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Abstract. At Eurocrypt 2010, Freeman proposed a transformation from pairing-based schemes in
composite-order bilinear groups to equivalent ones in prime-order bilinear groups. His transformation
can be applied to pairing-based cryptosystems exploiting only one of two properties of composite-order
bilinear groups: cancelling and projecting. At Asiacrypt 2010, Meiklejohn, Shacham, and Freeman
showed that prime-order bilinear groups according to Freeman’s construction cannot have two properties
simultaneously except negligible probability and, as an instance of implausible conversion, proposed
a (partially) blind signature scheme whose security proof exploits both the cancelling and projecting
properties of composite-order bilinear groups.

In this paper, we invalidate their evidence by presenting a security proof of the prime-order version
of their blind signature scheme. Our security proof follows a different strategy and exploits only the
projecting property. Instead of the cancelling property, a new property, that we call translating, on
prime-order bilinear groups plays an important role in the security proof, whose existence was not
known in composite-order bilinear groups. With this proof, we obtain a 2-move (i.e., round optimal)
(partially) blind signature scheme (without random oracle) based on the decisional linear assumption
in the common reference string model, which is of independent interest.

As the second contribution of this paper, we construct prime-order bilinear groups that possess both the
cancelling and projecting properties at the same time by considering more general base groups. That is,

we take a rank n Zp-submodule of Zn2

p , instead of Zn
p , to be a base group G, and consider the projections

into its rank 1 submodules. We show that the subgroup decision assumption on this base group G holds
in the generic bilinear group model for n = 2, and provide an efficient membership-checking algorithm
to G, which was trivial in the previous setting. Consequently, it is still open whether there exists a
cryptosystem on composite-order bilinear groups that cannot be constructed on prime-order bilinear
groups.

1 Introduction

Since Boneh, Goh, and Nissim [11] introduced composite-order bilinear groups in 2005, they have been
used to solve many challenging problems in cryptography. Cryptographic systems using composite-order
bilinear groups mostly utilize one of two properties, called cancelling and projecting, which Freeman [18]
identified. (Though Freeman named two properties recently, these properties were already used before.) The
security of almost all crypto systems using composite-order bilinear groups is based on the subgroup decision
assumption, introduced by Boneh, Goh, and Nissim [11], or its variants.

Recently, some literature has aimed at constructing mathematical structures using prime-order bilinear
groups with properties similar to (or richer than) composite-order bilinear groups [33, 25, 18, 20]. In particular,
Freeman [18] proposed two product groups of prime-order bilinear groups with separately defined bilinear
maps. He showed that two proposed product groups satisfy the subgroup decision assumption (in the sense
that given g, it is infeasible to determine whether g is in a subgroup or the whole product group), and
each product group with a bilinear map satisfies cancelling and projecting, respectively. One direct benefit of

? An extended abstract of this paper was presented at TCC 2012 [34]. This is the full version.



this approach is efficiency improvements of group operations and pairing computations. Loosely speaking, in
bilinear groups of composite order, the group order N must be infeasible to factor so that group operations
and pairing computations are less efficient than those of bilinear groups of prime order for the same security
level. See [18, 20] for detailed efficiency comparison between composite-order groups and prime-order groups.

On the other hand, Meiklejohn, Shacham, and Freeman [31] gave a negative result, that is, an evidence
of the limitation of constructing in some class of bilinear groups with both the cancelling and projecting
properties, which is constructed on prime-order bilinear groups. To impart meaning to their result, they also
proposed a round optimal blind signature scheme in composite-order bilinear groups whose security proof
exploits both the cancelling and projecting properties of the composite-order bilinear group.1 Their round
optimal blind signature scheme is of independent interest since it is the first practical scheme of this type
based on static assumptions (not based on q-type assumptions) in the common reference string model. They
left two open questions: (1) whether the instantiation in prime-order groups of their round optimal blind
signature scheme is provably secure or insecure, and (2) whether their limitation result can be applied to a
wider class of bilinear groups constructed from prime-order groups.

In this paper, we answer both questions. We propose a (partially) blind signature scheme in a prime-order
bilinear group setting. The proposed scheme can be considered as an adapted version of the scheme in [31]
to the prime-order group setting. However, we prove the one-more unforgeability of the proposed scheme
by using a completely different strategy from [31]. Our proof does not require the cancelling property, and
instead we use another property, that we call translating, on prime order groups. Informally, the translating
property is that given g1, g

a
1 ∈ G1, g2 ∈ G2, where G1 and G2 are distinct subgroups of G, there exists a map

T outputting ga2 . The translating property is used, in an essential way, to prove the one-more unforgeability of
the proposed scheme. With this proof, we obtain a round optimal (partially) blind signature scheme (without
relying on the random oracle heuristic) based on the decisional linear assumption in the common reference
string model, which is of independent interest. Our blind signature scheme is more efficient than [31]. For
example, our scheme has a shorter signature size (six elements in the prime-order group vs. two elements in the
composite-order group). Moreover, the security of our blind signature scheme does not rely on the factoring
assumption. (The blindness of the signature scheme in [31] based on the subgroup hiding assumption, which
requires that the factorization of group order N is infeasible.)

As the second contribution, we show that there exists a more general class of bilinear groups than
Meiklejohn, Shacham, and Freeman considered, and some of theses can be both cancelling and projecting.
That is, we take a rank n Zp-submodule of Zn2

p , instead of Znp , to be a base group G, and consider the
projections into its rank 1 submodules. In this case, we should carefully consider group membership tests of
a subgroup. We provide an efficient membership-checking algorithm to G, which was trivial in the previous
setting, and we show that the subgroup decision assumption on this base group G holds in the generic
bilinear group model for n = 2. Consequently, it is still open as to whether there exists a cryptosystem on
composite-order bilinear groups that cannot be constructed on prime-order bilinear groups.

We note that although we construct a structure satisfying both cancelling and projecting, our construction
can not be applied directly to the scheme in [31] to transform it to prime-order setting. The proof of [31] uses a
property of composite-order group such that two subgroups’ order are relatively prime, and our construction
does not support such property so that we could not apply our construction to the round optimal blind
signature scheme in [31].

Related Work: Blind Signatures. Since Chaum [12, 13] introduced the concept of blind signatures in
1982, it has been studied extensively [6, 1, 7, 8, 17, 29, 32, 26, 5, 19, 4, 2, 22, 31, 3, 21] because of its numerous
applications, such as electronic voting [14] and electronic cash [15]. Blind signatures are interactive protocols
between a user and a signer. In blind signatures, informally, the user can obtain a signature (signed by the
signer) on a message (chosen by the user) without revealing the message to the signer that is signed during
the protocol; that is, the signer learns nothing about the message after finishing the protocol.

1 The scheme in [31] itself does not use cancelling and projecting. Only the proof of security uses both cancelling and
projecting properties. Thus, the authors do not rule out the existence of different proof strategy.
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In particular, round optimal (i.e., 2-move) blind signature schemes have received attention since the round
complexity is an important measurement of efficiency in the computer network, and round optimal blind
signature schemes directly imply that they are concurrently secure. In the random oracle model, there are
elegant round optimal blind signatures by Chaum [13] and Boldyreva [8]. Without relying on the random
oracle heuristic, there is an approach using general NIZKs for NP, and its security depends on the assumption
that a common reference string exists [17, 5]. Very recently, Garg et al. proposed the first round optimal blind
signature in the standard model (without random oracle and a setup assumption such as a common reference
string) [21]. These approaches without random oracle, however, are not as efficient as an approach, in which
we are interested, using a bilinear map [10, 11].

In recent years several efficient round optimal blind signatures [19, 4, 2, 31, 3] have been proposed in the
common reference string model, using a bilinear map, by combining signature schemes with efficient NIWI
proofs [24, 23, 25]. These approaches using a bilinear map either rely on q-type dynamic assumptions [19, 4,
2, 3] or working on the composite-order group [31]. Though there is an analysis of a family of q-type dynamic
assumptions by Cheon [16], the security of q-type assumptions still remains obscure. (q-type assumptions
used in the above schemes hold in the generic group model [36] and these can be strong evidence for believing
such assumptions. However, we believe that as the next step, constructing schemes without relying on such
strong assumptions is an encouraging research approach.) In [31], a round optimal blind signature scheme
based on static assumptions (not on q-type assumptions) using composite-order groups is proposed.

2 Notations and Definitions

Throughout this paper, we use notation ⊕ for the internal direct product: for an abelian group G, we write
G = G1⊕G2 when G1 and G2 are subgroups of G and G1∩G2 = {1G} for the identity 1G of G. In this case,
every element g in G can be uniquely written by g = g1 · g2 for some g1 ∈ G1 and g2 ∈ G2, where · is a group

operation in G, and will be omitted sometimes. We use notation x
$← A. If A is a group G, then it means

that an element x is randomly chosen from G, and if A is an algorithm, then it means that A outputs x. [i, j]
denotes a set of integers {i, · · · , j}. We denote an abelian group generated by g1, · · · , gn by 〈g1, · · · , gn〉.

We give formal definitions of bilinear group generators, and properties and cryptographic assumptions
defined on the bilinear group.

Definition 1 We say that G(·, ·) is a bilinear group generator if it takes as input a security parameter λ

and a positive integer n ≥ 1, and it outputs a tuple (G,Gi, H,Hi, Gt, e, σ| i ∈ [1, n])
$← G(λ, n), where G, H,

Gt are finite abelian groups, Gi and Hi are cyclic subgroups of G and H of same order, respectively, such
that G = ⊕i∈[1,n]Gi and H = ⊕i∈[1,n]Hi, and e : G ×H → Gt is a non-degenerate bilinear map, that is, it
satisfies

Bilinearity: e(g1g2, h1h2) = e(g1, h1)e(g1, h2)e(g2, h1)e(g2, h2)
for g1, g2 ∈ G and h1, h2 ∈ H,

Non-degeneracy: for g ∈ G, if e(g, h) = 1 for any h ∈ H, then g = 1,
for h ∈ H, if e(g, h) = 1 for any g ∈ G, then h = 1,

and σ is additional information for group membership-check. Moreover, we assume that group operations,
random samplings, and membership-checks in G, H, and Gt and computation of e can be efficiently performed
(i.e. polynomial-time in λ).

We do not exclude the case that G = H. When G = H, we say that G is a symmetric bilinear group
generator.

Definition 2 We say that an algorithm G1 is a bilinear group generator of prime order if G1(λ) = G(λ, 1),
and G1 outputs groups G,G1, H,H1, Gt of prime order p and a map e. Then, G = G1, H = H1. We denote
the three distinct groups G,H,Gt by G,H,Gt, respectively, and a bilinear map e by ê.

Now, we provide definitions of two properties, called cancelling and projecting, which are introduced by
Freeman [18].
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Definition 3 A bilinear group generator G is cancelling if e(gi, hj) = 1t whenever gi ∈ Gi, hj ∈ Hj, and
i 6= j, where 1t is the identity of Gt.

