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Abstract

We study the channel capacity of q-ary fingerprinting in the limit of large attacker coalitions.
We extend known results by considering the Combined Digit Model, an attacker model that
captures signal processing attacks such as averaging and noise addition. For q = 2 we give
results for various attack parameter settings. For q ≥ 3 we present the relevant equations
without providing a solution. We show how the channel capacity in the Restricted Digit
Model is obtained as a limiting case of the Combined Digit Model.

1 Introduction

1.1 Collusion resistant watermarking

Watermarking is a means of tracing the (re-)distribution of content. Before distribution, digital
content is modified by applying an imperceptible watermark (WM), embedded using a watermark-
ing algorithm. Once an unauthorized copy of the content is found, the WM helps to trace those
users who participated in the creation of the copy. This is known as ‘forensic watermarking’. Reli-
able tracing requires resilience against attacks that aim to remove the WM. Collusion attacks are
a particular threat: multiple users cooperate, and differences between their versions of the content
tell them where the WM is located. Coding theory has provided a number of collusion-resistant
codes. The resulting system has two layers: The coding layer determines which message to embed,
and protects against collusion attacks. The underlying watermarking layer hides symbols of the
code in segments1 of the content.
Many collusion resistant codes have been proposed in the literature. Most notable is the Tardos
code [15], which achieves the asymptotically optimal proportionality m ∝ c2, with m the code
length and c the size of the coalition of attackers. Tardos introduced a two-step stochastic proce-
dure for generating binary codewords: (i) For each segment a bias is randomly drawn from some
distribution. (ii) For each user independently, a 0 or 1 is randomly drawn for each segment using
the bias for that segment. This construction was generalized to larger (q-ary) alphabets in [16].
The interface between the coding and watermarking layer is usually specified in terms of the
Marking Assumption (MA), which states that the colluders are able to perform modifications only
in those segments where they received different WM symbols. These segments are called detectable
positions. Furthermore, within this class of attacks there is a classification of attacks according to
the manipulations that can be performed in the detectable positions. In the Restricted Digit Model
(RDM), the coalition is only allowed to pick one symbol that they received. In the Unreadable
Digit Model, they are furthermore allowed to create an erasure. In the Arbitrary Digit Model, they
can pick any symbol from the alphabet, even one that they did not receive (but not an erasure).
The General Digit Model allows any symbol from the alphabet or an erasure.
For q = 2, all these MA attacks are equivalent. For larger alphabets, the general feeling is that
realistic attacks are somewhere between the RDM and the Unreadable Digit Model. To come to
an even more realistic attack model (also for q = 2) which additionally takes into account signal
processing (e.g. averaging attacks and noise addition), one has to depart from the MA. Such
attack models were proposed in [19] and [17] for general q, and for q = 2 in e.g. [7, 8].

1The ‘segments’ are defined in a very broad sense.
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1.2 Asymptotic channel capacity

In Tardos’ scheme [15] and later improvements and generalisations (e.g. [18, 16, 3, 14, 13, 5, 17, 19,
10, 9, 11]), users are found to be innocent or guilty via an ‘accusation sum’, a sum of weighted per-
segment contributions, computed for each user separately. The analysis of achievable performance
was greatly helped by the onset of an information-theoretic treatment of anti-collusion codes.
The whole class of bias-based codes can be treated as a maximin game between the watermarker
and the colluders [2, 12, 6], independently played for each segment, where the payoff function is
the mutual information between the symbols x1, . . . , xc handed to the colluders and the symbol
y produced by them. In each segment (i.e. for each bias) the colluders try to minimize the
payoff function using an attack strategy that depends on the (frequencies of the) received symbols
x1, . . . , xc. The watermarker tries to maximize the average payoff over the segments by setting
the bias distribution.
The rate of a fingerprinting code is defined as

