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Abstract. We present the first universally composable key-management functionality, formalized in the GNUC
framework by Hofheinz and Shoup. It allows the enforcement of a wide range of security policies and can be
extended by diverse key usage operations with no need to repeat the security proof. We illustrate its use by proving
an implementation of a security token secure with respect to arbitrary key-usage operations and explore a proof
technique that allows the storage of cryptographic keys externally, a novel development in simulation-based security
frameworks.
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1 Introduction

Security critical applications often store keys on dedicated hardware security modules (HSM) or key-management
servers to separate highly sensitive cryptographic operations from more vulnerable parts of the network. Access to
such devices is given to protocol parties by the means of Security APIs. Examples of such APIs are the RSA PKCS#11
standard [1], IBM’s CCA [2] and the trusted platform module (TPM) [3] API. Building on the work of Longley and
Rigby [4] and Bond and Anderson [5] on API attacks, several recent papers have investigated the security of APIs on
the logical level adapting symbolic techniques for protocol analysis [6–8], finding many new attacks. More recent work
has tried to define appropriate security notions for APIs in terms of cryptographic games [9, 10]. This approach has
two major disadvantages: first, it is not clear how the security notion will compose with other protocols implemented
by the API. Second, it is difficult to see whether a definition covers the attack model completely, since the game may be
tailored to a specific API. Since security APIs are foremost used as building blocks in other protocols, composability
is crucial. In this work, we adapt the more general approach to API security of Kremer et al. [10] to a framework that
allows for composition.

Composability can be proven in frameworks for simulation-based security, such as GNUC [11], a deviation of
the Universal Composability (UC) framework [12]. The requirements of a protocol are formalized by abstraction: an
ideal functionality computes the protocol’s inputs and outputs securely, while a ‘secure’ protocol is one that emulates
the ideal functionality. Simulation-based security naturally models the composition of the API with other protocols,
so that proofs of security can be performed in a modular fashion. We decided to use the GNUC model because it
avoids shortcomings of the original UC framework which have been pointed out over the years. Moreover, the GNUC
framework is well structured and well documented resulting in more rigorous and readable security proofs.



Contributions. We present, to the best of our knowledge, the first composable definition of secure key-management
in the form of a key-management functionality FKM. It assures that keys are transferred correctly from one Security
token to another, that the global security policy is respected (even though the keys are distributed on several tokens)
and that operations which use keys are computed correctly. The latter is achieved by describing operations unrelated
to key-management by so-called key-usage functionalities. FKM is parametric in the policy and the set of key-usage
functionalities, which can be arbitrary. This facilitates revision of security devices, because changes to operations that
are not part of the key-management or the addition of new functions do not affect the emulation proof. In order to
achieve this extensibility, we investigate what exactly a “key” means in simulation-based security. Common function-
alities in such settings do not allow two parties to share the same key, in fact, they do not have a concept of keys,
but a concept of “the owner of a functionality” instead. The actual key is kept in the internal state of a functionality,
used for computation, but never output. Dealing with key-management, we need the capability to export and import
keys and we propose an abstraction of the concept of keys, that we call credentials. The owner of a credential can
not only compute a cryptographic operation, but he can also delegate this capacity by transmitting the credential. We
think this concept is of independent interest, and as a further contribution, subsequently introduce a general proof
method that allows the substitution of credentials by actual keys when instantiating a functionality. Some aspects of
the ideal functionality Fcrypto by Küsters et al. [13] are similar to our key-management functionality in that they both
provide cryptographic primitives to a number of users and enjoy composability. However, the Fcrypto approach aims
at abstracting a specified set of cryptographic operations on client machines to make the analysis of protocols in the
simulation-based security models easier, and addresses neither key-management nor policies.

Limitations. Our key-management functionality is tightly coupled with the employment of a deterministic, sym-
metric authenticated encryption scheme that is secure against key-dependant messages for key export and import.
While deterministic, symmetric authenticated encryption is indeed typically used to transfer keys (see, e. g., RFC
3394), it restricts the analysis to security devices providing this kind of encryption. We have not yet covered asymmet-
ric encryption of keys in FKM (but we cover asymmetric encryption of user-supplied data), although FKM could be
extended to support this. Second, adaptive corruption of parties, or of keys that produce an encryption, provokes the
well-known commitment problem [14], so we place limitations on the types of corruptions that the environment may
produce.

2 Background: GNUC

The GNUC (“GNUC is Not UC”) framework was recently proposed by Hofheinz and Shoup [11] as an attempt
to address several known shortcomings in UC. In particular, in UC the notion of a poly-time protocol implies that
the interface of a protocol has to contain enough input padding to give sub-protocols of the implementation enough
running time, hence the definition of an interface that is supposed to be abstract depends on the complexity of its
implementation. Moreover, the proof of the composition theorem is flawed due to an inadequate formulation of the
composition operation [11], though here the authors remark that, “none of the objections we raise point to gaps in
security proofs of existing protocols. Rather, they seem artifacts of the concrete technical formulation of the underlying
framework”.These shortcomings are also addressed to a greater or lesser extent by other altenative frameworks [15–
17]: we chose GNUC because it is similar in spirit to the original UC yet rigorous and well documented. We now give
a short introduction to GNUC and refer the reader to [11] for additional details.

2.1 Preliminaries

Let Σ be some fixed, finite alphabet of symbols. We note η the security parameter.

Definition 1 (probabilistic polynomial-time). We say that a probabilistic program A runs in polynomial-time, if the
probability that A’s runtime on an input of length n is bounded by a polynomial in n is 1. If so, we say such a program
is PPT.

Definition 2 (Computationally indistinguishable). Let X := {Xη}η and Y := {Yη}η be two families of random
variables, where each random variable takes values in a set Σ∗ ∪ {⊥}. We say that X and Y are computationally
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indistinguishable, written X ≈ Y , if for every PPT program D that takes as input a string over Σ we have that

|Pr[D(x) = 1| x← Xη]− Pr[D(y) = 1| y ← Yη]|

is negligible in η.

2.2 Machines and interaction

In GNUC a protocol π is modeled as a library of programs, that is, a function from protocol names to code. This
code will be executed by interactive Turing machines. There are two distinguished machines, the environment and
the adversary, that π does not define code for. All other machines are called protocol machines. Protocol machines
can be divided into two subclasses: regular and idealprotocol machines. They come to life when they are called
by the environment and are addressed using machine ids. A machine id <pid,sid> contains two parts: the party
id pid, which is of the form <reg,basePID> for regular protocol machines and <ideal> for ideal protocol
machines, and the session id sid. Session ids are structured as pathnames of the form < α1, . . . , αk >. The last
component αk must be of the particular form protName, sp. When the environment sends the first message to a
protocol machine, a machine running the code defined by the protocol name protName is created. The code will
often make decisions based on the session parameter sp and the party id. A machine M , identified by its machine id
< pid , < α1, . . . , αk >>, can call a subroutine, i.e., a machine with the machine id < pid , < α1, . . . , αk, αk+1 >>.
We then say that M is the caller with respect to this machine. Two protocol machines, regular or ideal, are peers if
they have the same session id. Programs have to declare which other programs they will call as subroutines, defining a
static call graph which must be acyclic and have a program r with in-degree 0 – then we say that the protocol is rooted
at r.

GNUC imposes the following communication constraints on a regular protocol machine M : it can only send
messages to the adversary, to its ideal peer (i. e., a machine with party id <ideal> and the same session id), its
subroutines and its caller. As a consequence, regular protocol machines cannot talk directly to regular peers . They can
communicate via the adversary, which models an insecure network, or via the ideal peer. This ideal peer is a party that
can communicate directly with all regular protocol parties and the adversary.

The code of the machines is described by a sequence of steps similarly to [11, § 12]. Each step is defined by a
block of the form

name [conditions]: P

name is the label identifying the step. The logical expression [conditions] is a guard that must be satisfied
to trigger a step. We omit the guard when it is true. A step name in the guard expression evaluates to true if the
corresponding step has been triggered at some previous point. P is the code (whose semantics we expect to be clear)
to be executed whenever the guard evaluates to true. In particular P may contain accept-clauses that describe the form
of the message that can be input. The accept clause, too, might have logical conditions that must be satisfied in order
to continue the execution of the step. Any message not triggering any step is processed by sending an error message
to A.

2.3 Defining security via ideal functionalities

As in other universal composability frameworks, the security of a protocol is specified by a so-called ideal function-
ality, which acts as a third party and is trusted by all participants. Formally, an ideal functionality is a protocol that
defines just one protocol name, say r. The behavior defined for this protocol name depends on the type of machine:
all regular protocol machines act as “dummy parties” and forward messages received by their caller (which might be
the environment) to their ideal peer. The ideal protocol machine interacts with the regular parties and the adversary:
using the inputs of the parties, the ideal functionality defines a secure way of computing anything the protocol shall
compute, explicitly computing the data that is allowed to leak to the attacker.

Example 1. For instance, an authenticated channel is specified as a functionality that takes a message from Alice
and sends it to the attacker, exposing its content to the network, but only accepting a message from the attacker (the
network) if it is the same message Alice sent in the first place. We will later come back to the following formulation,
which is very similar to the one presented in [11, §12.1.1]:
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ready−sender: accept <ready> from P ;
send <sender-ready> to A

ready−receiver[¬ready-sender]: accept <ready> from Q;
send <ready-receiver-early> to A

ready−receiver[ready-sender]: accept <ready> from Q;
send <receiver-ready> to A;

send [ready-receiver]: accept <send,x> from P ;
x← x; send <send,x> to A

done [send]: accept <done> from A;
send <done> to P

deliver [send]: accept <deliver,x> from A where x = x;
send <deliver,x> to Q �

Listing 1: Fach with session parameters < Ppid , Qpid , label >. Note that in this example, every step can only be
executed once.

We see that a functionality is completely defined by the code run on the ideal protocol machine.
Now we can define a second protocol, which is rooted at r, and does not necessarily define any behaviour for

the ideal party, but for the regular protocol machines. The role of the environment Z is to distinguish whether it
is interacting with the ideal system (dummy users interacting with an ideal functionality) or the real system (users
executing a protocol). We say that a protocol π emulates a functionality F if for all attackers interacting with π, there
exists an attacker, the simulator Sim , interacting with F , such that no environment can distinguish between interacting
with the attacker and the real protocol π, or the simulation of this attack (generated by Sim) and F . It is actually not
necessary to quantify over all possible adversaries: the most powerful adversary is the so-called dummy attacker AD
that merely acts as a relay forwarding all messages between the environment and the protocol [11, Theorem 5].

Let Z be a program defining an environment, i. e., a program that satisfies the communication constraints that apply
to the environment (e. g., it sends messages only to regular protocol machines or to the adversary). Let A be a program
that satisfies the constraints that apply to the adversary (e. g., it sends messages only to protocol machines (ideal or
regular) it previously received a message from). The protocol π together with A and Z defines a structured system of
interactive Turing machines (formally defined in [11, § 4]) denoted [π,A,Z]. The execution of the system on external
input 1η is a randomized process that terminates if Z decides to stop running the protocol and output a string in Σ∗.
The random variable Exec[π,A, Z](η) describes the output of Z at the end of this process (or Exec[π,A, Z](η) =
⊥ if it does not terminate). Let Exec[π,A, Z] denote the family of random variables {Exec[π,A, Z](η)}∞η=1. An
environment Z is well-behaved if the data-flow from Z to the regular protocol participants and the adversary is limited
by a polynomial in the security parameter η. We say that Z is rooted at r, if it only invokes machines with the same
session identifier referring to the protocol name r. We do not define the notion of a poly-time protocol and a bounded
adversary here due to space constraints and refer the reader to the definition in [11, § 6].

Definition 3 (emulation w.r.t. the dummy adversary). Let π and π′ be poly-time protocols rooted at r. We say that
π′ emulates π if there exists an adversary Sim that is bounded for π, such that for every well-behaved environment Z
rooted at r, we have

Exec[π,Sim, Z] ≈ Exec[π′,AD, Z].

where ≈ is the usual notion of computational indistinguishability.

3 An ideal key management functionality and its implementation

In this section we motivate and define our ideal functionality for key management. We explain first its architecture,
then our concept of key usage functionalities which cover all the usual cryptographic operations we might want to
perform with our managed keys. We then describe our notion of security policies for key management, and finally give
an implementation of such a functionality.
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3.1 Architecture

An ideal functionality should provide the required operations in a way that makes security obvious. This means its
design must be as simple as possible in order for this security to be clear. However, there are subtle issues in such
designs: obtaining a satisfactory formulation of digital signature took years because of repeated revisions caused by
subtle flaws making the functionality unrealizable. The functionality we define will at some point need to preserve
authenticity in a similar way to this signature functionality, but in a multi-session setting. So we must expect a key-
management functionality to be at least as complex. Nonetheless we aim to keep it as simple as possible, and so justify
the inclusion of each feature by discussing what minimum functionality we expect from a key-management system.

Policies. The goal of key-management is to preserve some kind of policy on a global level. Our policies express two
kinds of requirements: usage policies of the form “key A can only be used for tasks X and Y”, and dependency policies
of the form “the security of key A may depend on the security of keys B and C”. The need for the first is obvious.
The need for the second arises because almost all non-trivial key management systems allow keys to encrypt other
keys, or derive keys by, e. g., encrypting an identifier with a master key. Typically, the policy defines roles for keys,
i. e., groups of tasks that can be performed by a key, and security levels, which define a hierarchy between keys.The
difficulty lies in enforcing this policy globally when key-management involves a number of distributed security tokens
that can communicate only via an untrusted network. Our ideal key-management functionality considers a distributed
set of security tokens as a single trusted third party. It makes sure that every use of a key is compliant with the
(global) policy. Therefore, if a set of well-designed security tokens with a sound local policy emulates the ideal key-
management functionality, they can never reach a state where a key is used for an operation that is contrary to the
policy. This implies that, in general, the key should be kept secret from the user, as the user cannot be forced to comply
with the policy. Thus, keys are only accessed via an interface that executes only operations on the key permitted by
the policy. The functionality associates some meta-data, an attribute, to each key. This attribute defines the key’s role,
and thus its uses. Existing industrial standards [1] and recent academic proposals [9, 10] are similar in this respect.

Sharing Secrets. A key created on one security token is a priori only available to users that have access to this
token (since it is hidden from the user). Many cryptographic protocols require that the participants share some key, so
in order to be able to run a protocol between two users of different security tokens, we need to be able to “transfer”
keys between devices without revealing them. There are several ways to do this but we will opt for the simplest,
key-wrapping (the encryption of one key by another). While it is possible to define key-management with a more
conceptual view of “transferring keys” and allow the implementation to decide for an option, we think that since
key-wrapping is relevant in practice (it is defined in RFC 3394), the choice for this option allows us to define the
key-management in a more comprehensible way. We leave the definition of a notion more general in this regard for
future work.

Secure Setup. The use of key-wrapping requires some initial shared secret values to be available before keys
can be transferred. We model the setup in the following way: a subset of users, Room , is assumed to be in a secure
environment during a limited setup-phase. Afterwards, the only secure channel is between a user Ui, and his security
token ST i. The intruder can access all other channels, and corrupt any party at any time, as well as corrupt keys, i. e.,
learn the value of the key stored inside the security token. This models the real world situation where tokens can be
initialised securely but then may be lost or subject to, e. g., side channel attacks once deployed in the field.

