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Abstract

This paper develops a theory of multi-instance (mi) security and applies it to provide the first
proof-based support for the classical practice of salting in password-based cryptography. Mi-security
comes into play in settings (like password-based cryptography) where it is computationally feasible to
compromise a single instance, and provides a second line of defense, aiming to ensure (in the case of
passwords, via salting) that the effort to compromise all of some large number m of instances grows
linearly with m. The first challenge is definitions, where we suggest LORX-security as a good metric
for mi security of encryption and support this claim by showing it implies other natural metrics,
illustrating in the process that even lifting simple results from the si setting to the mi one calls for
new techniques. Next we provide a composition-based framework to transfer standard single-instance
(si) security to mi-security with the aid of a key-derivation function. Analyzing password-based KDFs
from the PKCS#5 standard to show that they meet our indifferentiability-style mi-security definition
for KDFs, we are able to conclude with the first proof that per password salts amplify mi-security
as hoped in practice. We believe that mi-security is of interest in other domains and that this work
provides the foundation for its further theoretical development and practical application.
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1 Introduction

This paper develops a theory of multi-instance security and applies it to support practices in password-
based cryptography.

Background. Password-based encryption (PBE) in practice is based on the PKCS#5 (equivalently,
RFC 2898) standard [51]. It encrypts a message M under a password pw by picking a random s-
bit salt sa, deriving a key L ← KD(pw‖sa) and returning C ′ ← C‖sa where C←$ E(L,M). Here E
is a symmetric encryption scheme, typically an IND-CPA AES mode of operation, and key-derivation
function (KDF) KD: {0, 1}∗ → {0, 1}n is the c-fold iteration KD = Hc of a cryptographic hash function
H: {0, 1}∗ → {0, 1}n. However, passwords are often poorly chosen [44], falling within a set D called a
“dictionary” that is small enough to exhaust. A brute-force attack now recovers the target password pw
(thereby breaking the ind-cpa security of the encryption) using cN hashes where N = |D| is the size of
the dictionary.1 Increasing c increases this effort, explaining the role of this iteration count, but c cannot
be made too large without adversely impacting the performance of PBE.

Consider now m users, the i-th with password pwi. If the salt is absent (s = 0), the number of hashes
for the brute force attack to recover all m passwords remains around cN , but if s is large enough that
salts are usually distinct, it rises to mcN , becoming prohibitive for large m. Salting, thus, aims to make
the effort to compromise m target passwords scale linearly in m. (It has no effect on the security of
encryption under any one, particular target password.)

New directions. This practice, in our view, opens a new vista in theoretical cryptography, namely
to look at the multi-instance (mi) security of a scheme. We would seek metrics of security under which
an adversary wins when it breaks all of m instances but not if it breaks fewer. This means that the mi
security could potentially be much higher than the traditional single-instance (si) security. We would
have security amplification.

Why do this? As the above discussion of password-based cryptography shows, there are settings where
the computational effort t needed to compromise a single instance is feasible. Rather than give up, we
provide a second line of defense. We limit the scale of the damage, ensuring (in the case of passwords, via
the mechanism of salting) that the computational effort to compromise all of m instances is (around) tm
and thus prohibitive for large m. We can’t prevent the occasional illness, but we can prevent an epidemic.

We initiate the study of multi-instance security with a foundational treatment in two parts. The first
part is agnostic to whether the setting is password-based or not, providing definitions for different kinds of
mi-security of encryption and establishing relations between them, concluding with the message that what
we call LORX-security is a good choice. The second part of our treatment focuses on password-based
cryptography, providing a modular framework that proves mi-security of password-based primitives by
viewing them as obtained by the composition of a mi-secure KDF with a si-secure primitive, and yielding
in particular the first proof that salting works as expected to increase multi-instance security under a
strong and formal metric for the latter.

Multi-instance security turns out to be challenging both definitionally (providing metrics where the
adversary wins on breaking all instances but not fewer) and technically (reductions need to preserve
tiny advantages and standard hybrid arguments no longer work). It also connects in interesting ways to
security amplification via direct products and xor lemmas, eg. [58, 24, 29, 45, 20, 42, 54, 43, 55]. (We
import some of their methods and export some novel viewpoints.) We believe there are many fruitful
directions for future work, both theoretical (pursuing the connection with security amplification) and
applied (mi security could be valuable in public-key cryptography where steadily improving attacks are
making current security parameters look uncomfortably close to the edge for single-instance security).
Let us now look at all this in some more detail.

LORX. We consider a setting with m independent target keys K1, . . . ,Km. (They may, but need not,
be passwords.) In order to show that mi-security grows with m we want a metric (definition) where the

1 Appendix A details this attack as well its multi-instance variant alluded to below.
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Figure 1: Notions of multi-instance security for encryption and their relations. LORX (left-or-right xor

indistinguishability) emerges as the strongest, tightly implying RORX (real-or-random xor indistinguishability) and

UKU (universal key-unrecoverability). The dashed line indicates that under some (mild, usually met) conditions

LORX also implies AND. RORX implies LORX and UKU but with a 2m loss in advantage where m is the number

of instances, making LORX a better choice.

adversary wins if it breaks all m instances of the encryption but does not win if it breaks strictly fewer. If
“breaking” is interpreted as recovery of the key then such a metric is easily given: it is the probability that
the adversary recovers all m target keys. We refer to this as the UKU (Universal Key Unrecoverability)
metric. But we know very well that key-recovery is a weak metric of encryption security. We want
instead a mi analog of ind-cpa. The first thing that might come to mind is multi-user security [3, 2].
But in the latter the adversary wins (gets an advantage of one) even if it breaks just one instance so the
mu-advantage of an adversary can never be less than its si (ind-cpa) advantage. We, in contrast, cannot
“give up” once a single instance is broken. Something radically different is needed.

Our answer is LORX (left-or-right xor indistinguishability). Our game picks m independent challenge
bits b1, . . . , bm and gives the adversary an oracle Enc(·, ·, ·) which given i,M0,M1 returns an encryption
of Mbi under Ki. The adversary outputs a bit b′ and its advantage is 2Pr[b′ = b1 ⊕ · · · ⊕ bm]− 1.2 Why
xor? Its well-known “sensitivity” means that even if the adversary figures out m − 1 of the challenge
bits, it will have low advantage unless it also figures out the last. This intuitive and historical support
is strengthened by the relations, discussed below, that show that LORX implies security under other
natural metrics.

Relations. The novelty of multi-instance security prompts us to step back and consider a broad choice
of definitions. Besides UKU and LORX, we define RORX (real-or-random xor indistinguishability, a
mi-adaptation of the si ROR notion of [4]) and a natural AND metric where the challenge bits b1, . . . , bm
and oracle Enc(·, ·, ·) are as in the LORX game but the adversary output is a vector (b′1, . . . , b

′
m) and its

advantage is Pr[(b′1, . . . , b
′
m) = (b1, . . . , bm)] − 2−m. The relations we provide, summarized in Figure 1,

show that LORX emerges as the best choice because it implies all the others with tight reductions.
Beyond that, they illustrate that the mi terrain differs from the si one in perhaps surprising ways, both
in terms of relations and the techniques needed to establish them.

Thus, in the si setting, LOR and ROR are easily shown equivalent up to a factor 2 in the advantages [4].
It continues to be true that LORX easily implies RORX but the hybrid argument used to prove that
ROR implies LOR [4] does not easily extend to the mi setting and the proof that RORX implies LORX
is not only more involved but incurs a factor 2m loss.3 In the si setting, both LOR and ROR are easily
shown to imply KU (key unrecoverability). Showing LORX implies UKU is more involved, needing a
boosting argument to ensure preservation of exponentially-vanishing advantages. This reduction is tight

2 This is a simplification of our actual definition, which allows the adversary to adaptively corrupt instances to reveal
the underlying keys and challenge bits. This capability means that LORX-security implies threshold security where the
adversary wins if it predicts the xor of the challenge bits of some subset of the instances of its choice. See Section 2 for
further justification for this feature of the model.

3 This (exponential) 2m factor loss is a natural consequence of the factor of 2 loss in the si case, our bound is tight, and
the loss in applications is usually small because advantages are already exponentially vanishing in m. Nonetheless it is not
always negligible and makes LORX preferable to RORX.
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but, interestingly, the reduction showing RORX implies UKU is not, incurring a 2m-factor loss, again
indicating that LORX is a better choice. We show that LORX usually implies AND by exploiting a direct
product theorem by Unger [55], evidencing the connections with this area. Another natural metric of
mi-security is a threshold one, but our incorporation of corruptions means that LORX implies security
under this metric.

Mi-security of PBE. Under the LORX metric, we prove that the advantage ǫ′ obtained by a time t
adversary against m instances of the above PBE scheme E ′ is at most ǫ + (q/mcN)m (we are dropping
negligible terms) where q is the number of adversary queries to RO H and ǫ is the advantage of a time t
ind-cpa (si) adversary against E . This is the desired result saying that salting works to provide a second
line of defense under a strong mi security metric, amplifying security linearly in the number of instances.

Framework. This result for PBE is established in a modular (rather than ad hoc) way, via a frame-
work that yields corresponding results for any password-based primitive. This means not only ones like
password-based message authentication (also covered in PKCS#5) or password-based authenticated en-
cryption (WinZip) but public-key primitives like password-based digital signatures, where the signing
key is derived from a password. We view a password-based scheme for a goal as derived by composing a
key-derivation function (KDF) with a standard (si) scheme for the same goal. The framework then has
the following components. (1) We provide a definition of mi-security for KDFs. (2) We provide compo-
sition theorems, showing that composing a mi-secure KDF with a si-secure scheme for a goal results in a
mi-secure scheme for that goal. (We will illustrate this for the case of encryption but similar results may
be shown for other primitives.) (3) We analyze the iterated hash KDF of PKCS#5 and establish its mi
security.

The statements above are qualitative. The quantitative security aspect is crucial. The definition of
mi-security of KDFs must permit showing mi-security much higher than si-security. The reductions in
the composition theorems must preserve exponentially vanishing mi-advantages. And the analysis of the
PKCS#5 KDF must prove that the adversary advantage in q queries to the RO H grows as (q/cmN)m,
not merely q/cN . These quantitative constraints represent important technical challenges.

Mi-security of KDFs. We expand on item (1) above. The definition of mi-security we provide
for KDFs is a simulation-based one inspired by the indifferentiability framework [41, 18]. The at-
tacker must distinguish between the real world and an ideal counterpart. In both, target passwords
pw1, . . . , pwm and salts sa1, . . . , sam are randomly chosen. In the real world, the adversary gets input
(pw1, sa1,KD(pw1‖sa1)), . . . , (pwm, sam,KD(pwm‖sa1)) and also gets an oracle for the RO hash func-
tion H used by KD. In the ideal world, the input is (pw1, sa1, L1), . . . , (pwm, sam, Lm) where the keys
L1, . . . , Lm are randomly chosen, and the oracle is a simulator. The simulator itself has access to a Test
oracle that will take a guess for a password and tell the simulator whether or not it matches one of the
target passwords. Crucially, we require that when the number of queries made by the adversary to the
simulator is q, the number of queries made by the simulator to its Test oracle is only q/c. This restriction
is critical to our proof of security amplification and a source of challenges in the proof.

Related work. Previous work which aimed at providing proof-based assurances for password-based
key-derivation has focused on the single-instance case and the role of iteration as represented by the
iteration count c. Our work focuses on the multi-instance case and the roles of both salting and iteration.

The UNIX password hashing algorithm maps a password pw to Ec
pw(0) where E is a blockcipher and

0 is a constant. Luby and Rackoff [39] show this is a one-way function when c = 1 and pw is a random
blockcipher key. (So their result does not really cover passwords.) Wagner and Goldberg [56] treat the
more general case of arbitrary c and keys that are passwords, but the goal continues to be to establish
one-wayness and no security amplification (meaning increase in security with c) is shown. Boyen [11, 12]
suggests various ways to enhance security, including letting users pick their own iteration counts.