Definition 4 A bilinear group generator G is projecting if there exist subgroups G′ ⊂ G, H ′ ⊂ H, and
G′t ⊂ Gt, and non-trivial2 homomorphisms π : G→ G, π̄ : H → H, and πt : Gt → Gt such that

1. G′ ⊂ ker(π), H ′ ⊂ ker(π̄), and G′t ⊂ ker(πt).
2. πt(e(g, h)) = e(π(g), π̄(h)) for ∀g ∈ G and ∀h ∈ H.

If G is a symmetric bilinear group generator, that is, G = H, then set G′ = H ′ and π = π̄.

To prove the security of the proposed blind signature scheme, we need two widely-known assumptions,
the Computational Diffie-Hellman assumption, and k-Linear assumption which is introduced by Hofheinz
and Kiltz and Shacham [27, 35], in the bilinear group setting.

Definition 5 Let G1 be a bilinear group generator of prime order. We define the advantage of an algorithm
A in solving Computational Diffie-Hellman (CDH) problem in G, denoted by AdvCDHPGA,G1 , is to be

Pr
[
A(G,H,Gt, e, g, g

a, gb)→ gab : (G,H,Gt, e)
$← G1, g

$← G, a, b,
$← Zp

]
.

We say that G satisfies the Computational Diffie-Hellman (CDH) assumption in G if for any PPT algorithm
A, AdvCDHPGA,G1 is a negligible function of λ.

Definition 6 Let G1 be a bilinear group generator of prime order and k ≥ 1. We define the advantage of an
algorithm A in solving the k-Linear problem in G, denoted by Advk-LinGA,G1 , is to be∣∣∣Pr

[
A(G,H,Gt, e, g, ui, u

ai
i , g

b, h for i ∈ [1, k])→ 1 :

(G,H,Gt, e)
$← G1, g, ui

$← G, h
$← H, ai

$← Zp for i ∈ [1, k], b
$← Zp

]
−Pr

[
A(G,H,Gt, e, g, ui, u

ai
i , g

b, h for i ∈ [1, k])→ 1 :

(G,H,Gt, e)
$← G1, g, ui

$← G, h
$← H, ai

$← Zp for i ∈ [1, k], b =
∑
i∈[1,k] ai

]∣∣∣.
Then, we say that G satisfies the k-Linear assumption in G if for any PPT algorithm A, the advantage of
A Advk-LinGA,G1 is a negligible function of λ.

We can analogously define the CDH assumption and the k-Linear assumption in H. The 1-Linear assumption
in G is the DDH assumption in G and the 2-Linear assumption in G is the decisional linear assumption in
G.

Next, we provide the definition of the subgroup decision assumption, adapted from [18] to fit our purpose.

Definition 7 Let G be a bilinear group generator. We define the advantage of an algorithm A in solving the
(n, k)-subgroup decision problem on the left, denoted by AdvSDALA,G , is to be∣∣∣Pr

[
A(G,G′, H,H ′, Gt, e, σ, g)→ 1 :

(G,Gi, H,Hi, Gt, e, σ)
$← G(λ, n), G′ := ⊕i∈[1,k]Gi, H

′ := ⊕i∈[1,k]Hi, g
$← G

]
−Pr

[
A(G,G′, H,H ′, Gt, e, σ, g

′)→ 1 :

(G,Gi, H,Hi, Gt, e, σ)
$← G(λ, n), G′ := ⊕i∈[1,k]Gi, H

′ := ⊕i∈[1,k], g
′ $← G′

]∣∣∣.
We say that G satisfies the (n, k)-subgroup decision assumption on the left if for any PPT algorithm A,

its advantage AdvSDALA,G is a negligible function in λ.

2 The non-triviality does not appear in the original definition [18]. Without this, however, every bilinear group can
be projecting by using the trivial homomorphisms.
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We analogously define the (n, k)-subgroup decision assumption on the right.

Definition 8 We say that a bilinear group generator G(·, ·) satisfies the (n, k)-subgroup decision assumption
if G(·, n) satisfies both the (n, k)-subgroup decision assumptions on the left and on the right.

We will often omit (n, k) term, if it is clear in the context.

3 Round-Optimal Blind Signature in Prime-Order group

3.1 Symmetric Bilinear Group with Projecting Pairing

We construct a symmetric bilinear group generator with the projecting property. (The symmetric bilinear
groups mean that G = H, and Gi = Hi in our definition of bilinear groups.) We borrow some notations
from Freeman’s paper [18]. Let G be a group, g, g1, · · · , gn be elements in G, −→α = (a1, · · · , an) be a vector
in Znp , and M = (mij) be an n × n matrix. We denote g

−→α := (ga1 , · · · , gan) ∈ Gn and (g1, · · · , gn)M :=

(
∏
i∈[1,n] g

mi1
i , · · · ,

∏
i∈[1,n] g

min
i ). We can see that (g

−→α )M = g(−→αM). We newly define some notations useful
to explain product groups. Let G = ⊕i∈[1,n]Gi and H = ⊕j∈[1,n]Hj , where Gi and Hj are cyclic groups of
same order. Let e(Gi, Hj) be a set {e(gi, hj)|gi ∈ Gi, hj ∈ Hj}; hence e(Gi, Hj) is a cyclic group since Gi
and Hj are cyclic groups. In particular, when Gi and Hj have prime order p, e(Gi, Hj) is a cyclic group of
order p or 1.

Now, we construct a symmetric bilinear group generator GSP (λ, 3), which is a generalization of Groth
and Sahai’s instantiation based on the decisional linear assumption [25], and is also a symmetric version of
Freeman’s asymmetric bilinear group generator with the projecting property [18].

1. G1(λ)
$→ (p,G,Gt, ê).

2. Set G = G3, Gt = G9
t .

3. Choose linearly independent vectors −→x 1,
−→x 2,
−→x 3 ∈ Z3

p, and set G1 = 〈g−→x 1〉, G2 = 〈g−→x 2〉 and G3 = 〈g−→x 3〉.
Then, G = G1 ⊕G2 ⊕G3.

4. Define a map e : G×G→ Gt by
= e((g1, g2, g3), (h1, h2, h3))(

ê(g1, h1)1/2, ê(g1, h2)1/2, ê(g1, h3)1/2, ê(g2, h1)1/2, ê(g2, h2)1/2, ê(g2, h3)1/2,

ê(g3, h1)1/2, ê(g3, h2)1/2, ê(g3, h3)1/2
)

·
(
ê(g1, h1)1/2, ê(g2, h1)1/2, ê(g3, h1)1/2, ê(g1, h2)1/2, ê(g2, h2)1/2, ê(g3, h2)1/2,

ê(g1, h3)1/2, ê(g2, h3)1/2, ê(g3, h3)1/2
)
.

Then, e(g
−→x , g

−→y ) = ê(g, g)1/2(−→x⊗−→y )+1/2(−→y ⊗−→x ), where ⊗ is a tensor product (Kronecker product) of two
3-dimensions vectors.

5. For i ∈ [1, 3], define maps πi : G→ G and πt,i : Gt → Gt by

πi(g) = gM
−1UiM and πt,i(gt) = g

(M−1UiM)⊗(M−1UiM)
t , respectively,

where M is a 3× 3 matrix having −→x i as its i-th row, Ui is a 3× 3 matrix with 1 in the (i, i) entry and
zeroes elsewhere, and ⊗ is a tensor product of matrices: For `1× `2 matrix A = (ai,j) and `3× `4 matrix
B = (bi,j), A⊗B is a `1`3× `2`4 matrix whose (i, j)-th block is equal to ai,jB, where we consider A⊗B
as `1 × `2 blocks. Then, πi is a projection such that for g1 ∈ G1, g2 ∈ G2, g3 ∈ G3, πi(g1g2g3) is equal to
gi.

6. Output (p,G,G1, G2, G3, Gt, e, π1, π2, π3, πt,1, πt,2, πt,3).

We provide a useful lemma to understand the structure of the image of e.

Lemma 1 The image of e generated by GSP is equal to ⊕1≤i≤j≤3e(Gi, Gj), and each e(Gi, Gj)’s order is p.
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We provide the proof of Lemma 1 in Appendix B. Non-degeneracy of e is directly coming from the lemma 1.
(That is, e(g, h) 6= 1t for any non-identity elements g, h ∈ G. If not, the image is not equal to⊕1≤i≤j≤3e(Gi, Gj).)
The bilinear property of e can be easily checked from the bilinear property of the tensor product. Further,
GSP satisfies the projecting property: Let G′ = G2 ⊕ G3, G′t = ⊕2≤i≤j≤3e(Gi, Gj), π = π1, and πt = πt,1,
where G′, G′t, π, and πt are defined in the definition 4. Then, G′ ⊂ ker(π) and G′t ⊂ ker(πt), and e, π, πt
satisfy the following commutative property.

πt(e(g
−→x , g

−→y )) = e(π(g
−→x ), π(g

−→y )).

We can check this commutative property as follows:

πt(e(g
−→x , g

−→y ))

= πt,1(e(g
−→x , g

−→y ))

= πt,1(ê(g, g)1/2(−→x⊗−→y )+1/2(−→y ⊗−→x ))

= (ê(g, g)1/2(−→x⊗−→y )+1/2(−→y ⊗−→x ))(M−1UiM)⊗(M−1UiM)

= ê(g, g)1/2(−→x⊗−→y )((M−1UiM)⊗(M−1UiM))+1/2(−→y ⊗−→x )((M−1UiM)⊗(M−1UiM))

= ê(g, g)1/2(−→xM−1UiM)⊗(−→y M−1UiM)+1/2(−→y M−1UiM)⊗(−→xM−1UiM)

= e(g(−→xM−1UiM), g(−→y M−1UiM))

= e((g
−→x )M

−1UiM , (g
−→y )M

−1UiM )

= e(π1(g
−→x ), π1(g

−→y )) = e(π(g
−→x ), π(g

−→y )).

The fifth equality comes from the property of the tensor product such as (A⊗B)(C ⊗D) = (AC)⊗ (BD),
where A and B are matrices having ` columns and C and D are matrices having ` rows for some `. (We can
consider a vector as a matrix having one row.)

In contrast to the composite order bilinear group, our product group of prime order group has an addi-
tional property, we name translating and define as follow.

Definition 9 A bilinear group generator G is (i, j)-translating if there exists efficiently computable (that is,
polynomial time in λ) maps Ti,j : G2

i ×Gj → Gj defined by (gi, g
a
i , gj) 7→ gaj and T̄i,j : H2

i ×Hj → Hj defined

by (hi, h
a
i , hj) 7→ haj for an integer a ∈ Z. If G is a symmetric bilinear group generator, then set T̄i,j = Ti,j.

We show that the above GSP construction satisfies translating property.

Theorem 1 GSP (λ, 3) satisfies translating property for all i, j ∈ [1, 3].

Proof. We first construct T3,1. Given ga3 and a 3× 3 matrix M defined as in the description of GSP , we can
compute ga1 without knowing a as follows:

(ga3 )M
−1

= ((g
−→x 3)a)M

−1

= (ga
−→e 3M )M

−1

= ga
−→e 3 = (1, 1, ga),

(ga, 1, 1)M = (ga
−→e 1)M = ga

−→x 1 = ga1 ,

where −→e i is the canonical i-th vector in Z3
p, for example, −→e 1 = (1, 0, 0). We can construct other Ti,j analo-

gously. �

Moreover, GSP satisfies (3, 2)-subgroup decision assumption when the underlying group generator G1 satisfies
the decisional linear assumption.

