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Abstract. Blind signatures have proved an essential building block for applications that protect privacy while
ensuring unforgeability, i.e., electronic cash and electronic voting. One of the oldest, and most efficient blind
signature schemes is the one due to Schnorr that is based on his famous identification scheme. Although it
was proposed over twenty years ago, its unforgeability remains an open problem, even in the random-oracle
model. In this paper, we show that current techniques for proving security in the random oracle model do not
work for the Schnorr blind signature. Our results generalize to other important blind signatures, such as the
one due to Brands. Brands’ blind signature is at the heart of Microsoft’s newly implemented UProve system,
which makes this work relevant to cryptographic practice as well.
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1 Introduction

In a blind signature scheme, first introduced by Chaum in 1982 [13], a user can have a document signed
without revealing the contents of the document to the signer, and in such a way that the signer will
not be able to recognize it later, when he sees the signature. Blind signatures have proven to be a very
useful building block in applications requiring both anonymity and unforgeability, such as electronic cash
(ecash) and anonymous credentials [9, 12, 11, 10, 3, 28]. For example, in the ecash application, a bank acts
as the signer and signs a coin’s serial number and some other useful information without seeing it, so
that when the coin is later spent, the bank cannot link it to any specific user.

Transactions that ensure unforgeability without violating privacy are of growing interest to crypto-
graphic practice. The European Union E-Privacy Directive [31] limits the scope of the data that orga-
nizations are allowed to collect; so to make sure that it is not in violation of this directive, an online
bank or vendor interacting with a user has an incentive to learn as little as possible about this user.
Therefore, industry leaders such as Microsoft and IBM [30, 37] have been developing, implementing and
promoting cryptographic software tools that promise the best of both worlds: unforgeability for the banks
and vendors, and privacy for the users.

As a result, research on blind signatures has flourished, and provably secure solutions have been
proposed based on well-established theoretical complexity assumptions in the standard model [11, 2, 20,
24]; some of these have been adapted for practical use by IBM [11]. However, schemes in the standard
model either require exponentiation in the RSA group or bilinear pairings, which are typically considerably
slower than, say, elliptic curve operations.

Thus, more efficient solutions that are provably secure in the random-oracle (RO) model remain
of practical importance [1, 7, 4]. Some of the earliest proposed solutions [9, 36, 23] do not have proofs
of security even in the RO model; in fact, the security properties of the Schnorr blind signature is an
important open problem. Moreover, Microsoft’s UProve proposal [29, 30] is based on one of the unproven
blind signatures, namely the one due to Brands [9]. Therefore, the security properties of these unproven
but important blind signatures, is a natural topic to look at.

In a nutshell, a blind signature scheme is secure if it satisfies two key properties: one-more unforgeabil-
ity, which means that an adversary cannot produce more signatures than have been issued; and blindness,
which means that an adversary cannot link a particular signature to a particular signing instance. These
were formalized by Pointcheval and Stern [33, 35] who also proved that a variant of the Schnorr blind
signature [27] satisfies these.

Recall the Schnorr signature scheme which is the most efficient of all the blind signature schemes
proposed in the literature. The signer’s secret key is an exponent x, while his public key is h = gx.
A signature on a message m is obtained, via the Fiat-Shamir heuristic, from the Schnorr identification
protocol, i.e. the three-round proof of knowledge of x. Thus, a signature on a message m is of the form
σ = (a, r) such that gr = ahH(m,a), where H is a hash function that’s modeled as a random oracle in
the security proof. A blind issuing protocol was proposed for this signature back in the 1980s [36], and,
on a high level, it works by having the user “blind” the value a he receives from the signer into some
unrelated a′, then the user obtains c = H(m, a′) and, again, “blinds” it into some unrelated c′ which he
sends to the signer. The signer responds with r which the user, again, “blinds” into r′ such that (a′, r′)
are a valid signature on m.

How secure is this blind signature? Note that, if the Schnorr identification scheme is not secure
(i.e., after some number of interactions with the prover, the adversary can impersonate him), then the
blind Schnorr signature is not one-more unforgeable. Recently, Pass showed that the security of the
Schnorr identification scheme cannot be proven under the discrete-logarithm assumption using black-box
reductions in the standard model [32], so at the very least, it seems that Schnorr blind signatures require
that we assume the security of Schnorr identification (also studied by Bellare and Palacio [5]). Perhaps
an even stronger assumption may be reasonable. Can we prove it secure under even this or a stronger
assumption?

To make this question more interesting, let us make it more general. Let us consider not just the
Schnorr blind signature, but in general the blind variants of all Fiat-Shamir based signature schemes
constructed along the lines described above: the signer acts as the prover in an identification protocol.
And let us see if they can be proven secure under any reasonable assumption (by reasonable, we mean
an assumption that is not obviously false), not just specific ones.



Pointcheval and Stern showed that we can prove the security of such schemes in the RO model when
the underlying identification scheme is a witness-indistinguishable proof protocol for proving knowledge
of a secret key, such that many secret keys are associated with the same public key. Their result does
not apply to the original Schnorr blind signature, in which there is exactly one secret key corresponding
to the public key. Other important blind signatures to which it does not apply are the Brands’ blind
signatures (the ones at the heart of Microsoft’s UProve system), and the blind signatures based on the
GQ signature [9, 23].

The idea of the Pointcheval-Stern reduction (also called “an oracle replay reduction”) is to replay the
attack polynomially many times with different random oracles in order to make the attacker successfully
forge signatures. More precisely, we first run the attack with random keys, tapes and oracle f . Then, we
randomly choose an index j and we replay with same keys and random tapes but with a new, different
oracle f ′ such that the first j − 1 answers are the same as before. We expect that, with non-negligible
probability we will obtain two different signatures, σ, σ′ of the same message m and we will be able to
use them to solve a hard algorithmic problem (usually the one underlying the blind signature scheme) in
polynomial time.

This proof technique works for standard (i.e. not blind) versions of the Schnorr, Brands and GQ
signatures. They also showed that it works for a modification of Schnorr blind signature which is less
efficient than the original Schnorr’s. A very natural question is: can it work for the original Schnorr blind
signature and its generalizations, such as the Brands or GQ blind signatures?

Let us take a closer look at oracle replay reductions, as used by Pointcheval and Stern. Their reduction
can be modeled as a Turing machine that has a special tape that is used specifically for answering random
oracle queries; it always uses the next unused value when answering, afresh, the next random oracle
query. Our result is that, in fact, this type of oracle replay reductions cannot be used to prove security
of generalized Schnorr blind signatures, no matter how strong an assumption we make. Put another way,
any such reduction can be used in order to break the underlying assumption.

What are the implications of our results on the security of Schnorr blind signatures and generaliza-
tions? We must stress that our results do not in fact constitute an attack, and so for all we know, these
schemes might very well be secure. However, we have essentially ruled out all known approaches to proving
their security. So in order to give any security guarantee on these signature schemes, the cryptographic
community would have to come up with radically new techniques.

Related work Fischlin and Schröder [20] show that proving security of a broad class of blind signature
schemes (which, in particular, includes what we refer to as generalized Schnorr blind signatures) via
black-box reductions in the standard model is as hard as solving the underlying hard problem. Their
technique uses the “meta-reduction” paradigm to show that black-box reductions for this type of blind
signatures can be turned into solvers for hard non-interactive assumptions. However, their result does
not rule out reductions in the random-oracle model, and in fact is technically very different from ours for
that reason.

Recently, Rafael Pass studied the assumptions needed for proving security of various cryptographic
schemes [32]. In particular, relevant to our work, he considers the Schnorr identification scheme and
variants, and a category of blind signatures called “unique blind signatures.” His work is different from
ours in that he considers whether so-called r-bounded-round assumptions are strong enough to prove, in a
black-box fashion in the standard model, the security of certain schemes when repeated more than r times;
whereas we rule out, the existence of a very special type of reduction, irrespective of assumption even after
just one signature was issued. His results apply to Schnorr blind signatures (and their generalizations) in
the following way: he shows that no so-called bounded-round assumption can imply secure composition of
the Schnorr identification scheme using black-box reductions (and therefore the Schnorr blind signature).

Schnorr and Jakobsson [15] proved security of the Schnorr blind signature in the combined random
oracle and generic group model. The generic group model is a very restricted setting in which the only way
to sample group elements is by applying group operations; this does not correspond to any intractability
assumption.

We study a very specific way of programming the random oracle reductions. Other variants of random
oracle reductions have been considered in the literature and their relative strengths have been studied in
prior work [19, 26]. In Section 3.1, we compare these variants with ours.



2 Preliminaries

Prior to presenting our main result, we are going to provide the necessary notation and definitions of
the building blocks used in our proof. We will also explicitly define the class of blind signatures that our
result applies to.

2.1 Unique witness relation

A witness relation for a language L ∈ NP is defined as [21]:

Definition 1 (Witness relation). A witness relation for a language L ∈ NP is a binary relation RL
that is polynomially bounded (i.e., (h, x) ∈ RL implies |x| ≤ poly(|h|)), is polynomial-time-recognizable
and characterizes L by

L = {h : ∃x s.t. (h, x) ∈ RL}

For h ∈ L, any x satisfying (h, x) ∈ RL is called a witness (for the membership h ∈ L). By RL(h) we
denote the set of witnesses for the membership h ∈ L; that is, RL(h) = {x : (h, x) ∈ RL}. If for each
h ∈ L, there exists a unique x ∈ RL(h) then we say that RL is a unique-witness relation.