Yao and Yin [59] give a natural pseudorandomness definition of a KDF in which the attacker gets
(K, sa) where K is either Hc(pw‖sa) or a random string of the same length and must determine which.
Modeling H as a random oracle (RO) [8] to which the adversary makes q queries, they claim to prove that
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the adversary’s advantage is at most q/cN plus a negligible term. This would establish single-instance
security amplification by showing that iteration works as expected to increase attacker effort.4 However,
even though salts are considered, this does not consider multi-instance security let alone establish multi-
instance security amplification, and their definition of KDF security does not adapt to allow this. (We
use, as indicated above, an indifferentiability-style definition.) In fact the KDF definition of [59] is not
even sufficient to establish si security of password-based encryption in the case the latter, as specified in
PKCS#5, picks a fresh salt for each message encrypted.

Kelsey, Schneier, Hall and Wagner [36] investigate the time for password-recovery attacks as a function
of the time to compute the KDF. The security goal being password unrecoverability, this is insufficient
to establish security of password-based key-derivation applications even in the si setting.

Stebila, Kuppusamy, Rangasamy, Boyd and González Nieto [53] study multi-instance security for
client puzzles, giving a game like our password guessing game of Figure 3 without corruptions. The
bound they give on the adversary advantage was shown to be wrong by Groza and Warinschi [27]. In
Section 3 we explain why the counter-example of [27] does not apply in our case.

KDFs are for use in non-interactive settings like encryption with WinZip. The issues and questions
we consider do not arise with password authenticated key exchange (PAKE), where two parties in joint
possession of a password interact to agree on a cryptographic session key in a way that resists off-line
dictionary attack [6, 13, 22]. PAKE definitions already guarantee that the session key may be safely used
for encryption. There are no salts and no amplification issues.

Abadi and Warinschi [1] provide a si, key-recovery definition for PBE security and connect this with
symbolic notions. They do not consider mi security.

Dodis, Gennaro, H̊astad, Krawczyk and Rabin [19] treat statistically-secure key derivation using hash
functions and block ciphers. As discussed in-depth by Kracwzyk [38], these results and techniques aren’t
useful for password-based KDFs because passwords aren’t large enough, let alone have the sufficient
amount of min-entropy. Krawczyk [38] also notes that his two-stage KDF approach could be used to
build password-based KDFs by replacing the extraction stage with a key-stretching operation. Our
general framework may be used to analyze the mi-security of this as well.

XOR lemmas and direct product theorems [58, 23, 26, 42] analyze the ability of the xor operation
to amplify unpredictability. More generally, amplification results taking an instance of a primitive with
“weak” security and constructing an instance of the same primitive with “strong” security are known
for many primitives including OWFs and OWPs [58, 24, 29], two-party protocols [5, 49, 50, 57, 30,
28, 31, 16, 17], symmetric primitives [45, 20, 42, 54, 43], one-way PKE and key-agreement [21, 32, 33,
10], CAPTCHAs [14, 34] and collision-resistant hash functions [15]. This literature has considered the
problem of breaking multiple instances of a cryptographic primitive, in general as an intermediate step to
amplifying security in the single-instance setting. In particular mi-xor-security is used as an intermediate
step in [42].

2 The Multi-Instance Terrain

This section defines metrics of multi-instance encryption security and explores the relations between them
to establish the notions and results summarized in Figure 1. Our treatment intends to show that the
mi terrain is different from the si one in fundamental ways, leading to new definitions, challenges and
connections.

2.1 Metrics of mi security

Recall that a symmetric encryption scheme is a triple of algorithms SE = (K, E ,D). The key generation
algorithm K outputs a key. The encryption algorithm E takes a key K and a message M and outputs a

4 Unfortunately, we point in Appendix B to a bug in the proof of [59, Lemma 2.2] and explain why the bound claimed
by [59, Theorem 1] is wrong. Beyond this, the proof makes some rather large and not fully justified jumps. The special case
m = 1 of our treatment will fill these gaps and recover the main claim of [59].
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main UKUA
SE,m

K[1], . . . ,K[m]←$K

K′←$AEnc

Ret K′ = K

proc. Enc(i,M)

Ret E(K[i],M)

proc. Cor(i)

Ret K[i]

main LORXA
SE,m

K[1], . . . ,K[m]←$K

b←$ {0, 1}m

b′←$AEnc

Ret (b′ = ⊕ib[i])

main ANDA
SE,m

K[1], . . . ,K[m]←$K

b←$ {0, 1}m

b′←$AEnc

Ret (b′ = b)

proc. Enc(i,M0,M1)

If |M0| 6= |M1| then Ret ⊥

C←$ E(K[i],Mb[i])

Ret C

proc. Cor(i)

Ret (K[i],b[i])

main RORXA
SE,m

K[1], . . . ,K[m]←$ ({0, 1}k)m

b←$ {0, 1}m

b′←$AEnc

Ret (b′ = ⊕ib[i])

proc. Enc(i,M)

C1←$ E(K[i],M)

M0←$ {0, 1}|M|

C0←$ E(K[i],M0)

Ret Cb[i]

proc. Cor(i)

Ret (K[i],b[i])

Figure 2: Multi instance security notions for encryption.

ciphertext C←$ E(K,M). The deterministic decryption algorithm D takes the key K and a ciphertext
C to return either a string or ⊥. Correctness requires that Pr[D(K, E(K,M)) = M ] for all M where the
probability is over K←$K and the coins of E .

To illustrate the issues and choices in defining mi security, we start with key unrecoverability which
is simple because it is underlain by a computational game and its mi counterpart is easily and uncon-
tentiously defined. When we move to stronger notions underlain by decisional games, definitions will get
more difficult and more contentious as more choices will emerge.

UKU. Single-instance key unrecoverability is formalized via the game KUSE where a target key K←$K
is initially sampled, and the adversary A is given an oracle Enc which, on input M , returns E(K,M).
Finally, the adversary is asked to output a guess K ′ for the key, and the game returns true if K = K ′, and
false otherwise. An mi version of the game, UKUSE,m, is depicted in Figure 2. It picks an m-vector K of
target keys and the oracle Enc now takes i,M to return E(K[i],M). The Cor oracle gives the adversary
the capability of corrupting a user to obtain its target key. The adversary’s output guess is also am-vector
K′ and the game returns the boolean (K = K′), meaning the adversary wins only if it recovers all the
target keys. (The “U” in “UKU” reflects this, standing for “Universal.”) The advantage of adversary A is
Advuku

SE,m(A) = Pr[UKUA
SE,m ⇒ true]. Naturally, this advantage depends on the adversary’s resources. (It

could be 1 if the adversary corrupts all instances.) We say that A is a (t,q, qc)-adversary if it runs in time
t and makes at most q[i] encryption queries of the form Enc(i, ·) and makes at most qc corruption queries.
Then we let Advuku

SE,m(t,q, qc) = maxAAdvuku
SE,m(A) where the maximum is over all (t,q, qc)-adversaries.

AND. Single-instance indistinguishabilty for symmetric encryption is usually formalized via left-or-right
security [4]. A random bit b and key K←$K are chosen, and an adversary A is given access to an oracle
Enc that given equal-length messages M0,M1 returns E(K,Mb). The adversary outputs a bit b′ and its
advantage is 2Pr[b = b′] − 1. There are several ways one might consider creating an mi analog. Let us
first consider a natural AND-based metric based on game ANDSE,m of Figure 2. It picks at random a
vector b←$ {0, 1}m of challenge bits as well as a vector K[1], . . . ,K[m] of keys, and the adversary is given
access to oracle Enc that on input i,M0,M1, where |M0| = |M1|, returns E(K[i],Mb[i]). Additionally,
the corruption oracle Cor takes i and returns the pair (K[i],b[i]). The adversary finally outputs a bit
vector b′, and wins if and only if b = b′. (It is equivalent to test that b[i] = b′[i] for all uncorrupted
i.) The advantage of adversary A is Advand

SE,m(A) = Pr[ANDA
SE,m ⇒ true] − 2−m. We say that A is a

(t,q, qc)-adversary if it runs in time t and makes at most q[i] encryption queries of the form Enc(i, ·, ·)
and makes at most qc corruption queries. Then we let Advand

SE,m(t,q, qc) = maxAAdvand
SE,m(A) where the

maximum is over all (t,q, qc)-adversaries.
This metric has many points in its favor. By (later) showing that security under it is implied by

security under our preferred LORX metric, we automatically garner whatever value it offers. But the
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AND metric also has weaknesses that in our view make it inadequate as the primary choice. Namely, it
does not capture the hardness of breaking all the uncorrupted instances. For example, an adversary that
corrupts instances 1, . . . ,m − 1 to get b[1], . . . ,b[m − 1], makes a random guess g for b[m] and returns
(b[1], . . . ,b[m − 1], g) has the high advantage 0.5 − 2−m without breaking all instances. We prefer a
metric where this adversary’s advantage is close to 0.

LORX. To overcome the above issue with the AND advantage, we introduce the XOR advantage measure
and use it to define LORX. Game LORXSE,m of Figure 2 makes its initial choices the same way as game
ANDSE,m and provides the adversary with the same oracles. However, rather than a vector, the adversary
must output a bit b′, and wins if this equals b[1]⊕ · · · ⊕b[m]. (It is equivalent to test that b′ = ⊕i∈Sb[i]
where S is the uncorrupted set.) The advantage of adversary A is Advlorx

SE,m(A) = 2Pr[LORXA
SE,m ⇒

true] − 1. We say that A is a (t,q, qc)-adversary if it runs in time t and makes at most q[i] encryption
queries of the form Enc(i, ·, ·) and makes at most qc corruption queries. Then we let Advlorx

SE,m(t,q, qc) =

maxAAdvlorx
SE,m(A) where the maximum is over all (t,q, qc)-adversaries. Returning to the example we

gave for the AND case, if an adversary corrupts the first m− 1 instances to get back b[1], . . . ,b[m− 1],
makes a random guess g for b[m] and outputs b′ = b[1]⊕ · · · ⊕b[m− 1]⊕g, it will have advantage 0.

RORX. A variant of the si LOR notion, ROR, was given in [4]. Here the adversary must distinguish
between an encryption of a message M it provides and the encryption of a random message of length
|M |. This was shown equivalent to LOR up to a factor 2 in the advantages [4]. This leads us to define
the mi analog RORX and ask how it relates to LORX. Game RORXSE,m of Figure 2 makes its initial
choices the same way as game LORXSE,m. The adversary is given access to oracle Enc that on input
i,M , returns E(K[i],M) if b[i] = 1 and otherwise returns E(K[i],M1) where M1←$ {0, 1}|M |. It also
gets the usual Cor oracle. It outputs a bit b′ and wins if this equals b[1]⊕ · · · ⊕b[m]. The advantage
of adversary A is Advrorx

SE,m(A) = 2Pr[RORXA
SE,m ⇒ true] − 1. We say that A is a (t,q, qc)-adversary if

it runs in time t and makes at most q[i] encryption queries of the form Enc(i, ·) and makes at most qc
corruption queries. Then we let Advrorx

SE,m(t,q, qc) = maxAAdvrorx
SE,m(A) where the maximum is over all

(t,q, qc)-adversaries.

Discussion. The multi-user security goal from [3] gives rise to a version of the above games without
corruptions and where all instances share the same challenge bit b, which the adversary tries to guess.
But it is easy to see that this does not measure mi security, since recovering a single key, for example,
suffices to learn b.

The above approach extends naturally to providing a mi counterpart to any security definition based
on a decisional game, where the adversary needs to guess a bit b. For example we may similarly create
mi metrics of CCA security.

Why does the model include corruptions? The following example may help illustrate. Suppose SE is
entirely insecure when the key has first bit 0 and highly secure otherwise. (From the si perspective, it is
insecure.) In the LORX game, an adversary will be able to figure out around half the challenge bits. If
we disallow corruptions, it would still have very low advantage. From the application point of view, this
seems to send the wrong message. We want LORX-security to mean that the probability of “large scale”
damage is low. But breaking half the instances is pretty large scale. Allowing corruptions removes this
defect because the adversary could corrupt the instances it could not break and then, having corrupted
only around half the instances, get a very high advantage, breaking LORX-security. In this way, we may
conceptually keep the focus on an adversary goal of breaking all instances, yet cover the case of breaking
some threshold number via the corruption capability.

An alternative way to address the above issue without corruptions is to define threshold metrics where
the adversary wins by outputting a dynamically chosen set S and predicting the xor of the challenge bits
for the indexes in S. This, again, has much going for it as a metric. But LORX with corruptions, as we
define it, will imply security under this metric.
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2.2 Relations

We provide formal result statements and proofs in support of the implications claimed in Figure 1.