logq n

m , where n is the number of users and m the code
length (the number of q-ary symbols). The fingerprinting capacity is the maximum achievable rate.
For q = 2 it was conjectured [6] that the capacity is asymptotically 1/(c22 ln 2). The conjecture
was proved in [1, 6]. Amiri and Tardos [1] developed an accusation scheme (for the binary case)
where candidate coalitions get a score related to the mutual information between their symbols
and y. This scheme achieves capacity but is computationally very expensive. Huang and Moulin
[6] proved for the large-c limit (in the binary case) that the interleaving attack and Tardos’s arcsine
distribution are optimal.
It was shown by Boesten and Škorić [4] that the asymptotic channel capacity for q-ary alphabets
in the RDM is (q− 1)/(2c2 ln q). Their proof method revealed neither the optimal attack strategy
nor the optimal bias distribution.

1.3 Contributions

In this paper we study the asymptotic channel capacity of q-ary fingerprinting in the Combined
Digit Model (CDM) [17], following the approach of [4]. We choose for the CDM because this
model is defined for general q and captures a large range of non-MA attacks.
We show that the asymptotic channel capacity in the CDM can be found by solving the following
problem: Find a mapping γ from the hypersphere in q dimensions to the hypersphere in 2q

dimensions, such that γ minimizes the volume swept in the latter space; the boundary conditions
on the volume are fixed by the attack parameters in the CDM. One of the main differences between
the RDM and CDM lies in the dimension of the target hypersphere, which is q − 1 in the RDM
and 2q − 1 in the CDM. We show how the RDM capacity is re-obtained from the CDM setting.
For q ≥ 3 we have not solved the above mentioned minimization problem. For q = 2 we present
numerical results for various attack parameter choices. The numerics involve computations of
constrained geodesics, a difficult problem in general. The resulting graphs show a nontrivial
dependence of the capacity on the CDM attack parameters.

2 Preliminaries

2.1 Notation

We use capital letters to represent random variables, and lowercase letters to their realizations.
Vectors are denoted in boldface and the components of a vector ~x are written as xi. Vectors are
interpreted as being column vectors. The expectation over a random variable X is denoted as EX .
The mutual information between X and Y is denoted by I(X;Y ), and the mutual information
conditioned on a third variable Z by I(X;Y |Z). The base-q logarithm is written as logq and the
natural logarithm as ln. The standard Euclidean norm of a vector ~x is denoted by ‖~x‖. The
Kronecker delta of two variables α and β is denoted by δαβ . A sum over all possible outcomes of
a random variable X is denoted by

∑
x. In order not to clutter up the notation we will often omit

the set to which x belongs when it is clear from the context.
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2.2 Fingerprinting with per-segment symbol biases

Tardos [15] introduced the first fingerprinting scheme that achieves optimality in the sense of
having the asymptotic behavior m ∝ c2. He introduced a two-step stochastic procedure for
generating the codeword matrix X. Here we show the generalization to non-binary alphabets
[16]. A Tardos code of length m for a number of users n over the alphabet Q of size q is a set
of n length-m sequences of symbols from Q arranged in an n × m matrix X. The codeword
for a user i ∈ {1, . . . , n} is the i-th row in X. The symbols in each column j ∈ {1, . . . ,m} are

generated in the following way. First an auxiliary bias vector ~P (j) ∈ [0, 1]q with
∑
α
P

(j)
α = 1 is

generated independently for each column j, from a distribution F which is considered known to
the attackers. (The ~P (j) are sometimes referred to as ‘time sharing’ variables.) The result ~p(j)

is used to generate each entry Xij of column j independently: Prob [Xij = α] = p
(j)
α . The code

generation has independence of all columns and rows.

