b, we define the throughput-respecting variant Fb of F as follows:

Fb(x) =


F(x) if |R| ≤ b
f (x) + b if R > b
f (x) − b if − R > b.

We define the 0-bounded variant Fb of Fb as Fb(x) = max(0, Fb(x)).

3.3 Adding Capacity Restrictions
A battery not only limits the energy output during a specific time interval ∆t, but also
the total amount of stored energy: its capacity. For the sake of simplicity we consider the
capacity to be a fixed value c that does not change over time and that also does not depend
on the load drained out of the battery.3

The actual output we provide and that is being transmitted by the smart meter depends
on the battery’s capacity: If the battery is exhausted or fully charged, we naturally cannot
add noise in the respective direction to the net load of our devices anymore. Building upon
Fb as in Definition 3, we define an overall, bounded mechanism F that, starting with an
initial battery level bl(0), adds noise only as long as the capacity is not exceeded in either
direction. As soon as the capacity is exceeded, F will stop adding noise and output the net
demand f of our devices instead. The output of F constitutes the output that is transmitted
to the energy provider by the smart meter.

Definition 4 (Bounded Mechanism). Given a function F with F(x) = f (x) + R for a
deterministic function f and a random variable R, a capacity bound c and a throughput
bound b, we define the corresponding bounded mechanism F as follows, where bl(i − 1) is

2 Selling electricity would be an alternative. However, an accurate treatment would additionally
require a detailed cost model; moreover selling electricity after drawing it from the provider is
typically not economical. We thus do not further consider this case.

3 In practice, the amount of energy that a battery can provide usually is slightly smaller when under
heavy load; we ignore this here.
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the battery level before step i, Ri the noise added by Fb during step i and sk =
k∑

j=1
R j the

sum of all noise added until step k:

F(Di) =

{
f (Di) if ∃k ≤ i. sk > c − bl(0) ∨ −sk > bl(0)
Fb(Di) otherwise.

The new battery level is bl(i) := bl(i − 1) − (F(Di) − f (Di)).

As soon as the capacity is exceeded, we are facing a situation where our privacy guarantees
are at stake. We will, however, give an upper bound for the probability that this happens
and integrate it into the overall privacy result that we will derive in the upcoming section.

4 A Technique for Privacy-Aware Smart Metering (Without Battery
Recharging)

In this section we investigate the privacy guarantees of our bounded mechanism F, i.e.,
the privacy guarantees that we obtain in a resource-bounded scenario. To this end, we
investigate which probabilities influence the statistical distances between F and Fb (the
influence of throughput constraints) as well as between Fb and F (the influence of capac-
ity constraints), and develop concrete bounds for these probabilities, depending only on
the throughput and capacity values of the battery as well as the magnitude of the noise
(specified by ∆ f and ε1). Finally, we will combine these results in order to show that F
is (ε1, δ1)-differentially private for an arbitrary ε1 and for concrete bounds for δ1, which
depend on the constraints of our battery and the chosen value for ε1. We stress that bat-
tery recharging is not considered in this section, i.e., we can reach situations in which the
battery gets depleted (then yielding trivial privacy guarantees with ε1 or δ1 greater than 1).
Battery recharging, and the benefits that can be drawn from it, are addressed in Section 5.

4.1 Differential Privacy and Statistical Distance

We start by exploring the relation between the statistical distance of two functions and
differential privacy. First, recall that if our battery was unbounded, we could simply realize
the function F by computing

F(Di) = f (Di) + Lap
(
∆ f
ε1

)
for sets of devices Di ⊆ D, where the Laplacian noise is drawn from the (unbounded)
battery. By the selection of the Laplacian noise, we would obtain (ε1, δ1)-differential pri-
vacy for F with δ1 = 0. We now relate this case to our setting with a resource-bounded
battery. To this end, we first show that differential privacy can be transferred between two
functions (for increasing values of δ), provided that their statistical distance is sufficiently
small.

Definition 5 (Statistical Distance). The statistical distance between two distributions X
and Y over a set U is defined as

d(X,Y) = max
S⊆U

(|Pr[X ∈ S ] − Pr[Y ∈ S ]|).

The following lemma relates differential privacy and the statistical distance.
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Lemma 1. Given two probabilistic functions F and G with the same input domain, where
F is (ε, δ1)-differentially private. If for all possible inputs x we have that the statistical
distance on the output distributions of F and G is:

d(F(x),G(x)) ≤ δ2,

then G is (ε, δ1 + (eε + 1)δ2)-differentially private.
The proofs of all lemmas and theorems are postponed to Appendix B for readability rea-
sons. We note that this lemma is not tailored to our setting of streams, but applies to
arbitrary types of inputs.

4.2 Privacy Guarantees for Throughput Restrictions
For relating the case with unbounded throughput and the throughput-bounded case, we first
determine the statistical distance between F and Fb, and subsequently exploit Lemma 1
in a suitable manner. We first observe that if one does not consider streams but only indi-
vidual timeslots, Fb differs from F if and only if the randomness added by F is of a larger
magnitude than the throughput bound b. Consequently, the statistical distance between F
and Fb can be bounded as follows:

Lemma 2. Given an (ε, δ)-differentially private function F with F(x) = f (x) + R for a
deterministic function f and a random variable R. Then for all x, the statistical distance
between F and its throughput-respecting variant Fb is at most

d(F(x), Fb(x)) ≤ Pr [|R| > b] .

This lemma reasons about single elements, or more precisely, about streams of length 1.
However, the probability to exceed the throughput (and thus leak information about the
current input set) at one step is independent from all previous and future steps in time.
For our results on differential privacy, it is thus sufficient to concentrate on the probability
that the throughput is exceeded in exactly that point in time in which the streams might
differ. Exceeding the throughput in any other step does not reveal additional information
that helps to identify the input string from the perspective of differential privacy. We now
derive a concrete bound for this probability, depending on ε, the sensitivity ∆ f of f , and
the throughput bound b. We stress that this upper bound is not necessarily tight, and thus
might be improved in the future.