Lemma 2 If G1 satisfies the decisional linear assumption, then GSP satisfies the (3, 2)-subgroup decision
assumption.

We relegate the proof of Lemma 2 in Appendix B.

Remark 1. Note that GSP does not satisfy the cancelling property since e(Gi, Gj) is not equal to {1t} for
i 6= j (Lemma 1).
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3.2 Construction

The abstract of our scheme looks very similar to the Meiklejohn et al.’s construction in the composite order
bilinear group [31]. We slightly changed the Meiklejohn et al.’s construction to adapt in the prime order
bilinear group setting.

(Partially) blind signature schemes in the common reference model consist of five (interactive) algo-
rithms: Setup, KeyGen, User, Signer, and Verify. We provide the formal definition of (partially) blind signa-
ture schemes, and concurrently security, in Appendix A. We follow the security definition of [31], which is
slightly stronger than [6], by allowing the adversary to choose the public key in the blindness definition. As
a definition of the blind signature, [31] is modified from [28]; (1) it strengthens the blindness game to allow
the adversary to generate the public key, and (2) it weakens the one-more unforgeability game to require
that the messages (instead of pairs of message and signature) must all be distinct.3

The proposed partially blind signature scheme for a message space M = {0, 1}m is as follows.4:

• Setup(λ): GSP (λ, 3)
$→ (p,G,G1, G2, G3, Gt, e, πi, πt,i). Choose g, u′, u1, · · · , um, v1 · · · , vm

$← G, h1
$← G1

and h2
$← G2. Define

CRS = (p,G,Gt, e, g, u
′, u1, · · · , um, v1, · · · , vm, h1, h2).

• KeyGen(CRS): Choose g′
$← G. Set A = e(g, g′). The public key is PK = {A}, and the secret key is

SK = {g′}.
• User(CRS,PK, info,Msg): Let info be an m0 bits string and Msg be an m − m0 bit string. We

write info bitwise as b0 · · · bm0
and Msg as bm0+1 · · · bm. For i ∈ [m0 + 1,m], pick random integers

ti,1, ti,2, si,1, si,2, ri, r
′
i

$← Zp, and compute

ci = (ui)
bih

ti,1
1 h

ti,2
2 , di = (vi)

bih
si,1
1 h

si,2
2 ,

θi,1 = u
bisi,1
i (vbi−1

i h
si,1
1 h

si,2
2 )ti,1hri2 , θi,2 = u

bisi,2
i (vbi−1

i h
si,1
1 h

si,2
2 )ti,2h−ri1 ,

θi,3 = u
(bi−1)si,1
i (vbii h

si,1
1 h

si,2
2 )ti,1h

r′i
2 , θi,4 = u

(bi−1)si,2
i (vbii h

si,1
1 h

si,2
2 )ti,2h

−r′i
1 .

Let
−→
θ i = (θi,1, · · · , θi,4), and send req = {(ci, di,

−→
θ i)}i∈[m0+1,m] to the signer and save state =

{(ti,1, ti,2)}i∈[m0+1,m].

• Signer(CRS, SK, info, req): Write req = {(ci, di,
−→
θ i)}i∈[m0+1,m] and info = b1 · · · bm0 . For each i ∈

[m0 + 1,m], verify ci is a commitment of 0 or 1 by checking that

e(ci, div
−1
i )

?
= e(h1, θi,1)e(h2, θi,2) and e(ciu

−1
i , di)

?
= e(h1, θi,3)e(h2, θi,4).

If for some i the above equation does not hold, abort the protocol and output ⊥. Otherwise, compute

c =

u′ ∏
i∈[1,m0]

ubii

 ∏
i∈[m0+1,m]

ci

 ,

choose a random integer r
$← Zp, compute

K1 = g′cr, K2 = g−r, K3,1 = h−r1 , K3,2 = h−r2 ,

send (K1,K2,K3,1,K3,2) to the user, and output success and info.

3 This weakened definition is necessary if the output signature can be re-randomized. [31]’s partially blind signature
and ours are in the case.

4 For large message spaces, we can use a collision resistance hash function first.

7



• User(state, (K1,K2,K3,1,K3,2)): Write state = {(ti,1, ti,2)}i∈[m0+1,m]. Check that

e(K3,1, g)
?
= e(K2, h1) and e(K3,2, g)

?
= e(K2, h2).

If one of two above equations is fail to hold, then abort the protocol and output ⊥. Otherwise, unblind
the signature by computing

S1 = K1 · (
∏

i∈[m0+1,m]

K
ti,1
3,1 K

ti,2
3,2 ) and S2 = K2.

Check the validity of the signature (S1, S2) by running Verify. If it outputs accept, then go to the next
step. Otherwise, abort the protocol and output ⊥. Finally re-randomize the signature by picking a

random s
$← Zp and computing

S′1 = S1 · (u′
∏

i∈[1,m]

ubii )s and S′2 = S2 · g−s.

Output the signature sig = (S′1, S
′
2), info, and success.

• Verify(CRS,PK, info,Msg, sig): Write PK = {A}, info = b1 · · · bm0 , Msg = bm0 · · · bm, and sig =
(S1, S2). Check that

e(S1, g) · e(S2, u
′
∏

i∈[1,m]

ubii )
?
= A.

If the above equality holds, then output accept. Otherwise, output fail.

In the first procedure of the user, ci and di are GS-commitment to bi, and
−→
θ i is GS-proof that bi satisfies

the equation bi(bi − 1) = 0 so that bi = 0 or bi = 1. More precisely, when bi and b′i are openings of ci and

di, respectively,
−→
θ i is a proof that bi(b

′
i − 1) = 0 and (b′i − 1)bi = 0. Then, (bi = 0 or b′i = 1)

∧
(bi = 1 or

b′i = 0) so that bi = b′i = 0 or bi = b′i = 1. We provide three theorems to prove the security of the proposed
(partially) blind signature scheme.

Theorem 2 The above blind signature is correct.

Theorem 3 If G1 satisfies the decisional linear assumption, then the above blind signature satisfies blindness.

The proof of Theorem 2 and 3 are similar to the previous ones [31]. We provide the proof in Appendix C.

Theorem 4 If G1 satisfies the the CDH assumption, then the above blind signature is one-more unforgeable.

We provide the proof of Theorem 4 in Appendix C. Now, we briefly explain our idea to prove the one-more
unforgeability, and the reason why we cannot apply the Meiklejohn et al. proof strategy to the proposed
scheme. At the end of the interaction, the user obtains a Waters-signature, which is existentially unforgeable
based on the CDH assumption. If the user obtains only a Waters signature, then the proposed scheme is,
loosely speaking, also one-more unforgeable. However, the user obtains not only a Waters signature (of the
form g′(u

∏
i∈[1,m] u

bi
i )r and g−r for message b1 · · · bm), but also some additional information, that is, it

eventually gets

g′(u
∏

i∈[1,m]

ubii )r(
∏

i∈[m0+1,m]

h
ti,1
1 h

ti,2
2 )r, g−r, h−r1 , and h−r2

for some (unknown and uniformly distributed) r ∈ Zp, and ti,1, ti,2, and bi chosen by itself. Therefore, we

should show that h−r1 , h−r2 , and (
∏
i∈[m0,m] h

ti,1
1 h

ti,2
2 )r will not be helpful for the user to break the one-more

unforgeability. In [31], a pairing e satisfies the cancelling property, and orders of subgroups are relatively
prime so that each part contained in each subgroup in a signature scheme is independent. [31] essentially
utilized this independence. If, in our scheme, the G1 ⊕ G2 part and G3 part were independent, the user
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could not obtain any additional information about the part in G3 from the above information. (Since all
information other than a Waters signature, which the user gets at the end of the protocol, is related to h1 and
h2, which are elements in G1⊕G2, this information will not be helpful for forging the Waters signature in the
G3 part.) Hence, the one-more unforgeability of the scheme can be reduced to the existential unforgeability of
the Waters signature (in G3 in the case of our scheme). However, we cannot apply this Meiklejohn et al. proof
strategy to our scheme since our bilinear map e does not have the cancelling property and each subgroup
has the same order p. Instead, we prove the one-more unforgeability using a completely different strategy.
Our simulation basically follows the simulation for the existential unforgeability of the Waters signature,
and at the same time simulates directly additional information h−r1 , h−r2 , and (

∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 )r. It

seems hard to simulate (
∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 )r since ti,1 and ti,2 are chosen by the user and r is usually not

known to the simulator during the simulation. (r is usually of the form Ra + S for some unknown a and
constants R and S, where a is given by the form ga.) We circumvent this obstacle by using the projecting
property and the translating property mentioned in section 3.1. To simulate this additional information, the
simulator first extracts the message, that is, recovers b1 · · · bm by computing logπ1(ui)π1(ci) = bi, and second

computes πj(ci/u
bi
i ) = h

ti,j
j and

if bi = 0,

{
π3(θ−1

i,1 ) = π3(vi)
ti,1

π3(θ−1
i,2 ) = π3(vi)

ti,2 ,
if bi = 1,

{
π3(θi,3) = π3(vi)

ti,1

π3(θi,4) = π3(vi)
ti,2 .

Though π3(vi)
ti,j is contained in G3, we can change it to be of the form h

ati,j
j for some unknown a by using

the translating property mentioned in section 3.1 when vi contains a in the exponent. The simulator can
generate (

∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 )r by using h

ti,j
j and h

ati,j
j .

Remark 2. The decisional linear assumption implies the CDH assumption. (The decisional linear assumption
implies the computational linear assumption, and the computational linear assumption implies the CDH
assumption. Reductions are quite straightforward.)

Remark 3. In the user’s first procedure, the GS-commitment and proof appear to have redundant parts. It
would be more natural to change them to

ci = (ui)
bih

ti,1
1 h

ti,2
2 , θi,1 = (u2bi−1

i h
ti,1
1 h

ti,2
2 )ti,1hri2 , θi,2 = (u2bi−1

i h
ti,1
1 h

ti,2
2 )ti,2h−ri1 ,

and it can be verified by e(ci, ciu
−1
i )

?
= e(h1, θi,1)e(h2, θi,2). This commitment and proof is GS commitment

and proof for bi ∈ {0, 1}. However, we note that in this case, we could not prove the one-more unforge-
ability based on the CDH assumption. We only proved the one-more unforgeability based on the decisional
linear assumption and augmented CDH assumption. (Augmented CDH assumption roughly says that given

g, ga, gb, ga
2

, it is infeasible to compute gab.) To avoid requiring ga
2

, in the simulation, that is, to prove the
one-more unforgeability based on the CDH assumption, we modified the commitment and the proof to the
current form.