2.3 The collusion attack in the Combined Digit Model

Let the random variable Σ
(j)
α ∈ {0, 1, . . . , c} denote the number of colluders who receive the symbol

α in segment j. It holds that
∑
α σ

(j)
α = c for all j. From now on we will drop the segment index j,

since all segments are independent. In the Restricted Digit Model the colluders produce a symbol
Y ∈ Q that they have seen at least once. In the Combined Digit Model as introduced by [17] we
also allow the attackers to output a mixture of symbols. Let

Ω(Σ) , {α ∈ Q | Σα ≥ 1} (1)

be the set of symbols that the pirates have seen in a certain column. Then the output of the
pirates is a non-empty set Ψ ⊆ Ω(Σ). On the watermarking level this represents a content-
averaging attack where all the symbols in Ψ are used. It has been shown [ref Moulin] that it
is sufficient to consider a probabilistic per-segment (column) attack which does not distinguish

between the different colluders. Such an attack then only depends on ~Σ, and the strategy can be
completely described by a set of probabilities θψ|~σ ∈ [0, 1], which are defined as

θψ|~σ , Prob[Ψ = ψ | ~Σ = ~σ]. (2)

For all ~σ conservation of probability gives
∑
ψ

θψ|~σ = 1.

2.4 Detection process in the Combined Digit Model

The Combined Digit Model also introduces a stochastic detection process. Let |Ψ| be the cardi-
nality of the output set Ψ. Then each symbol in Ψ is detected with probability t|Ψ|. Each symbol
not in the set Ψ is detected with error probability r. The set W ⊆ Q indicates which symbols are
detected. Note that Ψ is forced to be non-empty but W = ∅ can occur.

Received Mixed Detected

Ω
Ψ ⊆ Ω

W

attack
strategy

signal
processing

Q

r

1− r
1− t|Ψ|

t|Ψ|

Figure 1: Overview of the detection process in the Combined Digit Model. The detection probabil-
ities are shown on the right.
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The numbers ti for i = 1, 2, . . . , q are decreasing since mixing more symbols makes it more difficult
to detect the individual symbols. The overall probability of detecting a set w, given ψ, is

Mw|ψ , Prob [W = w | Ψ = ψ]

= t
|w∩ψ|
|ψ|

(
1− t|ψ|

)|ψ\w|
r|w\ψ| (1− r)q−|w∪ψ| . (3)

These probabilities form a 2q × (2q − 1) matrix M . In this way we can define

τw|~σ , Prob
[
W = w | ~Σ = ~σ

]
=
∑
ψ

Mw|ψθψ|~σ = (Mθ)w|~σ , (4)

or, in matrix notation, τ = Mθ.

2.5 Collusion channel and fingerprinting capacity

Similarly to the RDM [4] the attack can be interpreted as a noisy channel with input ~Σ and output
W . A capacity for this channel can then be defined, which gives an upper bound on the achievable
code rate of a reliable fingerprinting scheme. The first step of the code generation, drawing the
biases ~p, is not considered to be a part of the channel. The fingerprinting capacity CCDM

q for a
coalition of size c and alphabet size q in the CDM is equal to the optimal value of the following
two-player game:

CCDM
q = max

F
min
~θ

1

c
I(W ; ~Σ | ~P ) = max

F
min
~θ

1

c

∫
F (~p)I(W ; ~Σ | ~P = ~p)dq~p. (5)

Here the information is measured in q-ary symbols. Our aim is to compute the fingerprinting
capacity CCDM

q in the limit (n→∞, c→∞).

The payoff function I(W ; ~Σ | ~P ) is linear in F and convex in ~τ . Because ~τ = M~θ is linear in ~θ the

game is also convex in ~θ and we can apply Sion’s Theorem:

max
F

min
~θ
I(W ; ~Σ | ~P ) = min

~θ
max
F

I(W ; ~Σ | ~P )

= min
~θ

max
p

I(W ; ~Σ | ~P = ~p), (6)

where in the second step we performed the maximization over F by choosing the optimum F ∗(~p) =

δ(~p− ~pmax) at the location ~p = ~pmax of the maximum of I(W ; ~Σ | ~P = ~p).