Lemma 3. Given a function F with F(x) = f (x)+ Lap
(
∆ f
ε

)
for a deterministic function f ,

and a throughput bound b ∈ R+, the probability that the Laplacian noise Lap
(
∆ f
ε

)
applied

to f is larger than b is bounded by:

Pr
[∣∣∣∣∣∣Lap

(
∆ f
ε

)∣∣∣∣∣∣ > b
]
≤

2 · (∆ f )2

b2 · ε2 .

Moreover, if Fb is (ε, δ)-differentially private, then also its 0-bounded variant Fb is (ε, δ)-
differentially private, because one can, without further knowledge, compute Fb(x) from
Fb(x) for every x.

4.3 Privacy Guarantees for Capacity Restrictions
Including bounds for the capacity requires an approach beyond considering single steps
only, since the probability to exceed the capacity in step i also depends on the noise added
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in previous steps. In fact, if one considered an arbitrarily long time interval during which
random Laplacian noise is added, any finite capacity would naturally be exceeded (if there
is no recharging). We exclude this case, similar to existing prior works, by restricting us to
consumption streams of a certain length n. We will exploit how to overcome this restriction
by tackling the problem of privacy-aware battery recharging during runtime in Section 5.

Similar to how we dealt with throughput restrictions, we will exploit the statistical
distance (now on streams of length n) and subsequently apply Lemma 1. To combine this
result with our result on throughput, we immediately bound the distance between Fb and
F: These functions differ on consumption streams of length n if and only if the capacity is
exceeded at least once. Recall that the battery is only used to generate noise added to the
net consumption f . We first assume that the battery level is optimally placed at bl(0) = c

2
at the beginning of our time interval. Consequently, the probability to exceed the capacity
is bounded by the probability that the sum of the noise added in all steps exceeds c

2 .

Lemma 4. Given an (ε1, 0)-differentially private function F with F(x) = f (x) + Lap
(
∆ f
ε1

)
.

If the corresponding bounded mechanism F has capacity bound c and throughput bound
b, then for all consumption streams Φ of length n, the statistical distance between F and
Fb when starting with battery level bl(0) = c

2 is at most

d(F(Φ), Fb(Φ)) ≤ Pr

∃k ≤ n

∣∣∣∣∣∣∣∣
k∑

j=1

Fb(D j) − f (D j)

∣∣∣∣∣∣∣∣ > c
2

 .
Before we can derive an estimate for exceeding the capacity, we have to deal with the

following additional complication. By definition of F, no additional noise will be added as
soon as the capacity is exceeded. If this happens before the point where the two streams
might differ, all privacy guarantees are lost by definition. If it happens at or after the point
where the two streams might differ, the guarantees also break down because exceeding the
capacity means leaking the total amount of noise generated by the battery; this information
is enough for an adversary to determine which stream he has observed. Consequently, it
does not suffice to give a bound for the probability to exceed the capacity in one of the
steps, but we have to consider all steps at once. Further, recall that we might cap the noise
not only at the throughput bound b, but also if the load measured by the smart meter would
be negative. In this case, the expected value of the noise would be different than zero. We
hence derive an estimate for the probability to exceed the capacity at least once, which we
can successfully bound in the following lemma:

Lemma 5. Given an (ε1, 0)-differentially private function F with F(x) = f (x) + Lap
(
∆ f
ε1

)
.

For all t > 0, the probability that the Laplacian noise exceeds the capacity for c ≥ 2(n +

t) · ∆ f
ε1

in at least one of the n steps is bounded by

Pr

∃k ≤ n

∣∣∣∣∣∣∣∣
k∑

j=1

Fb(D j) − f (D j)

∣∣∣∣∣∣∣∣ > c
2

 ≤ 2n
t2 .

This estimate constitutes a bound for the statistical distance between Fb and F.

4.4 Obtaining an Overall Privacy Guarantee
We now combine our results on throughput and capacity constraints to obtain an overall
result on differential privacy for F. We consider streams of length n and also impose the
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assumption that the battery level will be set to bl(0) = c
2 at the beginning. The following

theorem follows directly from the results we have shown in this section.

Theorem 1. Given an (ε1, 0)-differentially private function F with F(x) = f (x)+Lap
(
∆ f
ε1

)
.

If the corresponding bounded mechanism F has capacity bound c and throughput bound
b, and bl(0) set to c

2 , then F is (ε1, δ1)-differentially private on all consumption streams of
length n with

δ1 = (eε1 + 1) · (Pb + Pc)

where Pb is the statistical distance between F and Fb and Pc is the statistical distance
between Fb and F.

Obtaining concrete bounds for differential privacy can be achieved by plugging in values
for Pb (Lemmas 2 and 3) and Pc (Lemma 4 and 5).

5 Privacy-Aware Smart Metering with Battery Recharging
In the last section, we have established privacy guarantees for settings in which battery
recharging is not considered. In this section, we propose an integrated method that al-
lows for recharging the battery on-the-fly, so that meaningful privacy guarantees for more
comprehensive use cases can be achieved.

We start with a general explanation what makes privacy-aware battery recharging in
the context of smart metering a sophisticated task. After that, we describe our solution to
overcome the underlying problems, and which additional assumptions we have to impose.

5.1 The General Problem of Privacy-aware Battery Recharging
We intend to develop a privacy-preserving technique for recharging the battery at runtime,
i.e., while using the battery for generating noise. Ideally we would simply recharge the
battery level to the target level of c

2 again every n steps. This would mean to increase or
decrease the overall energy consumption accordingly, i.e., by the difference of the current
and the target battery level. However, recall that this additional energy consumption is
part of the overall energy consumption, which is measures by the smart meter, and hence
observable by the adversary. Consequently, an adversary is able to determine the amount
by which we are recharging the battery (provided that he knows the sets of activated de-
vices for the recharging step). Thus, an adversary that has sufficient knowledge about the
observed consumption stream can exploit this information to compute the noise added in
step i as follows: In every step, it computes the difference between the observed load and
the expected load. Except for step i, where the streams differ, this is exactly equal to the
added noise, and hence allows for keeping track of the battery level. As soon as the differ-
ence between this forecast of the battery level and the actual battery level is leaked, it is
possible to compute the amount of noise added in step i with probability 1. This informa-
tion is sufficient to distinguish the streams, and hence to break differential privacy.