An example of a unique witness relation is the discrete logarithm problem where RG,g,q = {h, x s.t. x ∈
Zq and gx = h} and g, h are members of a cyclic group G of order q. Similarly, the RSA problem can be
viewed as a unique witness relation where for a randomly chosen positive integer e, RN = {h, x s.t. x ∈
Z∗N and xe = h} where N = pq and p, q are distinct odd primes. For formal definitions of the DL and
RSA problem refer to Appendix A.

2.2 Intractability Assumptions

We will use the definition given by Pass [32]: an intractability assumption is modeled as an interaction
between a probabilistic machine C (the challenger) and an attacker A where they are both given as input
1k (k is the security parameter). A’s running time is measured as a function of k.1 Once A halts, the
challenger outputs 1 or 0. Any challenger C together with a threshold function t(·) intuitively corresponds
to the assumption:

For every polynomial time adversary A there exists a negligible function ν such that for
all k, the probability that C outputs 1 after interacting with A is bounded by t(k) + ν(k).

We say that A breaks C with respect to t with advantage p if:

Pr[〈A,C〉(1k) = 1] ≥ t(k) + p.

As Pass [32] notes, we can easily model all standard cryptographic assumptions as a challenger C and
a threshold t. For example, the discrete logarithm assumption corresponds to the threshold t(k) = 0 and
the 2-round challenger C who on input 1k picks a random x and sends gx to A. If the attacker responds
with x′ = x then C outputs 1.

2.3 Σ-Protocols

Σ-protocols are a class of interactive proofs (see Appendix B) where (P, V ) have a common input h and
an x such that (h, x) ∈ RL is P ’s private input. Their main characteristic is that they have exactly 3
rounds of the following type: (1) P sends a message a to V , (2) V responds with a random challenge c
chosen from a domain of size Θ(k) and (3) P resends a reply r. V decides whether to accept or not given
the information he has seen: (h, a, c, r). Formally:

Definition 2 (Σ-Protocol). A protocol P is said to be a Σ-protocol for a relation RL if:

– P is of the above three rounds form, and if (P, V ) follow the protocol, the verifier always accepts.

1 Pass also requires that there be a limit to the rounds of interaction between A and C: an r-bounded assumption is one in
which there exists some polynomial r(·) such that C on input 1k communicates with A for at most r(k) rounds; in this
paper, however, assumptions that do not bound the number of rounds are still meaningful.



– From any h and any pair of accepting conversations on input h, (a, c, r), (a, c′, r′) where c 6= c′, one
can efficiently compute x such that (h, x) ∈ RL (special soundness).

– There exists a polynomial-time simulator S, which on input h and a random c outputs an accepting
conversation of the form (a, c, r), with the same probability distribution as conversations between the
honest P, V on input h (special honest-verifier zero-knowledge).

A Σ-protocol is said to be unique-witness Σ-protocol (UWΣ) if RL is a unique-witness relation.

An example of a Σ-protocol is the Schnorr Identification scheme [36]. Let G be a group of prime order q
with generator g, and let Zq denote the field of integers modulo q. Schnorr’s identification scheme works
as follows:

Prover(q, g, h = gx) Verifier(q, g, h)

y ← Zq, a = gy a−−−→
c←−−− c← Zq

r = y + cx mod q r−−−→ gr
?
= ahc

Σ-protocols are an essential building block for blind signatures and anonymous credentials. For ex-
ample Brands [9] scheme is based on a Σ-protocol while CL anonymous credentials [11] uses ZK proofs
which are based on Σ-protocols.

2.4 Fiat-Shamir Heuristic

Fiat and Shamir [18] proposed a method to transform any three-round interactive proof system with
negligible soundness error, like Σ-protocols, into a digital signature scheme using a hash function, modeled
as a random oracle.

To transform a three-round proof system into a signature scheme, one could, instead of a random c,
compute c = H(a,m), where H → {0, 1}∗ is a hash function. Then, the Fiat-Shamir transformation uses
c to create a signature σ(m) = (a, r). Specifically:

– Gen(1k) : (h, x)← RL, SK = x,PK = (h,H).

– Sig(m): produce a honestly using x, set c = H(m, a), produce r honestly for this c, output σ(m) =
(a, r).

– Ver(m, (a, r)): c = H(a,m) and check if (a, c, r) is valid.

Famous digital signatures that have been constructed from Σ-protocols using the Fiat-Shamir heuristic
include Schnorr’s [36] and GQ signatures [23] and they have been proven secure in the RO model [33].

Going back to our running example, Schnorr’s identification scheme can be easily turned into a
signature scheme using the Fiat-Shamir heuristic. The Signer has a secret/public key pair (h, x) and a
message m. To sign m the following steps take place: (1) y ← Zq, (2) a = gy, (3) c = H(m, a), and (4)
r = y+ cx mod q. The signature on the message is σ(m) = (c, r) and in order to verify the signature, one
should check whether w = H(m, gr/yc).

2.5 Blind Signatures

Blind signatures are a special case of digital signatures. They have a blind signature issuing protocol
in which the signer doesn’t learn anything about the message he is signing. Formally, a blind signature
scheme is a four-tuple consisting of two interactive Turing machines, the Signer and the User, (S,U) and
two algorithms (Gen,Verify) [25].

– Gen(1k): is a PPT key-generation algorithm which takes as an input a security parameter 1k and
outputs a pair (pk, sk) of public and secret keys.

– S(sk, pk), U(pk,m): S and U engage in an interactive protocol of some polynomial (in the security
parameter) number of rounds. At the end of this protocol S outputs either “completed” or “not-
completed” and U outputs either “fail” or σ(m). The signing algorithm Sign(sk, pk,m) is implicitly
defined from S and R (i.e., in order to compute a signature σ on a message m, the signer simulates
the interaction between S(sk, pk) and U(pk,m)).



– Verify(pk,m, σ(m)): is a deterministic polynomial-time algorithm, which outputs “accept”/“reject”
with the requirement that for any message m, and for all random choices of key generation algorithm,
if both S and U follow the protocol then S always outputs “completed”, and the output of U is always
accepted by the verification algorithm.

A blind digital signature scheme is secure if (informally) for all the probabilistic polynomial time
algorithms A there exists a security parameter kA such that for all k > kA the following two properties
hold [25]:
- Blindness: the signer is unable to view the messages he signs (protection for the user). Furthermore,

a malicious signer cannot link a (m,σ(m)) pair to any particular execution of the protocol.

-One-more Unforgeability: a user interacting with a signer S cannot output an additional, valid
message/signature pair (m,σ(m)) no matter how many (`) pairs of messages/signatures of S he has seen
(protection for the signer).
For the full versions of the above definitions please refer to [25] or Appendix C.

Blind signature issuing protocols have been proposed for many traditional digital signature schemes
constructed via the Fiat-Shamir heuristic. For the Schnorr signature, which is our running example, the
proposed blind issuing protocol [15] would work as follows:

Signer(q, g, h = gx) User(q, g, h,m)

y ← Zq, a = gy a−−−→
c←−−− α, β ← Zq, c′ = H(m, agαhβ), c = c′ + β

r = y + cx mod q r−−−→
gr

?
= ahc, r′ = r + α, output r′, c′

We denote gr
′
h−c

′
by a′. The signature is: σ(m) = (a′, c′, r′) and the verification checks whether c′ =

H(m, a′).
Ever since this protocol was proposed, its security properties were an open problem. Okamoto proposed

a modification of the protocol [27]; Pointcheval and Stern proved security of this modification [33, 35].
Our work studies this blind signature and its generalizations, defined as follows:

Definition 3 (Generalized Blind Schnorr Signature). A blind signature scheme (Gen, S, U,Verify)
is called Generalized Blind Schnorr Signature if:

1. (sk, pk) ∈ RL is a unique witness relation for a language L ∈ NP.
2. There exists a Σ-protocol (P, V ) for RL such that for every (sk, pk) ∈ RL the prover’s algorithm,

P (sk, pk), is identical to the signer’s blind signing algorithm S(sk, pk).
3. Let Sign(sk, pk,m) be the signing algorithm implicitly defined by (S,U). Then, there exists a Σ-

protocol P (sk, pk), V (pk) such that, in the random oracle (RO) model, a signature σ = (a, c, r),
where c = H(m, a) is distributed identically to a transcript of the Σ-protocol.

4. There exists an efficient algorithm that on input (sk, pk) a “valid tuple” (a, c, r) and a value c′, com-
putes r′ s.t. (a, c′, r′) is a valid tuple. (By “valid tuple” we mean a signature for which the verification
equation holds.)

Let’s go back to our running example of Schnorr’s blind signature and see why it falls under the generalized
blind Schnorr signature category. (1) The secret/public key pair is an instance of the DL problem which is
a unique witness relation; (2) the signer’s side is identical to the prover’s side of the Schnorr identification
scheme, which is known to be a Σ-protocol; (3) the signature σ(m) = (a′, c′, r′) is distributed identically
to the transcript of the Schnorr identification protocol since a′ comes uniformly at random from G; c′ is
truly random in the RO model, and r′ is determined by α (4) finally, for a tuple (a, c, r) and a value c′

one can compute r′ = r − cx+ c′x so that (a, c′, r′) is still a valid tuple.
The definition also captures other well-known blind signature schemes, such as the blind GQ [23] and

Brands [9] (for Brands also see Section 4).