LORX implies UKU. In the si setting, it is easy to see that LOR security implies KU security. The LOR
adversary simply runs the KU adversary. When the latter makes oracle query M , the LOR adversary
queries its own oracle with M,M and returns the outcome to the KU adversary. When the latter returns
a key K ′, the LOR adversary submits a last oracle query consisting of a pair M0,M1 of random messages
to get back a challenge ciphertext C, returning 1 if D(K ′, C) = M1 and 0 otherwise. A similar but slightly
more involved proof shows that ROR implies KU.

It is important to establish analogs of these basic results in the mi setting, for they function as “tests”
for the validity of our mi notions. The following shows that LORX security implies UKU. Interestingly,
it is not as simple to establish in the mi case as in the si case. Also, as we will see later, the proof that
RORX implies UKU is not only even more involved but incurs a factor 2m loss, making LORX a better
choice as the metric to target in designs.

Theorem 2.1 [LORX ⇒ UKU] Let SE = (K, E ,D) be a symmetric encryption scheme with message
spaceM, and let ℓ be such that {0, 1}ℓ ⊆M. Let m ≥ 1. Then, for all t, qc, and q, and for all k ≥ 1,

Advuku
SE,m(t,q, qc) ≤ Advlorx

SE,m(t′,q′, qc) +m ·

(
1

2ℓ − 1

)k

,

where t′ = t+O(m · k), and q′[i] = q[i] + k for all i = 1, . . . ,m.

The proof is given in Appendix C. Here, let us stress Theorem 2.1 surfaces yet another subtlety of the
mi setting. At first, it would seem that proving the case k = 1 of the theorem is sufficient (this is
what usually done in the si case). However, it is crucial to remark that Advlorx

SE,m(t′,q′, qc) may be very
small. For example, it is not unreasonable to expect 2−128·m if SE is secure in the single-instance setting.
Yet, assume that E encrypts 128-bit messages, then we are only able to set ℓ = 128, in turn making
m/(2ℓ − 1) ≈ m · 2−128 by far the leading term on the right-hand side. The parameter k hence opens the
door to fine tuning of the additive extra term at the cost of an additive complexity loss in the reduction.
Also note that the reduction in the proof of Theorem 2.1 is not immediate, as an adversary guessing all
the keys in the UKU game with probability ǫ only yields an adversary recovering all the bits b[1], . . . ,b[m]
in the LORX game with probability ǫ. Just outputting the xor of these bits is not sufficient, as we have
to boost the success probability to 1+ǫ

2 in order to obtain the desired relation between the two advantage
measures.

In analogy to the si setting, UKU does not imply LORX. Just take a scheme SE = (K, E ,D) encrypting
n-bit messages which is UKU-secure, and modify it into a scheme SE′ = (K′, E ′,D′) where K = K′ and
E ′(K,M) = E ′(K,M) ‖M [0], with M [0] being the first bit of M . Clearly, SE′ is still UKU-secure but not
LORX-secure

As indicated above, a proof that RORX implies UKU is much more involved and incurs a factor 2m

loss. Roughly speaking, this is because in the si case, in the reduction needed to prove that ROR implies
KU, the ROR adversary can only simulate the execution of the KU adversary correctly in the case where
the bit is 1, i.e., the encryption oracle returns the actual encryption of a message. This results in a factor
two loss in terms of advantage. Upon translating this technique to the mi case, the factor 2 becomes 2m,
as all bits need to be 1 for the UKU adversary to output the right keys with some guaranteed probability.
However, we will not follow this route for the proof of this result. Instead, we can obtain the same result
by combining Theorem 2.2 and Theorem 2.1.

LORX versus RORX. In the si setting, LOR and ROR are the same up to a factor 2 in the advantage [4].
The LOR implies ROR implication is trivial and ROR implies LOR is a simple hybrid argument. We
now discuss the relation between the mi counterparts, namely RORX and LORX, which is both more
complex and more challenging to establish. We first show the harder direction, namely that RORX
security implies LORX security. We find an (inevitable) factor 2m loss in the reduction. The difficulty is
adapting the hybrid argument technique to the mi setting.
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Theorem 2.2 [RORX ⇒ LORX] Let SE = (K, E ,D) be a symmetric encryption scheme. Let m ≥ 1.
For all t, qc > 0, and all vectors q we have Advlorx

SE,m(t,q, qc) ≤ 2m ·Advrorx
SE,m(t′,q, qc), where t

′ = t+O(1).

As discussed in Section 1, the multiplicative factor 2m is often of no harm because advantages are already
exponentially small in m. The factor is natural, being the mi analogue of the factor 2 appearing in the
traditional si proof, and examples can be given showing that the bound is tight.

Proof: LetA be (t,q, qc)-distinguisher for LORXSE,m. We build a (t′,q, qc)-distinguisher B for RORXSE,m

which simulates the execution of A in LORXSE,m using the oracles of RORXSE,m. More in detail, B
first selects a random bit-vector c←$ {0, 1}m, and whenever A asks a query Enc(i,M0,M1), B queries
Enc(i,Mc[i]), returning the resulting ciphertext to A. Corruption queries Cor(i) made by A are simply
forwarded to RORXSE,m, and their outputs returned to A. Finally, when A terminates and outputs a bit
b′, B terminates and outputs the bit b′⊕

⊕m
i=1 c[i]⊕ (m mod 2), with m mod 2 denoting the parity of m.

To simplify the analysis of B’s success probability, let us introduce the shorthand p(b′, c′) for all b′, c′ ∈
{0, 1}m, denoting the success probability of B winning RORXSE,m conditioned on the game setting b = b′

and B choosing c = c′. Similarly, let q(b′) be the probability that A wins LORXSE,m conditioned on
b = b′ in the game. It is easy to see that q(b′) = p(1m,b′) for every b′ ∈ {0, 1}m, where 1m is the
all-one vector. This is because when b = 1m in RORXSE,m, a query Enc(i,M0,M1) by the simulated
A is answered with Enc(i,Mc[i]) = Enc(i,Mb′[i]) by B. Moreover, again in the case where b = 1m, the
adversary B wins RORXSE,m if A outputs b′ such that b′ ⊕

⊕
i b
′[i] ⊕ (m mod 2) =

⊕
i b[i] = m mod 2,

which is equivalent to b′ =
⊕

i b
′[i].

We also note that for all vectors b′, c′, c′′ ∈ {0, 1}m, if there exists i ∈ [1 ..m] such that b′[i] = 0,
c′[i] = 0, and c′′[i] = 1, then p(b′, c′) + p(b′, c′′) = 1. This is due to the fact that the probability that
A, when run by B using c = c′ in RORXSE,m with b = b′, outputs a certain bit b′ is the same as when
B runs with c = c′′, because A’s queries Enc(i,M0,M1) are answered with the encryption of a random
plaintext in both cases. However, the bits output by B when c = c′ and when c = c′′ are exactly the
complement of each other, and hence p(b′, c′′) = 1 − p(b′, c′). Further note that as we can always pair
strings c′ ∈ {0, 1}m so that they differ in exactly one component (just take any perfect matching of the
m-dimensional hypercube), then

∑
c′∈{0,1}m p(b′, c′) = 2m−1 holds for all b′ 6= 1m.

Putting pieces together, and using p(·, ·) and q(·) to express winning probabilities,

Pr
[
RORXBSE,m ⇒ true

]
=

1

22m

∑

b′,c′∈{0,1}m

p(b′, c′) =
1

22m


 ∑

c′∈{0,1}m

p(1m, c′) +
∑

b′ 6=1m

∑

c′∈{0,1}m

p(b′, c′)




=
1

22m


 ∑

b′∈{0,1}m

q(b′) + (2m − 1) · 2m−1


 =

1

2m
Pr
[
LORXASE,m ⇒ true

]
+

1

2
−

1

2m+1
.

Rearranging terms yields 2m · Advrorx
SE,m(B) = Advlorx

SE,m(A). It is easy to see that B is a (t′,q, qc)-
distinguisher, and the theorem follows by maximizing over all (t,q, qc)-distinguishers A.

We omit the much simpler proof of the converse.

Theorem 2.3 [LORX ⇒ RORX] Let SE = (K, E ,D) be a symmetric encryption scheme. Let m ≥ 1.
For all t, qc > 0, and all vectors q we have Advrorx

SE,m(t,q, qc) ≤ Advlorx
SE,m(t′,q, qc), where t′ = t+O(1).

LORX implies AND. Intuitively, one might expect AND security to be a stronger requirement than
LORX security, as the former seems easier to break than the latter. However we show that under a fairly
minimal requirement, LORX implies AND. This brings another argument in support of LORX: Even
if an application requires AND security, it turns out that proving LORX security is generally sufficient.
The proof relies on the following probabilistic lemma, due to Unger [55].
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Lemma 2.4 [55] Let Y1, . . . , Ym ∈ {0, 1} be random variables such that there exist β1, . . . , βm ∈ [−1, 1]
and C, γ > 0 with Pr

[⊕
i∈S Yi = 0

]
≤ (1 + C ·

∏
i∈S βi + γ)/2 for all S ⊆ {1, . . . ,m}. Then,

Pr [
∑m

i=1Yi = m ] ≤ γ + C ·
∏

i∈S

1 + βi
2

.

The following theorem is to be interpreted as follows: In general, if we only know that Advlorx
SE,m(t,q, qc)

is small, we do not know how to prove Advand
SE,m(t′,q, qc) is also small (for t′ ≈ t), or whether this is true

at all. As we sketched above, the reason is that we do not know how to use an adversary A for which the
ANDSE,m advantage is large to construct an adversary for which the LORXSE,m advantage is large. Still,
one would expect that such an adversary might more easily yield one for which the LORXSE,k advantage
is sufficiently large, for some k ≤ m. The following theorem uses the above probabilistic lemma to confirm
this intuition.

Theorem 2.5 Let SE = (K, E ,D) be a symmetric encryption scheme. Let m ≥ 1. Let t, q, and qc be
given, and assume that there exist C, ǫ, and γ such that for all 1 ≤ i ≤ m,

max
S⊆{1,...,m},|S|=i

Advlorx
SE,i(t

∗
S ,q[S], qc) ≤ C · ǫi + γ ,

where q[S] is the projection of q on the components in S, and t∗S = t+O(tE ·
∑

i/∈S q[i]), with tE denoting

the running time needed for one encryption with E . Then, Advand
SE,m(t,q, qc) ≤ γ +C ·

∏m
i=1(1 + ǫi)/2.

Does the converse also hold true? It is worth mentioning that in general we are not able to prove that
AND implies LORX. Still, we note that in the corruption-free case, one can upper boundAdvlorx

SE,m(t,q, 0)

in terms of Advand
SE,m′(t′,q′, 0) for m′ ≈ 2m and t′ and q′ being much larger than t,q. The proof, which

we omit, follows the lines of the proof of the XOR Lemma from the Direct Product Theorem given by
Goldreich, Nisan, and Wigderson [26], and relies on the Goldreich-Levin theorem [25]. As the loss in
concrete security in this reduction is very large, and it only holds in the corruption-free statement, we
find this an additional argument to support the usage of the LORX metric.

3 Password-based Encryption via KDFs

We now turn to our main motivating application, that of password based encryption (PBE) as specified in
PKCS#5 [51]. The schemes specified there combine a conventional mode of operation (e.g., CBC mode)
with a password-based key derivation function (KDF). We start with formalizing the latter.

Password-based KDFs. Formally, a (k, s, c)-KDF is a deterministic map KD: {0, 1}∗ × {0, 1}s →
{0, 1}k that may make use of an underlying ideal primitive. Here c is the iteration count, which specifies
the multiplicative increase in work that should slow down brute force attacks.

PKCS#5 describes two KDFs [51]. We treat the first in detail and discuss the second in Appendix E.
Let KD1H(pw, sa) = Hc(pw ‖ sa) where Hc is the function that composes H with itself c times. To
generalize beyond concatenation, we can define a function Encode(pw, sa) that describes how to encode
its inputs onto {0, 1}∗ with efficiently computable inverse Decode(W ).