5.2 Our Solution: Differentially-private Noise Generation via Cascading
We pursue the following idea for countering this effect, which constitutes a novel cascading
approach for generating differentially private noise: we consider the amount of recharged
energy as a function, and make this function differentially private by appropriately adding
noise. We will show that the additional noise is much smaller than the noise we add di-
rectly to the consumption, essentially since the new noise will only be used every n steps
instead of every step. If desired, this process can be continued, by making this smaller
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noise differentially private again, and so on. In this paper, we do not formalize this further,
i.e., we work with a cascade of depth one.

In a nutshell, this cascading approach transforms the problem of generating a large
amount of noise that must be unobservable for an adversary into generating a much
smaller, unobservable amount of noise. However, this smaller amount of noise still cor-
responds to energy consumption that is measures by the smart meter and thus observable
by the adversary; hence if we use the battery itself to generate this additional noise, we still
leak the amount of noise added by F in the long run: Assume we restore the battery level
to a state c

2 + r for a noisy value r. The randomness r hides all but a small part of the infor-
mation about noise added to the net load in the critical time step i. When we recharge the
battery again after n additional steps, information about r is leaked. After recharging the
battery sufficiently often, the value of r can be estimated precisely with a high probability,
and differential privacy breaks down.

In order to circumvent this inherent problem, we impose the assumption that the
amount of additional noise can be hidden in the overall consumption using appropriate
techniques. We outline two possible techniques for achieving this in practice. First, one
can assume the existence of a distinct, small secondary energy source, e.g., home-owned
solar panels, that is unobservable by the adversary and solely used for the recharging pro-
cess. Second, if we drop the assumption that we do not discard any energy at all, we can
simply continuously draw a small, constant amount of energy from the primary source that
is sufficient for the recharging process, and discard all energy that exceeds the actual bat-
tery recharging demand. For simplicity of notation in the following, we assume that this
additional energy is stored in a distinct, small second battery, and then used to recharge the
primary battery as described below. (In practice, both batteries would typically coincide.)

5.3 The Battery Recharging Mechanism
We define the battery recharging mechanism Fc as follows: it builds on the definition of F,
but instead restores its energy every n steps. We additionally reserve an amount binc = b
of throughput. The total amount of throughput for the battery is thus increased to btotal =

b+binc = 2b, i.e., the total amount of throughput is twice as high as in the restricted setting
for n steps without battery recharging. When n steps have passed, we compare the current
battery level bl(i) with the target level c

2 . We do not try to hide the approximate amount of
energy that we need in order to restore the battery. The precise value, however, is hidden
by Laplacian noise. Due to reasons of readability, the corresponding formal definition of
Fc is postponed to Appendix A.

5.4 Differential Privacy of the Battery Recharging Mechanism
To obtain a privacy guarantee for Fc, we employ a conservative approach: We first show
that when ignoring the leakage due to recharging, Fc does not leak more information than
F, for which we already gave a privacy guarantee. To bound the leakage in the recharging
process, our proof will proceed as follows. We define a recharging leakage function g on
streams Φ, that sums over the consumption of all devices in the steps in the n preceeding
the recharging process.4 For the k’th recharging process, we thus have

gk(Φ) =

k·n∑
j=(k−1)n+1

f (D j).

4 We have ∆g = ∆ f since two neighboring streams may differ in only one point in time by only one
device; thus only one summand may differ by at most max

d∈D
( f (d)) = ∆ f
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Adding noise to g yields a differentially private, so-called n-sumning function with
noise G; we draw the required noise rk from the secondary battery. This battery, analo-
gously to our primary battery, has a finite capacity c2nd. As for the main consumption,
we define the bounded variant G of G that respects the capacity bound. We show that the
information leakage in the recharging process is equal to the information leaked by G.

In contrast to F, we do not impose any explicit throughput bound, but only require that
the throughput is large enough such that the secondary battery can provide the full amount
of c2nd over a period of n steps (the time in between two recharging processes). Another
difference is that in contrast to the noise added at every step in time, it suffices here to only
add noise once every n steps. We assume the battery to be recharged in at most n steps.

Definition 6 (Recharging Leakage Functions). For a deterministic function f with sen-
sitivity ∆ f , a privacy parameter ε2 and a capacity limit c2nd, we define the corresponding
n-summing function with noise G and its bounded variant G on streams Φ with infinite
length, or a length that is a multiple of n, as follows: We have G(Φ) = [G1,G2,G3, . . .]
and G(Φ) = [G1,G2,G3, . . .], respectively, where

Gk =

 k·n∑
j=(k−1)·n+1

f (D j)

 + rk with rk ← Lap
(
∆ f
ε2

)
,

Gk =

 k·n∑
j=(k−1)·n+1

f (D j)

 +


c2nd if rk > c2nd

− c2nd if rk < −c2nd

rk otherwise.

Since the noise is drawn according to the Laplacian distribution and of the necessary mag-
nitude, G is (ε2, 0)-differentially private. For G we use the statistical distance again.

Similar to Fb, the statistical distance between G and G can be estimated with the prob-
ability that the Laplacian noise exceeds c2nd. We will not repeat this result (Lemma 2) but
instead directly give a concrete bound for the statistical distance:

Lemma 6. For all streams Φ of length n, the statistical distance between G and G as
defined in Definition 6 is bounded by

d(G(Φ),G(Φ)) =
2 · (∆ f )2

(c2nd)2 · ε2
2

.

Note that by using Lemma 1 we can directly prove differential privacy for G. Since one
can easily compute Fc from F and G, we can combine the individual results for F and G to
achieve an overall result for Fc.