3 Security of Blind Signatures

As we mentioned above, one-more unforgeability of generalized blind Schnorr signatures is an open
problem. In this section we will first present a general class of RO reductions that can be used to model



all the known RO reductions in the literature used to prove the security of digital signatures. Then,
we will prove that generalized blind Schnorr signature schemes cannot be proven unforgeable, and thus
secure, using these reductions.

3.1 Naive RO replay reductions

We first explicitly describe the type of reductions that our result rules out.

Definition 4 (Naive RO replay reduction). Let B be a reduction in the random-oracle model that
can run an adversary A, and may also reset A to a previous state, causing A to forget B′s answers to its
most recent RO queries. We assume, without loss of generality, that if A has already queried the RO on
some input x, and hasn’t been reset to a state that’s prior to this query, then A does not make a repeat
query for x.

We say that B is a naive RO replay reduction if: B has a special random tape for answering the RO
queries as follows: when A queries the RO, B retrieves the next value v from its RO tape, and replies
with c = f(input , v) where input is the input to the reduction, and f is some function.

B is a perfect naive RO replay reduction if B always gives valid responses to A, i.e. its behavior is
identical to that of the honest signer.

Let’s now take a closer look at known reductions for proving security of signatures in the RO model and
see whether they fall under the naive RO replay reduction category. We first look at the reduction given
by Pointcheval and Stern [33] for proving security of blind signatures. Their reduction could be easily
modeled as a naive RO replay reduction with f being the identity function. PS reductions are perfect
since they always create a signature. The same holds for the reduction given by Abe [1].

To convince the reader that our way of modeling reductions in the RO model is a very natural one,
let us also look at the reduction given by Coron [14] proving the security of full domain hash (FDH) RSA
signature. Coron’s reduction works as follows: the reduction, B, gets as input (N, e, y) where (N, e) is the
public key and y is a random element from Z∗N and tries to find x = yd mod n. B runs an adversary A,
who can break the signature, with input the public key. As usual, A makes RO and signing queries which
B answers. Whenever A makes an RO query, B picks a random r ∈ Z∗n and either returns h = re mod N
with probability p or returns h = yre mod N with probability 1− p. So, it is pretty straightforward that
we could model Coron’s reduction as a naive RO replay reduction by interpreting the contents of an RO
tape as r and the output of a p-biased coin flip (return either re or yre).

Other well-known reductions used in the literature to prove security of digital signatures in the RO
model can be modeled as naive RO replay reductions as well [7, 4, 6].

Programmability Let us compare naive RO replay reductions with other previously defined types. Non-
programmable random-oracle reductions [26] do not give the reduction the power to set the answers to
the RO queries; instead these answers are determined by some truly random function. Naive RO replay
reductions can be more powerful than that: they can, in fact, answer the adversary’s queries in some
way they find convenient, by applying the function f to the next value of their RO tape. However, they
are not as powerful as the general programmable RO reductions: naive RO replay reductions are not
allowed, for example, to compute an answer to an RO query as a function of the contents of the query
itself. Fischlin et al. [19] also consider an intermediate notion of programmability, called “random re-
programming reductions”, which are incomparable to ours (but it would be interesting to extend our
results to these reductions as well).

3.2 Theorem for perfect naive RO replay reduction

Our first result is that perfect naive RO replay reductions cannot be used to prove security of generalized
blind Schnorr signature schemes. We will extend it to non-perfect reduction in Section 3.3.

Theorem 1. Let (Gen, S, U, V erify) be a generalized blind Schnorr signature scheme. Assume that there
exists a polynomial-time perfect naive RO replay reduction B such that BA breaks an intractability as-
sumption C for every A that breaks the unforgeability of the blind signature (S,U). Then, C can be broken
in polynomial time.



We prove this theorem below. What are the consequences of this theorem for the Schnorr blind signatures,
which is our running example? What we have shown is that, even if we assume security of the Schnorr
identification scheme, and not just the hardness of the discrete logarithm problem, we still cannot exhibit
a perfect naive RO replay reduction that will prove Schnorr blind signatures secure. In fact, somewhat
oddly, even if we assume that the Schnorr blind signature scheme is secure, we still cannot find a perfect
naive RO replay reduction B that will break this assumption should A be able to violate the unforgeability
of the scheme. This is because a perfect naive reduction requires that the hash function queries be handled
in a very specific way.

Proof of theorem for perfect naive RO replay reduction We start by introducing some terminol-
ogy. Note that the reduction B is given black-box access to A and is allowed to run A as many times
as it wishes, and instead of running A afresh every time, it may reset A to some previous state. At the
same time, B is interacting with its own challenger C; we do not restrict C in any way.

Consider how B runs A. B must give to A some public key pk for the signature scheme as input.
Next, B runs the blind signing protocol with A; recall that a generalized blind Schnorr signing protocol
always begins with a message a from the signer to the user. When B runs A again, it can choose to give
it the same (pk , a) or different ones. It is helpful for the description of the adversary we give, as well as
for the analysis of the interaction, to somehow organize various calls that B makes to A.

Every time that B runs A, it either runs it “anew”, providing a new public key pk and first message
a, or it “resets” it to a previous state, in which some pk and a have already been given to A. In the latter
case, we say that A has been “reincarnated”, and so, an incarnation of A is defined by (pk , a). Note that
B may reincarnate A with the same (pk , a) several times. In this case, we say that this incarnation is
repeated. Thus, if this is the ith time that A has been reset to a previous state for this specific (pk , a),
then we say that this is the ith repeat of the (pk , a) incarnation. Without loss of generality, B never runs
A anew with (pk , a) that it has used (i.e., if B has already created an incarnation for (pk , a), it does not
create another one).

Let us consider what happens once A receives (pk , a). The signing protocol, in which A is acting
as the user, expects A to send to B the challenge c. Additionally, A is free to make any random oracle
queries it chooses. Once B receives c, the signing protocol expects it to send to A the response r. After
that, the security game allows A to either request another signature, or to output a one-more signature
forgery, i.e., a set of signatures (one more than it was issued); also, again, A can make RO queries. The
adversaries that we consider in the sequel will not request any additional signatures, but will, at this
point, output two signatures (or will fail).

Note that, if B is a perfect naive RO replay reduction (as defined above), then it will always provide
to A a valid response r to the challenge c; while if it is not perfect, then it may, instead, provide an
invalid response, or stop running A at this point altogether. Thus, a particular run can be

– Uncompleted: no valid response, r, was given by B at the end of the protocol (cannot happen if B is
perfect).

– Completed but unsuccessful: a valid r was given but A was not able to output a forgery.
– Completed and successful: a valid r was given and A did output a forgery.

The technique we follow to prove our theorem is the following. We first define a special adversary which
we call the super adversary, sA, who exists if it is easy to compute the signing key for this signature scheme
from the corresponding verification key. We do not show how to construct such an adversary (because we
do not know how to infer the signing key for generalized blind Schnorr, and in fact we generally assume
that it is impossible to do so in polynomial time); instead, we construct another adversary, the personal
nemesis adversary, pA, whose behavior, as far as the reduction B can tell, will be identical to sA.

Note that, generally, an adversary is modeled as a deterministic circuit, or a deterministic non-
uniform Turing machine: this is because, inside a reduction, its randomness can be fixed. Thus, we need
sA to be deterministic. Yet, we need to make certain randomized decisions. Fortunately, we can use a
pseudorandom function for that. Thus, sA is parametrized by s, a seed to a pseudorandom function
Fs : {0, 1}∗ → {0, 1}k 2. Additionally, it is parameterized by two messages m1,m2: signatures on these
messages will be output in the end.

2 We know that if B exists then secure signatures exist which imply one way functions existence and PRFs existence, so
this is not an extra assumption



Consider sAs,m1,m2 that interacts with a signer as follows:

Definition 5 (Perfect super adversary sAs,m1,m2). On input the system parameters:

1. Begin signature issue with the signer and receive (pk, a).
2. Find sk.
3. Use sk to compute the signatures: pick a1, a2 and make two RO queries (m1, a1) and (m2, a2). Produce

two forged signatures for m1,m2, denote them as σ1 and σ2.
4. Resume the signature protocol with the signer: send to the signer the value c = Fs(trans) where trans

is the current transcript between sAs,m1,m2, the RO and the signer, and receive from the signer the
value r in response (which will always be valid for the perfect naive RO reduction B).

5. Output the two message-signature pairs, (m1, σ1) and (m2, σ2).

Note that when sA executes the signature issue protocol with the signer it computes c as a pseudorandom
function of its current transcript with the RO and the signer. Thus, there is only a very small probability
(2−k) for sA to send the same c in another run.

The following lemma follows directly from the definition of a reduction B:

Lemma 1. If a perfect naive RO replay reduction B exists, then BsA(·) (pk, system params) solves the
assumption C.