Operations required. These requirements give a set of operations that key-management demands: new (create
keys), attr change (alter their attributes), wrap and unwrap (our chosen method of transferring keys), corrupt
(corruption of keys) and share/finish setup (modelling a setup phase in a secure environment).We argue that a
reasonable definition of secure key-management has to provide at least those operations. Furthermore, the users need
a way to access the keys stored in the security tokens, so there is a set of operations for each type of key. A signature
key, for example, allows the operations sign and verify. This allows the following classification: the first group of
operations defines key-management, the second key-usage. While key-management operations, for example wrap,
might operate on two keys of possibly different types, key-usage operations are restricted to calling an operation on a
single key and user-supplied data. This is coherent with global policies as mentioned above: the form “key A can be
used for task X” expresses key-usage, the form “the security of key A depends on keys B and C” expresses a constraint
on the key-management.
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3.2 Key-usage (KU) functionalities

We now define an abstract notion of a functionality making use of a key which we call a key usage (KU) functionality.
This will allow us to define our ideal key management functionalityFKM in a way that is general with respect to a large
class of cryptographic functionalities.For every KU operation,FKM calls the corresponding KU functionality, receives
the response and outputs it to the user. We define FKM for arbitrary KU operations, and consider a security token
secure, with respect to the implemented KU functionalities, if it emulates the ideal functionality FKM parametrized
by those KU functionalities. This allows us to provide an implementation for secure key-management independent of
which KU functionalities are used.

Credentials. Many existing functionalities, e. g., [12], bind the roles of the parties, e. g., signer and verifier, to a
machine IDencoded in the session parameters. In implementations, however, the privilege to perform an operation is
linked to the knowledge of a key rather than a machine ID. While for most applications this is not really a restriction,
it is for key-management. The privilege to perform an operation of a KU functionality must be transferable as some
piece of information, which however cannot be the actual key: a signing functionality, for example, that exposes its
keys to the environment is not realizable, since the environment could then generate dishonest signatures itself. Our
solution is to generate a key, but only send out a credential, which is a hard-to-guess pointer that refers to this key. We
actually use the key generation algorithm to generate credentials.

Our approach imposes assumptions on the KU functionalities, as they need to be implementable in a key-manageable
way.

Definition 4 (key-manageable implementation). A key-manageable implementation Î is defined by (i) a set of
commands Cmds that can be partitioned into private and public commands, as well as key-generation, i. e., C =
Cpriv ]Cpub ]{new}, and (ii) a set of PPT algorithms implementing those commands, {implC}C∈C , such that for the
key-generation algorithm implnew it holds that

– for all k, Pr[k′ = k|(k′, p)← implnew(1
η)] is negligible in η, and,

– Pr[|k1| 6= |k2||(k1, p1)← implnew(1
η); (k2, p2)← implnew(1

η)] is negligible in η.

Î is a protocol in the sense of [11, §5], i. e., a run-time library that defines only one protocol name. The session
parameter encodes a machine id P . When called on this machine, the code below is executed. If called on any other
machine no message is accepted. From now on in our code we follow the convention that the response to a query
(Command, sid, . . .) is always of the form (Command•, sid, . . .), or ⊥.

new: accept <new> from parentId;
(key , public)← implnew(1

η); (credential , <ignore>)← implnew(1
η);

L← L ∪ {(credential , key)}; send <new•, credential , public> to parentId
command: accept <C, credential ,m> from parentId;

if (credential , key) ∈ L for some key send <C•, implC(key ,m)> to parentId
public_command: accept <C, public,m> from parentId;

send <C•, implC(public,m)> to parentId
corrupt: accept <corrupt , credential> from parentId;

if (credential , key) ∈ L for some key send <corrupt•, key> to parentId
inject: accept <inject,k> from parentId;
(c, <ignore>)← implnew(1

η); L← L ∪ {(c, k)}; send <inject•,c> to parentId �
The definition requires that each command C can be implemented by an algorithm implC . If C is private implC takes
the key as an argument. Otherwise it only takes public data (typically the public part of some key, and some user
data) as arguments. In other words, an implementation Î emulating F is, once a key is created, stateless w.r.t. queries
concerning this key.

Definition 5 (key-manageable functionality). A poly-time functionality F (to be precise, an ideal protocol [11,
§ 8.2]) is key-manageable iff it is poly-time, and there is a set of commands C and implementations, i. e., PPT al-
gorithms ImplF = {implC}C∈C , defining a key-manageable implementation Î (also poly-time) which emulates F .
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3.3 Policies

Since all credentials on different security tokens in the network are abstracted to a central storage, FKM can imple-
ment a global policy. Every credential in FKM is associated to an attribute from a set of attributes A and to the KU
functionality it belongs to (which we will call its type). Keys that are used for key-wrapping are marked with the type
KW.

Definition 6 (Policy). Given the KU functionalities Fi, i ∈ {1, . . . , l} and corresponding sets of commands Ci, a pol-
icy is a quaternary relation Π ⊂ {F1, . . . ,Fl, KW}×∪i∈{1,...,l}Cprivi ∪{new, wrap, unwrap, attribute change}×
A×A.

FKM is parametrized by a policy Π . If (F , C, a, a′) ∈ Π and if

– C = new, then FKM allows the creation of a new key for the functionality F with attribute a.
– F = Fi and C ∈ Cpriv , then FKM will permit sending the command C to F , if the key is of type F and has the

attribute a.
– F = KW and C = wrap, then FKM allows the wrapping of a key with attribute a′ using a wrapping key with

attribute a.
– F = KW and C = unwrap, then FKM allows to unwrapping a wrap with attribute a′ using a wrapping key with

attribute a.
– if C = attribute change, then FKM allows the changing of a key’s attribute from a to a′.

Note that a′ is only relevant for the commands wrap, unwrap and attribute change. Because of the last command,
a key can have different attributes set for different users of FKM, corresponding to different security tokens in the real
word.

Example 2. To illustrate the definition of policy consider the case of a single KU
functionality for encryption Fenc. The set of attributes AF Cmd attr1 attr2

KW new 1 *
Fenc new 0 *
KW attribute change 1 1
Fenc attribute change 0 0
KW wrap 1 0
KW unwrap 1 0
Fenc enc 0 *

Fig. 1: Security policy

is {0, 1}: intuitively a key with attribute 1 is allowed for
wrapping and a key with attribute 0 for encryption. The fol-
lowing table describes a policy that allows wrapping keys
to wrap encryption keys, but not other wrapping keys, and
allows encryption keys to perform encryption on user-data,
but nothing else – even decryption is disallowed. The policy
Π consists of the following 4-tuples (F ,Cmd,attr1,attr2)
defined in Figure 1.

3.4 The key-management functionality and reference implementation

We are now in a position to give a full definition of FKM together with an implementation. We give a description
of FKM in the Listings 3 to 8. At the same time, to illustrate our definition and demonstrate its use, we present the
implementation of a Security API showing that it is possible to implement a Security API for key-management that
is independent of the KU functions it provides. For book-keeping purposes FKM maintains a set Kcor of corrupted
keys and a wrapping graph W whose vertices are the credentials. An edge (c1, c2) is created whenever (the key
corresponding to) c1 is used to wrap (the key corresponding to) c2. In Section 4, we show that this implementation is
a realization of FKM. We emphasize that extending FKM and the implementation by a new KU functionality does not
require a new proof.

Structure. FKM acts as a proxy service to the KU functionalities. It is possible to create keys, which means that
FKM asks the KU functionality for the credentials and stores them, but outputs only a handle referring to the key. This
handle can be the position of the key in memory, or a running number – we just assume that there is a way to draw
them such that they are unique. When a command C ∈ Cprivi is called with a handle and a message, FKM substitutes
the handle with the associated credential, and forwards the output to Fi. The response from Fi is forwarded unaltered.
All queries are checked against the policy. The environment may corrupt parties connected to security tokens, as well
as individual keys.
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Fig. 2: Distributed security tokens in the network (left-hand side) and idealized functionality FKM in the same network
(right-hand side).

Definition 7 (Parameters to a security token network). We summarize the parameters of a security token Network
as two tuples, (U ,Uext,ST ,Room) and (F , C, Π). The first tuple defines network parameters:

– U = {U1, . . . , Un} are the party IDs of the users connected to a security token
– Uext = {U ext

1 , . . . , U ext
m } are the party IDs of external users, i. e., users that do not have access to a security

token.
– ST = {ST 1, . . . ,STn} are the party IDs of the security tokens accessed by U1, . . . , Un.
– Room ⊂ U .

The second tuple defines key-usage parameters:

– F = {F1, . . . ,Fl}, and
– C = {C1, . . . , Cl} are key-manageable functionalities with corresponding sets of commands. Note that KW 6∈
{F1, . . . ,Fl}, and that each Ci ∈ C is partitioned into the private Cprivi and public commands Cpubi , as well as
the singleton set consisting of new.

– Π is a policy for F (cf. Definition 6) and a membership test on Π can be performed efficiently.

Network setup. Figure 2 shows the network of distributed users and security tokens on the left, and their abstraction
FKM on the right. There are two kinds of users: U1, . . . , Un =: U , each of whom has access to exactly one security
token ST i, and external users U ext

1 , . . . , U ext
m =: Uext, who cannot access any security token. The security token ST i

can only be controlled via the user Ui. The functionalityFsetup in the real world captures our setup assumptions, which
need to be achieved using physical means. Among other things, Fsetup assures a secure channel between each pair
(Ui,ST i). The necessity of this channel follows from the fact that a) GNUC forbids direct communication between
two regular protocol machines (indirect communication via A is used to model an insecure channel) and b) U1, . . . , Un
can be corrupted by the environment, while ST 1, . . . ,STn are incorruptible.

The session id sid is of the form <α1,. . .,αk−1,<prot-fkm,sp>>, where the session parameter sp is some
encoding of the network parameters U ,Uext,ST ,Room . The code itself is parametric in the KU parameters F , C, Π .
When we refer to FKM as a network identity, we mean the machine id <ideal,sid>.

Similarly, each security token ST i ∈ {ST 1, . . . ,STn} is addressed via the machine id <ST i,sid>. We will
abuse notation by identifying the machine id with ST i, whenever the session id is clear from the context. The ses-
sion parameter within sid encodes the network parameters U ,Uext,ST ,Room . ST i makes subroutine calls to the
functionality Fsetup which subsumes our setup assumptions. Fsetup provides two things: 1. a secure channel between
each pair Ui and ST i, 2. a secure channel between some pairs ST i and ST j during the setup phase (see below). ST i

receives commands from a machine Ui ∈ U , which is defined in Definition 10, and relays arbitrary commands sent by
the environment via Fsetup. The environment cannot talk directly to ST i, but the attacker can send queries on behalf
of any corrupted user, given that the user has been corrupted previously (by the environment).

Setup phase. The setup is implemented by the functionality Fsetup, defined in Listing A.3 in Appendix A. All
users in Room are allowed to share keys during the setup phase, i. e., the implementation is allowed to use secure
channels to transport keys during this phase, but not later.This secure channel between two security tokens ST is only
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used during the setup phase. Once the setup phase is finished, the expression setup finished evaluates to true
and the functionality enters the run phase. During the run phase, Fsetup provides only a secure channel between a user
Ui, which takes commands from the environment, and his security token ST i.When we say that ST i calls Fsetup, we
mean that it sends a message to the machine id <ST i,<sid,<prot-fsetup,<U ,Uext,ST ,Room>>>>.

Implementation. The implementation ST is inspired by [10] and is parametric on the KU parameters F , C, Π and
the implementation functions Impl := {ImplF}F∈F . It is composable in the following sense: if a device performs the
key-management according to our implementation, it does not matter how many, and which functionalities it enables
access to, as long as those functionalities provide the amount of security the designer aims to achieve (cf. Corollary 1).
In Section 5, we show how to instantiate those KU functionalities to fully instantiate a “secure” security token, and
how FKM facilitates analysis of this configuration.

From now on, when we say that FKM calls F , we mean that it sends a message to a regular peer that calls F as
a sub-protocol and relays the answers. Formally, FKM sends a message to the machine id F =<<reg,F >,sid>,
who in turn addresses <<reg,F >,<sid,<F,F>>> as a dummy party. This is necessary since Condition C6 in
[11, §4.5] disallows ideal parties from making sub-routine calls. Note first that, for unambiguity, we use the code F
as the party id for this user. Note secondly that F uses the session parameter F to identify F as the only machine id it
accepts messages from.

Executing commands in Cpriv . If the policy Π permits execution of a command C ∈ Cpriv , FKM calls the corre-
sponding functionality as a sub-protocol, substituting the handle by the corresponding credential. Similarly, ST i uses
the corresponding key to compute the output of the implementation function implC of the command C (Listings 3.4
and 2).

command[finish_setup]: accept <C ∈ Cprivi ,h,m> from U ∈ U ;
if Store[U, h]=<Fi,a,c> and <Fi,C,a,*>∈ Π and Fi 6= KW

call Fi with <C,c,m>; accept <C•,r> from Fi; send <C•,r> to U �
command[finish_setup]: accept <C ∈ Cprivi′ ,h,m> from Fsetup;
if Store[Ui,h]=<Fi′,a,k> and <Fi′,C,a,*>∈ Π and Fi′ 6= KW

send <C•,implC(k,m)> to Fsetup �
Listing 2: Executing command C on a handle h with data m (FKM above, ST i below).

Creating keys. A user can create keys of type F and attribute a using the command <new,F,a>. In FKM, the
functionality F is asked for a new credential and some public information. The credential is stored with the meta-data
at a freshly chosen position h in the store. Similarly, ST stores an actual key, instead of a credential. Both FKM and
ST output the handle h and the public information given by F , or produced by the key-generation algorithm. FKM

treats wrapping keys differently: it calls the key-generation function for KW. It is possible to change the attributes of a
key in future, if the policy permits (Listing 6).

new[ready]: accept <new,F,a> from U ∈ U ;
if <F,new,a,*> ∈ Π

if F =KW then (c, public)← implKWnew (1η)
else call F with <new>; accept <new•,c,public> from F
if c ∈ K ∪ Kcor then send <error> to A
else create h; Store[U,h]← <F,a,c>; K := K ∪ {c}; send <new•,h,public> to U �

new[ready]: accept <new,F,a> from Fsetup;
if <F,new,a,*> ∈ Π

(k, public)← implFnew(1
η); create h; Store[Ui,h]← <F,a,k>;

send <new•,h,public> to Fsetup �
Listing 3: Creating keys of type F , and attribute a (FKM above, ST i below).

Wrapping and Unwrapping. The commands that are important for key-management are handled by FKM itself.
To transfer a key from one security token to another in the real world, the environment instructs, for instance, U1 to
ask for a key to be wrapped (see Figure 4). A wrapping of a key is the encryption of a key with another key, the

10



wrapping key. The wrapping key must of course be on both security tokens prior to that. U1 will receive the wrap from
ST 1 and forward it to the environment, which in turn instructs U2 to unwrap the data it just received from U1. The
implementation ST i just verifies if the wrapping confirms the policy, and then produces a wrapping of c2 under c1,
with additionally authenticated information: the type and the attribute of the key, plus a user-chosen identifier that is
bound to a wrapping in order to identify which key was wrapped. This could, e. g., be a key digest provided by the KU
functionality the key belongs to.

wrap[finish_setup]: accept <wrap,h1,h2,id> from U ∈ U ;
if Store[U, h1]=<KW,a1,c1> and Store[U, h2]=<F2,a2,c2> and <KW,wrap,a1,a2>∈ Π

if ∃w.<c2,<F2,a2,id>,w>∈encs[c1]
send <wrap•,w> to U

else
W ←W ∪ {(c1, c2)};
if c1 ∈ Kcor

for all c3 reachable from c2 inW corrupt c3;
w ← wrap<F2,a2,id>(c1, key[c2])

else
w ← wrap<F2,a2,id>(c1, $

|c2|)
encs[c1]← encs[c1] ∪{ <c2,<F2,a2,id>,w>}; send <wrap•,w> to U �

wrap[finish_setup]: accept <wrap,h1,h2,id> from Fsetup;
if Store[Ui,h1]=<KW,a1,k1> and Store[Ui,h2]=<F2,a2,k2>

and <KW,wrap,a1,a2>∈ Π
w ← wrap<F2,a2,id>(k1, k2); send <wrap•,w> to Fsetup �

Listing 4: Wrapping key h2 under key h1 with additional information id (FKM above, ST i below).