Theorem 2. Given an (ε1, 0)-differentially private function F with F(x) = f (x)+Lap
(
∆ f
ε1

)
for a deterministic function f and functions G and G as in Definition 6. If the correspond-
ing capacity-regulating mechanism Fc, when using recharging noise with distribution
Lap

(
∆ f
ε2

)
has throughput bound btotal = 2 · b = 2 · binc and capacity bound ctotal = c + c2nd,

and given a secondary battery that provides at least an amount of c2nd energy every n
steps, then for every initial battery level bl(0), Fc is (ε1 + ε2, δ)-differentially private on
(possibly infinite) consumption streams with

δ = (eε1 + 1) · (Pb + Pc) + (eε2 + 1) · Pc2nd , where
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– Pb is the statistical distance between F and Fb.
– Pc is the statistical distance between Fb and F.
– Pc2nd is the statistical distance between G and G.

We can formulate several instantiations of this theorem, e.g., by combining the theorem
with the concrete bounds for the statistical distances proven in this paper.

Corollary 1. Given an (ε1, 0)-differentially private function F with F(x) = f (x)+Lap
(
∆ f
ε1

)
for a deterministic function f . If the corresponding capacity regulating mechanism Fc,
when using recharging noise with distribution Lap

(
∆ f
ε2

)
has throughput bound btotal =

2 · b = 2 · binc and capacity bound ctotal = c + c2nd with c ≥ 2(n + t) · ∆ f
ε

for an arbitrary
number t and given a secondary battery that provides at least an amount of c2nd energy
every n steps, then for every initial battery level bl(0), Fc is (ε1 +ε2, δ)-differentially private
on (possibly infinite) consumption streams with

δ = (eε1 + 1) ·
2 · (∆ f )2

b2 · ε2
1

+
2n
t2

 + (eε2 + 1) ·
2 · (∆ f )2

c2
2nd · ε

2
2

5.5 Interpretation
We stress that the bounds derived in these results are not necessarily tight, but they allow
for a flexible adjustment to different situations. For instance, we can freely decide the
amount of noise to be added to the consumption, or to exclude certain devices from the set
of devices we wish to hide, e.g., devices with a very high consumption (in this case we just
compute the sensitivity ∆ f over the subsetD∗ as ∆ f = max

d∈D∗
f (d)). This enables us to derive

strong privacy guarantees for those devices that one considers particularly privacy-critical,
such as TV, Laptop or other electronic media. Concentrating on particular devices does
not require any changes to the physical installation of the battery, but solely a different
treatment of the required noise.

If one increases the secondary battery’s capacity c2nd, we can further reduce the amount
of energy that needs to be drawn unobservably, e.g., by means of a secondary energy
source: We can compute the probability that the secondary battery is exceeded over m
iterations and get the same privacy guarantee for a smaller share of capacity per iteration.
Using this technique and the bounds presented in this paper, the costs for restoring the
battery status can (asymptotically) be reduced to 2∆ f

ε2
for each restoring process.

6 Evaluation and Concrete Use Cases
In this section, we further highlight the relationship between the individual parameters
(such as the battery’s resource constraints and measurement time) and the obtained privacy
guarantees. For the sake of illustration, we moreover explore a concrete, realistic use case
and analyze which privacy guarantees can be achieved under which resource assumptions.

6.1 Evaluation
Figure 2(a) displays the relationship between the required battery capacity and the privacy
parameter δ that can be guaranteed by applying Lemma 5. Similarly, Figure 2(b) shows the
relationship between this capacity and the number of steps n for which the capacity has to
be provided. In Figure 2(c) we depict the relationship between battery throughput and the
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Fig. 2. Amount of capacity and throughput required, depending on the parameters ε, δ and n.

obtained privacy guarantees. The values δ in the graphs denote the amount of privacy loss
we face for the considered parameters (see Theorem 2). For the graphs, we divided the
values for capacity and throughput by the sensitivity ∆ f of our consumption sum function.
This allows to reason about the relation of the different parameters independent from the
appliances themselves.

6.2 A Concrete Use Case: Hiding TV Activation and Content

For the sake of illustration, we finally investigate the concrete use case of hiding a TV
device in the overall consumption stream. We consider three different TV devices with
different power consumptions, and we strive for two different security guarantees for each
of these three devices: a) hiding TV activation, and b) hiding which TV program is being
watched (while potentially still disclosing that the TV was turned on).

We assume a standard American household with an average consumption of about
30 kWh per day, according to the U.S. Energy Information Administration. Within this
household, we consider the following three TV devices: (1) a 42” plasma TV with 335W,
(2) a 29” CRT TV with 130W, and (3) a 19” LCD TV with 36W. In the following we write
∆1 f to denote the sensitivity we have when to hide the plasma TV, and similarly ∆2 f for
the CRT TV and ∆2 f for the LCD TV. We will work with the following parameters: The
smart meter sends the current load sum every ∆t = 5 minutes, which corresponds to one of
the most commonly used time intervals in smart meterings [20]. We consider an off-the-
shelf rechargeable battery, and we assume that the throughput of the battery is sufficiently
high so that the battery can be fully discharged within one hour. We consider an additional
resource consumption of 3 kWh per day to recharge the secondary battery.

Hiding TV Activation In this setting, we wish to hide if the TV was activated or not. This
means that we calibrate the sensitivity ∆ f to the net load of the TV. (As a by-product, this
approach also hides all appliances that use at most as much energy as the TV.)

For our computation we hence obtain the following parameters: ∆1 f = 335W · ∆t ≈
28Wh, ∆2 f = 130W · ∆t ≈ 11Wh, and ∆3 f = 36W · ∆t = 3Wh. The values for δ heavily
depend on the selection of ε. Note that the optimal choice of n and the optimal relation of
ε1 to ε2 also depend on ε; additionally the choice of n can influence the guarantees. We aim
to achieve a privacy guarantee of (0.33, 0.1)-differential privacy in this example; hence we
can choose ε1 ≥ 0 and ε2 ≥ 0 freely as long as ε1 + ε2 ≤ 0.33. We can even choose n freely,
which denotes the number of steps between consecutive rechargings.