Next, we define the personal nemesis adversary, pA. Similarly to sA, it is parameterized by (s,m1,m2);
and so we denote it pAs,m1,m2 . To the reduction B, pAs,m1,m2 will look exactly the same as sAs,m1,m2 ,
even though pAs,m1,m2 cannot compute sk . Instead, pAs,m1,m2 looks inside the reduction B itself; this is
why we call pAs,m1,m2 “B’s personal nemesis”:

Definition 6 (Perfect B’s personal nemesis adversary pAs,m1,m2). On input the system parameters,
pAs,m1,m2 performs a “one-more” forgery attack, using the following special powers: (1) pAs,m1,m2 has
full access to B’s random oracle tape; (2) in case pAs,m1,m2 is rewound, he remembers his previous state.

pAs,m1,m2 performs the one-more forgery for ` = 1. Thus, he runs one signature issuing session with
the signer and then outputs two valid signatures. Specifically, in it’s ith incarnation, pA does the following:

1. Begin signature issue with the signer, and receive (pk, a).
2. Do nothing (pA cannot find sk).
3. – If (pk , a) are the same as in some previous incarnation j, then make the same RO queries as the

last time this incarnation was run.
– If (pk , a) is a new tuple, then this is a new incarnation; do the following:

• If pA has already computed the sk for this pk, then use this power to forge two signatures on
(m1, m2); call the resulting signatures σ1 and σ2,
• else (if sk not already known), pA computes two signatures using its special access to B by

looking in advance what the next c1, c2 are going to be, then picking random r1, r2 and solving
for a1, a2 using the third property of generalized blind Schnorr signatures and the simulator
from the underlying Σ-protocol. pA makes two RO queries of the form (m1, a1), (m2, a2) and
gets c1, c2 in response. Call the resulting signatures σ1 and σ2.

4. Resume the signature issue protocol with the signer: send to the signer the value c = Fs(trans) where
trans is the current transcript between pA, the RO and the signer, and receive from the signer the
value r in response (which will be valid for the perfect naive RO reduction B).

5. – If this is the first time for this incarnation, then output the two message-signature pairs, (m1, σ1)
and (m2, σ2).

– If this is a repeat of some incarnation j, and the value c = Fs(trans) 6= cj, where cj is the
corresponding value from incarnation j, then using r and rj, property 3 of generalized blind Schnorr
signatures and the extractability of the Σ-protocol, compute sk. Next, compute σ1 and σ2 consistent
with the RO queries from incarnation j, using property 4 of generalized blind Schnorr signatures.

– If i is a repeat of j, and the value c = Fs(trans) = cj, then fail (unsuccessful run).

Lemma 2. If B is a perfect naive RO replay reduction, then B’s view in interacting with pAs,m1,m2 is
indistinguishable from its view when interacting with sAs,m1,m2.



Proof. In order to prove this, we will analyze the behavior of sA and pA step by step, as they were defined,
and we will show that B receives indistinguishable views when interacting with sAs or pAs with all but
negligible probability (to simplify notation we will omit writing the messages m1,m2 to the parameters
given to the adversaries). We begin by defining sARand and pARand who behave exactly as sAs and pAs
do but using a truly random source instead of the pseudorandom function Fs. We will use the following
hybrid argument:

sAs ≈ sARand ≈ pARand ≈ pAs

Let us first argue that sAs ≈ sARand. This follows by a straightforward reduction that contradicts
the pseudorandomness of Fs. Similarly, it holds that pARand ≈ pAs.

Let’s now prove that sARand ≈ pARand by examining step by step the behavior of sARand and pARand.

1. In the first step, both sARand and pARand begin the signature issuing with the Signer and wait for
him to respond with (pk, a). From the point of view of B there is no difference whether talking to
sARand or pARand.

2. In the second step there is no interaction with B.

3. Here we have two different cases on pARand’s behavior depending on whether the current incarnation
is repeated or not. In both cases the interaction between pARand and B consists of pARand making two
RO queries where pARand either makes two RO queries on fresh values that computed on the current
step or makes the same RO queries as in the repeated incarnation (so, there is no difference for B).
Thus, in Step 3, no matter who B is talking to, B receives two RO queries distributed identically.

4. Step 4 is identical for both sARand and pARand. Just send c = R(trans), where R is a random function
and receive from the signer the value r in response.

5. Since r will always be a valid response (recall that B is perfect), sARand will always output two
message-signature pairs, (m1, σ1) and (m2, σ2). pARand will also output (m1, σ1) and (m2, σ2), which
are distributed identically to the ones output by sARand unless it is the case that the incarnation is a
repeat of j and c = R(trans) = cj . In that case pARand fails. The probability that c = R(trans) = cj
is only 2−Θ(k). Thus, with probability 1− 2−Θ(k) B’s view is identical no matter whether he is talking
to sARand or pARand.

So, by the hybrid argument we defined at the beginning of the proof, it holds that sAs ≈ pAs. ut

3.3 Non-perfect naive RO replay reductions

Let’s apply our result to a broader class of reductions by removing the requirement that our reduction
be perfect, i.e. always outputs valid responses. Instead, we will require an upper bound on the number
of times that the reduction can invoke the adversary.

Definition 7 (L-Naive RO replay reduction). A naive RO replay reduction B is called L-naive RO
replay reduction if there is a polynomial upper bound L on how many time B resets A; this upper bound
is a function of the number of RO queries that A makes, but otherwise is independent of A, in particular,
of A’s success probability.

Our previous analysis wouldn’t work for the L-naive RO replay reduction. Think of the scenario where
pA receives a message a from B for the first time but is not given a valid r at the end. Then in the repeat
of this incarnation, pA will have to make the same two RO queries he did before and output forgeries
if given a valid r at the end. But, given the definitions of B and pA we gave before, pA will now get
different c1 and c2 for his RO queries and thus he will not be able to output the same forgeries he had
prepared before.

What changes in our new analysis is that:

– pA is also given write access to B’s RO tape

– both pA and sA will be successful in producing a forgery with probability only 1/(
(
L
2

)
+ L).



3.4 Theorem for L-naive RO replay reductions

Our second result is that L-naive RO replay reductions cannot be used to prove security of generalized
blind Schnorr signature schemes.

Theorem 2. Let (Gen, S, U, V erify) be a generalized blind Schnorr signature scheme. Suppose that there
exists a polynomial-time L-naive RO replay reduction B such that BA breaks an intractability assumption
C for every A that breaks the unforgeability of the blind signature (S,U). Then, C can be broken in
polynomial time.

This theorem rules out a broader class of security reductions. If we look back to our running example
of Schnorr blind signatures, this theorem shows that under any assumption (DL, security of Schnorr
identification, etc.) we cannot find an L-naive RO replay reduction to prove its security.

Proof of theorem for L-naive RO replay reduction Similar to what we did before, we first define
the super adversary sAs,m1,m2,L who knows L and works as follows:

Definition 8 (Super adversary sAs,m1,m2,L). On input the system parameters:

1. Begin signature issue with the signer and receive (pk, a). Decide whether this is going to be a successful
incarnation: choose “successful” with probability 1

(L2)+L
and “unsuccessful” with probability 1− 1

(L2)+L
.

2. Find sk.
3. Use sk to compute the signatures: pick a1, a2 and make two RO queries (m1, a1) and (m2, a2). Produce

two forged signatures for m1,m2, denote them as σ1 and σ2.
4. Resume the signature protocol with the signer: send to the signer the value c = Fs((trans)) where

trans is the current transcript between sA, the RO and the signer, and receive from the signer the
value r in response.

5. If r is not valid, then this was an uncompleted run, then fail.
6. If r valid (completed run) and in Step 1 it was decided that this is a successful incarnation, output

the two message-signature pairs, (m1, σ1) and (m2, σ2). Otherwise fail.

The following lemma (similar to Lemma 1) follows from the definition of B:

Lemma 3. If an L-naive RO replay reduction B exists, then BsA(·) (pk, system params) solves the as-
sumption C.

Now we are going to define the personal nemesis adversary, pAs,m1,m2,L.

Definition 9 (B’s personal nemesis adversary pAs,m1,m2,L). On input the system parameters, pAs,m1,m2,L

performs a “one-more” forgery attack, using the following special powers: (1) pAs,m1,m2,L has full read
and write access to B’s random oracle tape; (2) in case pAs,m1,m2,L is rewound, it does remember his
previous state.

pAs,m1,m2,L performs the one-more forgery for ` = 1. Thus, it runs one signature issuing session with
the signer and then outputs two valid signatures with probability 1

(L2)+L
. Specifically, in it’s ith incarnation

3, pAs,m1,m2,L does the following:

1. Begin signature issue with the signer, and receive (pk, a).
2. Do nothing.
3. – If (pk, a) is received for the first time, then this is a new incarnation; do the following:

• If pA has already found sk for this pk, then use this power to forge two signatures on (m1,m2);
call these signatures σ1 and σ2,
• else, pA guesses (i1, i2) where i1(≤ i2) denotes the repeat where c1 will be given in response

to pA’s next RO query; and i2 is pA’s guess for the first complete repeat of this incarnation.
Then, pA randomly picks v1, v2, sets c1 = f(v1), c2 = f(v2), picks r1, r2 and solves for a1, a2
using the third property of generalized blind Schnorr signatures and the simulator from the
underlying Σ-protocol. pA makes two RO queries of the form (m1, a1), (m2, a2) and gets c1, c2
in response.

3 Recall that the terms “incarnation”, “completed” run, “successful run were defined in Section 3.2



– If this is the repeat incarnation i1, and B wants a fresh answer to the query (m1, a1) then write
v1 on B’s RO tape; else (if this isn’t repeat i1) write a random v′1.

– If this is the repeat incarnation i2 then write v2 on B’s RO tape; else (if this isn’t repeat i2) write
a random v′2.