3 Asymptotic analysis for general alphabet size

We are interested in how the payoff function I(W ; Σ | ~P = ~p) of the alternative game (6) behaves
as c goes to infinity. Following the same approach as in [4] our starting point is the observation

that the random variable ~Σ/c tends to a continuum in [0, 1]q with mean ~p. Hence we introduce a

continuous strategy ~h
(
~σ
c

)
:

hψ

(
~σ

c

)
c→∞

= θψ|~σ. (7)

We also define

gw

(
~σ

c

)
c→∞

= τw|~σ =
∑
ψ

Mw|ψhψ

(
~σ

c

)
, (8)
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which in matrix notation can be written as ~g = M~h. The next step is to do a second order Taylor
expansion of gw

(
~σ
c

)
around the point ~σ

c = ~p. This allows us to expand I in powers of 1/c, giving
(see [4])

I(W ; Σ | ~P = ~p) =
T (~p)

2c ln q
+O

(
1

c
√
c

)
(9)

T (~p) ,
∑
w

1

gw(~p)

∑
αβ

Kαβ
∂gw(~p)

∂pα

∂gw(~p)

∂pβ
, (10)

where Kαβ = δαβpα − pαpβ is the scaled covariance matrix of Σ. The asymptotic capacity CCDM
q,∞

in the limit of c→∞ is then defined as the solution of the continuous version of the game (6):

CCDM
q,∞ ,

1

2c2 ln q
min
~h

max
~p
T (~p). (11)

At this point we introduce the variable transformations uα ,
√
p
α
, γw ,

√
gw and also the

2q × q Jacobian matrix Jwα(~u) , ∂γw(~u)
∂uα

. This transformation means we switch to hyperspheres
(‖~u‖ = 1, ‖γ‖ = 1) instead of the hyperplanes (

∑
α
pα = 1,

∑
w
gw = 1) that we had before. The

function ~γ(~u) was originally defined only on the domain ‖~u‖ = 1, but the Taylor-expansion forces
us to define it on a larger domain, i.e. slightly away from ‖~u‖ = 1. There are many consistent
ways to do this domain extension. We choose to define ~γ such that it is independent of the radial
coordinate ‖~u‖. This choice yields J~u = 0, which allows us to simplify T (~u) to

T (~u) =
∑
w,α

(
∂γw
∂uα

)2

= Tr(JTJ) =

q−1∑
i=1

λi(~u), (12)

where λi(~u) are the eigenvalues of JTJ . Because of our assumption J~u = 0 we already know that
one of the eigenvalues is 0 with eigenvector ~u. Hence the sum goes from 1 . . . q− 1. We then wish
to find

min
γ

max
u

T (u) (13)

under the constraint

γw =
√
gw =

√
(Mh)w (14)

with M known and ~h satisfying

hψ ≥ 0 ∀ψ,
∑
ψ

hψ = 1. (15)

The constraint (14) makes solving the min-max game (13) more difficult and we are unable to use
the same machinery as for the RDM. For the binary alphabet we are however able to go further
and compute the asymptotic capacity (see Section 5).

4 Limiting case: Restricted Digit Model

We show how the known result for the Restricted Digit Model (RDM) follows as a limiting case
of the CDM.
We set r = 0 and ti = 1 for all i ∈ {1, · · · , q}. This means that there is no noise, and any symbol
that the attackers use will be detected with 100% probability. Hence W = Ψ. In this situation
there is no gain for the attackers to use fusion, as all the fused symbols are detected and provide
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the content owner with more information. Their best option is to use a single symbol; hence we
are back at the RDM.
Mathematically it is slightly more involved to see how the reduction to the RDM channel capacity

is obtained. The matrixM becomes

(
~0

I2q−1

)
where I2q−1 is the identity matrix of size 2q−1, and

γw(~u) becomes an unconstrained degree of freedom. The only difference with [4] is the dimension
of the vector: ~γ has 2q − 1 components (w = ∅ is excluded), whereas in the RDM there were only
q components. Consequently, the Jacobian J also has a larger dimension. However, the product
JTJ is still a q × q matrix, and the derivation in [4] can be applied in unchanged form to yield
two results:

1. The solution of the min-max game satisfies max~u T (~u) = Av~u[T (~u)], i.e. the maximum is
equal to the spatial average, and T (~u) is in fact a constant on the hypersphere ‖~u‖ = 1, with

T (~u) ≥ (q − 1)

(∫
dS~γ∫
dS~u

)2/(q−1)

. (16)

Here
∫

dS~u is the (q − 1)-dimensional ‘volume’ integral on the surface of the ~u-hypersphere.
The

∫
dS~γ is the corresponding (q−1)-dimensional integral in the larger (2q−2)-dimensional

~γ-hypersphere, with ~γ = ~γ(~u). In [4] the γ-sphere had dimension q− 1, and it was used that∫
dS~γ ≥

∫
dS~u.

2. The interleaving attack yields T (~u) = q − 1 on the hypersphere ‖u‖ = 1.

We argue (without proof) that
∫

dS~γ ≥
∫

dS~u still holds. This is because of the Marking Assump-
tion, which fixes the values on the axes in ~γ-space. Let eα be the unit vector in the α-direction.
Then ~u = eα =⇒ ~γ = eα. These ‘corner’ points live in a q-dimensional subspace. It is possible
to step out of that subspace for general ~u, but doing so increases the volume

∫
dS~γ .

Thus, result #1 gives the lower bound max~u T (~u) ≥ q− 1, while result #2 shows that there exists
a strategy achieving the lower bound. The RDM channel capacity CRDM

q,∞ = (q − 1)/(2c2 ln q)
follows.
Remark: If M is perturbed away from the identity matrix, then the extreme points ~u = eα are no
longer mapped to mutually orthogonal vectors ~γ, but to vectors with smaller mutual angles; the
reduction of the angles causes a reduction of

∫
dS~γ and hence the channel capacity. The details

are cumbersome and the general case q ≥ 3 is left for future work.

5 Fingerprinting capacity in the CDM for the binary al-
phabet

5.1 Solving the max-min game

For the binary alphabet q = 2 the expression (12) simplifies to

T (~u) = Tr(JTJ) = λ(~u) (17)

since there is only one nonzero eigenvalue. Furthermore we have the relation d~γ = Jd~u and
‖d~γ‖ =

√
λ‖d~u‖ for an infinitesimal change d~u. We proceed by rewriting

max
~u

T (~u) = max
~u

λ(~u) =

(
max
~u

√
λ(~u)

)2

≥

(∫ √
λ(~u)‖d~u‖∫
‖d~u‖

)2

=

(∫
‖d~γ‖∫
‖d~u‖

)2

≡
(
L~γ
L~u

)2

, (18)
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where the inequality results from replacing the maximum by a spatial average. The path in the
integrals (see Fig. 2) is the quarter-circle u2

1 + u2
2 = 1 from ~u = (1, 0) to ~u = (0, 1) and hence

L~u = π
2 .

0 u1

u2

1

1

Figure 2: The path for ~u is the positive quarter circle.

The next step is to realize that for any curve γ(~u) we have the freedom to parameterize that curve
differently in such a way that λ(~u) is constant over that curve, i.e. we are traveling at constant
speed. The above inequality can then be changed into an equality and we have

min
~γ

max
~u

T (~u) =
4

π2

(
min
~γ
L~γ

)2

. (19)

Hence we have reduced the problem to finding a curve ~γ(~u) of minimal length with the constraint

γw(~u) =

√(
M~h

)
w

(~u) where M(t1, t2, r) is

M =

w\ψ {0} {1} {0,1}

∅ (1− t1)(1− r) (1− t1)(1− r) (1− t2)2

{0} t1(1− r) (1− t1)r t2(1− t2)
{1} (1− t1)r t1(1− r) t2(1− t2)
{0,1} t1r t1r t22

. (20)

5.2 Geodesics

In general the method to find length minimizing curves is to solve the Euler-Lagrange differential
equations for the geodesics of the appropriate metric. In our case the additional constraint γw(~u) =√(

M~h
)
w

(~u) makes things more difficult. The constraint can be interpreted in the following way.