We exemplarily show several sample calculations (the parameters ε1, ε2, and n have
been determined experimentally to obtain improved results for the individual scenarios):
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(1) For the 42” plasma TV with 335W, we set ε1 ≈ 0.17 and ε2 ≈ 0.16 and n to 210 (i.e.,
we restore the battery status every 17.5 hours). We then obtain (0.33, 0.1)-differential
privacy if one uses a battery with 38kWh or more.

(2) For the 29” CRT TV with 130W, we set ε1 ≈ 0.18 and ε2 ≈ 0.15 and n to 165 (i.e.,
we restore the battery status every 13.75 hours). We then obtain (0.33, 0.1)-differential
privacy if one uses a battery with 12.5kWh or more.

(3) For the 19” LCD TV with 36W, we set ε1 ≈ 0.24 and ε2 ≈ 0.09 and n to 50 (i.e.,
we restore the battery status every 3.33 hours). We then obtain (0.33, 0.1)-differential
privacy if one uses a battery with 2.70kWh or more.

Hiding which TV Program is Watched In this setting, we wish to hide the actual TV
program that is being watched (but we do not intend to hide the activation of the TV per
se). The program displayed on a TV influences the energy consumption because brighter
scenes require a larger consumption of energy. We thus calibrate the sensitivity to the max-
imum difference between two TV programs, which is the difference between displaying
a white and a dark screen. Note that for our LCD screen we assume that there is at least
one non-black pixel, as otherwise the light bulb is turned off completely, resulting in a sig-
nificantly larger difference in terms of consumption. (If we wanted to cover this case, we
would have to use a larger value for the sensitivity.) Consequently, the sensitivity now has
to only account for the maximal difference in power consumption of the individual TVs:

(1) For the 42” plasma TV with 335W, the maximal difference in power consumption
based on the program is at most 130W (obtained from a power consumption fact sheet
for the respective TV); thus ∆1 f ≈ 11Wh. We set ε1 ≈ 0.18 and ε2 ≈ 0.15 and n to
165 (i.e., we restore the battery status every 13.75 hours). We then obtain (0.33, 0.1)-
differential privacy if one uses a battery with 12.5kWh or more.

(2) For the 29” CRT TV with 130W, the maximal difference in power consumption based
on the program is at most 46W (fact sheet); thus ∆2 f ≈ 2.3Wh. We set ε1 ≈ 0.24 and
ε2 ≈ 0.09 and n to 45 (i.e., we restore the battery status every 3.75 hours). We then
obtain (0.33, 0.1)-differential privacy if one uses a battery with 3.7kWh or more.

(3) For the 19” LCD TV with 36W, the maximal difference in power consumption based
on the program is at most 2W (fact sheet); thus ∆3 f = 0.167Wh. We set ε1 ≈ 0.13
and ε2 ≈ 0.20 and n to 5 (i.e., we restore the battery status every 25 minutes). We then
obtain (0.33, 0.1)-differential privacy if one uses a battery with 0.11kWh or more.

7 Conclusions
We have proposed a novel technique for provably hiding sensitive power consumption in-
formation in the overall power consumption stream. Our technique relies on a rechargeable
battery that is used to modify the household’s power consumption by adding or subtracting
noise (i.e., increasing or decreasing power consumption), in order to establish strong pri-
vacy guarantees in the sense of differential privacy. To achieve these privacy guarantees in
realistic settings, we have investigated the influence of, and the interplay between, capac-
ity and throughput bounds that batteries face in reality. Based on these observations, we
have proposed an integrated method based on noise cascading that allows for recharging
the battery on-the-fly so that differential privacy is retained, while adhering to capacity and
throughput constraints, and while keeping the additional consumption of energy induced
by our technique to a minimum.
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A Postponed Definitions and Proof Outlines (Battery Recharging)

We now present the postponed abstractions from Section 5 and further details of the cor-
responding proof. We formalize the overall mechanism Fc as follows:

Definition 7 (Battery-recharging Mechanism). The battery-recharging mechanism Fc
on stream Φ = [D1,D2, . . .] behaves as follows:

1. Determine the target level for recharging: xgoal = c
2 − bl(i) + R∗, where bl(i) is the cur-

rent battery level and R∗ is the additional noise for battery recharging. The energy for
R∗ is either thrown away (if positive) or taken from the secondary battery (if negative).
If xgoal > 0 we are charging, if xgoal < 0 we are discharging the battery.

2. Initialize xa = 0, a counter evaluating the progress we made for reaching our target
level.

3. Now simulate F on Φ for n steps, internally using a simulated battery level bl′ starting
with bl(i)′ = c

2 , but with the following additional computations:
– The amount xinc we want to restore in each step is binc, but at most as much as

we need to reach xgoal with xa + xinc = xgoal. If the target level has already been
reached, xinc = 0.

– We output Fc(Di) = max(0,F(Di)− xinc). We cap the output at 0 to avoid discard-
ing energy.

– The amount of energy by which the battery is restored is added to xa.5

– As soon as either the real battery level bl or the simulated battery level bl′ would
exceed the capacity in either direction, we stop adding noise.

4. Go to 1), reinitialize the variables and repeat the process.

To bound the information leakage in the recharging process, the overall proof will
proceed as follows. We first define the so-called summing function g that sums up the
consumption of all devices in a given stream, without taking noise into account. We then
show that f and its summing function have the same sensitivity. After that, we define
a differentially private version G of this summing function by adding Laplacian noise;
finally, we derive a capacity-bounded version G from G that leaks as much information as
our recharging process and that respects the capacity constraints of the second battery.

To establish the differential privacy for Fc, we show that the output of Fc can be com-
puted from the outputs of F and G. The overall proof structure to show Fc differentially
private is depicted in Figure 3.