PBE schemes. A PBE scheme is just a symmetric encryption scheme where we view the keys as
passwords and key generation as a password sampling algorithm. To highlight when we are thinking
of key generation as password sampling we will use P to denote key generation (instead of K). We
will also write pw for a key that we think of as a password. Let KD be a (k, s, c)-KDF and let SE =
(K, E ,D) be an encryption scheme with K outputting uniformly selected k-bit keys. Then we define the
PBE scheme SE [KD,SE] = (P, E ,D) as follows. Encryption E(pw,M) is done via sa←$ {0, 1}s ; K ←
KD(pw, sa) ; C←$ E(K,M), returning (sa,C) as the ciphertext. Decryption recomputes the key K by
reapplying the KDF and then applies D. If the KDF is KD1 and the encryption scheme is CBC mode,
then one obtains the first PBE scheme from PKCS#5 [51].

11



main GUESSP,m

pw[1], . . . ,pw[m]←$P

y←$ BTest,Cor

Ret
∧m

i=1 wini

proc. Test(i, pw)

If (pw = pw[i]) then wini ← true

Ret wini

proc. Cor(i)

wini ← true

Ret pw[i]

main saGUESSP,m,ρ

pw[1], . . . ,pw[m]←$P

For i = 1 to m do

For j = 1 to ρ do

sa[i, j]←$ {0, 1}s

y←$ BTest,Cor(sa)

Ret
∧m

i=1 wini

proc. Test(pw, sa)

For i = 1 to m do

For j = 1 to ρ do

If (pw, sa) = (pw[i], sa[i, j]) then

wini ← true

Ret (i, j)

Ret (⊥,⊥)

proc. Cor(i)

wini ← true

Ret pw[i]

Figure 3: An adaptive password-guessing game.

Password guessing. We aim to show that security of the above constructions holds up to the amount
of work required to brute-force the passwords output by P. This begs the question of how we measure
the strength of a password sampler. We will formalize the hardness of guessing passwords output by some
sampler P via an adaptive guessing game: It challenges an adversary with guessing passwords adaptively
in a setting where the attacker may, also, adaptively learn some passwords via a corruption oracle.
Concretely, let GUESSP,m be the game defined in Figure 3.5 Boolean flags win1, . . . ,winm are assumed
initialzed to false. An adversary B’s guessing advantage is Advguess

P,m (B) = Pr
[
GUESSBP,m ⇒ true

]
. The

output y of the adversary is disregarded, its advantage depending only on the setting of the wini flags
to true via its Test queries. We assume without loss of generality that A does not make any pointless
queries: (1) repeated queries to Cor on the same value; (2) a query Test(i, ·) following a query of Cor(i);
and (3) a query Cor(i) after a query Test(i, pw) that returned true. We say that B is a (q, qc)-guessing
adversary if it makes at most q[i] queries to Test(i, ·) (1 ≤ i ≤ m) and at most qc queries to Cor. We
say that B is a (qt, qc)-guessing adversary if it makes at most qt queries to Test and at most qc queries
to Cor. (We note that if B is a (q, qc)-guessing adversary then it is a (qt, qc)-guessing adversary for
qt = q[1] + · · · + q[m], but if B is a (qt, qc)-guessing adversary for some qt then there need not exist a q
such that B is a (q, qc)-guessing adversary with qt = q[1] + · · ·+ q[m].)

We also define a variant of the above guessing game that includes salts and allows an attacker to
test password-salt pairs against all m instances simultaneously. This will be useful as an intermediate
step when reducing to guessing advantage. The game saGUESSP,m,ρ is shown in Figure 3 and we define
advantage via Advsa-guess

P,m (B) = Pr
[
saGUESSBP,m ⇒ true

]
. Again we say that B is a (qt, qc)-guessing

adversary if it makes at most qt queries to Test and at most qc queries to Cor. An easy argument proves
the following lemma.

Lemma 3.1 Let m,ρ > 0 and P be a password sampler. Let A be an (qt, qc)-guessing GUESSP,m
adversary. Then there exists a (qt, qc)-guessing saGUESSP,m,ρ adversary B such that Advsa-guess

P,m,ρ (A) ≤

Advguess
P,m (B) +m2ρ2/2s. �

Samplers with high min-entropy. Even though the guessing advantage precisely quantifies strength
of password samplers, good upper bounds in terms of the adversary’s complexity and of some simpler
relevant parameters of a password sampler are desirable. One interesting case is samplers with high
min-entropy. Formally, we say that P has min-entropy µ if for all pw′ it holds that Pr[pw = pw′] ≤ 2−µ

over the coins used in choosing pw←$ P.

5 We note that the games of Figure 3 are slightly different from the ones in our proceedings version [7]. In the latter, the
adversary was asked to output a password vector and won if this equalled the target password vector, whereas now it wins
through flags set by Test queries. The difference can be seen by considering a space containing only one password, where
the adversary can win with zero Test queries in our previous game but needs one Test query in our current game. Our
bounds hold with respect to our current games, not the proceedings ones.
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Theorem 3.2 Let m ≥ 1 and qc ≥ 0 satisfy m ≥ qc. Let P be a password sampler with min-entropy
µ. Let B be a (q, qc)-adversary for GUESSP,m and let qt = q[1] + · · · + q[m]. Let δ = qt/(m2µ) and let
γ = (m− qc)/m. Then Advguess

P,m (B) ≤ e−m∆(γ,δ) where ∆(γ, δ) = γ ln(γδ ) + (1− γ) ln(1−γ1−δ ). �

Using ∆(γ, δ) ≥ 2(γ − δ)2, we see that to win the guessing game for qc corruptions, qt ≈ (m − qc) · 2
µ

Test queries are necessary, and the brute-force attack is optimal. Note that the above bound is the best
we expect to prove. Indeed, assume for a moment that we restrict ourselves to adversaries that want to
recover a subset of m− qc passwords, without corruptions, where q[i] = qt/m for all 1 ≤ i ≤ m. each i,
which are independent from queries Test(j, ·) for other j 6= i. Then, each individual password is found,
independently, with probability at most qt/(m ·2

µ), and if one applies the Chernoff bound, the probability
that a subset of size m − qc of the passwords are retrieved is upper bounded by e−m∆(γ,δ). In our case,
we have additional challenges: Foremost, queries for each i are not independent. Also, the number of
queries may not be the same for each index i. And finally, we allow for corruption queries.

The full proof of Theorem 3.2 is given in Appendix F. At a high level, it begins by showing how to
move to a simpler setting in which the adversary wins by recovering a subset of the passwords without
the aid of a corrupt oracle. The resulting setting is an example of a threshold direct product game.
This allows us to apply a generalized Chernoff bound due to Panconesi and Srinivasan [48] (see also [35])
that reduces threshold direct product games to (non-threshold) direct product games. Finally, we apply
an amplification lemma due to Maurer, Pietrzak, and Renner [40] that yields a direct product theorem
for the password guessing game. Let us also note that using the same technique, the better bound
Advguess

P,m (B) ≤ (qt/m2µ)m can be proven for the special case of (q, 0)-adversaries for qt = q[1]+· · ·+q[m].

Discussion. We note that although the bound in Theorem 3.2 depends only on qt, qc, we are not
claiming that it holds for any (qt, qc)-guessing adversary, but only for a (q, qc)-guessing adversary with
qt = q[1] + · · · + q[m]. The same is true for the better bound we just quoted for the qc = 0 case. An
example from [27] shows that our bound of (qt/m2µ)m for the qc = 0 case in fact does not hold for
arbitrary (qt, qc)-guessing adversaries. For qt = 11, m = 2 and P which picks random, 3-bit passwords,
they present an attack with advantage higher than (qt/m2µ)m. Obtaining a (good) bound for (qt, qc)-
guessing adversaries is an interesting open question.

Correlated passwords. By taking independent samples from P we have captured only the setting of
independent passwords. In practice, of course, passwords may be correlated across users or, at least, user
accounts. Our results extend to the setting of jointly selecting a vector of m passwords, except of course
the analysis of the guessing advantage (whose proof fundamentally relies upon independence). This last
only limits our ability to measure, in terms of simpler metrics like min-entropy, the difficulty of a guessing
game against correlated passwords. This does not decrease the security proven, as the simulation-based
paradigm we introduce below allows one to reduce to the full difficulty of the guessing game.

3.1 Simulation-based Security for KDFs

We define an ideal-functionality style notion of security for KDFs. Figure 4 depicts two games. A message
sampler M is an algorithm that takes input a number r and outputs a pair of vectors (pw, sa) each
having r elements and with |sa[i]| = s for 1 ≤ i ≤ r. A simulator S is a randomized, stateful procedure.
It expects oracle access to a procedure Test to which it can query a message. Game RealKD,M,r gives a
distinguisherD the messages and associated derived keys. Also, D can adaptively query the ideal primitive
H underlying KD. Game IdealS,M,r gives D the messages and keys chosen uniformly at random. Now D
can adaptively query a primitive oracle implemented by a simulator S that, itself, has access to a Test
oracle. Then we define KDF advantage by

Advkdf
KD,M,r(D, S) = Pr

[
RealDKD,M,r ⇒ 1

]
− Pr

[
IdealDS,M,r ⇒ 1

]
.

To be useful, we will require proving that there exists a simulator S such that for any D,M pair the
KDF advantage is “small”.
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main RealKD,M,r

(pw, sa)←$M(r)

For i = 1 to r do K[i]←$ KD
H (pw[i], sa[i])

b′←$DPrim(pw, sa,K)

Ret b′

proc. Prim(X)

Ret H(X)

main IdealS,M,r

(pw, sa)←$M(r)

For i = 1 to r do K[i]←$ {0, 1}k

b′←$DPrim(pw, sa,K)

Ret b′

proc. Prim(X)

Ret STest(X)

sub. Test(pw, sa)

For i = 1 to r do

If (pw[i], sa[i]) = (pw, sa) then

Ret K[i]

Ret ⊥

Figure 4: Games for the simulation-based security notion for KDFs.

This notion is equivalent to applying the indifferentiability framework [41] to a particular ideal KDF
functionality. That functionality chooses messages according to an algorithm M and outputs on its
honest interface the messages and uniform keys associated to them. On the adversarial interface is the
test routine which allows the simulator to learn keys associated to messages. This raises the question of
why not just use indifferentiability from a RO as our target security notion. The reasons are two-fold.
First, it is not clear that Hc is indifferentiable from a random oracle. Second, even if it were, a proof
would seem to require a simulator that makes at least the same number of queries to the RO as it receives
from the distinguisher. This rules out showing security amplification due to the iteration count c. Our
approach solves both issues, since we will show KDF security for simulators that make one call to Test
for every c made to it. For example, our simulator for KD1 will only query Test if a chain of c hashes
leads to the being-queried point X and this chain is not a continuation of some longer chain. We formally
capture this property of simulators next.

c-amplifying simulators. Let τ = (X1, Y1), . . . , (Xq, Yq) be a (possibly partial) transcript of Prim
queries and responses. We restrict attention to (k, s, c)-KDFs for which we can define a predicate
finalKD(Xi, τ) which evaluates to true if there exists exactly one sequence of c indices j1 < · · · < jc
such that (1) jc = i, (2) there exist unique (pw, sa) such that evaluating KDH(pw, sa) when H is such
that Yj = H(Xj) for 1 ≤ j ≤ i results exactly in the queries Xj1 , . . . ,Xjc in any order where Xi is the
last query, and (3) finalKD(Xjr , τ) = false for all r < c.

Our simulators only query Test on queries Xi for which finalKD(Xi, τ) = true; we call such queries
KD-completion queries and simulators satisfying this are called c-amplifying. Note that (3) implies that
there are at most q/c total KD-completion queries in a q-query transcript.

Hash-dependent passwords. We do not allowM access to the random oracle H. This removes from
consideration hash-dependent passwords. Our results should extend to cover hash-dependent passwords if
one has explicit domain separation between use of H during password selection and during key derivation.
Otherwise, an indifferentiability-style approach as we use here will not work due to limitations pointed
out in [52]. A full analysis of the hash-dependent password setting would therefore appear to require
direct analysis of PBE schemes without taking advantage of the modularity provided by simulation-based
approaches.

Security of KD1. For a message samplerM, let γ(M, r) := Pr[∃i 6= j : (pw[i], sa[i]) = (pw[j], sa[j])]
where (pw, sa)←$M(r). We prove the following theorem in Appendix G.

Theorem 3.3 Fix r > 0. Let KD1 be as above. There exists a simulator S such that for all adversaries
D making q RO queries, of which qc are KD1-completion queries, and all message samplersM,

Advkdf
KD1,M,r(D, S) ≤ 4 γ(M, r) +

2r2 + 7 (2q + rc)2

2n
.