4. Resume the signature issue protocol with the signer: send to the signer the value c = Fs(trans) where
Fs is a PRF and trans is the current transcript between pA, the RO and the signer, and wait to
receive the value r as a response from the signer.

5. – If r is valid (completed run):

• If this is the first time for this incarnation, then output the two message-signature pairs,
(m1, σ1) and (m2, σ2).
• If this is the second successful repeat for this incarnation and the value c = Fs(trans) 6= cj,

where cj is the corresponding value from the jth run of this incarnation, then using r and
rj solve for sk using property 4 of generalized Schnorr signatures. Next, compute σ1 and σ2
consistent with the RO queries from this incarnation.
• If this is the second successful repeat for this incarnation but c = Fs(trans) = cj, then fail

(unsuccessful run).
• If the guess (i1, i2) was correct (that is, this is repeat i2 of this incarnation, it was successful,

and B’s answer to (m1, a1) was the same as in incarnation i1; and in incarnation i1, B wanted
a fresh answer to the (m1, a1) RO query) then output the two message-signature pairs, (m1, σ1)
and (m2, σ2).
• If the guess (i1, i2) was wrong then fail (unsuccessful run).

– If r is not valid or r was not received then fail.

Lemma 4. If B is an L-naive RO replay reduction, then B’s view in interacting with pAs,m1,m2 is indis-
tinguishable from its view when interacting with sAs,m1,m2.

Proof. Similarly to the proof of Lemma 2, we first consider pA and sA that, instead of access to a
pseudorandom function Fs have access to a truly random function Rand . Just as before, by pseudoran-
domness of Fs, pAs,m1,m2 ≈ pARand ,m1,m2 and sAs,m1,m2 ≈ sARand ,m1,m2 ; so it is sufficient to show that
pARand ,m1,m2 ≈ sARand ,m1,m2 . (We will omit the subscripts “Rand ,m1,m2” in the rest of the proof.)

Consider B’s view when interacting with sA for fixed (pk , a), i.e. in a given incarnation. Until B
completes the incarnation by sending a valid response r, B does not know whether this incarnation is
successful or not; thus B’s view with sA is identical to his view with sA′ defined as follows: sA′ remembers
previous times when B ran it. It is identical to sA, except that it decides (at random) whether or not this
incarnation is successful the first time that B correctly completes this incarnation by sending to sA′ the
correct r in Step 4. The way that sA′ will determine whether this is a successful incarnation is by picking
(i1, i2) the way that pA does, and then making the incarnation successful if it picked them correctly; note
that sA′ makes an incarnation successful if it picks the unique correct (i1, i2) out of

(
L
2

)
+L possibilities

(
(
L
2

)
ways of picking i1 6= i2, L ways to pick i1 = i2).

Next, let us compare B’s view with sA′ with his view with pA. They make identically distributed
queries to the random oracle; then they successfully produce forgeries whenever they have correctly
guessed i1 and i2 (except if pA sends the same query c in both the first and the second complete run of
this incarnation, which happens with only negligible probability). Therefore, the views that B receives
when talking to sA′ and pA are statistically indistinguishable, which completes the proof of the lemma.

4 Brands’ Blind Signature Scheme

In this section we show that our results apply to the blind signature scheme given by Brands in [8] which
constitutes the base for his well-known e-cash system.

Let’s first describe his construction. G is a group of order q, where q a k-bit prime, and g is a generator
of the group. The signer holds a secret key x ← Zq and the corresponding public key h = gx, while the
user knows signer’s public key h as well as g, q. H is a collision resistant hash function. The signature
issuing protocol works as follows:



Signer (g, h, x) User(g, h)

α←−−−−−− m = gα

w ∈R Zq, z ← mx, a← gw, b← mw z, a, b
−−−−−−−→

s, t ∈R Zq, m′ ← msgt, z′ ← zsht

u, v ∈R Zq, a′ ← augv, b′ ← autbus(m′)v

c←−−−−− c′ ← H(m′, z′, a′, b′), c← c′/u mod q

r ← w + cx mod q r−−−−−−→
hca

?
= gr, zcb

?
= mr

r′ ← ur + v mod q

A signature on m′ is σ(m′) = (z′, a′, b′, c′, r′). Anyone can verify a signature by first computing c′ =

H(m′, z′, a′, b′) and then checking whether the following equations hold: hc
′
a′

?
= gr

′
, (z′)c

′
b′

?
= (m′)r

′
.

4.1 Security of Brands’ Blind Signatures

Brands never gave a formal proof of security for his blind signatures. In this section, we argue that the
security of his scheme cannot be proved via a perfect naive or an L-naive RO replay reduction.

Corollary 1. If there exists a perfect or an L-naive RO replay reduction B that solves any intractability
assumption C using an adversary A that breaks the unforgeability of Brands’ signature, then assumption
C can be solved in polynomial time with non-negligible probability.

In order for this corollary to hold we need to show that Brands’ blind signature is a generalized
blind Schnorr signature. We can show this by inspecting one by one the needed requirements: (1) Brands
public/secret key pair is (h = gx, x), which is a unique witness relation for L = {h : gx = h} ∈ NP, (2) the
signer’s side of Brands blind signature is the same as the prover’s side in Schnorr’s identification scheme,
which is known to be a Σ-protocol, (3) Brands blind signature is of the form σ(m′) = ((z′, a′, b′), c′, r′)
which has identical distribution to a transcript of a Σ-protocol, as we will explain below (4) given the
secret key x and a valid transcript of Brands scheme: (â, c′1, r

′
1), where â = (z′, a′, b′), then ∀ c′2 we can

compute r′2 as: r′2 = r′1 − c′1x+ c′2x so that (â, c′2, r
′
2) is still a valid transcript. Let’s take a closer look at

Brands blind signature and see why it is a Σ-protocol. We will do so by inspecting the three properties
of Σ-protocols: (a) it’s a three-round protocol, (b) for any h and any pair of accepting conversations
(â, c′1, r

′
1) and (â, c′2, r

′
2) where c′1 6= c′2 one can efficiently compute x such that h = gx and (c) there exists

a simulator S who on input h and a random c′ picks r′, m and z, solves for a′, b′, so he can output an
accepting conversation of the form ((z′, a′, b′), c′, r′).

Thus, by applying Theorems 1 and 2, we rule out perfect and L-naive RO replay reductions for
Brands’ blind signatures. 4

Pointcheval and Stern [33] suggest that for their proof approach to work, the public key of the scheme
should have more than one secret key associated with it. One could modify the Brands’ scheme (similarly
to how the original Schnorr blind signature was modified to obtain the variant that Pointcheval and Stern
proved secure). In this modification, the public key of the signer will be of the form H = Gw1

1 Gw2
2 where

(H,G1, G2) are public and (w1, w2) are the secret key (the full scheme and its proof of security appear in
Appendix E). As a blind signature, the resulting signature scheme is inferior, in efficiency, to the provably
secure variant of the Schnorr blind signature. As far as its use in an electronic cash protocol is concerned,
it is still an open problem whether provable guarantees against double-spending can be given for our
modification of Brands. (For the original Brands electronic cash, the best double-spending guarantee
known, discovered by Cramer et al. [16], holds under the knowledge of exponent assumption [17], which
is an assumption so strong that it cannot, for example, be captured by Pass’s definition of an intractability
assumption.)

Thus, although Brands’ e-cash scheme has attractive efficiency and blindness properties, proving its
unforgeability would require radically new techniques.

4 Brands claimed that his scheme is secure under the existence of a Schnorr prover [9], though he never gave a proof on that.
In Appendix D we define the DL problem under a Schnorr prover and show that it can be modeled as an intractability
assumption.
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A Standard Assumptions

We start by describing two standard cryptographic assumptions useful in the rest of the paper.

Definition 10 (Discrete Logarithm Assumption). Let k be the security parameter. Let G be an
abelian group of order q (k-bit prime) and generator g. Then, for every polynomial time algorithm A it
holds that:

Pr[h← G;x← A(h) : x = logg h] ≤ ν(k)

where ν(k) is a negligible function.

Definition 11 (RSA Assumption). Let k be the security parameter. Let N = pq where p and q are
k-bit, distinct odd primes. Let e be a randomly chosen positive integer less than and relatively prime to
φ(N) = (p− 1)(q − 1). Then, for every polynomial time algorithm A it holds that:

Pr[h← Z∗N ;x← A(N, e) : xe ≡ h mod N ] ≤ ν(k)

where ν(k) is a negligible function.

B Interactive Proofs

Informally speaking, an interactive proof system for a language L is a two-party protocol between a
prover and a probabilistic polynomial-time verifier satisfying the following two conditions with respect
to the common input, denoted h. If h ∈ L, then, with very high probability, the verifier is “convinced”
of this fact, after interacting with the prover (completeness). If h 6∈ L, then no matter what the prover
does, with very high probability, he fails to convince the verifier that “h is in L”(soundness).

Definition 12 (Interactive Proof System [22]). An interactive proof system with soundness error
s ∈ [0, 1]for a language L with witness relation RL is a pair of algorithms (P, V ) where v is probabilistic
polynomial time and the following properties hold:

1. Completeness. For every h ∈ L and every x ∈ RL(h),

Pr[〈P (x), VL〉(h) = 1] = 1.