5 This can be different from xinc, when, e.g., F(Di) − xinc is negative.
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F (ε1, δ1)-DP
(Theorem 1)

G (ε2, δ2)-DP
(Lemmas 1, 2, 3)

H (ε1 + ε2, δ1 + δ2)-
DP

H (ε1 + ε2, δ1 + δ2)-
DP

Fc (ε1 + ε2, δ1 +δ2)-DP
(Theorem 2)

Lemma 7

Lemma 9

Fig. 3. Simplified overview of our proof. Here (ε, δ)-DP stands for (ε, δ)-differentially private.

A.1 Obtaining Differential Privacy for the Overall Process

For arguing that Fc is differentially private, we have investigated the information leaked
by both the measured consumption F (without considering battery recharging) and by the
battery recharging mechanism G separately in Section 5. We now combine them in the
standard manner by the combining mechanism H as follows:

Definition 8 (Combining Mechanism). Given a mechanism F as in Definition 4 and a
mechanism G as in Definition 6, we define the corresponding combining mechanism H as

H(Φ) = (F(Φ),G(Φ)) ,

where the battery level for F is assumed to be reset to c
2 every n steps.

Following the reasoning of the combination result in [12] (Theorem 1), we obtain that H
satisfies (ε1 + ε2, δ1 + δ2)-differential privacy.

Until now we have only stated that H is useful for computing Fc. We will now show
how to generate a closely related function H out of H to which our privacy guarantees
can be transferred without loss. To define H, we subtract the sum of the corresponding
n outputs F(Di) from G, which is easily computable out of H. This yields the difference
between the sum of all outputs and the sum of the net consumption (plus one additional
share of noise). This exactly corresponds to the amount xgoal in Definition 7 by which we
want to restore the battery level.

Definition 9. Let H be defined as

H(Φ) = (F(Φ),G∗(Φ))

where in G∗ each G∗k is defined as Gk −
k·n∑

j=(k−1)·n+1
F(D j) and where for F the battery level

is assumed to be reset to c
2 every n steps.

Since this computation can be done by every observer as well, we obtain the following
lemma.

Lemma 7. Given a function H = (F,G) with F as in Definition 4 and G as in Definition
6. If H satisfies (ε1 + ε2, δ1 + δ2)-differential privacy, then H, as defined in Definition 9,
satisfies (ε1 + ε2, δ1 + δ2)-differential privacy.

We now combine the results established in this section and show that the output Fc can
indeed be computed from the output of H without further knowledge. This allows us to
imply an (ε1 + ε2, δ1 + δ2)-differential privacy guarantee for Fc.
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In order to compute Fc from H, we first have to make sure that the mechanism F, when
used internally by Fc (see Definition 7) entails the same output distribution as F itself,
when using the same consumption stream as input and using an initial battery level of
bl(0) = c

2 , as in Theorem 1.

Lemma 8. When starting with an arbitrary battery level r0, the part F of Fc behaves as F
would behave when initialized with bl(0) = c

2 .
This also implies that the output distribution of the part F of Fc is independent of the initial
battery level. Among other results, this allows us to generalize the privacy guarantees for
Fc to infinite streams.

Lemma 9. If H is (ε1 + ε2, δ1 + δ2)-differentially private on (potentially infinitely long)
consumption streams, then Fc is also (ε1+ε2, δ1+δ2)-differentially private on these streams.

Finally we can easily consolidate these results in order to establish Theorem 2 from
Section 5. It states that the battery-recharging mechanism constructed in Definition 7 is
indeed (ε1 + ε2, δ1 + δ2)-differentially private on infinite consumption streams for arbitrary
values ε1 and ε2, and we give upper bounds for the values of δ1 and δ2, depending on the
sensitivity of f (∆ f ), the privacy guarantee itself (ε1, ε2) and the resource limits of our
primary (b, c) and secondary battery (c2nd).

B Postponed Proofs

Proof (Proof for Lemma 1). Given a set S and a two neighboring elements x and x′.

Pr[G(x) ∈ S ]
≤ Pr[F(x) ∈ S ] + |Pr[F(x) ∈ S ] − Pr[G(x) ∈ S ]|
≤ eε · Pr[F(x′) ∈ S ] + δ1 + |Pr[F(x) ∈ S ] − Pr[G(x) ∈ S ]|
≤ eε · Pr[F(x′) ∈ S ] + δ1 + δ2

≤ eε · (Pr[G(x′) ∈ S ]+ |Pr[F(x) ∈ S ]−Pr[G(x) ∈ S ]|)+δ1 +δ2

≤ eε · Pr[G(x′) ∈ S ]) + δ1 + (eε + 1) · δ2

The second inequality follows from the fact that F is (ε, δ)-differentially private. The cal-
culation shows that G is (ε, δ1 + (eε + 1)δ2)-differentially private.

Proof (Proof for Lemma 2). We have to prove the following two statements:

i) ∀x, S . Pr[Fb(x) ∈ S ] ≤ Pr[F(x) ∈ S ] + Pr [|R| > b] ,
ii) ∀x, S . Pr[F(x) ∈ S ] ≤ Pr[Fb(x) ∈ S ] + Pr [|R| > b] ,

For this proof we will use the following notation:

– PF denotes Pr[F(x) ∈ S ]; PFb denotes Pr[Fb(x) ∈ S ].
– P= denotes Pr[F(x) = Fb(x)], analogously for P,.
– PA|= denotes Pr[A|F(x) = Fb(x)], analogously for PA|,.
– We assume for the proof and for these probabilities in particular, that Fb(x) is com-

puted out of f (x) and F(x). Thus F and Fb use the same randomness.
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First note that P, is exactly equal to the probability Pr [|R| > b]. If R is larger than b, the
noise is cut down by Fb, but not by F. This is the only possibility for F and Fb to differ.
We first show i), given x and S :

PFb = PFb |= · P= + PFb |, · P,
= PF|= · P= + PFb |, · P,
= PF|= · P= + PFb |, · P, + PF|, · P, − PF|, · P,
= PF + PFb |, · P, − PF|, · P,
= PF + P, · (PFb |, − PF|,)
≤ PF + P,

Analogously we show ii):

PF = PF|= · P= + PF|, · P,
= PFb |= · P= + PF|, · P,
= PFb |= · P= + PF|, · P, + PFb |, · P, − PFb |, · P,
= PFb + PF|, · P, − PFb |, · P,
= PFb + P, · (PF|, − PFb |,)
≤ PFb + P,

Thus, the statistical distance as defined by Definition 5 is at most

d(F(x), Fb(x)) ≤ Pr [|R| > b] .