The simulator S makes at most qc Test queries, and answers each query in time O(c). �
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3.2 Security of PBE

We are now, finally, in a position to analyze the security of password based encryption as used in PKCS#5.
The following theorem uses the multi-user left-or-right security notion from [3], that measures secu-
rity when given access to multiple left-or-right oracles each using the same bit b. It is formalized in
Appendix D. The proof of the following theorem appears in Appendix H.

Theorem 3.4 Let m ≥ 1, let SE [KD,SE] = (P, E ,D) be the encryption scheme built from an (k, s, c)-
KDF KD and an encryption scheme SE = (K, E ,D) with k-bit keys. Let A be an adversary making ρ
queries to Enc(i, ·, ·) for each i ∈ {1, . . . ,m} and making at most qc < m corruption queries. Let S be a
c-amplifying simulator. Then there exists message samplerM and adversaries D, C, and B such that

Advlorx
SE,m(A) ≤ m ·Advmu-lor

SE,ρ (C) + 2·Advsa-guess
P,m,ρ (B) + 2·Advkdf

KD,M,mρ(D, S)

If A makes q queries to H, then: D makes at most q queries to its H oracle; B makes at most ⌈q/c⌉ queries
to Test and at most qc corruption queries; and C makes a single query Enc(i, ·, ·) for each 1 ≤ i ≤ ρ.
Moreover, C’s running time equals tA+ q · tS plus a small, absolute constant, and where tA is the running
time of A, and tS is the time needed by S to answer a query. Finally, γ(M,mρ) ≤ m2ρ2/2s. �

Note that the theorem holds even when SE is only one-time secure (meaning it can be deterministic),
which implies that the analysis covers tools such as WinZip (c.f., [37]). In terms of the bound we achieve,
Theorem 3.3 for KD1 shows that an adversary that makes Advkdf

KD,P∗,mρ(D, S) large requires q ≈ 2n/2

queries to H, provided salts are large. If H is SHA-256 then this is about 2128 work. Likewise, a good
choice of SE will ensure that Advmu-lor

SE,ρ (C) will be very small. Thus the dominating term ends up the
guessing advantage of B against P, which measures its ability to guess m− qc passwords.
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A Brute-force Password-recovery Attacks

Here we provide some more details on the (well-known) attacks on PBE mentioned in Section 1.

The si case. Recall that we encrypt a message M under a password pw by picking a random s-
bit salt sa, deriving a key L ← KD(pw‖sa) and returning C ′ ← C‖sa where C←$ E(L,M). Here E
is a symmetric encryption scheme, typically an IND-CPA AES mode of operation, and key-derivation
function (KDF) KD: {0, 1}∗ → {0, 1}n is the c-fold iteration KD = Hc of a cryptographic hash function
H: {0, 1}∗ → {0, 1}n. We assume the attacker has access to an oracle TestKey which on input a
candidate key L′ returns (L = L′) where L is the key derived under the target password pw and target
salt sa via L ← KD(pw‖sa). (For example the attacker may know a message M and corresponding
ciphertext C←$ E(L,M) and could test whether D(L′, C) = M where D is the decryption algorithm
corresponding to E . We abstract this capability via the oracle.) The attacker is given sa. The brute-force
attack now creates a table T with T[pw′] = Hc(pw′‖sa) for all pw′ ∈ D and then returns pw′ such that
TestKey(T[pw′]) = true. The attack takes cN computations of H, where N = |D| is the size of the
dictionary, as well as N tests.

The mi case. Ask now how hard it is to recover a large number m of target passwords pw1, . . . , pwm, the
associated salts denoted sa1, . . . , sam respectively. If s = 0, the answer is, not much harder than recovering
one target password. The adversary’s test oracle TestKey now takes i, L′ and returns (Li = L′) where
Li = KD(pwi‖sai). The attacker creates a table T with T[pw′] = Hc(pw′) for all pw′ ∈ D (remember
the salt has length 0, meaning is absent). Then for each pw′ ∈ D and each i = 1, . . . ,m it calls
TestKey(i,T[pw′]), returning pw′ if any of these calls returns true. It recovers all the target passwords
using cN hashes and mN tests. Rainbow tables and other time-memory trade-offs can be used here to
save on space [47, 46].

But with s large (enough to make sa1, . . . , sam usually distinct), the brute-force attack takes cmN
hash computations and mN tests, for it needs a N by m array T where T[pw′, sai] = Hc(pw′‖sai). This is
why we salt. That the increase in effort from cN hashes to cmN hashes to mount the brute-force attack
is considered valuable in practice is evidenced by pervasive use of salting, starting with the 1976 UNIX
Password Hash and continuing into PKCS#5 [51], today’s ubiquitously-employed standard for KDFs and
PBE. Yet, this practice has not, until our work, received any proof-based support.

B Problems in the Proofs of Yao and Yin

The earlier work of Yao and Yin [59] claimed a security proof for both functions KD1 and KD2 from
the PKCS#5 standard for the case m = 1, a much more restricted scenario than the one considered in
this paper (e.g., their result cannot be used to infer PBE security). Even more importantly, however,
the presented proof is incorrect. In attempting to prove [59, Theorem 1], game K is not equivalent to
the real world as claimed in [59, Lemma 2.2]. Namely, their proof incorrectly assumes that the (c + 1)
intermediate values u0, u1, . . . , uc are distinct in the evaluation of KD1 on input the randomly selected
password pw and random salt sa, where u0 = pw ‖ sa and uc is the derived key. The bound claimed by
[59, Theorem 1] is in fact wrong since it claims to hold for arbitrary c: if c is very large (e.g., 2n) then
an attacker will beat the bound they claim.

C Proofs for Section 2

Proof of of Theorem 2.1: Let A be a (t,q, qc)-adversary for UKUSE,m. We use A to build a (t′,q′, qc)-
distinguisher A′ for LORXSE,m. Concretely, the distinguisher A′ runs A, answering its encryption queries
Enc(i,M) with the output a query Enc(i,M,M) in the LORXSE,m game. Any corruption query Cor(i)
by A is replied with A′ issuing the query Cor(i), and upon obtaining the pair (K[i],b[i]) as the answer,
A′ returns K[i] to A. When A terminates, it outputs a vector K′.
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Subsequently, A′ chooses k pairs of messages M
(i)
0 ,M

(i)
1 independently and uniformly at random from

{0, 1}ℓ, conditioned on M
(i)
0 6= M

(i)
1 , and issues the queries Enc(i,M

(j)
0 ,M

(j)
1 ) for all i = 1, . . . ,m, and

j = 1, . . . , k, returning the corresponding challenge ciphertexts C(j)[i]. Finally, also for all i, A sets

b′[i] = b if D(K′[i],C(j)[i]) = M
(j)
b for all j = 1, . . . , k, and sets b′[i] to a random bit otherwise.

We now turn to analyzing the advantage of A′: For S ⊆ {1, . . . ,m}, let badS be the event that K[i] 6= K′[i]
for all i ∈ S, and K[i] = K′[i] for all i /∈ S. In particular, bad∅ is the event that K = K′, which in turn
implies P[bad∅] = Advuku

SE,m(A), since A′ perfectly simulated the UKUSE,m game to A. Also, note that

Pr[LORXA
′

SE,m ⇒ true|bad∅] = 1.

Fix now S 6= ∅. We lower bound Pr[LORXA
′

SE,m ⇒ true|badS ]. First, note that for every fixed choice of i,

b, M j
b[i], K and K′ with K[i] 6= K′[i], we have

Pr
[
D(K′[i], E(K[i],M j

b[i])) = M j
1−b[i]

]
≤

1

2ℓ − 1
,

because M j
0 is chosen uniformly at random over a set of size 2ℓ − 1. With bad′S being the event that

D(K′[i], E(K[i],M j
b[i])) = M j

1−b[i] for all j = 1, . . . ,m and all i ∈ S, by the independence of the choice of

the message pairs (M j
0 ,M

j
1 ) for all j = 1, . . . , k, and by the union bound,

Pr
[
bad′S | badS

]
≤ |S| ·

(
1

2ℓ − 1

)k

≤ m ·

(
1

2ℓ − 1

)k

.

Note, however, that given badS∧bad
′
S , we either have D(K

′[i], E(K[i],M j
b[i])) = M j

b[i] for all j and all i ∈ S,

in which case b′[i] = b[i] for all i ∈ S, or else there exists j and i ∈ S such that D(K′[i], E(K[i],M j
b[i])) /∈

{M j
b[i],M

j
1−b[i]}, and thus b′[i] is randomly chosen. In both cases, the bit b′ is correct with probability

at least 1
2 . This in particular implies

Pr
[
LORXA

′

SE,m ⇒ true ∧ bad′S | badS
]
≥ Pr

[
LORXA

′

SE,m ⇒ true | bad′S ∧ badS

]
− Pr

[
bad′S|badS

]

≥
1

2
−m ·

(
1

2ℓ − 1

)k

.

We now use this to conclude

Pr
[
LORXA

′

SE,m ⇒ true
]
= Pr [ bad∅ ] +

∑

S 6=∅

Pr [ badS ] · Pr
[
LORXA

′

SE,m ⇒ true | badS
]

≥ Pr [ bad∅ ] +
∑

S 6=∅

Pr [ badS ] · Pr
[
LORXA

′

SE,m ⇒ true ∧ bad′S | badS
]

≥ Pr [ bad∅ ] +
∑

S 6=∅

Pr [ badS ] ·

(
1

2
−m ·

(
1

2ℓ − 1

)k
)

≥
1

2
+

1

2
· Pr [ bad∅ ]−m ·

(
1

2ℓ − 1

)k

=
1 +Advuku

SE,m(A)

2
−m ·

(
1

2ℓ − 1

)k

.

The theorem statement follows by rearranging terms.

Proof of of Theorem 2.5: Let A be a AND adversary. Consider the vector b′ output by A. For all
subsets S ⊆ {1, . . . ,m}, and with b being the vector chosen in AND, it is not hard to verify that

Pr

[
⊕

i∈S

b′[i] =
⊕

i∈S

b[i]

]
≤

1 +Advlorx
SE,|S|(t

∗
S ,q

′, qc)

2
≤

1 + Cǫ|S| + γ

2
,
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main mu-LORA
SE,m

K[1], . . . ,K[m]←$K

b←$ {0, 1}

b′←$AEnc

Ret (b′ = b)

proc. Enc(i,M0,M1)

If |M0| 6= |M1| then Ret ⊥

C←$ E(K[i],Mb)

Ret C

Figure 5: Multi-user security notion for encryption.

where q′ is the |S|-dimensional vector obtained as the projection of q on components in S. Indeed,
for every adversary A and S ⊆ {1, . . . ,m}, where S = {i1, . . . , ik},, we can build an adversary B for
LORXSE,|S| as follows: It first chooses random bits b[i]←$ {0, 1} and K[i]←$K for i /∈ S, and then runs
A. Whenever A queries Enc(ij ,M0,M1) for j = 1, . . . , k, B uses the oracle Enc(j,M0,M1) from the
underlying LORXm,SE game to answer the query, whereas queries Enc(i,M0,M1) for i /∈ S are replied
with E(K[i],Mb[i]). Similarly, corruption queries for i ∈ S are answered using the corresponding Cor
oracle for the LORX game, whereas queries for i /∈ S are answered directly returning b[i] and K[i]. At
the end of the game, if A replies with b′, B outputs

⊕
i b
′[i]. It is clear by inspection that B has running

time at most t∗S. To conclude, we apply Lemma 2.4 with Yi = b[i] ⊕ b′[i] to obtain an upper bound on
Pr [

∑m
i=1 Yi = m ] = Pr [b = b′ ].

D Multi-user Encryption Security

We recall the multi-user security notion from [3]. Game mu-LORSE,m of Figure 5 defines the security
experiment. Here the parameter m indicates the number of key instances used. The advantage of
adversary A is Advmu-lor

SE,m (A) = 2Pr[mu-LORA
SE,m ⇒ true] − 1. We say that A is a (t,q)-adversary

if it runs in time t and makes at most q[i] encryption queries of the form Enc(i, ·, ·). Then we let
Advmu-lor

SE,m (t,q) = maxAAdvmu-lor
SE,m (A) where the maximum is over all (t,q)-adversaries.