When a wrapped key is unwrapped using an uncorrupted key, FKM checks if the wrapping was produced before,
using the same identifier. Furthermore, FKM checks if the given attribute and types are correct. If this is the case,
it creates another entry in Store, i. e., a new handle h′ for the user U pointing to the correct credentials, type and
attribute type of the key. This way, FKM can guarantee the consistency of its database for uncorrupted keys, see the
following Theorem 1. If the key used to unwrap is corrupted, this guarantee cannot be given, but the resulting entry in
the store is marked corrupted. It is possible to inject keys by unwrapping a key that was wrapped outside the device.
Such keys could be generated dishonestly by the adversary, that is, not using their respective key-generation function.

unwrap[finish_setup]: accept <unwrap,h1,w,a2,F2,id> from U ∈ U ;
if Store[U,h1]=<KW,a1,c1> and <KW,unwrap,a1,a2>∈ Π ,F2 ∈ F

if c1 ∈ Kcor

c2 ← unwrap<F2,a2,id>(c1, w);
if c2 6= ⊥ and c2 6∈ K

if F2 = KW
create h2; Store[U,h2]← <F2,a2,c2>; key[c2]=c2; Kcor ← Kcor ∪ {c2}

else
call F2 with <inject,c2>; accept <inject•,c′>;
if c′ 6∈ K ∪ Kcor

create h2;
Store[U,h2]← <F2,a2,c

′>; key[c′]=c2; Kcor ← Kcor ∪ {c′};
send <unwrap•,h> to U

else if c2 6= ⊥ ∧ c2 ∈ K ∧ c2 ∈ Kcor

create h2; Store[U,h2]← <F2,a2,c2>; send <unwrap•,h> to U
else // (c2 = ⊥ ∨ c2 ∈ K \ Kcor)

send <error> to A
else if ( c1 /∈ Kcor and ∃!c2.<c2,<F2,a2,id>,w>∈encs[c1])

create h2; Store[U,h2]← <F2,a2,c2>; send <unwrap•,h> to U �
unwrap[finish_setup]: accept <unwrap,h1,w,a2,F2,id> from Fsetup
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if Store[Ui,h1]=<KW,a1,k1> and F2 ∈ F and <KW,unwrap,a1,a2>∈ Π
and k2 = unwrap<F2,a2,id>(k1, w) 6= ⊥

create h2; Store[U,h2]← <F2,a2,k2>; send <unwrap•,h> to Fsetup �
Listing 5: Unwrapping w created with attribute a2, F2 and id using the key h1. The symbol ∃! in ∃!x.p(x) means there
is exactly one x such that p(x) (FKM above, ST i below).

There is an improvement that became apparent during the proof of emulation ( 2 below ). Namely, when unwrap-
ping with a corrupted key, FKM checks the attribute that is going to be assigned to the (imported) key against the
policy, instead of just accepting that a corrupted wrapping-key might just import any wrapping the attacker generated.
This prevents, for example, a corrupted wrapping-key of low security from creating a high-security wrapping-key by
unwrapping dishonestly produced wrappings. This detail in the definition of FKM enforces a stronger implementation
than the one in [10]: ST validates the attribute given with a wrapping, enforcing that it is at least sound according to
the policy, instead of blindly trusting the authenticity of the wrapping mechanism. Hence our implementation is more
robust.

Changing attributes of keys . : The attributes associated with a key with handle h can be updated using the
command <attr change,h,a′>.

attr_change[finish_setup]: accept <attr_change,h,a′> from U ∈ U ;
if Store[U, h]=<F,a,c> and<F,attr_change,a,a′>∈ Π

Store[U, h]=<F,a′,c>; send <attr_change•> to U �
attr_change[finish_setup]: accept <attr_change,h,a′> from Fsetup;
if Store[Ui,h]=<F,a,k> and <F,attr_change,a,a′>∈ Π

Store[Ui,h]=<F,a′,k>; send <attr_change•> to Fsetup �
Listing 6: Changing the attribute of h to a′ (FKM above, ST i below).

Corruption. Since keys might be used to wrap other keys, we would like to know how the loss of a key to the
adversary affects the security of other keys. When an environment “corrupts a key” in FKM, the adversary learns the
credentials to access the functionalities. Since corruption can occur indirectly, via the wrapping command, too, we
factored this out into Listing 7. ST implements this corruption by outputting the actual key to the adversary.

procedure for corrupting a credential c:

Kcor ← Kcor ∪ {c}
for any Store[U, h]=<F,a,c>

if F = KW

key[c]← c; send <corrupt•,h,c> to A
else

call F with <corrupt,c>; accept <corrupt•,k> from F
key[c]← k; send <corrupt•,h,k> to A �

Listing 7: Corruption procedure used in steps corrupt and wrap

corrupt[finish_setup]: accept <corrupt,h> from U ∈ U ;
if Store[U, h]=<F,a,c>

for all c′ reachable from c inW corrupt c′ �
corrupt[finish_setup]: accept <corrupt,h> from Fsetup;

if Store[Ui,h]=<F,a,k> send <corrupt•,h,k> to A �
Listing 8: Corrupting h (FKM above, ST i below).

Public key operations. Some cryptographic operations (e. g., digital signatures) allow users without access to a
security token to perform certain operations (e. g., signature verification). Those commands do not require knowledge
of the credential (in FKM), or the secret part of the key (in ST ). They can be computed using publicly available
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information. In the case where participants in a high-level protocol make use of, e. g., signature verification, but nothing
else, the protocol can be implemented without requiring those parties to have their own security tokens. Note thatFKM

relays this call to the underlying KU functionality unaltered, and independent of its store and policy (see Figure 9).

public_command: accept <C,public,m> from U ∈ U ∪ Uext;
if C ∈ Ci,pub

call Fi with <C,public,m>; accept <C•,r> from Fi; send <C•,r> to U �
Listing 9: Computing the public commands C using public andm (FKM, note that ST i does not implement this step).

The implementation ST i does not implement this step, since Ui, U ext
i compute implC(public,m) themselves.

Before we give the formal definition ofFKM, note thatFKM is not an ideal protocol in the sense of [11, § 8.2], since
not every regular protocol machine runs the dummy party protocol – the party <reg,Fi> relays the communication
with the KU functionalities.

Definition 8 (FKM). Given the KU parametersF , C, Π , let the ideal protocolsFp+1, . . . ,Fl be rooted at prot-Fp+1,. . . ,
prot-Fl. In addition to those protocols names, FKM defines the protocol name prot-fkm. For prot-fkm,
the protocol defines the following behaviour: a regular protocol machine with machine id <<reg,Fi>,sid> for
Fi ∈ {F1, . . . ,Fl} runs the following code:

ready: accept <ready> from parentId
send <ready> to <ideal,sid> (= FKM)

relay_to: accept <m> from <ideal,sid> (= FKM)
send <m> to <<reg,Fi>,<sid,<prot-Fi,<>>> (= Fi)

relay_from: accept <m> from <<reg,Fi>,<sid,<prot-Fi,<>>>
send <m> to <ideal,sid> (= FKM) �

The ideal party runs the logic for FKM described in Listings 3 to 8.

Remark 1: Credentials for different KU functionalities are distinct. It is nonetheless possible to encrypt and decrypt
arbitrary credentials using <wrap> and <unwrap>. Suppose a designer wants to prove a Security API secure which
uses shared keys for different operations. One way or another, she would need to prove that those roles do not interfere.
For this case, we suggest providing a functionality that combines the two KU functionalities, and proving that the
implementation of the two operations combined emulates the combined functionality. It is possible to assign different
attributes to keys of the same KU functionality, and thus restrict their use to certain commands, effectively providing
different roles for credentials to the same KU functionality. This can be done by specifying two attributes for the two
roles and defining a policy that restricts which operation is permitted for a key of each attribute.

Remark 2: Many commonly used functionalities are not caller-independent, often the access to critical functions
is restricted to a network party that is encoded in the session identifier. However, we think that it is possible to con-
struct caller-independent functionalities for many functionalities, if the implementation relies on keys but is otherwise
stateless. A general technique for transforming such functionalities into key-manageable functionalities that preserves
existing proofs is work in progress.

Remark 3: Constraint C6 in [11, §8.2] requires each regular machine to send a message to Fsetup before it can ad-
dress it. The initialization procedure and the parts of the definition of FKM, ST and Fsetup that perform this procedure
are explained in detail in Appendix A.

Properties. In order to identify some properties we get from the design of FKM, we introduce the notion of an
attribute policy graph:

Definition 9. We define a family of attribute policy graphs (AΠ,F ), one for each KU functionality F and one for
key-wrapping (in which case F = KW) as follows:

– a is a node in AΠ,F if (F , C, a, a′) ∈ Π for some C, a′.
– a is additionally marked new if (F , new, a, a′) ∈ Π .
– An edge (a, a′) is in AΠ,F whenever (F , attribute change, a, a′) ∈ Π .
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Example 3. For the policy Π described in Example 2, the attribute policy graphAΠ,KW contains one node 1 connected
to itself and marked new. Similarly, the attribute policy graph AΠ,Fenc contains one node 0 connected to itself and
marked new.

The following theorem shows that, first, the set of attributes an uncorrupted key can have in FKM is determined by
the attribute policy graph, second, there are exactly three ways to corrupt a key, and third, KU-functionalities receive
the corrupt message only if a key is corrupted. The formal proof of these claims can be found in Appendix C.

Theorem 1 ( Properties of FKM). Every instance of FKM with parameters F , C, Π and session parameters U ,Uext,
ST ,Room has the following properties:

(1) At any step of an execution of [FKM,AD, Z], the following holds for FKM: for all Store[U, h] =< F , a, c >
such that c 6∈ Kcor, there is a node a′ marked new in the attribute policy graph AΠ,F such that a is reachable
from a′ in AΠ,F and there was a step new where Store[U ′, h′] =< F , a′, c > was added.

(2) At any step of an execution of [FKM,AD, Z], the following holds for FKM: all c ∈ Kcor were either
(a) directly corrupted: there was a corrupt triggered by a query< corrupt, h > fromU while Store[U,h]=<
F , a, c >, or indirectly, that is,

(b) corrupted via wrapping: there is c′ ∈ Kcor such that at some point the wrap step was triggered by a message
<wrap,h′,h,id> from U while Store[U, h′]=< KW, a′, c′ >, Store[U,h]=< F , a, c >, or

(c) corrupted via unwrapping (injected): there is c′ ∈ Kcor such that at some point the unwrap step was
triggered by a message <unwrap,h′,w,a,F,id> from U while Store[U,h′]=< KW, a′, c′ > and
c = unwrap<F,a,id>c′ (w) for some a, F and id .

(3) At any step of an execution of [FKM,AD, Z], the following holds: whenever an ideal machineFi = <ideal,<sid,<Fi,F>>>,
F =<<reg,F >,<sid>>, accepts the message <corrupt,c> for some c such that FKM in session sid has
an entry Store[U, h]= <Fi,a,c>, then c ∈ Kcor in FKM.

4 Proof overview

We show that, for arbitrary KU parametersF , C, Π , the network πF,C,Π,Impl, consisting of the set of users U connected
to security tokens ST , the set of external users Uext and the functionality Fsetup, emulates the key-management
functionality FKM. We will only give a proof sketch here, the complete proof can be found in the full version [18].

Let πF,C,Π,Impl (in the following: π) denote the network consisting of the programs π(prot− fkm) and π(prot− fsetup).
π(prot− fkm) defines the behaviours for users in U , Uext and ST . Parties in U ∪ Uext will act according to the con-
vention on machine corruption defined in [11, § 8.1], while parties in ST will ignore corruption requests (security
tokens are assumed to be incorruptible). π(prot− fkm) is totally regular, that is, for other machines, in particular
ideal machines, it responds to any message with an error message to the adversary. The protocol π is a Fsetup-hybrid
protocol.

The proof that π implements FKM proceeds in several steps: making use of the composition theorem, the last func-
tionality Fl in FKM can be substituted by its key-manageable implementation ÎL. Then, FKM can simulate Î instead
of calling it. Let F{Fl/Îl}KM be the resulting functionality. In the next step, calls to this simulation are substituted by calls

to the functions used in Î , implC for each C ∈ Cl. The resulting, partially implemented functionality F
{Fl/ImplFl}
KM

saves keys rather than credentials (forFl). We repeat the previous steps untilFKM does not call any KU functionalities

anymore, i. e., we have F
{F1/ImplF1

,...,Fn/ImplFn}
KM . Then we show that the network of distributed token π emulates the

monolithic block F
{F1/ImplF1

,...,Fn/ImplFn}
KM that does not call KU functionalities anymore, using a reduction to the

security of the key-wrapping scheme. This last step requires the restriction of the set of environments to those which
guarantee that keys are not corrupted after they have been used to wrap. The notion of a guaranteeing environment,
and the predicate corrupt-before-wrap are formally defined in Appendix D.

The first four steps are the subject of Lemma 1, the last step is Lemma 2:

Lemma 1. Let F , C, Π be KU parameters such that all F ∈ F are key-manageable. Let ImplFi be the functions

defining the key-manageable implementation Îi of Fi. Then F
F1/ImplF1

,...,Fl/ImplFl
KM emulates FKM. Furthermore, it is

poly-time.
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Lemma 2. For any KU parameterF , C, Π and set of sets of PPT algorithms Impl, letFimpl
KM := F

F1/ImplF1
,...,Fl/ImplFl

KM

be the partial implementation of FKM with respect to all KU functionalities in F . If KW = (implKWnew,wrap, unwrap)
is a secure and correct key-wrapping scheme (Definition 12) then πF,C,Π,Impl emulates Fimpl

KM for environments that
guarantee corrupt-before-wrap.

The main result follows from the transitivity of emulation and Lemmas 1 and 2:

Corollary 1. Let F , C, Π be KU parameters such that all F ∈ F are key-manageable. Let ImplFi be the functions
defining the key-manageable implementation Îi of Fi. If KW = (implKWnew,wrap, unwrap) is a secure and correct
key-wrapping scheme, then πF,C,Π,Impl emulates FKM for environments that guarantee corrupt-before-wrap.