2. s-Soundness. For every h 6∈ L, every z ∈ {0, 1}∗ and every interactive algorithm P ∗

Pr[〈P ∗(z), V 〉(h) = 0] ≥ 1− s.

A useful property in the above setting would be if the verifier V wouldn’t learn anything useful from P
about the witness x besides the fact that P knows x. This property is called zero knowledge. If soundness
error s is negligible, then this interactive proof system has strong soundness.

Definition 13 (Honest Verifiable Zero Knowledge (HVZK)). An interactive proof system (P, V )
for a language L is said to be honest verifiable zero knowledge if there exists a probabilistic polynomial
time algorithm S (the Simulator) such that for all h ∈ L:

viewV [P (h)↔ V (h)] ≈ S(h),

where viewV is the view of the honest verifier V of the interaction between V and P on input h.



C Blind Signatures Definitions

We present the formal definitions for blind signatures as they were described in [25]. A blind signature
scheme is a four-tuple consisting of two interactive Turing machines, the Signer and the User, (S,U) and
two algorithms (Gen,Verify).

– Gen(1k): is a probabilistic polynomial time key-generation algorithm which takes as an input a security
parameter 1k and outputs a pair (pk, sk) of public and secret keys.

– S(pk, sk), U(pk,m): are polynomially- bounded probabilistic Interactive Turing machines who have
the following (separate) tapes: read-only input tape, write-only output tape, a read/write work tape,
a read-only random tape, and two communication tapes, a read-only and a write-only tape. They are
both given (on their input tapes) as a common input a pk produced by a key generation algorithm.
Additionally, S is given on her input tape a corresponding private key sk and U is given on her input
tape a message m, where the length of all inputs must be polynomial in the security parameter 1k of
the key generation algorithm. Both S and U engage in an interactive protocol of some polynomial (in
the security parameter) number of rounds. At the end of this protocol S outputs either “completed”
or “not-completed” and U outputs either “fail” or σ(m).

– Verify(pk,m, σ(m)): is a deterministic polynomial-time algorithm, which outputs “accept”/“reject”
with the requirement that for any message m, and for all random choices of key generation algorithm,
if both S and U follow the protocol then S always outputs “completed”, and the output of U is always
accepted by the verification algorithm.

A blind digital signature scheme is secure if for all the probabilistic polynomial time algorithms A
there exists a security parameter kA such that for all k > kA the following two properties hold [25]:

- Blindness: the signer is unable to view the messages he signs (protection for the user). Furthermore,
a malicious signer cannot link a (m,σ(m)) pair to any particular execution of the protocol. In order to
define blindness formally consider the following experiment. Let A control the signer but not the user
and b ∈ {0, 1} is a randomly chosen bit which is kept secret from A. A will try to guess the value of b by
performing the following steps:

1. (pk, sk)← Gen(1k)
2. {m0,m1} ← A(1k, pk, sk) (i.e. A produces two documents, polynomial in 1k, where {m0,m1} are by

convention lexicographically ordered and may even depend on pk and sk).
3. We denote by {mb,m1−b} the same two documents {m0,m1}, ordered according to the value of bit b,

where the value of b is hidden from A. A(1k, pk, sk,m0,m1) engages in two parallel (and arbitrarily
interleaved) interactive protocols, the first with U(pk,mb) and the second with U(pk,m1−b).

4. If the fist User outputs on her private tape σ(mb) (i.e. does not output fail) and the second user
outputs on her private tape σ(m1−b) (i.e., also does not output fail) then A is given as an additional
input {σ(m0), σ(m1)}.(We remark that we do not insist that this happens, and either one or both
users may output fail).

5. A outputs a bit b′ (given her view of steps 1 through 3, and if conditions are satisfied on step 4 as
well).

Then the probability, taken over the choice of b, over coin-flips of the key-generation algorithm, the coin-
flips of A, and (private) coin-flips of both users (from step 3), that b′ = b is at most 1

2 + ν(k), where ν(k)
is a negligible function.

-One-more Unforgeability: a user interacting with a signer S cannot output an additional, valid
message/signature pair (m,σ(m)) no matter how many pairs of messages/ signatures of S he has seen
(protection for the signer). To define that formally, consider an adversary A who controls the user but
not the signer and executes the following experiment in order to get “one-more” signature (this is also
called “one-more” forgery).

1. (pk, sk)← Gen(1k)
2. A(pk) engages in polynomially many (in k) adaptive, parallel and arbitrarily interleaved interactive

protocols with polynomially many copies of S(pk, sk), where A decides in an adaptive fashion when
to stop. Let ` be the number of executions, where the Signer outputted “completed” in the end of
Step 2.



3. A outputs a collection {(m1, σ(m1)), . . . , (mj , σ(mj))} subject to the constraint that (mi, σ(mi)) for
1 ≤ i ≤ j are all accepted by V erify(pk,mi, σ(mi)), and all mi’s are distinct.

Then the probability, taken over coin-flips of key-generation algorithm, the coin-flips of A, and over the
(private) coin-flips of the Signer, that j > ` is at most ν(k).

D DLP with Schnorr Prover

Brands argues that his blind signatures construction is secure under the existence of a Schnorr prover
[9]. In this section we formally define DLP with access to a Schnorr’s prover and show that this can
be modeled as an intractability assumption. Thus, even if we give a perfect or an L- naive RO replay
reduction access to the prover side of the Schnorr identification scheme (we will call him Schnorr prover
from now on) and an adversary A that performs a one-more forgery attack on the Brands signature
scheme, the reduction cannot solve the discrete logarithm problem unless the DLP is easy in this setting.
Let us now define the discrete logarithm problem in the setting with a Schnorr prover.

Definition 14 (DLP with the Schnorr prover). Let A(·)(·) be an oracle Turing machine that takes as
input a discrete logarithm instance (G, q, g, h) and has oracle access to the Schnorr prover Schnorr(G, q, g, x)
for h = gx. (That is to say, A may act as the verifier in the Schnorr protocol, as many times as it wishes.)
Upon termination, A outputs a value x′. We say that A solves the discrete logarithm problem with the
Schnorr prover if x′ = x.

Assumption 1 (Security of DLP with Schnorr) For any probabilistic poly-time family of oracle
Turing machines, A(·)(·), there exists a negligible function ν(k) such that

Pr[(G, q, g, gx)← S(1k);x′ ← ASchnorr(g,x)(g, gx) : x′ = x] = ν(k).

where S(1k) samples Discrete Logarithm instances of size k.
DLP with Schnorr can easily be modeled as an intractability assumption similar to the standard

DLP. It corresponds to threshold t(k) = 0 and a 2-round challenger C who on input 1k picks a random x
and sends gx to the adversary A which works as defined in Definition 10. A, having oracle access to the
Schnorr prover responds with x′ to the challenger. If x′ = x then C outputs 1.

E Modifying Brands

We will modify Brands’ scheme in such a way that the Bank will use more that one secret key to compute
her public key. We will be using the modular representation of e-cash systems provided by Cramer et al.
in [16] to present our scheme and explain the building blocks besides e-cash systems.

Setup The setup is similar as the one of the commitment scheme. There exists a group G of prime order
q and three generators G1, G2, g2 ∈ Gq. No one in the system should be able to compute logG1

G2. The
Bank samples uniformly at random w1, w2 ∈ Zq and computes

H = Gw1
1 Gw2

2 .

The values (H,G1, G2) are public, and used as the Bank’s verification key while the values (w1, w2) are
kept secret.

User Registration When a User opens an account at the Bank the following take place. The User picks
U ∈ Zq uniformly at random and secretly stores U which represents his identity. Then, he defines

g1 = GU1 G2

and sends g1 to the Bank. As a part of the registration, the User also needs to prove knowledge of U ∈ Zq
such that g1 = GU1 G2. The Bank first verifies the proof of knowledge sent by the User, then picks w3 ∈ Zq
uniformly at random and computes

h = gw1
1 gw3

2

which sends to the User. The User stores (g1, h) and U . The Bank records that this particular user
registered under the public identifier g1.



Withdrawal In each withdrawal, User and Bank use the instance

X = ((H,G1, G2), (h, g1, g2)).

The User and the Bank are going to run a blind signature scheme so that the user will receive a signed
coin by the Bank. The withdrawal proceeds as follows;

1. The Bank picks v1, v2, v3 ∈ Zq uniformly at random and sends to the User:

V1 = Gv11 G
v2
2

V2 = gv11 g
v3
2 .

2. The User selects uniformly random r′, z′1, z
′
2, z
′
3 and computes the simulated values:

V ′1 = G
z′1
1 G

z′2
2 H

−r′

V ′2 = g
z′1
1 g

z′3
2 h
−r′ .

Alternative we could say that the User uses a NIZK simulator and samples a valid conversation
((H,G1, G2), (h, g1, g2), (V

′
1 , V

′
2), r′, (z′1, z

′
2, z
′
3)).

3. Then, the User selects s, k ∈ Zq uniformly at random and computes:

h̃ = hsgk2

g̃1 = gs1

Ṽ1 = V1V
′
1

Ṽ2 = (V2V
′
2)s.

Note that g̃1 = GUs1 Gs2, where we can write W1 = Us and W2 = s and the User is actually proving
that he knows a witness (W1,W2) such that g̃1 = GW1

1 GW2
2 .

4. As a next step, User picks b1, b2 ∈ Zq and computes

m = Gb11 G
b2
2 .