E More KDFs

The second KDF from PKCS#5 uses a function F : {0, 1}∗ × {0, 1}∗ → {0, 1}n with two designated
inputs. Note that in the standard F is referred to as a PRF, but since what is needed is not a PRF in
the traditional sense, we refer to it as just a (keyed) function. Then define

KD2F (pw, sa) = U1 ⊕ U2 ⊕ · · · ⊕ Uc

where Ui = F (pw,Ui−1) for all i = 1, . . . , c, and U0 = sa. We sketch an analysis of this KDF in
Appendix G.

For both KDFs we have for simplicity deviated from the standard in that we assume the output
length of the hash is equal to the desired key length. Achieving shorter key lengths with KD1 and KD2

just requires truncation, while for KD2 one can also request longer derived keys. This is accomplished by
repeated applications of KD2 using domain separation.

F Proof of Theorem 3.2

The proof follows directly by combining two lemmas that we now state and prove. The first shows that
a threshold variant of the guessing game implies security of the version given in the body that uses
corruptions. The second bounds the advantage against this threshold guessing game using a generalized
Chernoff bound due to Panconesi and Srinivasan [48] that reduces threshold direct products theorems
to (non-threshold) direct product theorems. Finally, we use an amplification lemma due to Maurer,
Pietrzak, and Renner [40] that yields a direct product theorem for the password guessing game (without
corruptions).
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Corruptions and threshold are equivalent. We define a threshold security variant of the guessing
game. Let τ -GUESSP,m be the same as GUESSP,m except: (1) the corruption oracle is removed; (2) the
winning condition is now

∨
S:|S|≥τ

∧
i∈S wini, i.e., the adversary wins if a subset of size at least τ of the

passwords in the output is correct. The following lemma shows that threshold security for t = m − qc
implies security when given qc corrupt queries.

Lemma F.1 Let m ≥ 0, qt, qc be numbers, and τ = m − qc. Let A be a (qt, qc)-guessing GUESSP,m
adversary. Then there exists a τ -GUESSP,m adversary B making qt Test queries such that

Advguess
P,m (A) ≤ Advτ -guess

P,m (B) . �

Proof: (Sketch.) The adversary B works as follows on input sa. It runs ATestSim,CorSim(sa) simulating
queries as follows. For a TestSim(i, pw) query it queries its own test oracle Test(i, pw). If the response
is false, it adds pw to a set Ti and returns false to A. Otherwise it returns true to A. For a CorSim(i)
query, it samples a fresh password pw∗[i] according to the distribution of P conditioned on not outputting
a password in the set Ti. Finally pw∗[i] is returned to A.

Note that to be able to sample the above distribution, B keeps, for each 1 ≤ i ≤ m, an array pi[·] where
pi[pw] that initially indicates the probability that P samples pw for each pw ∈ P , where P is the set of
possible passwords output by P. (Recall that B is not computationally bounded, and in fact we can even
allow B to store arbitrary precision numbers.) When pw is added to Ti, B sets pi[pw] to 0, computes
p∗ =

∑
pw′∈P pi[pw

′], and sets pi[pw
′] ← pi[pw

′]/p∗ for all pw′ ∈ P . Assume now we order the elements
of P arbitrarily as pw1, pw2, ..., pw|P |. Then, to sample pw∗[i], B picks a random number x←$ [0, 1], and
outputs pwk for the smallest k such that

∑
j≤k−1 pi[pwj ] ≤ x, and

∑
j≤k pi[pwj] > x.

By construction, the probability that any pw is returned by B in response to a corruption query equals
the probability that any pw would be returned in response to such a query in GUESSP,m. (This also uses
that A make no pointless queries.)

As passwords for uncorrupted indices are going to be equal with probability at least Pr[GUESSAP,m], we

have Pr[τ -GUESSBP,m] ≥ Pr[GUESSAP,m], which concludes the proof.

A Chernoff lemma. We now turn to the second lemma.

Lemma F.2 Fix m ≥ τ ≥ 0 and a password sampler P with min-entropy µ. Let B be a (q, qc)-guessing
adversary for τ -GUESSP,m and let q = q[1] + · · · + q[m]. Assume q ≤ τ2µ. Let δ = q/(m2µ) and let
γ = τ/m. Then

Pr
[
τ -GUESSBP,m ⇒ true

]
≤ e−m∆(γ,δ)

where ∆(γ, δ) = γ ln(γδ ) + (1− γ) ln(1−γ1−δ ). �

Proof: Consider the τ -GUESSP,τ adversary B′ making q′1, . . . , q
′
τ queries of the form Test(i, ·). The

the challenge passwords are independent, meaning that the challenge oracles Test(i, ·) and Test(j, ·) are
independent for i 6= j. We can therefore apply6 the amplification lemma due to Maurer, Pietrzak, and
Renner [40, Lem. 6] to show that for any τ ∈ [1 ..m],

Pr
[
τ -GUESSB

′

P,τ ⇒ true
]
≤

τ∏

i=1

q′i
2µ

. (1)

Let δi = qi/2
µ. We can now show an upper bound on B’s success in terms of the δi values using a gener-

alized Chernoff bound due originally to Panconesi and Srinivasan [48], and recently treated Impagliazzo
and Kabanets [35]. We restate the latter’s formulation below for reference:

6This is because, in the language of [40], we can see our setting as the parallel composition of m random systems with a
monotone binary output (MBO) which becomes one when the adversary outputs the corresponding password.
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Lemma F.3 Let X1, . . . ,Xm be binary random variables. Suppose that there are 0 ≤ δi ≤ 1 for
1 ≤ i ≤ m, such that, for every set S ⊆ [1 ..m], Pr[∧i∈SXi = 1] ≤

∏
i∈S δi. Let δ = (1/m)

∑m
i=1 δi. Then,

for any γ such that δ ≤ γ ≤ 1, Pr[
∑m

i=1 Xi ≥ γm] ≤ e−m∆(γ,δ). �

To apply the lemma, we let: (1) Xi be the binary random variable in game τ -GUESSBP,m which takes

value 1 if wini is set to true (B guessed the ith password), and 0 otherwise; and (2) γ = τ/m. Then, for
all S ⊆ [1 ..m], we do have

Pr[∧i∈SXi = 1] ≤
∏

i∈S

δi ,

as otherwise we can build an adversary B′ for τ -GUESSP,τ with τ = |S| contradicting (1). Namely, the
adversary B′ simply runs B, and uses the Test oracle in τ -GUESSP,τ to simulate calls to Test(i, ·) for
i ∈ S, whereas it simulates internally by itself passwords pw[j] and oracle calls Test(j, ·), for j /∈ S.

Therefore, using

Pr

[
m∑

i=1

Xi ≥ γm

]
≥ Pr

[
τ -GUESSBP,m ⇒ true

]

and also

δ =
1

m

m∑

i=1

δi =
1

m

m∑

i=1

qi
2µ

=
q

m2µ
.

So δ < γ = τ/m holds as long as q ≤ τ2µ, matching the requirement in the statement (of Lemma F.2).

G Security Analysis of KD1

Analysis of KD1. For a hash function H : {0, 1}∗ → {0, 1}n (which we model as a random oracle), let
KD1 be the (k, s, c)-KDF as described in Section 3 with k ≤ n. (In the following, we assume for simplicity
that k = n, the analysis for shorter output lengths follows straightforwardly.) Note that a query x is a
chain-completion query if there exists previous queries w0, w1, . . . , wc−1 = x such that H(wi) = wi+1 for
all i = 0, . . . , c− 2, w0 = Encode(pw, sa) for some pw, sa, and no earlier query returned w0.

That Encode is 1-1 implies specifically that γ(M, r) also describes the probability that the encodings
of two triples collide. Note that we make no further assumptions about Encode. In particular, it can be
that it outputs values that are n bit strings. This ends up a key challenge in the proof, as an adversary
can possibly produce very long chains. For example, a chain of hashes of length ℓ with c < ℓ < 2c that
contains subchains corresponding to Hc(Encode(pw, sa)) and Hc(Encode(pw′, sa)) where pw 6= pw′. The
core intuition underlying our proof is that one can show that this strategy does not help, and in fact,
when creating a longer chain, only the first subchain will be relevant (thus justifying our notion of chain
completion). Unfortunately, as we will see, making this intuition into a rigorous argument takes some
work.

Proof of Theorem 3.3: We first provide a description of the simulator S for KD1 with chain length
c, key length k, and with salts of lengths s. A pseudocode description of S is given in Figure 6. At a
high level, it simulates the RO H via lazy sampling of its function table H[·], given only access to the
Test oracle. At any point in time, we denote as H−1[y] the set of preimages x for which H[x] = y. The
simulator attempts to ensure that evaluating KD1 with the simulated RO on inputs associated to the
vectors pw, sa yields consistent answers with the key vector K.

To do so, upon a query x, S looks for a chain of earlier queries w0, w1, . . . , wc−1 such that: (1) wc−1 = x
and w0 = Encode(pw, sa) for some pw and sa; (2) H[wi−1] = wi and |H

−1[wi]| = 1 for all i = 1, . . . , c−1,
as well as H−1[w0] = ∅. If such a chain exists, the simulator queries Test(pw, sa). If the returned value
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proc. STest(x)

If H[x] = ⊥ then

w0 ← FindChain(x)

If w0 6= ⊥ then

(pw, sa)← Decode(w0)

K ′ ← Test(pw, sa)

If K ′ 6= ⊥ then

z←$ {0, 1}n−k ; H[x]← K ′ ‖ z

If H[x] = ⊥ then H[x]←$ {0, 1}n

H−1[H[x]] ∪←{x}

Ret H[x]

sub. FindChain(w)

wc−1 ← w

For i := 1 to c− 1 do

If |H−1[wc−i]| 6= 1 then Ret ⊥

wc−i−1 ← H−1[wc−i]

If H−1[w0] = ⊥ then Ret w0

Ret ⊥

Figure 6: The simulator S for Theorem 3.3.

K ′ is ⊥, then H[wc−1] is set to a fresh random value, whereas if K ′ 6= ⊥, it lets H[wc−1] ← K ′ ‖ z for
z←$ {0, 1}n−k . If no chain exists, H[x] is set to a fresh random n-bit string. By inspection, the simulator
makes a Test query only as a result of a chain completion query as defined above. (In fact, some chain
completion queries do not result in a Test query.) From now on, we assume without loss of generality
that k = n, since giving D more of the hash output can make its task no harder.

The proof considers a sequence of games. These games are given in full detail in the appendix due
to space constraints. The first game G0 (cf. Figure 7) is the game RealKD1,M,r with some syntactical
modifications: The r keys K[1], . . . ,K[r] are initially chosen uniformly at random. The KDF KD1 is
then evaluated on (pw[i], sa[i]) for all i, generating intermediate n-bit values Wj[i] for j = 0, . . . , c − 1
(which we collectively refer to as the W values). Also, if H[Wc−1[i]] is defined, we overwrite K[i] with
H[Wc−1[i]]. This just corresponds to the situation that a collision occurs between two outputs of KD1;
we set a flag bad if this occurs. We additionally set bad if, during this initialization, any collision occurs
among the W values. (If bad is set in the earlier place, then it is necessarily set again here.) Procedure
H implements a random oracle consistently with the table H. It also ensures that queries x = Wc−1[i]
are answered with K[i] for all i = 1, . . . , r.

We transform G0 into a new game G1 (boxed statement omitted). The sole difference is that no K value
is overwritten at initialization. Clearly, until bad occurs, games G0 and G1 are equivalent and so

Pr
[
GD0 ⇒ 1

]
− Pr

[
GD1 ⇒ 1

]
≤ Pr

[
GD0 sets bad

]
.

To upper bound the latter probability, for notational simplicity, we denote as W1,W2, . . . ,Wr(c−1) the

sequence of Wj[i] values for j > 0 in the order they are generated. Also, let W̃i := W0[i] for i = 1, . . . , r.
For i = 1, . . . , r(c− 1), define COLL(i) as the event that there is a collision among the r + i n-bit values

{W̃1, . . . , W̃r,W1, . . . ,Wi}. Then,

Pr
[
GD0 sets bad

]
= Pr




r(c−1)∨

i=0

COLL(i)


 ≤ γ(M, r) +

r(c−1)∑

i=1

i+ r

2n
≤ γ(M, r) +

(r · c)2

2n
.

where for the second term we have used that Wi is always set uniformly conditioned on COLL(i− 1) not
having occurred.