5 Realizing key-usage functionalities for a static key-hierarchy

To demonstrate the use of Corollary 1, we equip the security token with the functionalities F1 = FRand and F2 =
FSIG described below. The resulting security token STFRand,FSIG is able to encrypt keys and random values and
sign user-supplied data. It is not able to sign keys, as this task is part of the key-management. The first functionality,
FRand, is an unusual functionality, but demonstrates what can be done within the design of FKM, as well as it’s
limitations: It models how random values can be stored as keys, with tests of equality and corruption, which means
here that the adversary learns the value of the random value. Since our framework requires a strict division between
key-management and usage, they can be transmitted (using wrap) and compared, but not appear elsewhere, since other
KU functionalities shall not use them. We define FRand as follows:

new: accept <new> from parentId (=:p);
c← {0, 1}η; L← L∪ {(c, 0)}; send <new•,c,> to p

command: accept <equal,c,n> from p;
if (c, k) ∈ L for some k

if k 6∈ Kcor send <equal•,false> to p
else if n = k send <equal•,true> to p

corrupt: accept <corrupt,c> from p;
if (c, 0) ∈ L
k ← {0, 1}η; L← (L \ {(c, 0)}) ∪ {(c, k)}; Kcor = Kcor ∪ {k};
send <corrupt•, k> to A

inject: accept <inject,n> from P ;
(c,<ignore>)← KG(1η); Kcor ← Kcor ∪ {n}; L← L ∪ {(c, n)};
send <inject•,c> to parentId �

( for new:) implnew on input 1η

n← {0, 1}η; output (n,\ )
( for command:) implequal on input n, n′

output n = n′ �
Due to space restrictions, the signature functionality FSIG is presented in Appendix E. In the following, we will

consider FKM for the parameters F = {FRand,FSIG}, C = {{equal}, {sign, verify}} and a static key-hierarchy
Π , which is defined as the relation that consists of all 4-tuples (F ,Cmd,attr1,attr2) such that the conditions in one of
the lines in the following table holds. Note that we omit the “=” sign when we mean equality and “*” denotes that no
condition has to hold for the variable.

F Cmd attr1 attr2
KW new > 0 *
6= KW new 0 *

* attribute change a a
KW wrap > 0 attr1 > attr2
KW unwrap > 0 attr1 > attr2
Fi C ∈ Cpriv 0 * (where a ∈ N)
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Theorem 1 allows immediately to conclude some useful properties on this instantiation of FKM: from (1) we
conclude that all keys with c /∈ Kcor have the attribute they were created with. This also means that the same
credential has the same attribute, no matter which user accesses it. From (2), we can see that for each corrupted
credential c ∈ Kcor, there was either a query < corrupt, h >, where Store[U,h]=< F , a, c >, or there ex-
ists Store[U,h′]=< KW, a′, c′ >, Store[U,h]=< F , a, c > and a query <wrap,h′,h,id> was emitted, for
c′ ∈ Kcor, or an unwrap query <unwrap,h′,w, a, F, id> for a c ∈ Kcor was emitted. By the definition of the strict
key-hierarchy policy, in the latter two case we have that a′ > a. It follows that, for any credential c for F , such that
Store[U,h]=< F , a, c > for some U, h and a, c 6∈ Kcor, as long as every corruption query < corrupt, h∗ > at U
was addressed to a different key of lower or equal rank key, i. e., Store[U,h∗]=< KW, a∗, c∗ >, c∗ 6= c and a∗ ≤ a.
By (3), those credentials have not been corrupted in their respective functionality, i. e., it has never received a message
<corrupt,c>.

6 Conclusions and outlook

We have presented a provably secure framework for key management in the GNUC model. In further work, we are
currently developing a technique for transforming functionalities that use keys but are not key-manageable into key-
manageable functionalities in the sense of Definition 4. This way, existing proofs could be used to develop a secure
implementation of cryptographic primitives in a plug-and-play manner. Investigating the restrictions of this approach
could teach us more about the modelling of keys in simulation-based security.
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A Initialisation and Setup

A.1 Initialisation phase

All regular protocol machines that shall accept messages from FKM need to send a message to FKM first [11, § 4.5].
A similar behaviour needs to be emulated by Fsetup in the network with the actual tokens. The involved protocol
machines areM := U ∪ ST ∪ {F1, . . . ,Fl}, where Fi denotes the regular protocol machine that makes subroutine
calls to Fi, identified with the machine id <<reg,Fi>,sid >.

We add the following part to the definition of FKM:

ready−P : accept <ready> from P ∈M
send <ready•,P> to A

ready [ready-P ∀P ∈M ] �
Listing 10: Initilisation (FKM).

We add the following part to the definition of ST :

ready [¬ ready]:
accept <ready> from parentId

call Fsetup with <ready> �
Listing 11: Initilisation (ST i).

A.2 Handling of the setup phase in FKM and ST i

The following listings describe the setup phase, introduced on page 9:

share[¬finish_setup∧ready]: accept <share,h1,U2> from U1 ∈ U ;
if Ui, U2 ∈ Room

create h2; Store[U2,h2]=Store[U1,h1]; send <share•,h2> to U2 �
Listing 12: The setup phase: sharing keys (FKM).

share[¬finish_setup∧ready]: accept <share,h1,U2> from Fsetup;
if Store[U,h1]=s call Fsetup with <send,s,U2>

import[¬finish_setup∧ready]:accept <deliver,s,U1> from Fsetup

if U1 ∈ Room create h2; Store[Ui,h2]=s; send <share•,h2> to Fsetup �
Listing 13: The setup phase: sharing keys (ST i).

finish_setup[¬finish_setup∧ready]: accept <finish_setup> from U ∈ U ;
send <finish_setup•> to A �

Listing 14: The setup phase: terminating the setup phase (FKM).
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finish_setup[¬finish_setup∧ready]: accept <close> from Fsetup;
send <close•> to Fsetup �

Listing 15: The setup phase: terminating the setup phase (ST i).

A.3 Setup assumptions for the implementation

The setup assumption used for ST is subsumed in the setup functionality Fsetup, which is defined as follows:

ready−Ui: accept <ready,ST i> from Ui ∈ U
send <ready•,Ui> to A

ready−P : accept <ready> from P ∈M \ U
send <ready•,P> to A

ready [ready-P ∀P ∈M]
share[ready∧ ¬finish_setup]: accept <send,x,ST j> from ST i

if Ui, Uj ∈ Room
send <deliver,x,ST i> to STj

else
send <⊥,ST i> to Ui

finish_setup[ready∧¬finish_setup]:
accept <finish_setup> from U ∈ U
from i:=1 to n

send <close> to ST i; accept <close•> from ST i

send <finish_setup•> to A
relay receive [ready]: accept <x,ST i> from Ui; send <x> to ST i

relay send[ready]: accept <x> from ST i;send <x,ST i> to Ui �
B Security Token Network

Definition 10 (Security token network). For KU parametersF , C, Π and implementation functions Impl := {ImplF }F∈F ,
define the protocol πF,C,Π,Impl as follows: πF,C,Π,Impl defines only πF,C,Π,Impl(prot− fkm) and πF,C,Π,Impl(prot− fsetup).
The session parameter is expected to be an encoding of the network parameters U ,Uext,ST ,Room . The code executed
depends on the party running πF,C,Π,Impl(prot− fkm): if the party has identity <<reg,u-i>,sid>, the following
code Ui is executed:

relay_to: accept <m> from parentId
call Fsetup with <m,STi>

relay_from: accept <m,ST i> or <m = ⊥> from Fsetup

send <m> to parentId
public_command:

accept <C,public,m> from parentId
if C ∈ Ci,pub

send <C•,implC(public,m)> to parentId �
If the party has identity ext-u-i, the following code U ext

i is executed:

public_command:
accept <C,public,m> from parentId
if C ∈ Ci,pub

send <C•,implC(public,m)> to parentId �
A regular protocol machine with machine id <reg,Fi>,sid for Fi ∈ {F1, . . . ,Fl} runs the following code:
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ready: accept <ready> from parentId
call Fsetup with <ready> �

All other regular protocol machines run the code of the dummy adversary. If the party has identity <<reg,st-i>,sid>,
then ST i is executed. The code for ST i is given in Section 3.4 and in Appendix A. For parties with the identities
<<reg,u-i>,sid> or <<reg,ext-u-i>,sid>, πF,C,Π,Impl will act according to the convention on machine
corruption defined in [11, § 8.1], while for <<reg,st-i>,sid>, it will ignore corruption request (security tokens
are assumed to be incorruptible). For other machines, including ideal machines, it responds to any message with an er-
ror message to the adversary, i. e., πF,C,Π,Impl(prot− fkm) is totally regular. πF,C,Π,Impl(prot− fkm) declares the
use of prot-fsetup as a subroutine. πF,C,Π,Impl(prot− fsetup) runs Fsetup, i. e., πF,C,Π,Impl is a Fsetup-hybrid
protocol.

C Proof for Theorem 1

Theorem 1 ( Properties of FKM). Every instance of FKM with parameters F , C, Π and session parameters U ,Uext,
ST ,Room has the following properties:

(1) At any step of an execution of [FKM,AD, Z], the following holds for FKM: for all Store[U, h] =< F , a, c >
such that c 6∈ Kcor, there is a node a′ marked new in the attribute policy graph AΠ,F such that a is reachable
from a′ in AΠ,F and there was a step new where Store[U ′, h′] =< F , a′, c > was added.

(2) At any step of an execution of [FKM,AD, Z], the following holds for FKM: all c ∈ Kcor were either
(a) directly corrupted: there was a corrupt triggered by a query< corrupt, h > fromU while Store[U,h]=<
F , a, c >, or indirectly, that is,

(b) corrupted via wrapping: there is c′ ∈ Kcor such that at some point the wrap step was triggered by a message
<wrap,h′,h,id> from U while Store[U, h′]=< KW, a′, c′ >, Store[U,h]=< F , a, c >, or

(c) corrupted via unwrapping (injected): there is c′ ∈ Kcor such that at some point the unwrap step was
triggered by a message <unwrap,h′,w,a,F,id> from U while Store[U,h′]=< KW, a′, c′ > and
c = unwrap<F,a,id>c′ (w) for some a, F and id .

(3) At any step of an execution of [FKM,AD, Z], the following holds: whenever an ideal machineFi = <ideal,<sid,<Fi,F>>>,
F =<<reg,F >,<sid>>, accepts the message <corrupt,c> for some c such that FKM in session sid has
an entry Store[U, h]= <Fi,a,c>, then c ∈ Kcor in FKM.

Proof. (1) Proof by induction over the number of epochs sinceFKM’s first activation, t: if t = 0, Store is empty. t >
0: since the property was true in the previous step, there are only three steps we need to look at: if a key< F , a, c >
is added to Store at step new, then it is created only if the policy contains an entry (F , new,a), i. e., a itself is a new
node. If a key < F , a, c > is added to Store at step unwrap, let <unwrap,h1,w,F,id> be the arguments
sent by a user U , and Store[U,h1]=<KW,aw,cw>. If c 6∈ Kcor, then cw 6∈ Kcor, too, and thus there is an
entry < c,< F , a, id >,w >∈ encs[cw]. encs is only written in wrap, therefore there was a position [U ′, h′]
in the store, such that Store[U ′,h′]=<F,a,c>. Using the induction hypothesis, we see that a is reachable in
the attribute policy graph. The third and last step where the store is written to is AttributeChange. If this step
alters the attribute from a′ to a, there must have been an entry (F , attribute change, a′, a) ∈ Π . By induction
hypothesis, a′ is reachable from a new node, therefore a′ is, too.

(2) A credential c is only added to the setKcor in three steps: if it is added in corrupt, then a message <corrupt,h>
was received from U ∈ U and Store[U,h]=< F, a, c >. If it was added in wrap, then a message <wrap,
h1,h2> must have been received from U ∈ U while Store[U,h1]=< KW, a1, c1 >, and c was reach-
able from c1. Let c′ be the last node on the path to c. c′ ∈ Kcor because it is reachable from c1, too. Since
(c′, c) ∈ W , there was another wrapping query <wrap,h′,h,id> with Store[U,h′]=< KW, a′, c′ > and
Store[U,h]=< F , a, c >. Since entries in the store are never deleted (only the attribute can be altered), and
credentials are never removed from Kcor, the property holds in this case. If it was added in unwrap, then c 6∈ K
at this point in time, and c = unwrap<F,a,id>c′ (w) 6= ⊥. Furthermore, we observe that the conditionals prior to
adding c to Kcor require that Store[U ,h′]=<KW,a′,c′>, c′ ∈ Kcor, and that the step was triggered by a message
<unwrap,h′,w,a,F,id>.
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(3) Îi accepts only messages coming from the party F , and F in turn only accepts messages coming from FKM.
Therefore, we can conclude from the definition of step corrupt in FKM that c ∈ Kcor.

D Proofs for Lemma 1 and Lemma 2

The static call graph has only an edge from prot-fkm to prot-fsetup, πF,C,Π,Impl is thus rooted at prot-fkm.

Lemma 3. For all KU parameters F , C, Π , πF,C,Π,Impl is a poly-time protocol.

Proof. By Definition 2 in [11, § 6], we need to show that there exists a polynomial p such that for every well-behaved
environment Z that is rooted at prot-fkm, we have:

Pr[TimeπF,C,Π,Impl [πF,C,Π,Impl,AD, Z](η)

> p(FlowZ→πF,C,Π,Impl,AD [πF,C,Π,Impl,AD, Z](η))]

= negl(η).

Let pmax be a polynomial such that for all Fi and C ∈ C, the algorithm implC terminates in a running time smaller
than pmax(n), where n is the length of the input. implFnew is always called on input of length η, thus all keys have a
length smaller pmax(η). In step new, F and a are provided by the environment (as input toUi, which then asksFsetup to
relay the request to ST i). Since messages have at least length η, we can overapproximate by saying that Store grows
at most by some polynomial pgrowth−new in the length of the environment’s input. Similarly, an <unwrap,...>
query cannot grow the Store by more than pgrowth−unwrap. Therefore, at any point in time t (we simply count the num-
ber of epochs, i. e., activations of the environment), the store is smaller than p′(FlowZ→πF,C,Π,Impl,AD [πF,C,Π,Impl,AD, Z](η))
for a polynomial p′.

We observe that there is not a single activation of a machine in πF,C,Π,Impl, neither a Ui, an ST i nor Fsetup, where
the running time is not polynomial in the environment’s input and the length of the Store. AD might corrupt user
U ∈ U ∪ Uext, but they do not have any state. Thus, we have for the running time of πF,C,Π,Impl at point t, i. e.,
TimeπF,C,Π,Impl,t[πF,C,Π,Impl,AD, Z](η),

TimeπF,C,Π,Impl,t[πF,C,Π,Impl,AD, Z](η)

= TimeπF,C,Π,Impl,t−1[πF,C,Π,Impl,AD, Z](η)+

p′(FlowZ→πF,C,Π,Impl,AD [πF,C,Π,Impl,AD, Z](η))

≤ t · p′(FlowZ→πF,C,Π,Impl,AD [πF,C,Π,Impl,AD, Z](η))

≤ p′′(FlowZ→πF,C,Π,Impl,AD [πF,C,Π,Impl,AD, Z](η))

for another polynomial p′′, because

t < FlowZ→πF,C,Π,Impl,AD [πF,C,Π,Impl,AD, Z](η)).