Proof (Proof for Lemma 3). When regarding the noise as a random variable Lap
(
∆ f
ε

)
,

which has variance 2·(∆ f )2

ε2 we can apply the following variant of the Chebyshev-inequality
to directly yield this result: Given a random variable X with variance σ2. For any k ∈
R+/{0} we have that:

Pr
[
|X − E[X]| ≥ k2

]
≤
σ2

k2 ,

where E[X] denotes the expected value of X.

Proof (Proof for Lemma 4). The difference between F and Fb is solely in the fact that
F keeps track of the battery level bl and reduces the noise whenever it would exceed the
capacity bound. Given a consumption stream φ of length n and a set S ,∣∣∣Pr[F(Φ) ∈ S ] − Pr[Fb(Φ) ∈ S ]

∣∣∣
≤ Pr[∃k ∈ {1, . . . , n}.F(Dk) , Fb(Dk)]

≤ Pr

∃k ∈ {1, . . . , n}.

∣∣∣∣∣∣∣∣
k∑

j=1

(
Fb(D j) − f (D j)

)∣∣∣∣∣∣∣∣ > c
2


The claim of the lemma follows.
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Proof (Proof for Lemma 5). Recall that Lap( 1
λ
) has the following probability density func-

tion:

Lap(s, x) =
λ

2

{
exp (xλ) i f x < 0
exp (−xλ) i f x ≥ 0

Taking the absolute value leads to the exponentially distributed probability density func-
tion:

|Lap(s, x)| = λ · e−xλ

which for λ = ε1
∆ f has the expected value ∆ f

ε1
. Thus, the expected value of the sum is

E
 n∑∣∣∣∣∣∣Lap

(
∆ f
ε1

)∣∣∣∣∣∣
 = n ·

∆ f
ε1
.

The variance of
∣∣∣∣Lap

(
∆ f
ε1

)∣∣∣∣ is 2 ·
(
∆ f
ε1

)2
, but since the individual random variables are un-

correlated we have for the sum:

var
 n∑∣∣∣∣∣∣Lap

(
∆ f
ε1

)∣∣∣∣∣∣
 = 2n ·

(
∆ f
ε1

)2

.

For the following computation, we abbreviate
n∑ ∣∣∣∣Lap

(
∆ f
ε1

)∣∣∣∣ by Xn for reasons of readability.

Pr
[
Xn ≥ 2 · n ·

∆ f
ε1

]
≤ Pr

[∣∣∣∣∣Xn − n ·
∆ f
ε1

∣∣∣∣∣ ≥ n ·
∆ f
ε1

]
= Pr

[
|Xn − E[Xn]| ≥ n ·

∆ f
ε1

]
≤

var(Xn)(
n · ∆ f

ε1

)2

≤
2n ·

(
∆ f
ε1

)2(
n · ∆ f

ε1

)2 =
2
n

Proof (Proof for Theorem 1). By assumption, F is (ε1, 0)-differentially private. By Lemma
1, Fb is (ε1, (eε1 +1)·Pb)-differentially private, where Pb is the statistical distance between F
and Fb. By applying Lemma 1 again we obtain that F is (ε1, (eε1 +1)·(Pb+Pc))-differentially
private, where Pc is the statistical distance between Fb and F.

Proof (Proof for Lemma 6).
The only difference between G and G is that G cuts the noise if it exceeds an amount

of ±ccap. We can apply Lemma 2 and directly obtain that for all streams Φ of length n, the
statistical distance is bounded by

d(G(Φ),G(Φ)) ≤ Pr
[∣∣∣∣∣∣Lap

(
∆ f
ε2

)∣∣∣∣∣∣ > ccap

]
.
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By Lemma 3 we know that the probability for the Laplacian noise to exceed a bound
ccap is bounded by

Pr
[∣∣∣∣∣∣Lap

(
∆ f
ε2

)∣∣∣∣∣∣ > ccap

]
≤

2 · (∆ f )2(
ccap

)2
· ε2

2
.

This concludes the proof.

Proof (Proof for Lemma 7).
Let ε = ε1 + ε2 and δ = δ1 + δ2. Now assume for contradiction that: ∃Φ,Φ′,∃S ⊆

Rn+1,∃i ∈ N s.t.
Pr[H(Φ) ∈ S ] > eεPr[H(Φ′) ∈ S ] + δ.

We show that this leads to a contradiction.

Pr[H(Φ) ∈ S ] > eεPr[H(Φ′) ∈ S ] + δ

De f
⇔Pr


F(Φ),G(Φ) −

n∑
j=1

F(D j)

 ∈ S

 >
eεPr


F(Φ′),G(Φ′) −

n∑
j=1

F(D′j)

 ∈ S ∗
 + δ

Note that F(Φ) ∈ Rn actually denotes a n-tuple. We define a new set S ∗ ⊆ Rn+1 as follows:

S ∗ :=


(a1, . . . , an), b −

n∑
j=1

a j


∣∣∣∣∣∣∣∣ ((a1, . . . , an), b) ∈ S


so that by definition we have:

(F(Φ),G(Φ)) ∈ S ∗ ⇔

F(Φ),G(Φ) −
n∑

j=1

Fc(D j)

 ∈ S . (I)

We combine this with the above and obtain:

Pr[H(Φ) ∈ S ] > eεPr[H(Φ′) ∈ S ] + δ

De f
⇔Pr


F(Φ),G(Φ) −

n∑
j=1

F(D j)

 ∈ S

 >
eεPr


F(Φ′),G(Φ′) −

n∑
j=1

F(D′j)

 ∈ S

 + δ

(I)
⇔Pr

[
(F(Φ),G(Φ)) ∈ S ∗

]
> eεPr

[(
F(Φ′),G(Φ′)

)
∈ S ∗

]
+ δ

De f
⇔Pr[H(Φ) ∈ S ∗] > eεPr[H(Φ′) ∈ S ∗] + δ

which contradicts the fact that H satisfies (ε, δ)-differential privacy.