4 Bilinear Group: Both Cancelling and Projecting

4.1 Interpreting Limitation Result in [31]

In [31], the authors consider the cases that the bilinear group generator G(λ, n) is defined as follows:

1. (p,G,H,Gt, ê)
$← G1(λ)

2. G = Gn, H = Gn, and Gt = Gmt for some positive integer m.
3. a bilinear map e : G×G→ Gt is defined by

e((g1, · · · , gn), (h1, · · · , hn)) = (· · · , e((g1, · · · , gn), (h1, · · · , hn))(`), · · · )
= (· · · ,

∏
i,j∈[1,n] ê(gi, hj)

e
(`)
ij , · · · ),

where e
(`)
ij ∈ Zp for all i, j ∈ [1, n] and ` ∈ [1,m].
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The authors showed that e can be both the cancelling and projecting only with negligible probability when e
is defined as the above. In the above G construction, to generate a rank n Zp-module, G is defined as Gn. In
the proof for the limitation result ([31, Proposition 6.4 and Theorem 6.5]), the authors used, in an essential
way, the fact that a rank n Zp-module is of the form Gn.

We can, however, also define, in a different way, a rank n Zp-module G. First generate a rank n′(> n)

Zp-module G̃, and then define G as a rank n Zp-submodule of G̃. For example, define G̃ = G4 and

G = 〈(ga1 , gb1 , gc1 , gd1), (ga2 , gb2 , gc2 , gd2), (ga3 , gb3 , gc3 , gd3)〉,

where {(ai, bi, ci, di)}i∈[1,3] is a set of linearly independent vectors in Z4
p. Then, G is a rank 3 Zp-submodule

of a rank 4 Zp-module G̃. This example is not included in the case of the above G construction. In this
example, we should argue about the membership check of G since any group should be easy to check for its
membership to be used for cryptographic applications. If there is no additional information, the membership
check of G is infeasible since it is equivalent to the decisional 3-linear problem. However, we should not rule
out this case when some additional information for membership check is given. Our construction is exactly
such a case.

4.2 Our Construction

First, we give an instructive intuition of our construction. To construct a bilinear group generator with
projecting, we should consider the order of image of a bilinear map, which should be larger than prime
p.5 We start from a bilinear group generator with the cancelling property [18]. We consider n different
bilinear group generators (of rank n) with cancelling property. Let G(i) = ⊕j∈[1,n]Gij (rank n Zp-module),

H(i) = ⊕j∈[1,n]Hij (rank n Zp-module) and ēi (bilinear map) be the output of i-th bilinear group generator.
Let Gij = 〈gij〉 that is a rank 1 Zp-submodule of a rank n Zp-module. Let Gj be 〈(g1j , · · · , gnj)〉, which is a
rank 1 Zp-submodule of a rank n2 Zp-module (n direct product of n Zp-modules). Define Hj similarly, and
define G = ⊕j∈[1,n]Gj and H = ⊕j∈[1,n]Hj . We define a map e by using bilinear maps ēi defined over each

G(i) ×H(i) as follows:

e((g1, · · · , gn), (h1, · · · , hn)) = (ē1(g1, h1), · · · , ēn(gn, hn)),

where gi ∈ G(i) and hi ∈ H(i). This construction also satisfies the cancelling property. If we can control the
basis of the image of e so that the order of image is not prime p, then we may obtain the projecting property.

For vectors Γ = (−→α 1, · · · ,−→α n) = (α11, · · · , αnn) and Λ = (
−→
β 1, · · · ,

−→
β n) = (β11, · · · , βnn) ∈ Zn2

p , and a

group element g ∈ G, we define a notation Γ ◦Λ := (−→α 1 ·
−→
β 1, · · · ,−→α n ·

−→
β n) ∈ Znp , where −→α j ’s and

−→
β j ’s are

vectors in Znp , and −→α j ·
−→
β j =

∑
`∈[1,n] αj`βj`. Now, we describe our construction GCP .

1. Take a security parameter and a positive integer n as inputs, run G1, and obtain (p,G,H,Gt, ê).
2. Choose generators g and h at random from G and H, respectively.
3. Choose X1, · · · , Xn and D from GLn(Zp) at random. Define Di ∈Matn(Zp) be a diagonal matrix having
D’s i-th column vector as its diagonal. Define Yi by Di(X

−1
i )t.

4. Let
−→
ψ ij be the i-th row of Xj and

−→
φ ij be the i-th row of Yj . Let Ψi = (

−→
ψ i1, · · · ,

−→
ψ in) and Φi =

(
−→
φ i1, · · · ,

−→
φ in). Then, define Gi by a cyclic subgroup in Gn2

generated by 〈gΨi〉, and define Hi by a

cyclic group in Hn2

generated by 〈hΦi〉.
5. Define G and H by the internal direct product of Gi’s and Hi’s, respectively. That is, G = ⊕i∈[1,n]Gi ⊂

Gn2

, and H = ⊕i∈[1,n]Hi ⊂ Hn2

. Define Gt by Gnt .
6. Define a map e : G×H → Gt as follows:

e(gΓ , hΛ) := (
∏

`∈[1,n]

ê(gα1` , hβ1`), · · · ,
∏

`∈[1,n]

ê(gαn` , hβn`)) = ê(g, h)Γ◦Λ,

for any Γ = (α11, · · · , αnn) and Λ = (β11, · · · , βnn).

5 If the image of a bilinear map is prime p, it cannot satisfy projecting property [31].
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7. Take a basis of 〈Ψ1, · · · , Ψn〉⊥ at random, say {Ψ̂1, · · · , Ψ̂n2−n}, and take a basis of 〈Φ1, · · · , Φn〉⊥ at

random, say {Φ̂1, · · · , Φ̂n2−n}, where the notation 〈Γ1, · · · , Γn〉⊥ means a set of all orthogonal vectors
to 〈Γ1, · · · , Γn〉. Define

σ := (ê, {hΨ̂1 , · · · , hΨ̂n2−n}, {gΦ̂1 , · · · , gΦ̂n2−n}).

8. Output (G,G1, · · · , Gn, H,H1, · · · , Hn, Gt, e, σ).

In the description of GCP each Gi and Hi is defined to be rank 1, as Zp-submodules of Gn2

, and for i 6= j,

Gi ∩Gj = Hi ∩Hj = {1Gn2 }, where 1Gn2 is the identity of Gn2

. Therefore, in the step 5, G = ⊕i∈[1,n]Gi and

H = ⊕i∈[1,n]Hi are well-defined and rank n Zp-submodules of Gn2

.

4.3 Cancelling, Projecting, and Translating

It is straightforward to check that e is a non-degenerate bilinear map. We show that e satisfies cancelling,
projecting and translating.

Theorem 5 Let (G = ⊕i∈[1,n]Gi, Gi, H = ⊕i∈[1,n]Hi, Hi, Gt, e, σ) be the output of the above GCP . Then, e
is both cancelling and projecting.

Proof. Let X1, · · · , Xn, Y1, · · · , Yn and D be generated in the step 3 of Section 4.2. These satisfy the following
three conditions.

(1) X` and Y` are in GLn(Zp) for ` ∈ [1, n].
(2) For ` ∈ [1, n] each X` · Y >` is a diagonal matrix with a diagonal d`.
(3) D = (d1 · · ·dn), that is, the i-th column vector of D is di.

From the condition (1) we can see that Ψi’s are linearly independent and Φi’s are linearly independent and
so G = ⊕i∈[1,n]Gi and H = ⊕i∈[1,n]Hi are well-defined. The condition (2) guarantees that e is a cancelling

bilinear map: For i 6= j, Ψi ◦ Φj := (
−→
ψ i1 ·

−→
φ j1, · · · ,

−→
ψ in ·

−→
φ jn) = 0 and so e(gΨi , hΦj ) = e(g, h)Ψi◦Φj =

(1Gt , · · · , 1Gt) is equal to the identity of the product group (Gt)n. The third condition (3) implies that {Ψi ◦
Φi}i∈[1,n] is a set of linearly independent vectors in Znp ; hence, any pair of groups e(Gi, Hi) = 〈e(g, h)Ψi◦Φi〉 =

〈(g, h)(di1,··· ,din)〉 has no common element except the identity so that Im(e) = ⊕i∈[1,n]e(Gi, Hi) = Gt. We
can consider natural projections πi : G → Gi, π̄i : H → Hi, and πt,i : Gt → e(Gi, Hi). We can construct
these projections, in a similar way as the construction of the projections in the subsection 3.1. We leave the
details in Appendix D. Let G′ = ⊕[2,n]Gi, H

′ = ⊕[2,n]Hj , G
′
t = e(G′, H ′), π = πi, π̄ = π̄i, and πt = πt,i.

Then, e satisfies the definition 4. �

Theorem 6 GCP (λ, n) satisfies translating property for all i, j ∈ [1, n].

Proof. We will construct T3,1. We can construct other Ti,j and T̄i,j similarly. Given g3, ga3 and n×n matrices
Xi defined as in the description of GCP , we can compute ga1 without knowing a as follows:

Parse ga3 as (gΨ3)a = ((g
−→
ψ 31)a, · · · , (g

−→
ψ 3n)a), and compute

for j ∈ [1, n], ((g
−→
ψ 3j )a)X

−1
j = (ga

−→e 3Xj )X
−1
j = ga

−→e 3 = (1, 1, ga, · · · , 1),

(ga, 1, · · · , 1)Xj = (ga
−→e 1)Xj = ga

−→
ψ 1j ,

then (ga
−→
ψ 11 , · · · , ga

−→
ψ 1n) = (gΨ1)a = ga1 .

where −→e i is the canonical i-th vector in Znp , for example, −→e 1 = (1, 0, 0, · · · , 0). �
We show that anyone knowing σ can test membership of elements in G and H (membership test for Gt

is trivial) in Appendix D. Finally, we should show that G satisfies the subgroup decision assumption, but
it is not easy to prove that G satisfies the subgroup decision for any n. Instead, in Appendix D we give
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a proof that, for n = 2, G satisfies the (2, 1)-subgroup decision assumption in the generic bilinear group
model [36] (that is, we assume that the adversary should access the oracles for group operations of G, H,
Gt and pairing computations for ê, where G1 → (p,G,H,Gt, ê)). Though we give a proof for the case n = 2,
we are positive that GCP satisfies the subgroup decision assumption for n > 2. For n > 2, there are several
variables, particularly in σ, we should consider for the subgroup decision assumption, so these make it hard
to prove for the case n > 2, even in the generic bilinear group model.6

5 Conclusions and Further Work

In this paper, we answered two open questions left by Meiklejohn, Shacham, and Freeman. First, we showed
that the security of the Meiklejohn et al.’s (partial) blind signature can be proved in the prime-order bilinear
group setting.7 Second, we showed that there exist bilinear group generators that are both cancelling and
projecting in the prime-order bilinear group setting.

The proof of the Meiklejohn-Shacham-Freeman blind signature scheme, and the Lewko-Waters identity-
based encryption scheme [30] essentially use the fact that orders of subgroups are relatively prime as well
as the projecting and/or cancelling properties. For each scheme, the adapted version in prime-order bilinear
groups is proposed, with a different security proof strategy, in this paper and [30], respectively. It would be
interesting to find a general procedure to transform such schemes using relatively prime orders in composite-
order groups to schemes in prime-order groups.