If we write M = [m1,m2,m3] then because of constraint (15) we have that ~g = M~h is a convex
combination of the three column vectors m1,m2,m3. Hence the allowed space of ~g is anywhere
inside the triangle shown in Fig. 3.

m1 m2

m3

g

Figure 3: The vector ~g is not allowed to lie outside the triangle.
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We switch from variables (u1, u2) to s1, s2 with 0 ≤ s1 ≤ 1, 0 ≤ s2 ≤ 1− s1.

~g(s1, s2) , m1 + s1(m2 −m1) + s2(m3 −m1). (21)

The marking assumption gives us that ~u = (1, 0)⇒ ~h = (1, 0, 0) and ~u = (0, 1)⇒ ~h = (0, 1, 0). In
terms of ~g(s1, s2) this means ~g(1, 0) = m1 and ~g(0, 1) = m2. We are looking for the shortest path
from the lower left corner (m1) of the triangle to the lower right corner (m2).
The infinitesimal change in dγw in terms of (ds1,ds2) is given by

dγw =
dgw

2
√
gw

=
(m2,w −m1,w)ds1 + (m3,w −m1,w)ds2

2
√
gw

. (22)

This allows us to define the appropriate metric G(s1, s2),

‖d~γ‖2 = G11(ds1)2 +G22(ds2)2 + 2G12ds1ds2. (23)

We use this metric to compute the geodesics (locally distance minimizing curves). See appendix A
for the details.

5.3 Finding the shortest path

We want to find the shortest path between m1 and m2 that is fully inside the triangle. If a direct
geodesic between these two points exists we know that it is the optimal path and we are done,
but this does not always happen. We distinguish three possible cases given in Fig. 4. In case A
we are done since the direct geodesic is the shortest possible path. In cases B and C the optimal
paths are shown in Fig. 5.

Case A:

m1 m2

m3

Case B:

m1 m2

m3

P

Case C:

m1 m2

m3

Figure 4: In case A there exist a direct geodesic from m1 to m2. In case B the maximum-slope
geodesics starting from m1 and m2 intersect in P . In case C they do not intersect.

Case B:

m1 m2

m3

P
Q

Case C:

m1 m2

m3

P
Q

Figure 5: The optimal path in both cases is m1 − P −m2 over the dashed lines (geodesics). In
case C the geodesic from m2 is the one which is tangent to the left side of the triangle.

Any geodesic path starting from m2 with a smaller initial slope eventually has to cross the
maximum-slope geodesic from m1 in a point Q. From Q the optimal path to m1 is to follow
the geodesic but when you pass P you could have done better by simply going directly from m2
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to P on the geodesic.
Once we have the optimal path we can determine its length Lopt and use it to compute the
capacity,

CCDM
2,∞ =

1

2c2 ln 2

4

π2
L2

opt. (24)

5.4 Results

In Fig. 6 we show plots of the ratio C = CCDM
2,∞ /CRDM

2,∞ between the asymptotic capacities for the
CDM and the RDM as a function of the parameters t1, t2, r. It turns out that the asymptotic
capacity depends on the three attack parameters in a nontrivial way.

• Obviously, the capacity is an increasing function of t1 and t2, and a decreasing function of r.

• For r close to zero and t1 close to 1, the capacity has very weak dependence on t2. This can
be understood from the fact that we are close to the Marking Assumption: when the MA
holds, all the attack models for q = 2 are equivalent.

• In Fig. 6a we see a transition from linear behavior as a function of r (with almost total
insensitivity to t2) to nonlinear behavior (with dependence on t2). The transition point
depends on t2.