The proof that π implements FKM proceeds in several steps: making use of the composition theorem, the last func-
tionality Fl in FKM can be substituted by its key-manageable implementation ÎL. Then, FKM can simulate Î instead
of calling it. Let F{Fl/Îl}KM be the resulting functionality. In the next step, calls to this simulation are substituted by calls

to the functions used in Î , implC for each C ∈ Cl. The resulting, partially implemented functionality F
{Fl/ImplFl}
KM

saves keys rather than credentials (forFl). We repeat the previous steps untilFKM does not call any KU functionalities

anymore, i. e., we have F
{F1/ImplF1

,...,Fn/ImplFn}
KM . Then we show that the network of distributed token π emulates the

monolithic block F
{F1/ImplF1

,...,Fn/ImplFn}
KM that does not call KU functionalities anymore, using a reduction to the

security of the key-wrapping scheme.
The first four steps will be the subject of Lemma 1, the last step is Lemma 2. But before we come to this, the

following definition expresses partial implementations of FKM. In fact, the formal definition of FKM is the special
case in which the set of substituted functionalities is empty:
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Definition 11 (FKM with partial implementation). Given the KU parametersF , C, Π , and functions (implKWnew,wrap, unwrap),
let ImplFi be the algorithms defining the keymanageable implementation Îi ofFi ∈ {F1, . . . ,Fp} ⊂ F . We will define

the partial implementation ofFKM with respect to the KU functionalitiesF1, . . . ,Fp , denotedF
{F1/ImplF1

,...,Fp/ImplFp}
KM ,

Let the ideal protocolsFp+1, . . . ,Fl be rooted at prot-Fp+1,. . . ,prot-Fl. In addition to those protocols names,

F
{F1/ImplF1

,...,Fp/ImplFp}
KM , defines the protocol name prot-fkm. For prot-fkm, the protocol defines the following

behaviour: a regular protocol machine with machine id <<reg,Fi>,sid> forFi ∈ {F1, . . . ,Fl} runs the following
code:

ready: accept <ready> from parentId
send <ready> to <ideal,sid> (= FKM)

relay_to: accept <m> from <ideal,sid> (= FKM)
send <m> to <<reg,Fi>,<sid,<prot-Fi,<>>> (= Fi)

relay_from: accept <m> from <<reg,Fi>,<sid,<prot-Fi,<>>>
send <m> to <ideal,sid> (= FKM) �

The ideal party runs the logic for FKM described in Section-3.4, with the following alteration of the corrupt macro
used in the corrupt and wrap step:

Kcor ← Kcor ∪ {c}
for any Store[U, h]=<F,a,c>

if F ∈ {KW,F1, . . . ,Fp}
key[c]← c
send <corrupt•,h,c> to A

else
call F with <corrupt,c>
accept <corrupt•,k> from F
key[c]← k
send <corrupt•,h,k> to A �

Listing 16: procedure for corrupting a credential c

and in the new, command, public command and unwrap steps:

new[ready]: accept <new,F,a> from U ∈ U
if <F,new,a,*> ∈ Π then

if F ∈ {F1, . . . ,Fp}
(k, public)← implFnew(1

η)
create h; Store[U,h]← <F,a,k>
K ← K ∪ {k}
send <new•,h,public> to U

else if F = KW

(k, public)← implKWnew (1η)
if k ∈ K ∪ Kcor

send <error> to A
else

create h; Store[U,h]← <F,a,k>
K ← K ∪ {k}
send <new•,h,public> to U

else
call F with <new>
accept <new•,c,public> from F
if c ∈ K ∪ Kcor

send <error> to A
else

create h; Store[U,h]← <F, a, c>
K ← K ∪ {c}
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send <new•,h,public> to U �
command[finish_setup]:

accept <C,h,m> from U ∈ U
if Store[U,h]=<F,a,c> and <F,C,a,*>∈ Π

if F ∈ {F1, . . . ,Fp}
send <C•,implC(c,m)> to U

else if F 6=KW
call F with <C,c,m>
accept <C•,r> from F
send <C•,r> to U �

public_command:
accept <C,public,m> from U ∈ U
if C ∈ Ci,pub

if F ∈ {F1, . . . ,Fp}
send <C•,implC(public,m)> to U

else
call Fi with <C,public,m>
accept <C•,r> from Fi
send <C•,r> to U �

unwrap[finish_setup]:
accept <unwrap,h1,w,a2,F2,id>

from U ∈ U
if Store[U,h1]=<KW,a1,c1> and
<KW,unwrap,a1,a2>∈ Π ,F2 ∈ F

if c1 ∈ Kcor

c2 = unwrap<F2,a2,id>(c1, w)
if c2 6= ⊥ and c2 6∈ K
Kcor ← Kcor ∪ {c2}
if F2 ∈ {KW,F1, . . . ,Fp}

create h2

Store[U,h2]← <F2,a2,c2>
key[c2]=c2

else
call F2 with <inject,c2>
accept <inject•,c′>
if c′ 6∈ K ∪ Kcor

create h2

Store[U,h2]← <F2,a2,c
′>

key[c′]=c2
send <unwrap•,h> to U

else if c2 6= ⊥, c2 ∈ K and c2 ∈ Kcor

create h2

Store[U,h2]← <F2,a2,c2>
send <unwrap•,h> to U

else // (c2 = ⊥ ∨ c2 ∈ K \ Kcor)
send <error> to A

else if ( c1 /∈ Kcor and
∃!c2.<c2,<F2,a2,id>,w>∈encs[c1])

create h2

Store[U,h2]← <F2,a2,c2>
send <unwrap•,h> to U �
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Note that the partial implementation of FKM is not an ideal protocol in the sense of [11, § 8.2], since not every
regular protocol machine runs the dummy party protocol – the party <reg,Fi> relays the communication with the
KU functionalities.

Lemma 1. Let F , C, Π be KU parameters such that all F ∈ F are key-manageable. Let ImplFi be the functions

defining the key-manageable implementation Îi of Fi. Then F
F1/ImplF1

,...,Fl/ImplFl
KM emulates FKM. Furthermore, it is

poly-time.

Proof. Induction on the number of substituted KU functionalities.

Base case: F∅KM actually equals FKM. Since emulation is reflexive, F∅KM emulates FKM. It is left to show that FKM

is poly-time: the argument is actually the same as for πF,C,Π,Impl (see proof to Lemma 3), after we have established
five things: 1. instead of calling implementation functions implFC for F 6= KW, FKM is calling the function F with the
same value. Since F is key-manageable, it is also poly-time. 2. The implementation function for wrapping might run a
different value, but it has the same length, i. e., the same upper bound holds for its running time. 3. Graph reachability is
linear in the number of credentials, which in turn is polynomial, because the flow from the environment is polynomial,
and thus the number of new queries. 4. The relaying of messages from Ui via Fsetup does not add more than linearly
in η to the running time, 5. similarly, for the distribution of the <finish setup> message.

Induction Step:. Assume i ≥ 1 and that F
F1/ImplF1

,...,Fi−1/ImplFi−1

KM emulates FKM. Since emulation is transitive,

it suffices to show that F
F1/ImplF1

,...,Fi/ImplFi
KM emulates F

F1/ImplF1
,...,Fi−1/ImplFi−1

KM . We will proceed in three steps:
first, we will substitute Fi by its key-manageable implementation Îi. Then, we will alter FKM to simulate Îi inside.
The main part of the proof is showing that Îi can be emulated by calling ImplFi inside FKM, storing keys instead of
credentials.

The first step is a consequence of composition theorem [11, Theorem 7]. The induction hypothesis gives us that

F
F1/ImplF1

,...,Fi−1/ImplFi−1

KM (in the following: F i−1KM ) is a poly-time protocol, and it is rooted in fkm. Since Fi is key-
manageable, we know that Îi is a polytime protocol that emulates Îi. Îi defines only F-i, therefore ÎF is substitutable
for Fi in F i−1KM . Hence, F i−1[Fi/Îi] is poly-time and emulates F i−1KM .

In the second step, we alter F i−1[Fi/Îi] (in the following: F i−1
′

KM ) such that the ideal functionality defined in
F i−1

′

KM (prot− fkm) simulates Îi locally, and calls this simulation whenever <<reg,Fi>,sid> would be addressed
in FKM. Îi might send a message to A, in which case this message is indeed relayed to A. Since the simulation will
only be called by FKM, it will only respond to FKM. We will call this protocol F i−1

′′

KM . To show that F i−1
′′

KM emulates
F i−1

′

KM , we have to make sure that inF i−1
′

KM , Îi can only be addressed byFKM, via the relay mechanism implemented in
<<reg,Fi>,sid>. (Which consequently is not present inF i−1

′′

KM , since any call to <<reg,Fi>,sid> is substituted
by calls to the simulation of Îi.) If this is the case, then the observable output to the environment is exactly the same.
First, Îi never adresses <adv>, so by C5, it cannot be adressed by the adversary. Second, since the environment is
rooted at proto-fkm, it cannot address Îi. Third, there is no other regular party than <<reg,Fi>,sid> in sid
that calls Îi. By C8, there cannot be other regular machines addressing Îi. Therefore, F i−1

′′

KM emulates F i−1
′

KM . Since Îi
is poly-time, F i−1

′′

KM can simulate it and is still poly-time.
In the third step, we show that Fi emulates F i−1

′′

KM . We claim that in fact, with overwhelming probability, Fi pro-
vides a perfect simulation of F i−1

′′

KM , namely, when the list L maintained in F i−1KM describes a function from credentials
to keys. Whenever a pair (c, k) is added to L (this happens only in steps new and inject), implFinew is used to draw c.
Since for all k, Pr[k′ = k|k′ ← implFinew(1

η)] is negligible by assumption (see Definition 4), there is (with overwhelm-
ing probability) for every c there is not more than one k such that (c, k) ∈ L, and thus L describes a function from
credentials to keys. So we can assume without loss of generality that this list describes a function. We will inspect the
steps new, command, wrap, unwrap and corrupt, as the only steps that produce an output depending on
the value of the credential. Note first that, since Pr[k′ = k|k′ ← implFinew(1

η)] is negligible for all k, and since both K
and Kcor are only polynomial in size, the checks for c ∈ K ∪ Kcor in step new pass only with negligible probability.
Therefore, we can assume those checks to be non-operations. The steps new, corrupt and command are trivial
to verify: each credential is substituted by the corresponding key. The corruption macro used in both steps corrupt
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and wrap makes sure that for each credential c ∈ K ∩Kcor, key[c] contains the same key that the bijection defined
by L in F i−1KM assigns to it. Furthermore, for each c 6∈ K, c ∈ Kcor, the step unwrap gives the same guarantee (by def-
inition of step inject in Definition 4). Therefore, the step wrap correctly substitutes corrupted credentials by keys.
Since Îi is key-manageable, and both credential and keys are drawn using implFinew, with overwhelming probability,
the substitution is correct for uncorrupted credentials, too. The last step to check is unwrap. Unless c1 ∈ Kcor and
c2 6∈ K, this step restores only a previously created credential in the Store, so no substitution necessary. In case that
c1 ∈ Kcor and c2 6∈ K, a credential that is freshly created and linked to the content of the wrapping (see the inject
step) is stored, whereas in F i−1

′′

KM , it is the content of the wrapping itself that is stored.
By transitivity of emulation, we have that Fi emulatesFKM. By the fact that Fi actually computes less thanF i−1

′′

KM ,
we know it is poly-time.

For the next step, we need to define what we understand under a key-wrapping scheme. We took the definition
from [10] as a basis and will repeat it here. It is based on the notion of deterministic, authenticated encryption from
[20], but it additionally supports key-dependant messages. We changed the definition, so it allows to wrap the same
key with the same wrapping key but under different attributes, just like in the DAE definition from [20].

Definition 12 (Multi-user setting for key wrapping). We define experiments Expwrap,real
A,KW (η) and Expwrap,fake

A,KW (η).
In both experiments the adversary can access a number of keys k1, k2, . . . , kn . . . (which he can ask to be created
via a query NEW). In his other queries, the adversary refers to these keys via symbols K1,K2, . . . ,Kn (where the
implicit mapping should be obvious). By abusing notation we often use Ki as a placeholder for ki so, for example,
WrapaKi(Kj) means Wrapaki(kj). We now explain the queries that the adversary is allowed to make, and how they are
answered in the two experiments.

– NEW(Ki): a new key ki is generated via ki ← KG(η)
– ENC(Ki, a,m) where m ∈ K ∪ {Ki | i ∈ N} and h ∈ H. The experiment returns Wrapaki(m).
– TENC(Ki, a,m) where m ∈ K∪{Ki | i ∈ N} and a ∈ H. The real experiment returns Wrapaki(m), whereas the

fake experiment returns $|Wrapaki
(m)|

– DEC(Ki, a, c): the real experiment returns UnWrapaki(c), the fake experiment returns ⊥.
– CORR(Ki): the experiment returns ki

Correctness of the wrapping scheme requires that for any k1, k2 ∈ K and any a ∈ H, if c ← Wrapak1(k2) then
Unwrapak1(c) = k1.

Consider the directed graph whose nodes are the symbolic keys Ki and in which there is an edge from Ki to Kj if
the adversary issues a query ENC(Ki, a,Kj). We say that a key Ki is corrupt if either the adversary corrupted the key
from the start, or if the key is reachable in the above graph from a corrupt key. If a handle, respectively pointer, points
to a corrupted key, we call the pointer corrupted as well.

We make the following assumptions on the behaviour of the adversary.

– For all i the query NEW(Ki) is issued at most once.
– All the queries issued by the adversary contain keys that have already been generated by the experiment.
– The adversary never makes a test query TENC(Ki, a,Kj) if Ki is corrupted at the end of the experiment.
– If A issues a test query TENC(Ki, a,m) then A does not issue TENC(Kj , a

′,m′) or ENC(Kj , a
′,m′) with

(Ki, a,m) = (Kj , a
′,m′)

– The adversary never queries DEC(Ki, a, c) if cwas the result of a query TENC(Ki, a,m) or of a query ENC(Ki, a,m)
or Ki is corrupted.

At the end of the execution the adversary has to output a bit b which is also the result of the experiment. The advantage
of adversary A in breaking the key-wrapping scheme KW is defined by:

Awrap
KW,A(η) =

∣∣∣Pr [b← Expwrap,real
KW,A (η) : b = 1

]
−

Pr
[
b← Expwrap,fake

KW,A (η) : b = 1
]∣∣∣

and KW is secure if the advantage of any probabilistic polynomial time algorithm is negligible.

24



Definition 13 (guaranteeing environment). Suppose Z is an environment that is rooted at r, and p is a predicate on
sequences of (id0, id1,m). Let Sp(Z) be a sandbox that runs Z but checks at the end of each activation if the predicate
holds true on the list of messages sent and received by the environment (including the message about to be send). If
the predicate does not hold true, Sp aborts Zp and outputs some error symbol fail ∈ Σ. We say that Z guarantees a
predicate p, if there exists such a sandbox Sp(Z), and for every protocol Π rooted at r, for every adversary A, we
have that:

Pr[Exec[Π,A,Z] = fail ]

is negligible in η.

Let us denote a list of messages mi from ai to bi, as M t = ((a0, b0,m0), . . . , (at, bt,mt)). We will denote the
i-prefix of this list by M i. We can filter messages by their session id: M i

|SP denotes a messages (ai, bi,mi) where
either ai = < env > and bi is of the form <<reg,basePID>,<α1, . . . , αk−1,<prot-fkm,<SP>>>>, or vice
versa. We say (aj , bj ,mj) is a response to (ai, bi,mi) if (aj , bj ,mj) is the earliest message such that i < j, ai = bj ,
bj = ai, and that no other message at an epoch k < i exists such that (ai, bi,mi) is a response to (ak, bk,mk). This
assumes that there is a response to every query. (In case of an error, FKM responds with ⊥ rather than ignoring the
query.) In order to tell which handles are corrupted, we need to define which handles point to the same key a given
moment t.