We proposed a new mathematical framework with both cancelling and projecting in a prime-order bilinear
group setting, and gave the proof that the (2, 1) subgroup decision assumption holds in the generic bilinear
group model when n = 2. This research leaves many interesting open problems. We ask if the subgroup
decision assumption holds when n > 2, and if the subgroup decision assumption can be reduced to the simple
assumption such as the (decisional) k-linear assumption. We did not find good cryptographic applications of
this framework. It would be interesting to design cryptographic schemes based on the proposed framework.
We expect that this research will provide other directions for our primitive question: whether there exists a
cryptosystem on composite-order bilinear groups that cannot be constructed on prime-order bilinear groups.
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A Definition of Blind Signatures

In this section, we recall the definition of partially blind signature from [31]. We assume that both signer and
user agree on the common information, denoted as info, and info is decided outside of the partially blind
signature scheme. In some applications, info is may be decided by the signer, or the user. In our definition
of the (concurrently secure) partially blind signature, we want the signature scheme to be secure regardless
of the process of deciding info.

Definition 10 A partially blind signature in the common reference string (CRS) model is a collection of
five (interactive) algorithms.

• Setup is a PPT algorithm that takes a security parameter λ and outputs a common reference string,
denoted as CRS.

• KeyGen is a PPT algorithm, on input CRS, outputs a public and secret key pair (PK,SK).
• Signer and User are PPT (interactive) algorithms. Signer takes CRS, SK and info as input, and User

takes CRS,PK, info, and a message Msg ∈ {0, 1}m as input. At the end of interaction, if the interaction
is successful, then Signer outputs ‘success’, and User outputs ‘success’ and the unblinded signature ‘sig’.

• Verify is a (probabilistic) polynomial-time algorithm that takes (CRS,PK, info,Msg, sig) and outputs
either ‘accept’ or ‘fail’.

Definition 11 We say that a partially blind signature scheme (in the CRS model) is concurrently secure if
for all PPT algorithm A there exists a negligible function η(·) and a security parameter λ0 such that for all
λ > λ0 the following three properties hold:

1. Correctness: For all CRS
$← Setup(λ), info ∈ {0, 1}m (info is actually minfo bit string such that

minfo < m) and (PK,SK)
$← KeyGen(CRS), if sig is the output of User(CRS,PK, info,Msg) ↔

Signer(CRS, SK, info) for an honest user and an honest signer, then Verify(CRS,PK, info,Msg, sig)
outputs accept with probability 1.

2. Blindness: Let b
$← {0, 1} be unknown to A (roll of a signer). Define the following game:

(a) CRS
$← Setup(λ).

(b) (info,Msg0,Msg1, PK)← A(CRS).
(c) A engages in two arbitrary interleaved signing protocols; one with User(CRS,PK, info,Msgb) and

one with User(CRS,PK, info,Msg1−b) (where both users act honestly).
(d) If the first user outputs sigb and the second user outputs sig1−b (i.e., both users succeed) then A is

given sig0 and sig1.
(e) In the end of interaction, A outputs a bit b′.
The signature scheme is considered blind if the probability that b′ = b is at most 1

2 + η(λ), where the
probability goes over the choices of b, the randomness used in Setup, and the randomness used by A and
users.

3. One-more unforgeability: Define the following game for the adversary A (roll of a user).

(a) CRS
$← Setup(λ).

(b) (PK,SK)
$← KeyGen(CRS).

(c) A, on input CRS and PK, engages in poly(λ) arbitrarily interleaved executions of the signing protocol
with polynomially many copies of Signer(CRS, SK, info), where info is sent by A, (on and messages
of its choice). Let qinfo denote the number of executions in which for a common input info the
signer outputs success at the end. For info that have never sent to the signer, define qinfo = 0. (For
info =⊥ (that is, minfo = 0), qinfo is defined in the same manner.)

(d) For some info, A outputs a collection of message-signature pairs {(Msgi, sigi)}i∈[1,q′] such that
Msgi 6= Msgj for all i 6= j, and Verify(CRS,PK, info,Msgi, sigi) = success for all i ∈ [1, q′].

We say that the signature scheme is one-more unforgeable if the probability that q′ > qinfo is at most
η(λ), where the probability is taken over the randomness used in Setup, KeyGen, A and Signer.
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B Proof of Lemmas

Proof of Lemma 1. We define notation: For subgroups S1, · · · , Sn of an abelian group S with group
operator ·, let

∏
i∈[1,n] Si be a subgroup {s1 · · · sn|si ∈ Si for ∀i ∈ [1, n]}.

From the bilinearity of e, the image of e is equal to
∏

1≤i≤j≤3 e(Gi, Gj). LetGi = 〈g−→x i〉. Since e(g
−→x i , g

−→x j ) =

ê(g, g)1/2(−→x i⊗−→x j+−→x j⊗−→x i), showing that for 1 ≤ i ≤ j ≤ 3, −→x i ⊗ −→x j + −→x j ⊗ −→x i’s are linear independent
vectors in Z9

p is sufficient to prove the lemma. Suppose that for 1 ≤ i ≤ j ≤ 3, −→x i ⊗ −→x j + −→x j ⊗ −→x i’s are
linear dependent. Then, there exists aij ∈ Zp for i, j ∈ [1, 3] such that

∑
i,j∈[1,3] aij(

−→x i ⊗−→x j) = 0 and aij ’s

are not all zero. Let −→x ′j be
∑
i∈[1,3] aij

−→x i. Then,
∑
j∈[1,3]

−→x ′j ⊗
−→x j = 0. At least one of −→x ′1,−→x ′2 and −→x ′3

is a non-zero vector since aij ’s are not all zero, and −→x 1, −→x 2 and −→x 3 are linearly independent. Without
loss of generality, we assume that −→x ′1 is a non-zero vector, and the first entry of −→x ′1 is non-zero. From the
first three entries of

∑
j∈[1,3]

−→x ′j ⊗
−→x j , we obtain an equation x′11

−→x 1 + x′21
−→x 2 + x′31

−→x 3 = 0, where x′j1 is

the first entry of −→x ′j . Since x′11 6= 0, it is a contradiction to the linearly independency of −→x 1, −→x 2 and −→x 3.
Therefore, for 1 ≤ i ≤ j ≤ 3, −→x i⊗−→x j +−→x j ⊗−→x i’s are linear independent vectors so that for 1 ≤ i ≤ j ≤ 3,

each e(Gi, Gj) = 〈ê(g, g)1/2(−→x i⊗−→x j+−→x j⊗−→x i)〉 is mutually disjoint (except the identity) to the other subgroup.
Therefore, the image of e is equal to ⊕1≤i≤j≤3e(Gi, Gj). �

Proof of Lemma 2. Suppose that there exist an algorithm A to break the subgroup decision assumption
of GSP . We construct an algorithm B to attack the decisional linear assumption of G1 by using A. First, B
is given the decisional linear problem (p,G,Gt, e, g, gz1 , gz2 , gz1z3 , gz2z4 , gz). The goal of B is to determine

whether z = z3 + z4 or z
$← Zp. B sets G, Gt and e according to the description of GSP . B chooses random

integers r1, r2, s1, s2
$← Zp, and computes h1 = (gz1z3 , gz1r1 , gz1s1) and h2 = (gz2z4 , gz2r2 , gz2s2) as generators

of G1 and G2, respectively. Next, B sets g̃ = (gz, gr1+r2 , gs1+s2) and send g̃ along with the group description
to A. Finally, B receives A’s result and outputs it as his result. If z = z3 +z4, then g̃ is uniformly distributed
in 〈h1, h2〉 = G1 ⊕G2, and otherwise, g̃ is uniformly distributed in G. Therefore, B can attack the subgroup
decision assumption with the same advantage as A’s advantage to solve the decisional linear problem. �

C Proof of Theorems

C.1 Proof of Theorem 2

We show that the correctness of the proposed blind signature in the section 3.2. If the user correctly constructs

ci,
−→
θ i in the first procedure, then they will pass the signer’s test since

e(ci, div
−1
i ) = e(ubii h

ti,1
1 h

ti,2
2 , vbi−1

i h
si,1
1 h

si,2
2 )

= e(ubii , v
bi−1
i )e(ubii , h

si,1
1 h

si,2
2 )e(h

ti,1
1 h

ti,2
2 , vbi−1

i h
si,1
1 h

si,2
2 )

= 1 · e((ubii )si,1 , h1)e((ubii )si,2 , h2)e(h
ti,1
1 h

ti,2
2 , vbi−1

i h
si,1
1 h

si,2
2 )

= 1 · e((ubii )si,1 , h1)e((ubii )si,2 , h2)e(h1, (v
bi−1
i h

si,1
1 h

si,2
2 )ti,1)e(h2, (v

bi−1
i h

si,1
1 h

si,2
2 )ti,2)

= e(h1, u
bisi,1
i (vbi−1

i h
si,1
1 h

si,2
2 )ti,1)e(h2, u

bisi,2
i (vbi−1

i h
si,1
1 h

si,2
2 )ti,2)

= e(h1, θi,1)e(h2, θi,2),

e(ciu
−1
i , di) = e(ubi−1

i h
ti,1
1 h

ti,2
2 , vbii h

si,1
1 h

si,2
2 )

= e(ubi−1
i , vbii )e(ubi−1

i , h
si,1
1 h

si,2
2 )e(h

ti,1
1 h

ti,2
2 , vbii h

si,1
1 h

si,2
2 )

= 1 · e((ubi−1
i )si,1 , h1)e((ubi−1

i )si,2 , h2)e(h
ti,1
1 h

ti,2
2 , vbii h

si,1
1 h

si,2
2 )

= 1 · e((ubi−1
i )si,1 , h1)e((ubi−1

i )si,2 , h2)e(h1, (v
bi
i h

si,1
1 h

si,2
2 )ti,1)e(h2, (v

bi
i h

si,1
1 h

si,2
2 )ti,2)

= e(h1, u
(bi−1)si,1
i (vbii h

si,1
1 h

si,2
2 )ti,1)e(h2, u

(bi−1)si,2
i (vbii h

si,1
1 h

si,2
2 )ti,2)

= e(h1, θi,3)e(h2, θi,4).
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Further, if the signer correctly follows the protocol, K1 = g′(u′(
∏
i∈[1,m] u

bi
i )(
∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 ))r, K2 =

g−r, K3,1 = h−r1 , and K3,2 = h−r2 . They will pass the user’s test in the second procedure since

e(K3,1, g) = e(h−r1 , g) = e(h1,K2) and e(K3,2, g) = e(h−r2 , g) = e(K2, g).

Finally, the user outputs a signature as

S1 = K1 · (
∏

i∈[m0+1,m]

K
ti,1
3,1 K

ti,2
3,2 ) · (u′

∏
i∈[1,m]

ubii )s = g′(u′
∏

i∈[1,m]

ubii )r+s and S2 = K2 · g−s = g−(r+s),

which is a valid signature with the randomness r + s. �

C.2 Proof of Theorem 3

We show that if G1 satisfies the decisional linear assumption, then the proposed blind signature satisfies the
blindness definition.

We prove the theorem by using hybrid arguments. First, we define a sequence of games. The only different
part between adjacent games is the distribution of CRS. For i ∈ [0,m],

Gamei: Group description in CRS is equal to the real game, that is, p,G,Gt, e are normally generated. Gen-

erate g, u′
$← G,h1

$← G1, and h2
$← G2. Set u1, · · · , ui, v1, · · · , vi

$← G1⊕G2, and ui+1, · · · , um, vi+1, · · · ,
vm

$← G. Then, normally follow the game procedure.