Proof (Proof for Lemma 8).
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Assume for contradiction that this is not the case. The only possibility for F in Fc to
behave differently than F is by exceeding the capacity at a different point in time. There
are two possibilities:

– F in Fc exceeds the capacity earlier than F:
Assume that F in Fc exceeds the capacity (in either direction) in a step i, but internally
|si| <

c
2 . We distinguish the following cases, where ri is the noise added in the current

step i:
• The recharging process was finished in step i or before.

This means that bl(0) + xa = c
2 . But since bl(i) = bl(0) + xa + si = c

2 + si, the
capacity cannot be exceeded as long as |si| <

c
2 .

• The recharging process is ongoing in step i with |xinc| = binc and sign(si) ,
sign(xinc).
If sign(R) , sign(si), then the magnitude of the noise added has been reduced,
i.e., a problem occurred in the recharging mechanism: we restore the battery in
the wrong direction, i.e., we started at the opposite side of c

2 .
Then one of the following cases must hold:
∗ bl(i − 1) ≥ 0 and bl(i) < 0: Since |ri| ≤ b = binc = |xinc| we cannot have

exceeded the capacity in this step:

bl(i) = bl(i − 1) + ri + xinc ≥ bl(i − 1) ≥ 0

∗ bl(i − 1) ≤ c and bl(i) > c: Since |ri| ≤ b = binc = |xinc| we cannot have
exceeded the capacity in this step:

bl(i) = bl(i − 1) + ri + xinc ≤ bl(i − 1) ≤ c

∗ We restore the battery in the wrong direction, i.e., we started at the opposite
side of c

2 . But then |si| >
c
2 .

• The recharging process is ongoing in step i with |xinc| = binc and sign(si) =

sign(xinc).
We know that bl(i) = bl(0) + xa + si and that bl(i) = bl(i − 1) + ri + xinc. We
distinguish the following cases:
∗ xinc < 0. Then bl(0) + xa >

c
2 . Still we assume that bl(i) < 0. Thus,

bl(0) + xa + si < 0⇒ c
2 + si < 0⇒ |si| >

c
2

∗ xinc > 0. Then bl(0) + xa <
c
2 . Still we assume that bl(i) > c. Thus,

bl(0) + xa + si > c⇒ c
2 + si > c⇒ |si| >

c
2 .

– F in Fc exceeds the capacity later than F:
This contradicts our definition of Fc, since it simulates a capacity of c

2 for F.

Proof (Proof for Lemma 9).
Fc can be computed from H as follows, where we call this new mechanism FHH:

1. Set k = 0, set xgoal = r∗, where r∗ is drawn as the additional noise for recharging.
2. Initialize xa = 0
3. Now for the next n steps proceed as follows:

– The amount xinc restored by Fc in each step is binc, but at most as much as is
needed to reach xgoal with xa + xinc = xgoal. If the the goal has already been
reached, xinc = 0.

– Output max(0,F(Di) − xinc)
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– The difference between the output and F(Di) is added to xa.
4. Increase k by 1 and set xgoal = G∗(Φk) + xgoal − xa.
5. Go to 2. to reinitialize xa and repeat the process.

We show that the computations of Fc and FH are equal, via induction over k.
For k = 0, both Fc and FH start by setting xgoal. In Fc we have xgoal = c

2 −
c
2 + r∗,

where FH sets xgoal = r∗. In both computations r∗ is a random number, drawn from the
same distribution. xa is set to 0.

Now n steps follow, where in Fc the underlying mechanism F is simulated, while for
FH the real mechanism F is used. By Lemma 8 we know that F will behave the same,
independent whether it is simulated by Fc or used directly by FH.

Given all computations were equal for all values k we have seen so far. For k + 1 we
again compute xgoal in both Fc and FH. In Fc we have

xgoal :=
c
2
− bl((k + 1) · n) + r∗

=
c
2
− bl(0) −

(k+1)·n∑
j=1

∆bl( j) + r∗

=
c
2
− bl(k · n) −

((k+1)·n)∑
j=k·n+1

∆bl( j) + r∗

=
c
2
− bl(k · n) −

((k+1)·n)∑
j=k·n+1

(
f (D j) − F(D j)

)
+ r∗

=
c
2
− bl(k · n) −

((k+1)·n)∑
j=k·n+1

f (D j) −
((k+1)·n)∑
j=k·n+1

F(D j) + r∗

=
c
2
− bl(k · n) + G∗(Φk+1)

IH
= x′goal − xa + G∗(Φk+1),

,

which exactly corresponds to how xgoal is computed by FH. Here x′goal is the previous
value of xgoal. The last equation holds by induction hypothesis: Since the computations
have been equal up to iteration k, the battery level bl(k · n) is c

2 − x′goal + xa.
For the next n steps again for Fc the underlying mechanism F is simulated, while for

FH the real mechanism F is used with a reset battery level of c
2 . By Lemma 8 we know that

F will behave in the same way, if it is simulated by Fc or used directly by FH.
Since H is (ε, δ)-differentially private and this transformation from H to Fc constitutes

a deterministic function, Fc is (ε, δ)-differentially private.

Proof (Proof for Theorem 2). By Theorem 1 we know that F is (ε1, δ1)-differentially
private. By Lemma 1 G is (ε2, δ2)-differentially private. Thus, H is (ε1 + ε2, δ1 + δ2)-
differentially private. By Lemma 7, H is (ε1 + ε2, δ1 + δ2)-differentially private. Applying
Lemma 9 concludes the proof.
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