Given M|NP =M|U,Uext,ST ,Room = ((a0, b0,m0), . . . , (an, bn,mn)), we define ≡0 to be the empty relation and
for all 1 ≤ t ≤ n, we define ≡t as the least symmetric transitive relation such that

1. ≡t⊂≡t−1 ∪{(U, h), (U, h)}, if mt = < new•, h, public) >, at = U and ∃s < t, F, a : ms = < new, F, a > and
(at, bt,mt) is a response to (as, bs,ms)

2. ≡t⊂≡t−1 ∪{(U1, h1), (U2, h2)}, if mt = < share• >, at = U1 and
∃s < t : ms = < share, (U1, h1), (U2, h2) > and (at, bt,mt) is a response to (as, bs,ms)

3. ≡t⊂≡t−1 ∪{(U1, h1), (U2, h2)}, if mt = < unwrap•, h2 >, at = U2 and ∃q, r, s : such that (at, bt,mt) is a
response to (as, bs,ms), and (ar, br,mr) is a response to (aq, bq,mq), and r < s. Furthermore:
mq = < wrap, h1, h2, id >, bq = U1,mr = < wrap•, w >, ar = U1 and
ms = unwrap, h′1, w, a, F, id >, bs = U1 and (U2, h

′
1) ≡t−1 (U1, h1).

4. ≡t=≡t−1, otherwise.

Using this relation, we define following predicate: corruptedM|NP
(U, h) holds iff either some (U∗, h∗), ((U∗, h∗) ≡t

(U, h)) were corrupted directly, via wrapping with a corrupted key, or injected via unwrapping, formally:

– mj = (adv, env, < corrupt•, h∗, c >),mi = (env, U∗, < corrupt, h >) ∈ M|NP and mj is a response to mi

(for some c), or
– there are mj = (U∗, env, < wrap•, w >),mi = (env, U∗, < wrap, h1, h

∗, id >) ∈ M|NP and mj is a response
to mi, with corruptedM|NP

(U∗, h1), or
– there are mj = (U∗, env, < unwrap•, h∗ >),mi = (env, U∗, < unwrap, h1, w, a2, F2, id >) ∈ M|NP and mj

is a response to mi, while corruptedM|NP
(U∗, h1).

Finally, let corrupt-before-wrap be the following predicate on a list of messagesM t = ((a0, b0,m0), . . . , (at, bt,mt)):
for all i ≤ t and network parameters NP = U ,Uext,ST ,Room , we have

corruptedM|NP
(U, h) ∧ (env, U,< wrap, h, h′ >) ∈M i

|NP

⇒ corruptedMi
|NP

(U, h).

Lemma 2. For any KU parameterF , C, Π and set of sets of PPT algorithms Impl, letFimpl
KM := F

F1/ImplF1
,...,Fl/ImplFl

KM

be the partial implementation of FKM with respect to all KU functionalities in F . If KW = (implKWnew,wrap, unwrap)
is a secure and correct key-wrapping scheme (Definition 12) then πF,C,Π,Impl emulates Fimpl

KM for environments that
guarantee corrupt-before-wrap.
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Proof. Proof by contradiction: Assuming that there is no adversary Sim such that for all well-behaved environments Z
that are rooted at prot-fkm and guarantee corrupt-before-wrap Exec[πF,C,Π,Impl,AD, Z] ≈ Exec[Fimpl

KM ,Sim, Z]

holds, we chose a Sim that basically simulates Fsetup for corrupted users in Fimpl
KM , and a Z that is indeed able to

distinguish Exec[πF,C,Π,Impl,AD, Z] and Exec[Fimpl
KM ,Sim, Z]. Then, we use it to construct an attacker BZ against

the key-wrapping challenger. BZ will be carefully crafted, such that a) it is a valid adversary b) it has the same output
distribution in the fake key-wrapping experiment as Z has when interacting with Fimpl

KM and Sim c) it has the same
output distribution in the real key-wrapping experiment as Z has when interacting with πF,C,Π,Impl and AD.

Sim defines the same code as the dummy adversary (see [11, §4.7]), but when instructed by the environment to
instruct a corrupted party to call Fsetup, it simulates Fsetup (because Fimpl

KM does not define prot-fsetup). This
means: Sim waits for <ready•,P> from Fimpl

KM from all parties P ∈ U ∪ ST ∪ F̂ before operating - for corrupted
parties Ui ∈ U (security tokens are incorruptible, U ext ∈ Uext are ignored), it waits be instructed to send ready and
simulates the reception of <ready•,P> itself. Afterwards, it accepts instructions to send <m> as Ui to Fsetup– in
this case, Sim instructs Ui to send m to Fimpl

KM . Similarly, the response from Fimpl
KM is simulated to be transmitted via

Fsetup. When Ui is instructed to send finish setup to Fsetup, Sim sends finish setup to Fimpl
KM instead (and

relays the answer), but only if it received ready from all parties P ∈ U ∪ ST ∪ F̂ before (as we already mentioned),
and only the first time.

Given Z, we will now construct the attacker BZ against the key-wrapping game in Definition 12. Recall that Z is
rooted at prot-fkm. This means that Z only calls machines with the same SID and the protocol name prot-fkm.
In particular, the session parameters (F , C, Π) are the same (see [11, §5.3]), so from now on, we will assume them
to be arbitrary, but fixed. The construction of BZ aims at simulating Z in communication with the simulator Sim
given above and the key-management functionality Fimpl

KM , but instead of performing wrapping and unwrapping in
Fimpl

KM itself, BZ queries the challenger in the wrapping experiment. In case of the fake experiment, the simulation
is very close to the network [Fimpl

KM ,Sim, Z], for the case of the real experiment, we have to show that the output is
indistinguishable from a network of distributed security tokens and a dummy adversary [πF,C,Π,Impl,AD, Z]. This

will be the largest part of the proof. BZ is defined as follows: BZ simulates the network [Fimpl,KW
KM ,Sim, Z], where

Fimpl,KW
KM is defined just as Fimpl

KM , but new,wrap,unwrap and corrupt are altered such that they send queries
to the experiment instead. Note that for this reason, Fimpl,KW

KM is not a valid machine in the GNUC model - we just
use it as a convenient way to describe the simulation that BZ runs. We assume that the place-holder symbols K1, . . .
from Definition 12 are distinguishable from other credentials and that there is some way to select those symbols such
that each of them is distinct. Furthermore, they should be difficult to guess. One way to achieve this is to implement a
pairing of i and j, for U = Ui and j ← {0, 1}η , using Cantor’s pairing function.

new[ready]: accept <new,F,a> from U ∈ U
if <F,new,a,*> ∈ Π then

if F ∈ {F1, . . . ,Fl}
(k, public)← implFnew(1

η)
create h; Store[U,h]← <F,a,k>
K ← K ∪ {k}
send <new•,h,public> to U

else if F = KW

create Ki, h
query NEW(Ki)
K ← K ∪ {Ki}
Store[U,h]← <KW,a,Ki>
send <new•,h,> to U �

wrap[finish_setup]:
accept <wrap,h1,h2,id> from U ∈ U
if Store[U,h1]=<KW,a1,c1> and Store[U,h2]=<F2,a2,c2>

and <KW,wrap,a1,a2>∈ Π
if ∃w.<c2,<F2,a2,id>,w>∈encs[c1]

send <wrap•,w> to U
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else
W ←W ∪ {(c1, c2)}
if c1 ∈ Kcor

for all c3 reachable from c2 inW
corrupt c3
w ← wrap<F2,a2,id>(key[c1],key[c2])

else
w = TENC(c1, < F2, a2, id >, c2)

encs[c1]← encs[c1] ∪{ <c2,<F2,a2,id>,w>}
send <wrap•,w> to U �

unwrap[finish_setup]:
accept <unwrap,h1,w,a2,F2,id> from U ∈ U
if Store[U,h1]=<KW,a1,c1> and <KW,unwrap,a1,a2>∈ Π ,F2 ∈ F

if c1 ∈ Kcor

c2 = unwrap<F2,a2,id>(key[c1], w)
if c2 6= ⊥ and c2 /∈ K \ Kcor

Kcor ← Kcor ∪ {c2}
create h2

Store[U,h2]← <F2,a2,c2>
key[c2]=c2
send <unwrap•,h> to U

else // first bad event
send <error> to A

else
if ∃!c2.<c2,<F2,a2,id>,w>∈encs[c1]

create h2

Store[U,h2]← <F2,a2,c2>
send <unwrap•,h> to U

else // c1 6∈ Kcor ∧ ¬∃c2.<c2,<F2,a2,id>,w>∈encs[c1])
query c2 = DEC(c1, < F2, a2, id >,w);
if c2 6= ⊥ //second bad event

halt and output 0. �
if c ∈ Kcor

send <corrupt•,h,key[c]> to A
else
Kcor ← Kcor ∪ {c}
for any Store[U, h]=<F,a,c>

if F ∈ KW

query k = CORR(c)
key[c]← k

else
key[c]← c

send <corrupt•,h,key[c]> to A �
Listing 17: procedure for corrupting a credential c

BZ is a valid adversary. We will argue about each assumption on the behaviour of the adversary, one after another:

1. For all i, the query NEW(Ki) is issued at most once, because we specified Fimpl,KW
KM to select a new Ki for each

such query
2. All queries issued by BZ contain keys that have already been generated by the experiment. Observe that all queries

are preceeded by a conditional that checks if the argument to the query is in the third position of the store, i. e.,
there are U, h, a such that Store[U, h] =< KW, a, k > at some point of the execution of BZ . We claim that each

27



such k has either been generated using NEW or is inKcor (in which case no query is made). Proof by contradiction:
assume we are at the first point of the execution where such a key is added to the store. The store is only written
in the new and unwrap step. In new, a new Ki is created. In unwrap, there are three cases in which the store
is written to: a) If c1 ∈ Kcor, then c2 ∈ Kcor. Once something is marked as corrupted, it stays corrupted. b) If
c1 6∈ Kcor, but ∃c2. < c2, < F2, a2, id >, w >∈ encs[c1]). Only wrap can write to encs, so c2 must have been
in the store before.

3. The adversary never makes a test query TENC(Ki, a,Kj) if Ki is corrupted at the end of the experiment, because
a TENC query is only output in the step wrap if c1 6∈ Kcor. The condition corrupt-before-wrap enforces that if
c1 is not corrupted at that point, it will never be corrupted. (A detailed analysis about how corrupt-before-wrap is
correct with respect to the definition if Fimpl,KW

KM is left to the reader.)
4. If BZ issues a test query TENC(Ki, a,m) then BZ does not issue TENC(Kj , a

′,m′) or ENC(Kj , a
′,m′) with

(Ki, a,m) = (K ′j , a,m
′), since BZ never issues ENC queries at all and only issues TENC queries if the same

combination of (Ki, a,m) was not stored in encs before. Every time TENC is called, encs is updated with
those parameters.

5. BZ never queries DEC(Ki, a, c) if c was the result of a query TENC(Ki, a,m) or of a query ENC(Ki, a,m) or
Ki is corrupted, because a) TENC queries are stored in encs and the step unwrap checks this variable before
querying DEC, b) enc queries are never issued, c) if a credential c1 inside the unwrap step is corrupted, the query
DEC is not issued.

We conclude that BZ fulfills the assumptions on the behaviour of the adversary expressed in Definition 12.
BZ simulates Fimpl,KW

KM in the fake experiment.

BZ is defined to be a simulation of the network
[
Fimpl,KW

KM ,Sim, Z
]
, where Fimpl,KW

KM is Fimpl
KM , except for the

altered steps new,wrap,unwrap and corrupt. We claim that, in the fake experiment, those alterations do not
change the input/output behaviour. First, we will simplify the unwrap step in Fimpl

KM :

1 unwrap[finish_setup]:
2 accept <unwrap,h1,w,a2,F2,id>
3 from U ∈ U
4 if Store[U,h1]=<KW,a1,c1> and
5 <KW,unwrap,a1,a2>∈ Π ,F2 ∈ F
6 if c1 ∈ Kcor

7 c2 = unwrap<F2,a2,id>(c1, w)
8 if c2 6= ⊥ and c2 6∈ K
9 Kcor ← Kcor ∪ {c2}

10 create h2

11 Store[U,h2]← <F2,a2,c2>
12 key[c2]=c2
13 send <unwrap•,h> to U
14 else if c2 6= ⊥, c2 ∈ K and c2 ∈ Kcor

15 create h2

16 Store[U,h2]← <F2,a2,c2>
17 send <unwrap•,h> to U
18 else // (c2 = ⊥ ∨ c2 ∈ K \ Kcor)
19 send <error> to A
20 else if ( c1 /∈ Kcor and
21 ∃!c2.<c2,<F2,a2,id>,w>∈encs[c1])
22 create h2

23 Store[U,h2]← <F2,a2,c2>
24 send <unwrap•,h> to U �

We first observe that it would not make a difference if the code in the branch at Line 14 would execute the same code
as in the branch at Line 8, i. e., additionally perform the computations in Line 9 and 12, since from the definition of
the steps unwrap and the corruption procedure, if c2 ∈ Kcor, then already key[c2] = c2. This means that Lines 8 to
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13 are executed if c2 6= ⊥ ∧ c2 6∈ K \ Kcor, otherwise a bad event is produced, i. e., an error is send to the adversary.
For reference, this is the equivalent, simpler code:

1 unwrap[finish_setup]:
2 accept <unwrap,h1,w,a2,F2,id>
3 from U ∈ U
4 if Store[U,h1]=<KW,a1,c1> and
5 <KW,unwrap,a1,a2>∈ Π ,F2 ∈ F
6 if c1 ∈ Kcor

7 c2 = unwrap<F2,a2,id>(c1, w)
8 if c2 6= ⊥ and c2 /∈ K \ Kcor

9 Kcor ← Kcor ∪ {c2}
10 create h2

11 Store[U,h2]← <F2,a2,c2>
12 key[c2]=c2
13 send <unwrap•,h> to U
14 else // (c2 = ⊥ ∨ c2 ∈ K \ Kcor)
15 send <error> to A
16 else if ( c1 /∈ Kcor and
17 ∃!c2.<c2,<F2,a2,id>,w>∈encs[c1])
18 create h2

19 Store[U,h2]← <F2,a2,c2>
20 send <unwrap•,h> to U �

We claim that the following invariant holds: For all Z, and at the end of every epoch [11, §5.3], i. e., after each
activation of Z:

– the distribution of the input received by Z (the view of Z) is the same for Z in
[
Fimpl

KM ,Sim, Z
]

as well as in the

network
[
Fimpl,KW

KM ,Sim, Z
]

simulated by BZ .

– in the same two execution, the entry Store[U, h] =< KW, a, c > exists in Fimpl,KW
KM if, and only if, the entry

Store[U, h] =< KW, a, c > exists in Fimpl
KM , where the following holds for c and c

• c ∈ K ↔ c ∈ K and c ∈ Kcor ↔ c ∈ Kcor

• if c ∈ K, then c is the key drawn for c in the NEW step. Furthermore, if c ∈ Kcor, in Fimpl,KW
KM key[c] = c

and in Fimpl
KM key[c] = c

• if c ∈ Kcor \ K (i. e., c was injected), c = c and key[c] = c in both Fimpl,KW
KM key[c] = c and Fimpl

KM .

The only relevant steps are the altered steps new,wrap,unwrap, and the corruption macro.