5. Now, the User is going to compute the hash:

r̃ = H(m, (H,G1, G2), (h̃, g̃1, g2), (Ṽ1, Ṽ2))

and sends to the Bank the blinded value r = r̃ − r′.
6. Upon receiving r, the Bank computes:

zi = rwi + v1, i ∈ {1, . . . , 3}

and forwards the zi’s to the User.
7. The User first checks:

V1H
r ?

= Gz11 G
z2
2

V2h
r ?

= gz11 g
z3
2

and if the equations verify computes:

z̃1 = z1 + z′1

z̃2 = z2 + z′2

z̃3 = (z3 + z′3)s+ kr̃.

The blind signature on (m, g̃1) is

σB(m, g̃1) = ((H,G1, G2), (h̃, g̃1, g2), (Ṽ1, Ṽ2), (z̃1, z̃2, z̃3))

.
In order for somebody to verify the signature, he needs to check:

Ṽ1H
r̃ ?

= Gz̃11 G
z̃2
2

Ṽ2h̃
r̃ ?

= g̃1
z̃1gz̃32 .

The registration phase and the withdrawal protocol can be found in Table 1.



Signer((H,G1, G2), (w1, w2)) Receiver(H,G1, G2)

U ∈ Zq

g1 = GU
1 G2, π = proof of knowledge of U

g1, π←−−−−−−−−
verify π
w3 ∈ Zq

h = gw1
1 gw3

2

h−−−−−→
v1, v2.v3 ∈R Zq

V1 = Gv1
1 G

v2
2

V2 = gv11 gv32
V1, V2−−−−−−−→

r′, z′1, z
′
2, z
′
3 ∈R Zq

V ′1 = G
z′1
1 G

z′2
2 H

−r′

V ′2 = g
z′1
1 g

z′3
2 h−r′

s, k ∈R Zq

h̃ = hsgk2
g̃1 = gs1
Ṽ1 = V1V

′
1

Ṽ2 = (V2V
′
2 )s

b1, b2 ∈R Zq

m = Gb1
1 G

b2
2

r̃ = H(m, (H,G1, G2), (h̃, g̃1, g2), (Ṽ1, Ṽ2))
r = r̃ − r′

r−−−−−−→
zi = rwi + vi, i ∈ {1, . . . , 3}

z1, z2, z3−−−−−−−−−→
V1H

r ?
= Gz1

1 G
z2
2

V2h
r ?

= gz11 gz32
z̃1 = z1 + z′1
z̃2 = z2 + z′2
z̃3 = (z3 + z′3)s+ kr̃

Table 1. Brands’ blind signature modified



Spending Assume that the User wants to spent the coin in a Shop, with unique identity Is. The protocol
begins with the Shop sending to the user pid where:

pid = H(Is, date/ time).

Then, the user is going to “sign” pid by sending to the bank:

p1 = pid W1 + b1

p2 = pid W2 + b2

plus the coin (m, g̃1) and σB. The Shop verifies the validity of the coin and checks whether:

mg̃1
pid ?

= Gp11 G
p2
2 .

If both verifications hold, the Shop accepts the payment and stores ((m, g̃1), σB, (p1, p2), pid).

Deposit When the Shop needs to deposit a coin in the Bank just needs to send the spending transcript
((m, g̃1), σB, (p1, p2), pid) and the date/time of the transaction. The Bank needs to first check that pid
encodes the identity of the Shop and the date/time in order to make sure that the Shop is not trying to
deposit the same coin again. If something is wrong the bank doesn’t accept the coin.

If everything was all right then the Bank needs to verify the signature on the coin and that (p1, p2)

are valid (by checking whether mg̃1
pid ?

= Gp11 G
p2
2 . If so, then the bank stores (m, g̃1), σB, (p1, p2), sid) if

something doesn’t verify, the bank aborts.
In the case that a user is trying to double spend, then the Bank will receive the same ((m, g̃1), σB) but

with new (p′1, p
′
2), /sid

′. Then, the Bank is able to catch the User who is double spending by computing
the following:

G
p1−p′1

pid−pid′
1 G

p2−p′2
pid−pid′
2

which is equal to
GW1

1 GW2
2

and by knowing W1 and W2 which are equal to W1 = Us and W2 = s, the Bank can compute the secret
key of the User who was double spending.

E.1 Unforgeability of Withdrawal Protocol

By modifying Brands e-cash scheme so that the bank uses more than secret keys to compute the public
key, we can apply the technique proposed in [33] to prove the unforgeability of the modified withdrawal
protocol. We will prove the following Theorem.

Theorem 3. Consider the modified Brands’ withdrawal/blind signature scheme in the random oracle
model. If there exists a probabilistic polynomial time Turing machine which can perform a “one - more”
forgery, with non-negligible probability, even under a parallel attack, then the discrete logarithm can be
solved in polynomial time.

Proof. We first describe an outline of the proof, then we will simplify the notations and finally we will
complete the proof.
Outline of the proof Let A be the attacker who can be described as a probabilistic polynomial time
Turing machine with random tape ω. Thus, there exists an integer ` such that after ` interactions with
the bank (v1,i, v2,i, ri, z1,i, z2,i, z3,i) for i ∈ {1, . . . , `}, and a polynomial number Q of queries asked to
the random oracle, Q1, . . . ,QQ, A returns ` + 1 valid signatures (coins), (mi, g̃1,i), h̃i, (Ṽ1,i, Ṽ2,i), (z̃1,i,
z̃2,i, z̃3,i, for i = 1, . . . , ` + 1 (to verify the signature (coin) you would first need to compute r̃i =
H(mi, (H,G1, G2), (h̃i, g̃1,i, g2), (Ṽ1,i, Ṽ2,i))).

The bank possesses a secret key (w1, w2) associated to a public key H = Gw1
1 Gw2

2 , and a random tape
Ω. The secret key is stored on the knowledge tape of the Turing machine.

Through a collision of the Bank and the attacker, we want to compute the discrete logarithm of G1

relatively to G2. The technique used is the one described in [34] as technique of “oracle replay”. We first



run the attack with random keys, tapes and oracle f (which answers the hash queries). We randomly
choose an index j and then replay with same keys and random tapes, but a different oracle f ′ such
that the first j − 1 answers remain unchanged. We expect that, with non-negligible probability, both
executions output a common Ṽ1 and Ṽ2 coming from the jth query having two distinct representations
relatively to G1 and G2. Specifically, we expect to get the same Ṽ1 for the two different sets (r̃, z̃1, z̃2, z̃3)
and (ˆ̃r, ˆ̃z1, ˆ̃z2, ˆ̃z3), where ˆ denotes the second execution. We could also choose to work with Ṽ2 but it
wouldn’t make any difference. So, we would have:

Ṽ1 = H−r̃Gz̃11 G
z̃2
2

Ṽ1 = H−
ˆ̃rG

ˆ̃z1
1 G

ˆ̃z2
2

and

logG1
G2 =

r′1 − w1c
′ − r̂′1 + w1ĉ′

r̂′2 − w2ĉ′ − r′2 + w2c′

where the reduction knows the secret key of the Bank, (w1, w2).

Cleaning up Notations Before proceeding to the actual proof we will clean up some notation issues.
Without loss of generality, we assume that all the (mi, (H,G1, G2), (h̃, g̃1,i, g2), (Ṽ1,i, Ṽ2,i)) are queries
which have been asked during the attack (otherwise, the probability of success would be negligible due to
the randomness of the random oracle outputs). Then, we can assume that the indices, (Ind1, . . . , Ind`+1),
of (m1, (H,G1, G2), (h̃, g̃1,1, g2), (Ṽ1,1, Ṽ2,1), . . . , (m`+1, (H,G1, G2), (h̃, g̃1,`+1, g2), (Ṽ1,`+1, Ṽ2,`+1)) in the
list of queries is constant. As a result, the probability of success decreases from ε to ρ ≈ ε/Q`+1 (where
Q the number of queries asked to the random oracle).

(w1, w2) is the secret key used by the Bank. The random tape of the Bank, Ω, determines the
pairs (v1,i, v2,i, v3,i) such that V1,i = G

v1,i
1 G

v2,i
2 and V2,i = g

v1,i
1 g

v3,i
2 for i = 1, . . . , `. The distribution of

(w1, w2, H) where w1 and w2 are random and H = Gw1
1 Gw2

2 , is the same as the distribution (w1, w2, H)
where w1 and H are random and w2 is the unique element such that H = Gw1

1 Gw2
2 . Accordingly, we

replace (w1, w2) by (w1, H) and, similarly, each (v1,iv2,i) by (v1,i, V1,i) and (v1,iv3,i) by (v1,i, V2,i).
For the rest of the proof, we will group (ω,H, (V1,1, V1,2), . . . , (V1,`, V1,`)) under variable ν, and

(v1,i, . . . , (v1,`) under the variable τ . S will denote the set of all successful data, i.e. quadruples (ν, w1, τ, f)
such that the attack succeeds. Then,

Prν,x1,τ,f [(ν, w1, τ, f) ∈ S] ≥ ρ.

Before continuing with the proof we state a well - know probabilistic lemma:

Lemma 5. (The probabilistic lemma). Let A be a subset of X × Y such that Pr[A(x, y)] ≥ ε, then
there exists Ω ⊂ X such that

1. Pr[x ∈ Ω] ≥ ε/2
2. whenever a ∈ Ω, Pr[A(a, y)] ≥ ε/2.

The probabilistic lemma is useful to split a set X in two subsets, a non-negligible subset Ω consisting
of “good” x’s which provide a non-negligible probability of success over y, and its complement, consisting
of “bad” x’s.