Game′i: Same game to Gamei except choosing vi
$← G.

Game0 is equal to the real game, and in Gamem all ui and vi are randomly chosen from G1 ⊕ G2. By
Lemma 2, any polynomial time algorithm has negligibly different advantage between Game′i and Gamei,
and between Gamei and Game′i+1. Then, the triangle inequality law implies the following lemma.

Lemma 3 No polynomial time algorithm has negligibly different advantage between Game0 and Gamem.

Next, we will show that any algorithm cannot obtain any information about the user’s message in Gamem.
That is, we will prove the following lemma.

Lemma 4 Any (unbounded) algorithm has no advantage in Gamem.

From the above two lemmas, we can complete the proof of theorem.
Now, we prove the lemma 4. In the game of blindness, the only chances that the adversary can obtain

information about each user’s message are (1) the user’s commitment to the message and its proof, (2)
the user’s response, that is, whether the user accepts the adversary’s output (K1,K2,K3,1,K3,2), and (3)
the user’s output signature. Now, we show that no adversary can obtain any information from the three
aforementioned resources in Gamem even for the unbounded adversary.

The user’s commitment to the message and its proof. We used GS-commitment and proof so that in Gamem
each user’s commitment and proof identically distribute regardless of their witness. (Gamem is a witness
indistinguishable setting of GS-proof.) More precisely, the distribution of ci, di, θi,1, θi,2, θi,3 and θi,4 when
bi = 0, is identical to the distribution when bi = 1. Further, all tuple of (ci, di, θi,1, θi,2, θi,3, θi,4) for i ∈
[m0 + 1,m] are independent. Therefore, the adversary cannot obtain any information about the message
from the user’s commitment to the message and its proof. Let us explain the detail.

When bi = 0,

ci = h
ti,1
1 h

ti,2
2 , θi,1 = (v−1

i h
si,1
1 h

si,2
2 )ti,1hri2 , θi,2 = (v−1

i h
si,1
1 h

si,2
2 )ti,2h−ri1 .

di = h
si,1
1 h

si,2
2 , θi,3 = u

(−1)si,1
i (h

si,1
1 h

si,2
2 )ti,1h

r′i
2 , θi,4 = u

(−1)si,2
i (h

si,1
1 h

si,2
2 )ti,2h

−r′i
1 .
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where ti,1, ti,2, si,1, si,2, ri and r′i are uniformly and independently distributed in Zp.
When bi = 1,

ci = uih
ti,1
1 h

ti,2
2 , θi,1 = u

si,1
i (h

si,1
1 h

si,2
2 )ti,1hri2 , θi,2 = u

si,2
i (h

si,1
1 h

si,2
2 )ti,2h−ri1 .

di = vih
si,1
1 h

si,2
2 , θi,3 = (vih

si,1
1 h

si,2
2 )ti,1h

r′i
2 , θi,4 = (vih

si,1
1 h

si,2
2 )ti,2h

−r′i
1 .

where ti,1, ti,2, si,1, si,2, ri and r′i are uniformly and independently distributed in Zp. Let ui = ha1h
b
2 and

vi = hc1h
d
2 since ui, vi ∈ 〈h1, h2〉 = G1 ⊕ G2 in Gamem. Let t̃i,1 = ti,1 + a, t̃i,2 = ti,2 + b, s̃i,1 = si,1 + c,

s̃i,2 = si,2 + d, r̃i = b(s̃i,1 − c) + a(s̃i,2 − d) + ri and r̃′ = s̃i,2(t̃i,1 − a) + r′. Then, t̃i,1, t̃i,2, s̃i,1, s̃i,2, r̃i and r̃′i
are uniformly and independently distributed in Zp, and

ci = h
t̃i,1
1 h

t̃i,2
2 , θi,1 = (v−1

i h
s̃i,1
1 h

s̃i,2
2 )t̃i,1hr̃i2 , θi,2 = (v−1

i h
s̃i,1
1 h

s̃i,2
2 )t̃i,2h−r̃i1 .

di = h
s̃i,1
1 h

s̃i,2
2 , θi,3 = u

(−1)s̃i,1
i (h

s̃i,1
1 h

s̃i,2
2 )t̃i,1h

r̃′i
2 , θi,4 = u

(−1)s̃i,2
i (h

s̃i,1
1 h

s̃i,2
2 )t̃i,2h

−r̃′i
1 ,

and hence the distribution when bi = 1 is identical to the distribution when bi = 0.

The user’s response. When the adversary gives (K1,K2,K3,1,K3,2), the user performs two types of tests.
The one type of test is

e(K3,1, g)
?
= e(K2, h1) and e(K3,2, g)

?
= e(K2, h2),

the other one is Verfy(CRS,PK, info,Msg, (S1, S2)), where

S1 = K1 · (
∏

i∈[m0+1,m]

K
ti,1
3,1 K

ti,2
3,2 ) and S2 = K2,

and ti,1 and ti,2 are used in the commitment ci and its proof θi,1 and θi,2. We will show that the adversary
can perform these two types of test by himself so that the adversary cannot obtain any information from
the user’s response. The adversary can trivially check the first type of test by himself. Now, we consider the
user’s second test Verfy(CRS,PK, info,Msg, (S1, S2)). Let info‖Msg = b1‖ · · · ‖bm.

A
?
= e(S1, g)e(S2, u

′∏
i∈[1,m] u

bi
i )

= e(K1 · (
∏
i∈[m0+1,m]K

ti,1
3,1 K

ti,2
3,2 ), g)e(K2, u

′∏
i∈[1,m] u

bi
i )

= e(K1, g)(
∏
i∈[m0+1,m] e(K3,1, g)ti,1e(K3,2, g)ti,2))e(K2, u

′∏
i∈[1,m] u

bi
i )

= e(K1, g)(
∏
i∈[m0+1,m] e(K2, h1)ti,1e(K2, h2)ti,2))e(K2, u

′∏
i∈[1,m] u

bi
i )

= e(K1, g)(
∏
i∈[m0+1,m] e(K2, h

ti,1
1 h

ti,2
2 ))e(K2, u

′∏
i∈[1,m] u

bi
i )

= e(K1, g)e(K2, u
′(
∏
i∈[1,m] u

bi
i )(
∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 ))

= e(K1, g)e(K2, u
′(
∏
i∈[1,m0] u

bi
i )(
∏
i∈[m0+1,m] ci))

The adversary can see whether the fourth equality holds or not, from the first test. Since the user performs
the second test only if the first test are passed, the adversary can check by testing the first test and testing

A
?
= e(K1, g)e(K2, u

′(
∏
i∈[1,m0] u

bi
i )(
∏
i∈[m0+1,m] ci)) whether the user accepts the second test.

The user’s output signature. The output signature of each user is re-randomized so that the randomness
uniformly distributes. Therefore the adversary cannot obtain any information about the underlying message
from two signatures. �
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C.3 Proof of Theorem 4

We show that if G1 satisfies the the CDH assumption, then the proposed blind signature is one-more un-
forgeable (in the sense of the one-more unforgeability definition in Appendix A).

Suppose that there exists a polynomial algorithm A to break the one-more unforgeable property in the
game defined in Appendix A, with ε success probability. Let qinfo be the number of signing queries for the
common information info, and let q be the sum of qinfo for all info issued by A. Let ε be the success
probability of A in the one-more unforgeability game. We construct an algorithm B to attack the CDH
assumption by using A, with more than ε

8(m+1)q success probability so that we prove there is no such

polynomial time adversary A to break the one-more unforgeable property in the sense of the definition in
Appendix A.

B starts with receiving (p,G,Gt, e, g, ga, gb). The goal of B is to compute gab.

Setup. B first generates CRS of the blind signature. B sets an integer, ` = 4q, chooses a random integer

k
$← [0,m], z′, zj

$← [0, `− 1], and w′i, wij , w̄ij
$← Zp for i ∈ [1, 3] and j ∈ [1,m].

Define five functions

F (Msg) = (p− `k) + z′ +
∑
i∈[1,m] bizi,

J1(Msg) = w′1 +
∑
i∈[1,m] biw1,i,

J2(Msg) = w′2 +
∑
i∈[1,m] biw2,i,

J3(Msg) = w′3 +
∑
i∈[1,m] biw3,i,

K(Msg) =

{
0, if z′ +

∑
i∈[1,m] bizi ≡ 0 ( mod `)

1, otherwise,
where Msg is bitwise equal to b1 · · · bm for bi ∈ {0, 1}.

These functions are not used in the setup phase, however, they will be used to simulate Waters-signature in
the signing oracle phase and to extract gab from the adversary’s output.

B chooses linearly independent random vectors −→x 1,
−→x 2 and −→x 3

$← Z3
p, chooses random integers ζ1, ζ2

from Zp, computes

g1 = g
−→x 1 , g2 = g

−→x 2 , g3 = g
−→x 3 ,

A1 = (ga)
−→x 1 = ga1 , A2 = (ga)

−→x 2 = ga2 , A3 = (ga)
−→x 3 = ga3 ,

B1 = (gb)
−→x 1 = gb1, B2 = (gb)

−→x 2 = gb2, B3 = (gb)
−→x 3 = gb3,

and then generates CRS by defining G = G3, Gt = G9
t and a map e according to the description in GSP ,

and by computing

g = g1g2g3, u
′ = (Bp−k`+z

′

1 g
w′1
1 )(g

w′2
2 )(g

w′3
3 ), ui = (Bzi1 g

w1i
1 )(gw2i

2 )(gw3i
3 ), vi = gw̄1i

1 gw̄2i
2 Aw̄3i

3 ,

h1 = gζ11 , h2 = gζ22 .

Then, g, u′, u1, v1, · · · , um, vm are uniformly distributed in G, and h1 and h2 are uniformly distributed in
〈g1〉 = G1 and 〈g2〉 = G2, respectively, so that the distribution of CRS is identical to the distribution of the
real output of Setup algorithm.

We note that B knows −→x 1,
−→x 2, and −→x 3 so that he can construct π1, π2, π3, πt,1, πt,2 and πt,3.

KeyGen. Next, B generates the public key PK by choosing random integers b′, c′
$← Zp and computing

A = e(A1A2A3, B1g
b′

2 g
c′

3 ) = e(ga, gb1g
b′

2 g
c′

3 ) = e(g, gab1 Ab
′

2 A
c′

3 ). Then, the secret key g′ is gab1 Ab
′

2 A
c′

3 , which is
uniformly distributed in G and unknown to B since B does not know gab1 .
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Sining Oracle. B receives info = b1 · · · bm0 (actually m0 is depending on each info, however, for notational

convenience, we use notationm0 instead ofminfo.) and a tuple req = (cm0+1, dm0+1,
−→
θ m0+1, · · · , cm, dm,

−→
θ m)

fromA. For each i ∈ [m0+1,m], B tests e(ci, div
−1
i )

?
= e(h1, θi,1)e(h2, θi,2) and e(ciu

−1
i , di)

?
= e(h1, θi,3)e(h2, θi,4).