– corrupt: For honestly generated wrapping keys c ∈ K, by IH, the corruption procedure outputs the key gener-
ated with NEW in Fimpl,KW

KM , respectively the equally drawn key in case of Fimpl
KM . For dishonestly generated keys,

also by IH, both output the same keys. The second condition holds by definition of this step and IH.
– new: From the definition of the fake experiment follows that the first condition holds. The second condition holds

since the freshly created c is added to K.
– wrap: By definition of the fake experiment, ENC and TENC substitute credentials c in Fimpl,KW

KM . If c1 6∈ Kcor,
then c1 ∈ K (as otherwise it would not be in the database). Thus, inFimpl,KW

KM , TENC will perform this substitution
for both c1 and c2, resulting in the same output that Fimpl

KM produces. If c1 ∈ Kcor, then, first, by definition of this
step in Fimpl

KM c2 ∈ Kcor at the point the unwrap function is computed, and therefore, key[c1] in Fimpl,KW
KM contains

c1 (similar for c2). Therefore, the same value is computed and output inFimpl,KW
KM andFimpl

KM . The second condition
holds because of the first condition of the IH and the fact that both functions call corrupt on c2 if c1 ∈ Kcor.

– unwrap: Since for c1 6∈ Kcor (by definition of the fake experiment), DEC produces ⊥, i. e., the conditional
marked “second bad event” never evaluates. Note furthermore, that this step is the same in Fimpl,KW

KM and Fimpl
KM ,

only that the call to the unwrap function in case c1 ∈ Kcor substitutes c1 by key(c1) in Fimpl,KW
KM . This is correct

by the second condition of the IH. Therefore, the first and the second condition are preserved for the next step.
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We can conclude that
Expwrap,fake

KW,BZ (η) = Exec[Fimpl
KM ,Sim, Z](η).

BZ simulates πF,C,Π,Impl in the real experiment.
In the fake experiment, it is not possible that BZ halts at the end of the unwrap step (marked “second bad event”),

since DEC always outputs ⊥. Thus, the probability that BZ halts at the “second bad event” mark whilst in the real
experiment must be negligible, as this would contradict the assumption that KW is a secure wrapping scheme right
here. The representation of the this part of the proof benefits from altering BZ such that instead of halting, BZ continues
to run Fimpl,KW

KM , by running the following code:

create h2; Store[U,h2]← <F2,a2,c2>
send <unwrap•,h> to U �
We further modify the code of BZ by removing the conditional marked “first bad event”. Here as well, the proba-
bility that this conditional evaluates to true is negligible, following from the assumption that KW is a secure wrap-
ping scheme. Proof by contradiction: if BZ could produce this conditional, then he knows a wrapping w such that
unwrapa(k1, w) = c2 for c2 ∈ K and c2 6∈ Kcor. Since c1 ∈ Kcor and k1 = key[c1], BZ either knows k1 (since it
injected it, i. e., c1 6∈ K), or can learn by corrupting it (if c1 ∈ K). If there was a path in W from c1 to c2, it would
already be corrupted, so the attacker can learn k1 while c2 6∈ Kcor. He can use k1 as to decrypt w himself and learn
c2. But he should not be able to learn c2 in the fake experiment, since it is randomly drawn and did never appear
in any output. (The adversary can check if it guessed c2 correctly, for example, by requesting a wrapping of a third,
corrupted wrapping key under c2 via Fimpl,KW

KM and then calling DEC to check if the received wrapping (using the
same argument) decrypts to the corrupted and thus known key.) Since this happens only with neglible probability, it
can only happen with negligible probability in the real experiment, too, as otherwise the assumption that KW is a
secure wrapping scheme would be contradicted.

Therefore, we perform those modifications and call the sightly different attacker B′Z . Since those parts of the code
are only executed with negligible probability, we have that

Pr[b← Expwrap,real
KW,BZ (η) : b = 1]

− Pr[b← Expwrap,real
KW,B′Z

(η) : b = 1]

is negligible in η.
Fix an arbitrary security parameter η. Then, let ViewB′Z (t) be the view of Z, i. e., the distribution of messages it is

simulated to send to the protocol machine or the adversary, in the tth step of the simulation ofB′Z in the real experiment.
Furthermore, let StoreBZ ;(t) be the distribution of the variable Store within the simulated machine <ideal,sid>,
i. e., Fimpl,KW

KM , but with the following substitution that affects the wrapping keys: every entry <KW,a,Ki> in the
variable Store[U,h] for some U and h is substituted by an entry <KW,a,ki>, where ki is the key that the key-
wrapping experiment associates to Ki, denoted in the following by k(Ki). If Ki was not created by the key-wrapping
experiment, it is left untouched.

We denote the view of Z in the execution of the network [πF,C,Π,Impl,AD, Z] by Viewπ and the distribution of
the union of all Store variables of all security tokens ST 1, . . . ,STn in the network as Storeπ . The union of those
variables is well defined, because the first element of each key-value of this table is different for all ST . A step t is an
epoch [11, §5.3], i. e., it begins with an activation of Z and ends with the next activation.

We define the following invariant, which will allow us to conclude that B′Z has the same output distribution as
[πF,C,Π,Impl,AD, Z]. For each number of steps t, the following three conditions hold:

– state consistency (s.c.) StoreBZ ; (t) and Storeπ are equally distributed
– output consistency (o.c.) ViewB′Z (t) and Viewπ are equally distributed

– phase consistency (p.c.) The probability that the flag ready is set inFimpl,KW
KM in Expwrap,real

KW,B′Z
equals the probabil-

ity that ready is set inFsetup in [πF,C,Π,Impl,AD, Z]. Furthermore, the probability that the flag setup finished

is set in Fimpl,KW
KM in Expwrap,real

KW,B′Z
equals the probability that setup finished is set in all ST ∈ ST . .
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If t = 0, the protocol has not been activated, thus there was no output, and not state changes. The invariant holds
trivially. If t > 0, we can assume that s.c., o.c. and p.c. were true at the end of the preceding epoch. Note that Z is
restricted to addressing top-level parties with the same sid. In particular, it cannot address Fsetup directly (but it can
corrupt a user to do this). Since the sid has to have a specific format that is expected by all machines in both networks,
we assume sid to encode U ,Uext,ST ,Room . Case distinction over the recipient and content of the message that Z
sends at the beginning of the next epoch:

1. Z sends a message to ST i ∈ ST , and
(a) the message is <ready>: In Expwrap,real

KW,B′Z
, Fimpl,KW

KM records ready-ST i and sends < ready•,ST i > to
Sim , if the message is recorded for the first time. Sim behaves just like AD in this case. If all other ST j ∈ ST
and all U ∈ U have sent this message before, the flag ready is set to true.
In [πF,C,Π,Impl,AD, Z], ST i accepts the message and forwards it (as <ready>) to Fsetup. Then, Fsetup

records ready-ST i and sends < ready•,ST i > to AD, if the message is recorded for the first time. If all
other ST j ∈ ST and all U ∈ U have sent this message before, the flag ready is set to true. We see that p.c.
and o.c. hold. S.c. holds trivially, because the Store did change in neither execution.

(b) the message is of any other form: in [πF,C,Π,Impl,AD, Z], ST accepts no other message from the environment.

In Expwrap,real
KW,B′Z

, Fimpl,KW
KM ignores any other message coming from ST i, too. So p.c., o.c. and s.c. hold.

2. Z sends a message to Ui ∈ U :
In Expwrap,real

KW,B′Z
, Fimpl,KW

KM will receive this message, and treat it depending on its form (if its flag ready is set).
In [πF,C,Π,Impl,AD, Z], Ui will relay this message m in the form <m,ST i> to Fsetup, who in turn will send m
to ST i, (if its flag ready is set).
(a) Let m be <ready>: If the ready flag has not been set before, and Ui is the last party in U ∪ST that has not

sent this message yet, Fimpl,KW
KM in Expwrap,real

KW,B′Z
will set the ready flag, otherwise it will not. The same holds

for Fsetup in [πF,C,Π,Impl,AD, Z]. Therefore, we have p.c. In both cases, Sim , respectively AD, forwards the
acknowledgement to the environment (after recording the state change). Thus, s.c. and o.c. hold trivially.
For the following cases, assume ready to be set in both Expwrap,real

KW,B′Z
and [πF,C,Π,Impl,AD, Z]. If it is unset

in one of them, by induction hypothesis, it is unset in both. If it is not set, any other message will not be
accepted by neither Fimpl,KW

KM , nor Fsetup (thus never reach ST i). Therefore, in the following cases we will
assume ready to be set in Fimpl,KW

KM and Fsetup, i. e., Fsetup delivering commands that Ui receives from the
environment to ST i.

(b) Let m=<new,F,a> : If F 6= KW, the same code is executed (except for the step adding adding the freshly
created credential to K), p.c.,s.c. and o.c. hold trivially. Assume F = KW and <KW,new,a,*>∈ Π (oth-
erwise, ⊥ is output in both executions). Fimpl,KW

KM draws a new Ki and call NEW to create the key. Ki is
created, just like handles, in a way that makes sure it is unique. Therefore, since throughout Expwrap,real

KW,B′Z
, Ki

is always substituted for the same key, there is a function mapping Ki to the key ki created by the experiment,
and this function is injective. Note that, by the definition of StoreBZ ;, StoreBZ ;(t) is StoreBZ ;(t − 1) with
an additional entry KW,a,ki at [U, h], where ki is distributed according to KG. In [πF,C,Π,Impl,AD, Z], ST i

calls the key-generation directly (implKW
new calls KG, adding nothing but an empty public part). The output

in both cases is <new•,h,> for an equally distributed h. Thus, o.c. holds. Storeπ is Storeπ(t − 1) with an
additional entry KW,a,ki at [U, h] where ki is distributed according to the same KG as above. Therefore, s.c.
holds. ( P.c. holds trivially.)

(c) Let m=<share,hi,Uj> : In Expwrap,real
KW,B′Z

, assuming Ui, Uj ∈ Room , Fimpl,KW
KM outputs <share•,hj>,

and StoreBZ ;(t) is StoreBZ ;(t − 1) extended by a copy of its entry [Ui, hi] at [Uj , hj ]. In [πF,C,Π,Impl,AD,

Z], ST i checks the same conditions, which by p.c. have an equal probability of success, implicitly: it sends
the content of it’s store at [Ui, hi] toFsetup, which verifies Ui, Uj ∈ Room . If this is not the case,Fsetup sends
⊥ to ST i, which sends this to the environment (via Fsetup), behaving just like Expwrap,real

KW,B′Z
. If the condition

is met, ST i sends the content of the store at [Ui, hi] to Fsetup, who delivers this information to ST j , which
in the next step extends Storeπ(t− 1) by a copy of its entry [Ui, hi] at [Uj , hj ]. Thus, s.c. holds. Both output
<share•,hj> upon success, so o.c. holds, too. p.c. holds trivially.
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(d) Let m=<finish setup> : By p.c., we have that Expwrap,real
KW,B′Z

and [πF,C,Π,Impl,AD, Z] either both have
finish setup set, or none has. If both have it set, both output ⊥ and do nothing.
Assume none has finish setup set and both ready. In Exp, Fimpl,KW

KM sets the flag finish setup
and responds. In [πF,C,Π,Impl,AD, Z], Ui sends <finish setup> to Fsetup, which in turn, instead of
forwarding it to ST i like for the majority of commands, sends <close> to every single ST j ∈ ST , accepting
the response (and thus taking control) after each of those have set the finish setup flag. By the timeFsetup

finishes this step, and hands communication over to Ui, which forwards finish setup to the environment,
every ST i has left the setup phase. We see that p.c. and o.c. are preserved.

(e) Let m=<C,h,m> : Fimpl,KW
KM and ST i execute the same code on their inputs, so by s.c., the invariant is

preserved.
(f) Let m=<corrupt,h> : ST i outputs the credential. Fimpl,KW

KM does the same, except for wrapping keys. It
substitutes the credential by the output of CORR, i. e., k = k(c). By definition of Storeπ as s.c.,< KW, a, k > ∈
Storeπ[Ui, h] with the same probability as < KW, a, c > ∈ StoreBZ ;[Ui, h], thus the output is equally dis-
tributed. S.c. and p.c. hold trivially.

(g) Let m=<wrap,h1,h2,id> : For this case and the following case, observe that Fimpl,KW
KM initialises key[c]

only at steps wrap, unwrap and corrupt.
It either contains the output of a query CORR, thus k(c), or the same value as c, if it is defined. It is defined
whenever c ∈ Kcor ∩ K, because if c is added to Kcor at step corrupt, the response is written to key[c],
and if a c3 6∈ Kcor is found during step wrap, the condition corrupt-before-wrap must have been violated by
Z: if such a c3 is reachable from c1, without loss of generality, assume it to have minimal distance from c1 in
W . Then, second-before last node on this path is in Kcor, as the distance would not be minimal otherwise. By
definition of the step wrap, this node could not have been wrapped without adding it to Kcor, therefore this
node was corrupted after it was used to create this wrapping. If c ∈ Kcor, but c /∈ K, then key[c] = c (see step
unwrap).
Assume now ST i and Fimpl,KW

KM both have finish setup set, as otherwise either p.c. was violated in the
previous step, or both would output ⊥ and trivially satisfy the invariant. (This argument is valid for each of
the following sub-cases, but the last one).
Both machines check the same conditions on the Store and the policy. ST i computesw = wrap<F2,a2,id>(c1, c2)
on the values < KW, a1, c1 > and < F2, a2, c2 > at [Ui, h1] and [Ui, h2] in Storeπ .
Fimpl,KW

KM performs a case distinction, but we will show that in each cases, it outputs the same value. If
< c2, < F2, a2, id >, w >∈ encs[c1], then by observing that encs is only written at the end of this function,
we see that p.c. would have been violated in an earlier step, if the output now was differently distributed then
the output in [πF,C,Π,Impl,AD, Z].
If c1 ∈ Kcor, then c2 ∈ Kcor, too. Assume c1, c2 ∈ K. Then, since key(c1) = k(c1) (and key(c2) = k(c2) in
case F2 = KW), the output is w = wrap<F2,a2,id>(k(c1), c2)) (or w = wrap<F2,a2,id>(k(c1), k(c2))), which
preserves o.c., since s.c. from the last step guarantees that < KW, a, c > ∈ Storeπ[Ui, h] = < KW, a, k(c) > ∈
StoreBZ ;[Ui, h] for c = c1 and c = c2, in case c2 is a wrapping key. By definition of the real experiment, it
performs the same substitutions in case c1 6∈ Kcor, so the same argument can be applied. In case that c1 /∈ K,
or c2 /∈ K, the substitution performed is the identity, as key[] refers to the the same value, therefore the
same output is produced in Fimpl,KW

KM and [πF,C,Π,Impl,AD, Z].
Therefore, the output is equally distributed in all three cases, assuming that s.c. was true for the previous step.
s.c. and p.c. hold trivially.

(h) Let m=<unwrap,h1,w,a2,F2,id> : In [πF,C,Π,Impl,AD, Z], if policy and store allow, i. e.,< F1, a1, c1 >∈
Storeπ(Ui, h1), ST i writes < F2, a2, unwrap

<F2,a2,id>(c1, w) > at a fresh place [Ui, h] in Storeπ , unless
unwrap returned ⊥.
Fimpl,KW

KM chooses Ui and a new h exactly the same way. By s.c., we have, with equal probability, that <
F1, a1, c1 >∈ StoreBZ ;(Ui, h1). Since F1 = KW, we will use ĉ1 for the actual value in BZ’s store before
substitution, so k(ĉ1) = c1.