We modify G1 into a further game G2. First, we introduce a new table H ′ that tracks the choices of
W values in main (as was previously done by H). Procedure H is modified to ensure consistency with
H ′ (the second and third lines of code). The table H ′ will be useful later. Second, we remove the (now
extraneous) if statement from main. Third, in H we give FindChain a chance at recovering W0[i]. A
flag bad′ is set if it fails to do so, but the boxed statement (included in G2) ensures that the same value
is returned as would have been in G1. We introduce the table H−1 because FindChain requires it. The
above changes are conservative and so Pr[GD1 ⇒ 1] = Pr[GD2 ⇒ 1]. Game G3 drops the boxed statement
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proc. main // G0 ,G1

K←$ {0, 1}n·r

(pw, sa)←$M(r)

For i = 1 to r do

W0[i]← Encode(pw[i], sa[i])

For j = 1 to c− 1 do

If H[Wj−1[i]] = ⊥ then

H[Wj−1[i]]←$ {0, 1}n

Wj [i]← H[Wj−1[i]]

If H[Wc−1[i]] then

bad← true

K[i]← H[Wc−1[i]]

If ∃(i, j) 6= (i′, j′) : Wj [i] = Wj′ [i
′]

then bad← true

b′ ← DH(pw, sa,K)

Ret b′

proc. H(x) // G0, G1

If H[x] = ⊥ then

H[x]←$ {0, 1}k

For i = r down to 1 do

If x = Wc−1[i] then

H[x]← K[i]

Ret H[x]

proc. H(x) // B5

X ∪←{x}

If H[x] = ⊥ then

If H′[x] = ⊥ then H′[x]← {0, 1}n

H[x]← H′[x]

For i = r down to 1 do

If FindChain(x) = W0[i] then

H[x]← K[i] ; Si
∪← {x}

Else If x = Wc−1[i] then

bad
′ ← true

H−1[H[x]] ∪←{x}

Ret H[x]

proc. main // G2, G3, G4, B5

K←$ {0, 1}n·r

(pw, sa)←$M(r)

For i = 1 to r do

W0[i]← Encode(pw[i], sa[i])

For j = 1, . . . , c− 1 do

If H′[Wj−1[i]] = ⊥ then

H′[Wj−1[i]]←$ {0, 1}n

Wj [i]← H′[Wj−1[i]]

If ∃(i, j) 6= (i′, j′) : Wj [i] = Wj′ [i
′]

then bad← true

b′ ← DH(pw, sa,K)

Ret b′

proc. H(x) // G2 , G3

If H[x] = ⊥ then

If H′[x] = ⊥ then H′[x]←$ {0, 1}n

H[x]← H′[x]

For i = m down to 1 do

If x = Wc−1[i] then

If FindChain(x) = W0[i] then

H[x]← K[i]

Else

bad
′ ← true ; H[x]← K[i]

H−1[H[x]] ∪←{x}

Ret H[x]

sub. FindChain(w)

wc−1 ← w

For i := 1 to c− 1 do

If |H−1[wc−i]| 6= 1 then Ret ⊥

wc−i−1 ← H−1[wc−i]

If H−1[w0] = ⊥ then Ret w0

Ret ⊥

proc. main // G5

K←$ {0, 1}n·r

(pw, sa)←$M(r)

For i = 1 to r do

W0[i]← Encode(pw[i], sa[i])

b′ ← DH(pw, sa,K)

Ret b′

proc. H(x) // G4, G5

If H[x] = ⊥ then

If H′[x] = ⊥ then H′[x]←$ {0, 1}n

H[x]← H′[x]

For i = m down to 1 do

If FindChain(x) = W0[i] then

H[x]← K[i]

H−1[H[x]] ∪←{x}

Ret H[x]

proc. main // G6

K←$ {0, 1}n·r

(pw, sa)←$M(r)

b′ ← DH(pw, sa,K)

Ret b′

proc. H(x) // G6

If H[x] = ⊥ then

H[x]←$ {0, 1}n

w0 ← FindChain(x)

If w0 6= ⊥ then

(pw, sa)← Decode(w0)

K ′ ← Test(pw, sa)

If K ′ 6= ⊥ then H[x]← K ′

H−1[H[x]] ∪←{x}

Ret H[x]

proc. main // B6

(pw, sa)←$M(r) ; K←$ {0, 1}nr

For i = 1 to r do

W0[i]← Encode(pw[i], sa[i]) ; W ∪←{W0[i]} ; K
∪←{K[i]}

If |W ∪K| < 2r then bad
′′′ ← true

b′ ← DH(pw, sa,K)

For i = 1 to r do

For j = 1 to c− 1 do

If H′[Wj [i]] = ⊥ then

X′ ∪←{Wj [i]} ; H
′[Wj [i]]←$ {0, 1}n

If H′[Wj [i]] ∈ X′ ∪ Y ′ ∪K ∪W then bad
′′′ ← true

Y ′ ∪←{H′[Wj[i]]}

Wj+1[i]← H′[Wj [i]]

If Wc−1[i] ∈ X \ Si then bad
′′ ← true

Ret b′

proc. H(x) // B6

X ∪←{x} ; X′ ∪←{x}

If H[x] = ⊥ then

If H′[x] = ⊥ then H′[x]←$ {0, 1}n

H[x]← H′[x]

If H′[x] ∈ X ∪ Y ∪K ∪W then

bad
′′′ ← true

Y ′ ∪←{H′[x]}

For i = r down to 1 do

If FindChain(x) = W0[i] then

H[x]← K[i] ; Si
∪←{x}

H−1[H[x]] ∪←{x}

Ret H[x]

Figure 7: Games for the proof of Theorem 3.3.
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in G2 and so

Pr
[
GD2 ⇒ 1

]
− Pr

[
GD3 ⇒ 1

]
≤ Pr

[
GD2 sets bad′

]

= Pr
[
GD3 sets bad′

]
.

We will upper bound the probability Pr
[
GD2 sets bad′

]
below, but for now continue presenting the main

sequence of games.

Game G4 simplifies H by omitting the check that x = Wc−1[i]. We now argue that

Pr
[
GD3 ⇒ 1

]
− Pr

[
GD4 ⇒ 1

]
≤ Pr

[
GD3 sets bad

]

≤ γ(M, r) +
(r · c)2

2n

where the last inequality comes from the same analysis as above. To argue the first inequality, we note
that in game G3, as long as bad is not set, for x such that H[x] = ⊥, it cannot be that FindChain(x)
returns W0[i] while x 6= Wc−1[i]. To see this, assume that this is not true and consider the first point
in time where a fresh H query x 6= Wc−1[i] is made, but FindChain(x) returns W0[i]. Then, there is
a sequence of values w0, w1, . . . , wc−1 such that w0 = W0[i], wj = H[wj−1] for a j = 1, . . . , c − 1, and
wc−1 = x 6= Wc−1[i]. This means in particular that there exists j ∈ {0, . . . , c− 2} with wj = Wj [i], but
H[wj ] 6= H ′[wj]. But this can only have happened if Wj−1[i] = Wc−1[i

′] for some i′, which implies bad.

We now observe that G4’s H code only needs to know the values W0[i]’s from the initialization stage,
whereas all other W values (and corresponding entries in H ′[·]) can be generated (implicitly) on the fly
when answering an H query. We can thus simplify the initialization procedure, obtaining game G5.

We undertake a final step leading us to game G6, where we introduce use the procedure Test as in the
ideal game IdealS,M,r: On input (pw, sa), it returns K[i] for the smallest i such that pw[i] = pw and
sa[i] = sa, and ⊥ if no such key exists. We then modify the procedure H to answer queries using Test
without knowing W0 and K. It is clear that

Pr
[
GD5 ⇒ 1

]
= Pr

[
GD6 ⇒ 1

]
= Pr

[
IdealDS,M,r ⇒ 1

]
.

We now return to upper bounding the probability of bad′ occurring in G2 and G3. We proceed by
introducing a new game (B5) which is similar to G4, with the exception that it additionally sets bad′ as
in G3. A similar reasoning as above tells us that as long as bad does not occur, G3 and B5 are identical,
in particular, also with respect to the setting of bad′. Therefore,

Pr
[
GD3 sets bad′

]
≤ Pr

[
BD5 sets bad′

]
+ Pr

[
GD3 sets bad

]

≤ Pr
[
BD5 sets bad′

]
+ γ(M, r) +

(r · c)2

2n
.

The game B5 also keeps track of H queries (in the set X, initially empty), as well as those H queries
whose output has been set to K[i] (set Si, initially empty). We note that if bad′ occurs, then this means
that at the end of the game there exists i such that Wc−1[i] ∈ X \ Si. We therefore change to a game
B6 which delays assigning the W values until after D executes. (Game B6 also introduces other book-
keeping code related to a new flag bad′′′, but this does not affect the game’s functionality.) Queries to
H are handled as before; the setting of bad′ is omitted. The distribution of points assigned to W does
not change compared to B5. At the end, the game B6 sets bad′′ if there exists i with Wc−1[i] ∈ X \ Si.
Thus, it can be verified that

Pr
[
BD5 sets bad′

]
≤ Pr

[
BD6 sets bad′′

]
.
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The game B6 also sets an additional condition bad′′′ if one of the following holds.

- First, the set K := {K[1], . . . ,K[r]} and the set W := {W0[1], . . . ,W0[r]} together contain overall less
than 2r elements;

- Second, H ′[x] is set to a value which is in X ′ ∪Y ′∪W ∪K, where X ′ is the set of all entries x for which
H ′[x] has been defined so far (including x), and Y ′ is the set of all previously set values H ′[x′].

We now prove that if bad′′ is set by the end of the game, then bad′′′ must have been set, which in turn
yields that

Pr
[
BD6 sets bad′′

]
≤ Pr

[
BD6 sets bad′′′

]
.

To see this, we show that (bad′′ = true) ∧ (bad′′′ = false) at the end of the game yields a contradiction.
More specifically, if bad′′′ = false holds at the end of the game, K , W values, and H[·] and H ′[·] entries
jointly satisfy the following:

- First, the values Wj[i] for i = 1, . . . , r, j = 0, . . . , c − 1, as well as the keys K[1], . . . ,K[r], are all
distinct: This is because all elements in K ∪W are distinct, and moreover, since Wj [i] = H ′[Wj−1[i]] for
j ≥ 1, Wj[i] cannot equal an element of K ∪W , or a previously set W value, without provoking bad′′′.

- Second, for all i = 1, . . . , r, there exists no w′ such that H ′[w′] = W0[i], as otherwise bad′′′ would have
occurd when defining H ′[w′].

- Third, for all j = 0, . . . , c − 2 and i = 1, . . . , r, we have H[Wj[i]] ∈ {H
′[Wj [i]],⊥}. This is shown

by induction over j: Assume it is true up to some j ≤ c − 3. Then, for all i, H[Wj+1[i]] being defined
to something different than H ′[Wj+1[i]] implies that FindChain(Wj+1[i]) 6= ⊥, which cannot be by the
above two bullets and the induction assumption that H[Wj′ [i]] ∈ {H

′[Wj′ [i]],⊥} for all j
′ = 0, . . . , j.

Now assume that we indeed have w∗ = Wc−1[i] ∈ X \ Si, and let us look at all entries in H[·] and H ′[·]
at the end of the game. There must exist j∗ ∈ {0, . . . , c− 2} such that, when the H query w∗ was made,
H ′[Wj∗ [i]] = ⊥ (and hence H[Wj∗ [i]] = ⊥ by the third bullet), because otherwise, we must have had
H[Wj [i]] = H ′[Wj [i]] for all j = 0, . . . , c − 2 by the third bullet, and hence FindChain(w∗) would have
returned W0[i]. Thus, in particular, Wj∗[i] /∈ X ′ when w∗ was queried. Therefore, there must exist
j∗∗ ∈ {j∗, . . . , c − 2} such that Wj [i] ∈ X ′ for all j = j∗∗ + 1 . . . , c − 1, but Wj∗∗[i] /∈ X ′ when w∗ was
queried. Since by the end of the game H ′[Wj∗∗[i]] is defined, however, bad

′′′ must have been set to true

at some point, i.e., a contradiction.