If these two equalities do not hold, then B aborts the protocol and outputs ⊥. If req passes the test, for each
i ∈ [m0 + 1,m] ci, di, θi,1, θi,2, θi,3, and θi,4 can be written as the forms

ci = (ui)
bih

ti,1
1 h

ti,2
2 , θi,1 = u

bisi,1
i (vbi−1

i h
si,1
1 h

si,2
2 )ti,1hri2 , θi,2 = u

bisi,2
i (vbi−1

i h
si,1
1 h

si,2
2 )ti,2h−ri1 .

di = (vi)
bih

si,1
1 h

si,2
2 , θi,3 = u

(bi−1)si,1
i (vbii h

si,1
1 h

si,2
2 )ti,1h

r′i
2 , θi,4 = u

(bi−1)si,2
i (vbii h

si,1
1 h

si,2
2 )ti,2h

−r′i
1 .

for some bi ∈ {0, 1} and ti,1, ti,2, si,1, si,2, ri, r
′
i ∈ Zp. We will show this in the lemma 5.

B first computes the Waters-signature (S1, S2), and then computes the signer’s output (K1,K2,K3,1,K3,2).
The simulation to compute the Waters-signature is similar to the proof of the original Waters’ signature
scheme [37]. Given ci, B applies π3 and obtain π3(ubii ). Since B can compute π3(ui), B can obtain bi (recall,
bi ∈ {0, 1}) so that B has the whole message Msg′ by applying similarly for all i ∈ [m0 + 1,m]. From now,
we use notation Msg = b1 · · · bm to denote info‖Msg′.

If K(Msg) = 0, B aborts and outputs ⊥. Otherwise, B chooses a random integer r ∈ Zp and B constructs
(S1, S2) as

(S1, S2) = (A
−J1(Msg)

F (Msg)

1 A
b′− J2(Msg)

F (Msg)

2 A
c′− J3(Msg)

F (Msg)

3 (u′
∏

i∈[1,m]

ubii )r, g−r(A1A2A3)
1

F (Msg) ).

This is equal to a Waters-signature on Msg = b1 · · · bm with the randomness r̃ = r− a
F (Msg) . More precisely,

S1 = A
−J1(Msg)

F (Msg)

1 A
b′− J2(Msg)

F (Msg)

2 A
c′− J3(Msg)

F (Msg)

3 (u′
∏
i∈[1,m] u

bi
i )r

= A
−J1(Msg)

F (Msg)

1 (B
F (Msg)
1 g

J1(Msg)
1 )rA

b′− J2(Msg)

F (Msg)

2 (g
J2(Msg)
2 )rA

c′− J3(Msg)

F (Msg)

3 (g
J3(Msg)
3 )r

= gab1 (B
F (Msg)
1 g

J1(Msg)
1 )r−

a
F (Msg)Ab

′

2 (g
J2(Msg)
2 )r−

a
F (Msg)Ac

′

3 (g
J3(Msg)
3 )r−

a
F (Msg)

= gab1 Ab
′

2 A
c′

3 (B
F (Msg)
1 g

J1(Msg)
1 g

J2(Msg)
2 g

J3(Msg)
3 )r−

a
F (Msg)

= g′(u′
∏
i∈[1,m] u

bi
i )r̃,

S2 = g−r(A1A2A3)
1

F (Msg)

= g−r+
a

F (Msg)

= g−r̃.

Next, B constructs K1,K2,K3,1 and K3,2, by using S1 and S2. Since K2 = S2 and K3,i = h−r̃i =

h−ri h
a

F (Msg)

i = h−ri A
ζi

F (Msg)

i , B can construct K2,K3,1, and K3,2. The remaining part is to construct K1,

which is quite technical. We know that K1 = S1 · (
∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 )r̃. To construct K1, B needs to

compute h
ti,1
1 , h

ti,2
2 , h

ati,1
1 and h

ati,2
2 for i ∈ [m0 + 1,m]. Since B knows bi, he can compute h

ti,j
j by computing

πj(ci/u
bi
i ). B computes h

ati,j
j by the following procedures. First, B computes

if bi = 0,

{
π3(θi,1) = π3(v

−ti,1
i ) = A

−w̄3,iti,1
3 ,

π3(θi,2) = π3(v
−ti,2
i ) = A

−w̄3,iti,2
3 ,

if bi = 1,

{
π3(θi,3) = π3(v

ti,1
i ) = A

w̄3,iti,1
3 ,

π3(θi,4) = π3(v
ti,2
i ) = A

w̄3,iti,2
3 .

Second, B computes A
ti,1
3 and A

ti,2
3 . (Since B knows w̄3,i and w̄3,i is a non-zero with overwhelming probability,

B can compute A
ti,j
3 .) Third, B computes A

ti,1
1 = T3,1(A3, A

ti,1
3 , A1) by using the translating property in the
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definition 9. More precisely, let M be a 3 × 3 matrix with having −→x i as its i-th row, and −→e i be the i-th
canonical vector in Z3

p. Then, we can see the following two equalities.

(A
ti,1
3 )M

−1

= (gati,1
−→x 3)M

−1

= (gati,1
−→e 3M )M

−1

= gati,1
−→e 3 = (1, 1, gati,1),

(gati,1 , 1, 1)M = (gati,1
−→e 1)M = gati,1

−→x 1 = A
ti,1
1 .

B can compute A
ti,j
1 by using M and A

ti,j
3 according to the above equalities. Fourth, B computes h

ati,1
1 by

computing (A
ti,1
1 )ζ1 . Similarly, B computes h

ati,2
2 = (T3,2(A3, A

ti,2
3 , A2))ζ2 . Next, B compute K1 by using

h
ti,1
1 , h

ti,2
2 , h

ati,1
1 and h

ati,2
2 for i ∈ [m0 + 1,m] as follows:

K1 = S1 · (
∏
i∈[m0+1,m](h

ti,1
1 h

ti,2
2 )r(h

ati,1
1 h

ati,2
2 )−

1
F (Msg) )

= S1 · (
∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 )r−

a
F (Msg)

= S1 · (
∏
i∈[m0+1,m] h

ti,1
1 h

ti,2
2 )r̃.

Finally, B sends (K1,K2,K3,1,K3,2) and outputs success and info.

Output. At the end of the interaction, for some info A outputs q′ pairs of a message and a signature such
that all q′ messages are distinct and all tuples of info, message and signature pass the Verify algorithm. If q′

is strictly larger than qinfo, which is the number of signing queries issued by A for info, by the pigeonhole
principle there would exist a pair of Msg′ and a signature (S∗1 , S

∗
2 ) such that A did not obtain them from B.

We use Msg∗ to denote info‖Msg′. For such Msg∗ = b∗1 · · · b∗m, if z′+
∑
i∈[1,m] b

∗
i zi 6= k`, then B outputs ⊥.

Otherwise, we have F (Msg∗) ≡ 0 ( mod p). B computes C = (π1(S∗1 ·(S∗2 )J1(Msg)))M
−1

. Let C = (g1, g2, g3).
Then, B outputs g1. When A fails to outputs q′ > qinfo distinct messages and their signature for the same
common information info, B outputs ⊥.

Analysis. We need to argue two things. One is that the simulated transcript by B is indistinguishable from
the real transcript in the view of A. The another one is that the success probability of B to output gab is
more than ε

8(m+1)q .

In the view of A, the whole simulated transcript is identical to the transcript in the real game. In Setup
phase, each parameter is uniformly distributed in the suitable group. In the KeyGen phase, g′ = gab1 Ab

′

2 A
c′

3 is
uniformly distributed in G because of b, b′ and c′. Therefore, it’s distribution is identical to that of the real
game. In Sining Oracle phase, B’s output is

(g′(u′
∏

i∈[1,m]

ubii )r̃(
∏

i∈[m0+1,m]

h
ti,1
1 h

ti,2
2 )r̃, g−r̃, h−r̃1 , h−r̃2 ),

whose distribution is identical to that of the real output of the signer. Therefore, the overall distribution is
identical to that of the real game defined in Appendix A.

Now, we argue that B’s success probability is non-negligible whenever A’s success probability to break
the one-more unforgeability is non-negligible. First, we argue that B outputs gab if B does not abort and A
successfully breaks the one-more unforgeability. Second, we argue the overall success probability of B.

In Output phase, B receives (S∗1 , S
∗
2 ) such that Verify(CRS,PK,Msg∗, (S∗1 , S

∗
2 )) = accept and F (Msg∗) ≡

0 ( mod p). Verify(CRS,PK,Msg∗, (S∗1 , S
∗
2 )) = accept implies an equality

e(S∗1 , g)e(S∗2 , u
′
∏

i∈[1,m]

u
b∗i
i ) = A,

where Msg∗ = b∗1 · · · b∗m. Apply a projection πt,1 in the both side of the above equality, and then use the
commutative property of projections and e, so we obtain that8

e(π1(S∗1 ), π1(g))e(π1(S∗2 ), π1(u′
∏
i∈[1,m] u

bi
i )) = πt,1(A)

= e(π1(g), π1(gab1 Ab
′

2 A
c′

3 ))
= e(π1(g), gab1 ).

8 That is, we utilize the projecting property.
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Let π1(S2) = gr
∗

1 for some unknown r∗ ∈ Zp. (Since G1 is a cyclic group of order p, we can always write
π1(S2) = gr

∗

1 for some r∗ ∈ Zp.) Then,

e(π1(S∗1 ), g1)e(π1(u′
∏

i∈[1,m]

ubii ), gr
∗

1 ) = e(gab1 , g1)

By little changing the above equality using the bilinear property of e, we obtain

e(π1(S∗1 )(π1(u′
∏
i∈[1,m] u

bi
i ))r

∗
g−ab1 , g1) = 1t.

Since e is a non-degenerate bilinear map, π1(S∗1 )(π1(u′
∏
i∈[1,m] u

bi
i ))r

∗
g−ab1 = 1 so that

π1(S∗1 )(π1(u′
∏

i∈[1,m]

ubii ))r
∗

= gab1 .

In the case that F (Msg∗) ≡ 0 ( mod p),

(π1(u′
∏
i∈[1,m] u

bi
i ))r

∗
= (g

J1(Msg)
1 )r

∗

= π1((S∗2 )J1(Msg)).

Therefore, from the above two equalities we obtain π1(S∗1 )π1((S∗2 )J1(Msg)) = gab1 . Further,

(gab1 )M
−1

= (gab
−→x 1)M

−1

= (gab
−→e 1M )M

−1

= (gab
−→e 1) = (gab, 1, 1),

so that B outputs gab.
Next, we argue about the success probability of B. Since B sometimes aborts, it is not easy to calculate

the success probability of B. The event that B does not abort, however, is only related to the case that
K(Msgi) = 1 for all i ∈ [1, q] and z′ +

∑
i∈[1,m] b

∗
i zi = k`, where Msg1 · · · ,Msgq are messages used in the

signature sining query, that is, Msgi = infoi‖Msg′i and A sent the commitment to Msg′i to B during the
signing query phase, and Msg∗ = b∗1 · · · b∗m. This situation is identical to the simulation in the proof of the
existentially unforgeability of Waters-signature [37]. Therefore, we follow Waters’ approach to analyze the
success probability of the simulation. First we describe a second simulator, which is easy to be analyzed
and has the same success probability of simulator as that of the first simulation. We define a function
Γ (z′, z1, · · · , zm,Msg1, · · · ,Msgq,Msg∗) by{

0 if K(Msgi) = 1 for ∀i ∈ [1, q], and z′ +
∑
i∈[1,m] b

∗
i zi = k`,

1 otherwise,

where Msg∗ = b∗1 · · · b∗m. We can easily check that Γ (z′, z1, · · · , zm,Msg1, · · · ,Msgq,Msg∗) = 0 if and only
if the simulator in the first simulation is not abort.