– If ĉ1 ∈ Kcor and ĉ1 6∈ K, we have that c1 = ĉ1, and that key[ĉ1] = ĉ1 (only in step unwrap, a key can
be added to the store that is not in K). Thus Fimpl,KW

KM writes < F2, a2, unwrap
<F2,a2,id>(k(ĉ1), w).
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– If ĉ1 ∈ Kcor and ĉ1 ∈ K, k(ĉ1) = c1. Since a key in Kcor but not K must have been added using the cor-
ruption procedure, we have that key[ĉ1] = c1 = k(ĉ1). Thus,Fimpl,KW

KM writes< F2, a2, unwrap
<F2,a2,id>(k(ĉ1), w).

– If ĉ1 6∈ Kcor and w was recorded earlier, inspection of Fimpl,KW
KM shows that encs is written to only at

the wrap step, which implies that w = wrap<F2,a2,id>(k(ĉ1), c2) for some c2. From the correctness of
the scheme, we conclude that < F2, a2, c2 = unwrap<F2,a2,id>(k(ĉ1), w) > is written to this position.

– If ĉ1 6∈ Kcor and w is not recorded earlier, by definition of DEC, < F2, a2, unwrap
<F2,a2,id>(k(ĉ1), w)

is written. (Same argument as in the first case, follows from s.c.)

(i) Let m=<attr change,h,a′> : The same code is executed in Expwrap,real
KW,B′Z

and [πF,C,Π,Impl,AD, Z], thus
p.c., s.c., and o.c. hold trivially.

(j) Let m=<C,public,m> : In [πF,C,Π,Impl,AD, Z], Ui and Fimpl,KW
KM perform the same computations, thus

p.c., s.c., and o.c. hold trivially.

3. Z sends a message to U ext ∈ Uext

Fimpl,KW
KM , as well as U ext only accept messages of the form <C,public,m> for C ∈ Ci,pub . Both perform the

same computations, thus p.c., s.c., and o.c. hold trivially.
4. Z sends a message to <adv>.

Both AD and Sim ignore messages that are no instruction. So we can assume that Z instructs the adversary to
send a message to some party.

(a) Assume Z instructs <adv> to send a message to a corrupted party, namely:

i. Ui ∈ U : Ui can only be addressed by the adversary if it was corrupted before, as otherwise it has never
sent a message to the adversary. Note that the code run by Ui in [πF,C,Π,Impl,AD, Z], as well as in Exp,
does not depend on any internal state. Ui can only talk to the environment, the adversary (Sim acts like
AD in this case) and it can call Fsetup, which Sim has to simulate in Expwrap,real

KW,B′Z
. Sim is described above

and receives all the information necessary to simulate it, that is: <ready•,P>, when a protocol party
in U ∪ ST receives <ready> from the environment, <finish setup•>, when a protocol party in
U receives <ready> from the environment, and all messages that Fimpl,KW

KM sends to the corrupted UU
(and Fsetup would need to relay). Thus, if p.c. holds in the previous step, the invariant is preserved in case
that the message is <ready,Ui> or<finish setup>. A message of form <send,...> is ignored
by Fsetup and Sim , so the invariant is trivially preserved here. The communication relayed in the steps
relay receive and relay send in Fsetup is simulated as described above and thus falls back to
case 2.

ii. U ext
i ∈ Uext: Like in the previous case, only that Fsetup ignores messages from U ext

i , which Sim simu-
lates correctly.

iii. other parties cannot become corrupted

(b) Assume Z instructs <adv> to send a message to a party that cannot be corrupted, but that addressed <adv>
before, i. e., ST ∈ ST or Fsetup. Since both ST and Fsetup are specified to ignore messages in this case, Sim
can simply mask their presence by reacting like ST or Fsetup react upon reception of an unexpected message:
answer with ⊥.

We conclude that the invariant is preserved for an arbitrary number of steps. Since output consistency implies that
Z has an identical view, the distribution of Z’s output is the same in both games. Thus:

Pr[b← Exec[πF,C,Π,Impl,AD, Z](η) : b = 1] =

Pr[b← Expwrap,real
KW,B′Z

(η) : b = 1]

and therefore:
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|Pr[b← Exec[πF,C,Π,Impl,AD, Z](η) : b = 1]

− Pr[b← Exec[Fimpl
KM ,Sim, Z](η) : b = 1]|

= |Pr[b← Expwrap,fake
KW,BZ (η) : b = 1]

− Pr[b← Expwrap,real
KW,B′Z

(η) : b = 1]|

> |Pr[b← Expwrap,fake
KW,BZ (η) : b = 1]

− Pr[b← Expwrap,real
KW,BZ (η) : b = 1]| − ε(η),

where ε is negligible in η. This contradicts the indistinguishability of Exec[Fimpl
KM ,Sim, Z] and Exec[πF,C,Π,Impl,AD,

Z] and thus concludes the proof.

E The signature functionality

The digital signature functionality is designed after the one described in [21] and detailed in Listing 18. It is parametrized
by three algorithms KG, sign and verify. It expects the session parameter to encode a machine id P , and implements
Cpriv = {sign} and Cpub = {verify}.

new: accept <new> from P
(sk , vk)← KG(1η); (credential,<ignore>)← KG(1η);
L← L∪ { (credential,sk ,vk ) }; send <new•,credential,vk> to P

sign: accept <sign,credential,m> from P
if ( credential ,sk ,vk )∈L for some key
σ ← sign(sk ,m)
if verify(vk ,m, σ) 6= ⊥ ∧ sk 6∈ Kcor

signs[vk]= signs[vk] ∪{(m,σ)}
else σ ← ⊥
send <sign•,σ> to P

verify: accept <verify,vk,<m,σ>> from P
b← verify(vk ,m, σ)
if ∃c, sk . (c,sk ,vk )∈L and sk /∈ Kcor and b = 1 and 6 ∃σ′ : (m,σ′) ∈signs[vk] or b 6∈ {0, 1}
b← ⊥

send <verify•,b> to P
corrupt: accept <corrupt,credential> from P

if ( credential ,sk ,vk )∈L for some sk , vk
Kcor ← Kcor ∪ {sk}; send <corrupt•,sk> to A

inject: accept <inject,<sk , vk>> from P
(c,<ignore>)← KG(1η); Kcor ← Kcor ∪ {sk};
L← L ∪ {(c, sk , vk)}; send <inject•,c> to parentId �

Listing 18: A signature functionality FSIG

In Section 6, we mention that future work could enable us to produce an implementation ÎSIG such that ÎSIG

emulates FSIG from the proof presented in [21] for a non-key-manageable signature functionality. Since this is out of
the scope of this work, we leave this as an assumption.

F An example implementation of Fach

The following implementation of the authenticated channel functionality Fach (see page 4) may serve as an example
on how to use FKM in a protocol. The idea is the following: two parties, the sender and the recipient, use the set-up
phase to generate a shared signature key. The recipient creates this signature key, stores the public part, shares the
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private part, which is hidden inside FKM, with the sender, and then announces the end of the set-up phase. At some
later point, when the sender is instructed to send a message, it attaches the signature to the message. The recipient
accepts only messages that carry a valid signature, which she can verify using the public part of the shared signature
key. Obviously, a similar implementation without the key-management functionality FKM is possible (although other
means of pre-sharing signature keys, or MAC keys for that matter, would be required). However, our aim is to provide
a very concise use case.

Formally, the protocol πach defines three protocol names: proto− ach, proto− fkm and proto− sig. πach(proto− sig)
is defined by the signature functionality FSIG. πach(proto− fkm) is defined by FKM, for the parameters F =
{FSIG}, C = {{sign, verify}} and a static key-hierarchy Π as defined in the previous section. πach(proto− ach)
parses the session parameter as a tuple < Ppid , Qpid , label >, where label is used to distinguish different channels,
and Ppid , Qpid to identify the sender and the recipient. Let sid be the session id. Then we will use P to denote
< Ppid ,sid > and Q to denote < Qpid ,sid >. As we want to keep the example simple, we do not model party
corruption. The following code defines the behaviour of the sender P :

ready−sender: accept <ready> from parentId;
call FKM with <ready>

import[ready-sender]: accept <share•,h′> from FKM; h
′ ← h′;

call FKM with <finish_setup>
send[import]: accept <send,x> from parentId;

call FKM with <sign,h
′
,x>; accept <sign•,σ> from FKM; send <x, σ> to A

done [send]: accept <done> from A;
send <done> to parentId �

When we say that P calls FKM, we mean that P sends a message to < Ppid , < sid, < prot− fkm, < U ,Uext,
ST ,Room >>>, where U = {P,Q}, Uext = {Q}, Room = {P,Q} and ST any two regular peers of P and Q, but
not P and Q themselves. Similar for the receiver Q:

ready−receiver:
accept <ready> from parentId; call FKM with <ready>;
accept <proceed> from A; call FKM with <new,FSIG,0>;
accept <new,h,vk> from FKM; h = h; vk = vk ; call FKM with <share,h>

deliver [ready-receiver]:
accept <deliver,x,σ> from A; call FKM with <verify,vk,<x, σ>>;
accept <verify,1> from FKM; send <deliver,x> to parentId �

The following lemma makes use of the fact that FKM provides an authentic way to share keys during the set-up
phase, and thatFSIG outputs <verify,1> only if the corresponding message was “registered” before. The full proof
can be found in Appendix G.

Lemma 4. πach emulates Fach.

G Proof for Lemma 4

Lemma 4. πach emulates Fach.

Proof. We have to show that there exists a simulator Sim that is bounded for Fach and that, for every well-behaved
environment Z rooted at prot-fach,

Exec[πach,AD, Z] ≈ Exec[Fach,Sim, Z].

We define the following simulator Sim:

ready−sender:
accept <sender-ready> from <ideal>
send <FKM,<ready

•,P>> to <env>
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faux−ready−receiver[¬ready-sender]:
accept <ready-receiver-early> from <ideal>
send <FKM,<ready

•,Q> to <env>
accept <Q,proceed> from <env>
send <FKM,error> to <env>

ready−receiver[ready-sender]:
accept <receiver-ready> from <ideal>
send <FKM, <ready•,Q>> to <env>
accept <Q,proceed> from <env>
sk , vk ← KG(1η)
send <FKM,<finish_setup

•>> to <env>
send [ready-receiver]:

accept <send,x> from <ideal>
σ ← sign(sk , x)
send <P,<x,σ>> to <env>

done [send]:
accept <P,done> from <env>
send <done> to P

faux−deliver[ready-receiver∧¬send]:
accept <Q,<deliver,x,σ>> from <env>
send <Q,error> to <env>

deliver [send]:
accept <Q,<deliver,x,σ>> from <env>
if σ = σ

send <deliver,x> to <ideal>
error :

accept <P,error> from <ideal>
send <P,error> to <env> �

Let us fix the session id sid, and assume it is of the form <sid ′,<prot-ach,<Ppid , Qpid , label>>...>. Let
P =< Ppid , sid > and Q =< Qpid , sid >. First, we show that Sim is bounded for Fach: It is trivial to verify that
Sim is time-bounded, since KG and sign are assumed to be. Every flow from Sim to Fach is provoked by an input
from the environment, and the length of the message from Sim to Fach is polynomially related to the length of the
message from the environment to Sim .

Next, we show that, for every well-behaved environmentZ rooted at prot-fach, Exec[πach,AD, Z] = Exec[Fach,Sim, Z],
by showing a stronger invariant:

At the end of each epoch, the following conditions hold true:

1. The view of Z is the same in [πach,AD, Z] and [Fach,Sim, Z].
2. If Fach has finished a step S in [Fach,Sim, Z], Sim has finished the same step, and in [πach,AD, Z], either P or
Q has finished S.

Induction over the number of activations of Z. In the base case, Z has not called any party, so the invariant holds
trivially. Now assume the invariant held true at the end of the previous activation of Z, after which Z sends a message
m to some party. We have to show the invariant to hold true when this new epoch is over, i. e., Z is activated again.
Case distinction over the steps that were completed by Fach in [Fach,Sim, Z] before Z emitted m. Note that the
guards define a partial order of the steps, therefore it is sufficient to perform the distinction over the last completed
step:

1. Fach has not finished any step yet. If Z sends m = < ready > to P , then in [Fach,Sim, Z], Sim will translate
Fach’s response into <FKM,<ready•,P>>, which is what Z would receive in [πach,AD, Z] due to the defi-
nition of FKM. If Z sends the message to Q instead, in [Fach,Sim, Z] an error message is sent to Sim , as the
guard for the step ready-receiver would not be fulfilled. By induction hypothesis, Sim is in the same state
as Fach, and therefore simulates the error that FKM would send out in [πach,AD, Z], because it receives a share
query from Q without having received ready from P before – otherwise Z would have sent ready to P and
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then Fach would have finished this step. If any other message is sent, FKM sends an error message to Sim , who
forwards it to Z just like AD does in [πach,AD, Z].

2. Fach has finished ready-sender. If Z sends m = < ready > to Q, in [πach,AD, Z] it will receive <FKM, <
ready•, Q > from AD. Similarly in [Fach,Sim, Z], Sim would wait for the same response to proceed. If Sim
and Q in πach were in this step before Z sent m, and m =< Q, proceed >, then, in [πach,AD, Z], Q would
create a key on FKM, and save the handle as well as the public part. Before Z’s next activation, FKM would
activate P on step import which would store the same handle (by definition of FKM) and finish the setup phase,
producing as only observable output to Z the message <FKM,finish setup•>. In [Fach,Sim, Z], Sim draws
the secret and public part of the key itself (using the same function KG that FSIG, which is called by FKM uses).
It would then produce the same output to Z. Any other message m would result in an error-message and treated
as described before.

3. Fach has finished ready-receiver. If Z sends m =< send, x > to Q, then Z would receive < P,<
x, σ >>, for an equally distributed σ, in both networks [πach,AD, Z] and [Fach,Sim, Z], since, as mentioned be-
fore, the value at the key-position is equally distributed. If Z sendsm =< Q,< deliver, x, σ >> to Sim , it re-
ceives <Q,error> as response. In [πach,AD, Z], AD forwards this to Q who queries FKM. Because deliver
was not executed yet, signs in FSIG is empty. Since vk was created in FSIG/FKM (since ready-receiver,
by induction hypothesis holds in πach, too), and no corruption message is emitted by any party in πach, the re-
sponse from FSIG/FKM cannot be <verify•,1>. Therefore, the second accept step in deliver in Q fails,
and <Q,error> is output, just as in [Fach,Sim, Z]. Any other message m would result in an error-message and
treated as described before.

4. Fach has finished send. If m =< P, done > is send to AD in [πach,AD, Z], Z receives <done> from P . In
[Fach,Sim, Z], Sim translates this to < done >, which Fach relays to the same response via the dummy party
P . If Z sends m =< Q,< deliver, x, σ >> to AD in [πach,AD, Z], it receives <deliver,x from Q,
but only in case that Z has sent a message <send,x> to P earlier, when P was in state import, and gave the
output <x, σ> to AD, since FSIG keeps a list of previously signed message and their signatures. In [Fach,Sim, Z],
by definition of Sim and Fach, Z receives the same response from Q if x is the same x in a <send,x> query
accepted earlier, and σ is the output produced by Sim before forwarding. SinceFKM may have only accepted such
queries when ready-receiver was finished, and done or deliver were not yet called, this corresponds to
the same input z in [πach,AD, Z]. Any other messagem would result in an error-message and treated as described
before.

5. Fach has finished deliver. No messages are accepted anymore (i. e., they lead to error-messages).
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