0.02 0.04 0.06 0.08 0.10
r

0.4

0.5

0.6

0.7

0.8

0.9

C

(a) C vs r for fixed t1 = 0.999 for t2 =
{0.8, 0.82, 0.84, 0.86, 0.88, 0.9}

0.85 0.90 0.95
t1

0.60

0.65

0.70

0.75

0.80

0.85

0.90

C

(b) C vs t1 for fixed r = 0.01 for t2 =
{0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8}

0.65 0.70 0.75 0.80 0.85 0.90 0.95
t1

0.5

0.6

0.7

0.8

0.9

C

(c) C vs t1 for fixed t2 = 0.5 for r =
{0.01, 0.02, 0.03, 0.04, 0.05}

0.65 0.70 0.75 0.80 0.85
t2

0.74

0.76

0.78

0.80

C

(d) C vs t2 for fixed t1 = 0.9 for r =
{0.01, 0.02, 0.03, 0.04, 0.05}

Figure 6: Numerics for q = 2. The ratio C = CCDM
2,∞ /CRDM

2,∞ is plotted on the vertical axis. The
small spikes in b) and c) are numerical artifacts.

6 Discussion

We have investigated the asymptotic channel capacity CCDM
q,∞ in the Combined Digit Model. For

general alphabet size q it turns out to be very difficult to compute this quantity. We have shown
how the previously obtained capacity for the RDM [4] follows as a limiting case of the CDM. For
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the binary alphabet we have shown how the problem of computing the channel capacity reduces
to finding a constrained geodesic between two points. We have presented numerical solutions
to this problem. The asymptotic capacity depends on the three attack parameters t1, t2, r in a
nontrivial way. The graphs show a regime close to the Marking Assumption, in which the CCDM

2,∞
is practically independent of t2.
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[4] D. Boesten and B. Škorić. Asymptotic fingerprinting capacity for non-binary alphabets. In
Information Hiding 2011, volume 6958 of LNCS, pages 1–13. Springer, 2011.

[5] A. Charpentier, F. Xie, C. Fontaine, and T. Furon. Expectation maximization decoding of
Tardos probabilistic fingerprinting code. In Media Forensics and Security, volume 7254 of
SPIE Proceedings, page 72540, 2009.

[6] Y.W. Huang and P. Moulin. Saddle-point solution of the fingerprinting capacity game under
the marking assumption. In Proc. IEEE International Symposium on Information Theory
(ISIT), 2009.

[7] M. Kuribayashi. Tardos’s Fingerprinting Code over AWGN Channel. In R. Böhme, P.W.L.
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A Solving the geodesic equations

The metric G(s1, s2) is a 2 × 2 symmetric matrix whose components can be derived from equa-
tions (22) and (23):

Gij(s1, s2) =
1

4

∑
w

(mi+1,w −m1,w) (mj+1,w −m1,w)

m1,w + s1(m2,w −m1,w) + s2(m3,w −m1,w)
, (25)

with i, j ∈ {1, 2}. The Christoffel symbols Γijk for this metric are defined as

Γijk ,
1

2

2∑
m=1

G−1
im

(
∂Gjm
∂sk

+
∂Gkm
∂sj

− ∂Gjk
∂sm

)
(26)

where G−1 is the matrix inverse of G. We are looking for a shortest curve (s1(x), s2(x)) with
x ∈ R from the point (s1, s2) = (0, 0) to the point (1, 0). The geodesic equations read

s′1(x) = k1(x)

s′2(x) = k2(x)

k′1(x) = −Γ1
11k

2
1(x)− 2Γ1

12k1(x)k2(x)− Γ1
22k

2
2(x)

k′2(x) = −Γ2
11k

2
1(x)− 2Γ2

12k1(x)k2(x)− Γ2
22k

2
2(x). (27)

Once we specify the initial conditions for s1(0), s2(0), k1(0), k2(0) we can solve (27) numerically to
obtain the geodesic curves starting at (s1(0), s2(0)) with initial ‘velocity’ vector (k1(0), k2(0)).
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