Lemma 6. (The forking lemma.) Randomly choose an index j, the keys and the random tapes. Run
the attack twice with the same random tapes and two different random oracles, f and f ′, providing
identical answers to the j − 1 first queries. With non-negligible probability, the different outputs reveal
two different representations of some Ṽ1,i, relatively to G1 and G2.

Proof. By proving this lemma we basically prove Theorem 3. What we want to show is, that after a
replay, we can obtain a common Ṽ1,i such that:

Ṽ1,i = G
z̃1,i
1 G

z̃2,i
2 H−r̃i = G

z̃1,i−w1r̃i
1 G

z̃2,i−w2r̃i
2

= G
ˆ̃z1,i
1 G

ˆ̃z2,i
2 H−

ˆ̃ri = G
ˆ̃z1,i−w1

ˆ̃ri
1 G

ˆ̃z2,i−w2
ˆ̃ri

2



where, z̃1,i − w2r̃i 6= ˆ̃z1,i − w1
ˆ̃ri. We can remark that, for each i, Ṽ1,i only depends on (ν, w1, τ) and the

first Indi− 1 answers of f . What is left to study is whether or not the random variable χi = r′1i− x1c′i is
sensitive to queries asked at steps Indi, Indi + 1, etc. We expect the answer to be yes. We can consider
the most likely value taken by χi when (ν, w1, τ) and the Indi − 1 first answers of f are fixed. Then, we
are led to consider a function ei(ν, w1, τ, fi), where fi ranges over the set of answers to the first Indi − 1
possible queries. Set

λi(ν, w1, τ, fi, e) = Pr
f

[(χi(ν, w1, τ, f) = e) & ((ν, w1, τ, f) ∈ S) |f extends fi] .

We define ei(ν, w1, τ, fi) as any value e such that λi(ν, w1, τ, fi, r) is maximal. We then define the
“good” subset G of S whose elements satisfy, for all i, χi(ν, w1, τ, f) = ei(ν, w1, τ, fi), where fi denotes
the restriction of f to queries of index strictly less than Indi, and the “bad” B its compliments in S.

Definition 15. We denote by Φ the transformation which maps any quadruple (ν, w1, τ, f) to (ν, w1 +
1, τ − c, f), where τ − r = (v1,1 − r1, . . . , v1,` − r`).

Lemma 7. Both executions corresponding to (ν, w1, τ, f) and Φ(ν, w1, τ, f) are totally identical with re-
spect to the view of the attacker. Especially, outputs are the same.

Proof. Let (ν, w1, τ, f) be an input for the collusion. Replay with ŵ1 = w1 + 1 and τ̂ = τ − r, the same
ν and the same oracle f . The answers of the oracle are unchanged and the interactions with the bank
become

ˆz1,i(ŵ1, v̂1,i, ri) = v̂1,i + ŵ1ri = (v1,i − ri) + ri(w1 + 1) = v1,i + riw1 = z1,i(w1, v1,i, ri).

Thus, everything remains the same.

Corollary 2. Φ is a one-to-one mapping from S onto S.

Lemma 8. For fixed (ν, w1, τ), the probability

Pr
f

[((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ G) ≤ 1/q.

Which means that Φ sends the set G into B, except for a negligible part.

Proof. We will prove the above lemma by contradiction. Assume that Prf [(ν, w1, τ, f) ∈
⋃
r1,...,r`

Y (r1, . . . , r`)] >
1/q, where the set Y (r1, . . . , r`) is defined by the conditions (ν, w1, τ, f) ∈ G, Φ(ν, w1, τ, f) ∈ G and
(r1, . . . , r`) are the successive questions asked to the authority. Then, there exists a `-tuple (r1, . . . , r`)
such that Prf [Y (r1, . . . , r`)] > 1/(q`+1). Thus, there exist two oracles f and f ′ in Y (r1, . . . , r`) which
provide distinct answers for some queries QIndj = (mj , (H,G1, G2), (h̃j , g̃1,j , g2), (Ṽ1,j , Ṽ2,j)) to the ora-
cle, for some j ∈ 1, . . . , `+ 1, and are such that answers to queries not of the form of QIndj are similar.

We will denote by i the smallest such index j. Then fi = f ′i and r̃i 6= ˆ̃
ir. Also, we have (ν, w1, τ, f) ∈ G,

Φ(ν, w1, τ, f) ∈ G and similarly (ν, w1, τ, f
′) ∈ G, Φ(ν, w1, τ, f

′) ∈ G. Because of the property of Φ (see
lemma 3), and by definition of G,

ei(ν, w1, τ, fi) = z1,i(ν, w1, τ, f)− w1r̃i

= z1,i(Φ(ν, w1, τ, f))− w1r̃i

= ei(ν, w1 + 1, τ − r, fi) + ((w1 + 1)− w1)r̃i

ei(ν, w1, τ, f
′
i) = z1,i(ν, w1, τ, f

′)− xw1 ˆ̃
ir

= z1,i(Φ(ν, w1, τ, f
′))− w1

ˆ̃
ir

= ei(ν, w1 + 1, τ − r̂, f ′i) + ((w1 + 1)− w1) ˆ̃
ir

The equality fi = f ′i implies ei(ν, w1, τ, fi) = ei(ν, w1, τ, f
′
i). Since we have assumed (r1, . . . , r`) =

(r̂1, . . . , r̂`), then ei(ν, w1 + 1, τ − r, fi) = ei(ν, w1 + 1, τ − r̂, f ′i). Thus, r̃i = ˆ̃ri which contradicts the
hypothesis.



Lemma 4 says that for any (ν, w1, τ),

Prf [((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ G)] ≤ 1/q.

By making the sum over all the triplets (ν, w1, τ), and using the bijectivity of Φ (corollary 1), we
obtain

Pr[G] = Prν,w1,τ,f [((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ G)]

+Prν,w1,τ,f [((ν, w1, τ, f) ∈ G) & (Φ(ν, w1, τ, f) ∈ B)]

≤ 1

q
+ Prν,w1,τ,f [Φ(ν, w1, τ, f) ∈ B] ≤ 1

q
+ Pr[B]

Then, Pr[B] ≥ (Pr[S] − 1/q)/2. Since 1/q is negligible w.r.t Pr[S], for enough large keys, we have,
Pr[B] ≥ Pr[S]/3 ≥ ρ/3.

Conclusion We will use this probability to show the success of forking.

ρ

3
≤ Pr[B] = Prν,w1,τ,f [S & ((∃i)χi(ν, w1, τ, f) 6= ei(ν, w1, τ, fi))]

≤
∑`+1

i=1
Pr

ν,w1,τ,f
[S & (χi(ν, w1, τ, f) 6= ei(ν, w1, τ, fi))].

There exists k such that Pr[S & (χk(ν, w1, τ, f) 6= ei(ν, w1, τ, fk))] ≥ ρ/3`+ 1. Let us randomly choose
the forking index i. With probability greater than 1/(` + 1), we have guessed i = k. The probabilistic
lemma ensures that there exists a set X such that

1. Prν,w1,τ,f [(ν, w1, τ, fi) ∈ X] ≥ ρ/6(`+ 1)
2. for all (ν, w1, τ, fi) ∈ X, Prf [(ν, w1, τ, f) ∈ S & (χi 6= ei)| extends fi] ≥ ρ/6(`+ 1).

Let us choose a random quadruple (ν, w1, τ, f). With probability greater than (ρ/6(`+1))2, (ν, w1, τ, f) ∈
S, (ν, w1, τ, fi) ∈ X and χi(ν, w1, τ, f) 6= ei(ν, w1, τ, fi). We will denote by α the value χi(ν, w1, τ, f) and
by β the value ei(ν, w1, τ, fi). Then, two cases appear relatively to λi(ν, w1, τ, fi, α):

– if λi(ν, w1, τ, fi, α) ≥ ρ/12(`+1), then, by definition of ei, we know that λi(ν, w1, τ, fi, β) ≤ ρ/12(`+1).
– otherwise,

λi(ν, w1, τ, fi, α) + Prf ′ [S & (χi(ν, w1, τ, fi, α
′) 6= α)|f ′ extends fi]

= Prf ′ [S|f ′ extends fi]
≥ Prf ′ [S & (χi(ν, w1, τ, f

′) 6= β)|f ′ extends fi] ≥ ρ/6(`+ 1).

Both cases lead to Prf ′ [S & (χi(ν, w1, τ, f
′) 6= α)|f ′ extends fi] ≥ ρ/12(`+1). Thus, if we replay with the

same keys and random tapes but another random oracle f ′ such that f ′i = fi, we obtain, with probability
at least ρ/12(`+ 1), a new success with χi(ν, w1, τ, f

′) 6= α. Then, both executions provide two different
representations of ai with respect to G1 and G2.

Global Complexity of the Reduction By using a replay oracle technique with a random forking index, the
probability of success is greater than

1

`+ 1
×
(

ρ

6(`+ 1)

)2

× ρ

12(`+ 1)
×
(

1

6(`+ 1)
× ε

Q`+1

)3

where ε is the probability of success of an `, ` + 1-forgery and Q the number of queries asked to the
random oracle.