To upper bound the probability that bad′′′ is set, note that the probability that W ∪K contains less than
2r elements is upper bounded by γ(M, r)+2r2 · 2−n. Moreover, at most (q+ r(c− 1)) random values are
inserted in the table H ′[·], and each one of them can collide with at most 2(q+ r(c− 1)) + 2r = 2(q+ cr)
values. Therefore,

Pr
[
BD6 sets bad′′′

]
≤ γ(M, r) +

2r2 + 4(q + cr)2

2n
.

The statement in the theorem follows by collecting terms.

Analysis of KD2. One can provide a similar analysis to the above for the (k, s, c)-KDF KD2 described
in Appendix E. The analysis models the function F : {0, 1}∗ × {0, 1}∗ → {0, 1}n underlying KD2 as a
random oracle. We provide some brief intuition regarding such an analysis.

Here, a query (pw, x) is a chain completion query if there exist values (pw,w0), . . . , (pw,wc−1) where
wc−1 = x and w0 = da‖sa for some sa ∈ {0, 1}s, and previous queries to F have set F (pw,wi) = wi+1

for all i = 0, . . . , c− 2. However, no previous query (pw,w′) returned w0.
The simulator keeps the history of the function F in form of a table F [·, ·]. (As above, we denote by

F−1[y] the corresponding set of preimages of y.) A sequence of values w0, w1, . . . , wc−1 is a pw-chain if
there exists sa such that

• w0 = sa and wi = F [pw,wi−1] for all i = 1, . . . , c− 1;

• For all i = 1, . . . , c− 1, we have |F−1[wi]| = 1; and F−1[w0] = ∅.
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Upon a F query (pw,w), the simulator checks if there exists a pw-chain w0, w1, . . . , wc−1 = w. In the
affirmative case, it makes a Test query with input (pw, sa), obtaining an output K ′: If K ′ 6= ⊥, then
F [pw,wc−1] is set to K ′ ⊕

⊕c−2
i=0 F [pw,wi]. In any other case (i.e., if K ′ = ⊥ or no pw-chain exists),

F [pw,w] is set to a fresh random value.
A bound close to the one of Theorem 3.3 can be shown via a similar sequence of games.

H Proof of Theorem 3.4

Proof: We start with a game G0 (boxed statements included, barred statements excluded) that im-
plements the same functionality as LORXSE,m for adversaries that queries Enc(i, ·, ·) ρ times for each
1 ≤ i ≤ m. (There are two extra lines of code, one each preceding a boxed statement, but these have no
effect on the game.) By construction

1

2
+

1

2
Advlorx

SE,m(A) = Pr
[
GA0 ⇒ true

]
. (2)

Let S be a simulator. Game G1 (Figure 8, boxed statements and bracketed statements omitted) transi-
tions to using keys that are uniform and independent of the passwords. We have mρ keys and mρ salts
and m passwords. We index passwords using i and salts/keys via (i, j). Here the adversary A’s oracle
Prim is replaced by the simulator S that has access to an oracle Test.

Let M be the message sampler that expects input mρ and first selects pw[1], . . . ,pw[m]←$ P; then
selects sa[1], . . . , sa[mρ]←$ {0, 1}s; and finally outputs the vector consisting of ρ copies of each of pw[i]
for i ∈ [1 ..m] and sa. The random choice of salts gives that γ(M, ρm) ≤ m2ρ2/2s.

To bound the transition between G0 and G1 we build a distinguisher D for M that works as follows.
On input (pw, sa,K), D implements G0 using pw, sa,K (instead of generating them) and using its own
Prim oracle to respond to A’s primitive queries. When A outputs b′, the adversary D returns 1 if
b′ =

⊕
i b[i] and 0 otherwise. By inspection one can see that

Pr
[
RealDKD,M,mρ ⇒ 1

]
= Pr

[
GA0 ⇒ true

]
and Pr

[
IdealDS,M,mρ ⇒ 1

]
= Pr

[
GA1 ⇒ true

]
.

Applying the above equations to (2) yields that

Pr
[
GA0 ⇒ true

]
≤ Pr

[
GA1 ⇒ true

]
+Advkdf

KD,M,mρ(D, S) (3)

Game G2 (Figure 8, boxed statement omitted, bracketed statements included) is the same as G1 except
after all flags badi for 1 ≤ i ≤ m are set. Let bad be a flag set to true when (

∧m
i=1 badi) first becomes true

in either game G1 or G2. Games G1 and G2 are identical-until-bad and so by the fundamental lemma of
game-playing [9]

Pr
[
GA1 ⇒ true

]
≤ Pr

[
GA2 ⇒ true

]
+ Pr

[
GA1 sets bad

]
. (4)

We are now in position to bound the probability that bad is set in G1 by building an saGUESSP,m,ρ

adversary B. It works as shown in Figure 8. On input sa, it sets r, K and b as in G1’s main procedure
and then runs A. To answer encryption query Enc(i,M0,M1), B executes the procedure from G1. To
answer Test queries from S, it implements the TestSim procedure by querying its own Test oracle on
the queried pw, sa. If the returned pair (i, j) 6= (⊥,⊥) then it returns K[i, j]. Otherwise it returns ⊥. To
answer CorSim queries, it queries its own corruption oracle Cor to obtain the password pw, and then
returns (pw,b[i]). By construction

Pr [G1 sets bad ] ≤ Advsa-guess
P,m,ρ (B) .

We now move on to bound the success probability that A can force the game to output true in G2. Game
G3 (boxed statement omitted) is equivalent to G2, so Pr[GA3 ⇒ true] = Pr[GA2 ⇒ true]. Game G4 adds the
boxed statement to game G3. It ensures that ⊥ is always returned in the case that the simulator guesses
correctly a password and salt pair associated with instance i∗ or in the case that i∗ is corrupted. Games
G3 and G4 are identical-until-bad, where the flag is set now if the value i∗ failed to predict the value of i
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main G0 G1 〈〈G2〉〉

pw[1], . . . ,pw[m]←$P

For j = 1 to m do

r[i]← 0

For j = 1 to ρ do

sa[i, j]←$ {0, 1}s

K[i, j]←$ {0, 1}k

K[i, j]← KD
H (pw[i], sa[i, j])

b←$ {0, 1}m

b′←$AEnc,Cor,Prim

Ret (b′ =
⊕

i b[i])

proc. Enc(i,M0,M1)

r[i]← r[i] + 1 ; j ← r[i]

C←$ EK[i,j](Mb[i])

Ret (sa[i, j], C)

proc. Prim(X)

Y ← STest(X)

Y ← H(X)

Ret Y

proc. Cor(i)

badi ← true

Ret (b[i],pw[i])

proc. Test(pw, sa)

For i = 1 to m do

For j = 1 to ρ do

If (pw, sa) = (pw[i], sa[i, j]) then

badi ← true

〈〈 If (
∧m

i=1 badi) then Ret ⊥ 〉〉

Ret K[i, j]

Ret ⊥

main BTest,Cor(sa)

For i = 1 to m do

r[i]← 0

For j = 1 to ρ do

K[i, j]←$ {0, 1}k

b←$ {0, 1}m

b′←$AEnc,CorSim,Prim

proc. Enc(i,M0,M1)

r[i]← r[i] + 1 ; j ← r[i]

C←$ EK[i,j](Mb[i])

Ret (sa[i, j], C)

proc. Prim(X)

Ret STestSim(X)

proc. CorSim(i)

pw ← Cor(i)

Ret (pw,b[i])

proc. TestSim(pw, sa)

(i, j)← Test(pw, sa)

If i 6= ⊥ then

Ret K[i, j]

Ret ⊥

main G3 G4

pw[1], . . . ,pw[m]←$P

For j = 1 to m do

r[i]← 0

For j = 1 to ρ do

sa[i, j]←$ {0, 1}s

K[i, j]←$ {0, 1}k

b←$ {0, 1}m

i∗←$ [1 ..m]

b′←$AEnc,Cor,Prim

Ret (b′ =
⊕

i b[i])

proc. Enc(i,M0,M1)

r[i]← r[i] + 1 ; j ← r[i]

C←$ EK[i,j](Mb[i])

Ret (sa[i, j], C)

proc. Prim(X)

Y ← STest(X)

Ret Y

proc. Cor(i)

badi ← true

If (i = i∗) then bad← true ; Ret ⊥

Ret (b[i],pw[i])

proc. Test(pw, sa)

For i = 1 to m do

For j = 1 to ρ do

If (pw, sa) = (pw[i], sa[i, j]) then

badi ← true

If (
∧m

i=1 badi) then Ret ⊥

If i = i∗ then bad← true ; Ret ⊥

Ret K[i, j]

Ret ⊥

main CEnc

pw[1], . . . ,pw[m]←$P

For i = 1 to m do

r[i]← 0

For j = 1 to ρ do

K[i, j]←$ {0, 1}k

b←$ {0, 1}m

i∗←$ [1 ..m]

b′←$AEncSim,Cor,Prim

c←
⊕

i6=i∗ b[i]

If (bad = true) then d←$ {0, 1}

Else d← 1

Ret b′ ⊕ c⊕ d

proc. EncSim(i,M0,M1)

r[i]← r[i] + 1 ; j ← r[i]

If i = i∗ then C ← Enc(j,M0,M1)

Else C←$ EK[i,j](Mb[i])

Ret (sa[i, j], C)

proc. Prim(X)

Ret STestSim(X)

proc. Cor(i)

badi ← true

If (i = i∗) then bad← true ; Ret ⊥

Ret (b[i],pw[i])

proc. TestSim(pw, sa)

For i = 1 to m do

For j = 1 to ρ do

If (pw, sa) = (pw[i], sa[i, j]) then

badi ← true

If (
∧m

i=1 badi) then Ret ⊥

If i = i∗ then bad← true ; Ret ⊥

Ret K[i, j]

Ret ⊥

Figure 8: Games and adversaries used in the proof of Theorem 3.4.
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for which badi was last to be set to true (or not set at all). Applying a variant of the fundamental lemma
of game playing [9] gives that

1

m
Pr
[
GA3 ⇒ true

]
= Pr

[
GA4 ⇒ true ∧ good

]

where good is the event that bad was not set in the course of the game. Now in G4 the keys and challenge
bit associated to instance i∗ are never used outside of Enc. We can therefore build from game G4 an
mu-LORSE,ρ adversary C that will play against the i∗ instance, using its own multi-user oracle to respond
to encryption queries against that instance. See Appendix D for the definition of mu-LORSE,ρ. All the
other instances, and all the passwords and salts, are simulated by C for A. A specification of C is given in
Figure 8. Note that it chooses extraneous values K[i∗, j] and b[i∗] which are not used in the rest of the
game. The final output of C is the guess of A but with the rest of the (known) challenge bits stripped
away. Should bad have been set while responding to Test queries, then C outputs a random bit at the
end of the game. In the following, let good be again the event that bad is not set in the course of the
game, which corresponds to the guess i∗ being apt. By inspection we see that C simulates perfectly G4

for A. Thus

1

2
+

1

2
Advmu-lor

SE,ρ (C) = Pr
[
mu-LORCSE,ρ ⇒ true

]

= Pr
[
mu-LORCSE,ρ ⇒ true ∧ good

]
+

1

2
(1− Pr [ good ])

= Pr
[
GA4 ⇒ true ∧ good

]
+

1

2
−

1

2m
.

We have that Pr[good] = 1/m. Rearranging the final equivalence gives

Pr
[
GA4 ⇒ true ∧ good

]
=

1

2
Advmu-lor

SE,ρ (C) +
1

2m
which, combining with the inequalities above, gives the following sequence of inequalities

Advlorx
SE,P,m(A) = 2·Pr

[
GA0 ⇒ true

]
− 1

≤ 2·Pr
[
GA1 ⇒ true

]
+ 2·Advkdf

KD,M,mρ(D, S)− 1

≤ 2·Pr
[
GA2 ⇒ true

]
+ 2·Advsa-guess

P,m,ρ (B) + 2·Advkdf
KD,M,mρ(D, S)− 1

= 2·Pr
[
GA3 ⇒ true

]
+ 2·Advsa-guess

P,m,ρ (B) + 2·Advkdf
KD,M,mρ(D, S)− 1

= 2m ·Pr
[
GA4 ⇒ true ∧ good

]
+ 2·Advsa-guess

P,m,ρ (B) + 2·Advkdf
KD,M,mρ(D, S)− 1

= m ·Advmu-lor
SE,ρ (C) + 2·Advsa-guess

P,m,ρ (B) + 2·Advkdf
KD,M,mρ(D, S)
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