Now, we describe the second simulation. In the second simulation the simulator, we assume that B2

receives a DDH-tuple (g, ga, gb, gab) before starting simulation. Then, B2 behaves as the real challenger in
the one-more unforgeability game. That is, B2 generates CRS in the setup phase, a signing key pair PK,SK
in the KeyGen phase, answers signature signing queries by using SK. Let infoi and Msg′i be the common
input string and the message used in Signing Oracle phase by A. We simply denote infoi and Msg′i as
Msgi = infoi‖Msg′i. Let EsuccA be the event that A wins in the one-more unforgeability game, that is,
A outputs q′ message and signature pairs passing Verify algorithm for the same info such that all mes-
sages are mutually distinct and q′ > qinfo, where qinfo is the number of issuing signing queries for info
by A. At the end of interactions, the event EsuccA occurs with ε probability. If the event EsuccA occurs,
then there exists at least one pair (Msg∗, (S∗1 , S

∗
2 )) such that B2 have not signed on the message Msg∗ =

b∗1 · · · b∗m (= info‖Msg, for some Msg). At this point B2 compute Γ (z′, z1, · · · , zm,Msg1, · · · ,Msgq,Msg∗)
and if Γ (z′, z1, · · · , zm,Msg1, · · · ,Msgq,Msg∗) = 1, then B2 aborts and outputs ⊥. Otherwise, B2 outputs
gab. Further, if the event EsuccA does not occur, then B2 outputs ⊥.
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Claim 1. Pr[(g, ga, gb, T ) is a DDH-tuple. : Bi
$→ T ] is identical regardless i, where Bi is a simulator in

the i-th simulation.

Claim 2. ([37], Claim 2.) Pr(z′,zi)[Γ (z′, z1, · · · , zm,Msg1, · · · ,Msgq,Msg∗) = 0] ≥ 1
8(m+1)q for all

(Msg1, · · · ,Msgq,Msg∗) so that the probability of the simulation not aborting is at least 1
8(m+1)q .

From the above two claims, we conclude that the success probability of B1 is more than ε
8(m+1)q as fol-

lows:

Pr[(g, ga, gb, T ) is a DDH-tuple. : B1
$→ T ]

= Pr[(g, ga, gb, T ) is a DDH-tuple. : B2
$→ T ]

≥ Pr[EsuccA
∧

Γ (z′, z1, · · · , zm,Msg1, · · · ,Msgq,Msg∗) = 0]
= Pr[EsuccA] · Pr[Γ (z′, z1, · · · , zm,Msg1, · · · ,Msgq,Msg∗) = 0|EsuccA]
≥ ε · 1

8(m+1)q .

The last inequalities come from the fact that Pr[Γ (z′, z1, · · · , zm,Msg1, · · · ,Msgq,Msg∗) = 0] ≥ 1
8(m+1)q

for all (Msg1, · · · ,Msgq,Msg∗) so that Pr[Γ (z′, z1, · · · , zm,Msg1, · · · ,Msgq,Msg∗) = 0|EsuccA] ≥ 1
8(m+1)q .

(z′, z1, · · · , zm are independent from EsuccA since (z′, z1, · · · , zm) is completely hided from the view of A.)
�

Lemma 5 For ci, di, θi,1, θi,2, θi,3 and θi,4 ∈ G, if e(ci, div
−1
i ) = e(h1, θi,1)e(h2, θi,2) and e(ciu

−1
i , di) =

e(h1, θi,3)e(h2, θi,4), then ci, di, θi,1, θi,2, θi,3 and θi,4 can be uniquely written as the forms

ci = (ui)
bih

ti,1
1 h

ti,2
2 , θi,1 = u

bisi,1
i (vbi−1

i h
si,1
1 h

si,2
2 )ti,1hri2 , θi,2 = u

bisi,2
i (vbi−1

i h
si,1
1 h

si,2
2 )ti,2h−ri1 .

di = (vi)
bih

si,1
1 h

si,2
2 , θi,3 = u

(bi−1)si,1
i (vbii h

si,1
1 h

si,2
2 )ti,1h

r′i
2 , θi,4 = u

(bi−1)si,2
i (vbii h

si,1
1 h

si,2
2 )ti,2h

−r′i
1 .

for some bi ∈ {0, 1} and ti,1, ti,2, si,1, si,2, ri, r
′
i ∈ Zp.

Proof. We can always write ci and di by ubii h
ti,1
1 h

ti,2
2 and v

b′i
i h

si,1
1 h

si,2
2 , respectively, for some bi, b

′
i, ti,1, ti,2, si,1,

si,2 ∈ Zp since 〈ui, h1, h2〉 = 〈vi, h1, h2〉 = G. From the equality e(ci, div
−1
i ) = e(h1, θi,1)e(h2, θi,2), we obtain

e(h1, θi,1)e(h2, θi,2)
= e(ci, div

−1
i )

= e(ubii h
ti,1
1 h

ti,2
2 , v

b′i−1
i h

si,1
1 h

si,2
2 )

= e(ubii , v
b′i−1
i )e(ubii , h

si,1
1 h

si,2
2 )e(h

ti,1
1 h

ti,2
2 , v

b′i−1
i h

si,1
1 h

si,2
2 )

= e(ubii , v
b′i−1
i )e((ubii )si,1 , h1)e((ubii )si,2 , h2)e(h

ti,1
1 h

ti,2
2 , v

b′i−1
i h

si,1
1 h

si,2
2 )

= e(ubii , v
b′i−1
i )e((ubii )si,1 , h1)e((ubii )si,2 , h2)e(h1, (v

b′i−1
i h

si,1
1 h

si,2
2 )ti,1)e(h2, (v

b′i−1
i h

si,1
1 h

si,2
2 )ti,2)

= e(ubii , v
b′i−1
i )e(h1, u

bisi,1
i (v

b′i−1
i h

si,1
1 h

si,2
2 )ti,1)e(h2, u

bisi,2(v
b′i−1
i h

si,1
1 h

si,2
2 )ti,2).

Let Gt,i,j be a prime order cyclic group e(Gi, Gj). We already know that the image of e is equal to Gt,1,1 ⊕
Gt,1,2 ⊕ Gt,1,3 ⊕ Gt,2,2 ⊕ Gt,2,3 ⊕ Gt,3,3 from the lemma 1. We first show that bi = 0 or b′i = 1. Since

e(h1, θi,1)e(h2, θi,2) ∈ Gt,1,1 ⊕ Gt,1,2 ⊕ Gt,1,3 ⊕ Gt,2,2 ⊕ Gt,2,3, e(ubii , v
b′i−1
i ) should be the identity so that

bi = 0 or b′i = 1. (If e(ubii , v
b′i−1
i ) 6= 1t, e(u

bi
i , v

b′i−1
i )’s decomposition has a non-identity element in Gt,3,3 so

that the above equality cannot hold.)

Therefore, after setting e(ubii , v
b′i−1
i ) = 1 from the above equality we obtain an equality

e(h1, θi,1u
−bisi,1
i (v

b′i−1
i h

si,1
1 h

si,2
2 )−ti,1) = e(h2, θ

−1
i,2 u

bisi,2(v
b′i−1
i h

si,1
1 h

si,2
2 )ti,2).

The left side of the equality is contained in Gt,1,1 ⊕ Gt,1,2 ⊕ Gt,1,3 and the right side of the equality is
contained in Gt,1,2⊕Gt,2,2⊕Gt,2,3. Since Gt,1,1, Gt,1,2, Gt,1,3, Gt,2,2, and Gt,2,3 are mutually disjoint subgroups
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(except the identity), e(h1, θi,1u
−bisi,1
i (v

b′i−1
i h

si,1
1 h

si,2
2 )−ti,1) = e(h2, θ

−1
i,2 u

bisi,2(v
b′i−1
i h

si,1
1 h

si,2
2 )ti,2) ∈ Gt,1,2. It

means that θi,1u
−bisi,1
i (v

b′i−1
i h

si,1
1 h

si,2
2 )−ti,1 = hri2 and θ−1

i,2 u
bisi,2(v

b′i−1
i h

si,1
1 h

si,2
2 )ti,2 = hri1 for some ri ∈ Zp,

and hence θi,1 = u
bisi,1
i (v

b′i−1
i h

si,1
1 h

si,2
2 )ti,1hri2 and θi,2 = ubisi,2(v

b′i−1
i h

si,1
1 h

si,2
2 )ti,2h−ri1 .

Analogously, from the equality e(ciu
−1
i , di) = e(h1, θi,3)e(h2, θi,4), we can show that (1) bi = 1 or b′i = 0

and (2) θi,3 = u
(bi−1)si,1
i (v

b′i
i h

si,1
1 h

si,2
2 )ti,1h

r′i
2 and θi,4 = u(bi−1)si,2(vbii h

si,1
1 h

si,2
2 )ti,2h

−r′i
1 for some r′i ∈ Zp. Since

(bi = 0 or b′i = 1) and (bi = 1 or b′i = 0), we can be convinced that bi = b′i ∈ {0, 1}. Further, θi,1, θi,2, θi,3,
and θi,4 can be written as the desired form.

Moreover, we can easily check that G = 〈ui〉 ⊕ 〈h1〉 ⊕ 〈h2〉 = 〈vi〉 ⊕ 〈h1〉 ⊕ 〈h2〉. Therefore, it implies that
the uniqueness of bi, ti,1, ti,2, si,1, si,2, ri and r′i. �

D Projections, Membership Tests, and Subgroup Decision Assumption

We show how to construct natural projections πi, π̄i and πt,i. Furthermore, we will show how to check group
membership of G and H. Intuitively, it seems like that it is infeasible to determine the group membership of G
(H, respectively) for given g ∈ Gn2

(h ∈ Hn2

, respectively) since it is a kind of the subgroup decision problem

of Gn2

(Hn2

, respectively). We propose a novel technique to manage this problem about group membership.
Finally, we will show that our bilinear group generator satisfies (2, 1)-subgroup decision assumption in generic
group model.

Constructions of Projections. Next, we describe how to construct the natural projections πi : G =
⊕i∈[1,n]Gi → Gi for i ∈ [1, n]. Let a n2-by-n2 matrix M has Ψj as its the j-th row. Then, M is invertible.
Let Ui be a n2-by-n2 matrix with 1 in the (i, i) entry and zeroes elsewhere. First, we choose additional
{Ψj}j∈[n+1,n2] and {Φj}j∈[n+1,n2] such that {Ψj}j∈[n2] and {Φj}j∈[n2] are sets of linearly independent vectors.
The natural projection πi is defined by

πi(g) = gM
−1UiM .

Since g =
∏
i∈[1,n](g

Ψi)αi = g
∑
i∈[1,n] αiΨi = g

∑
i∈[1,n] αi

−→e iM for some αi, where −→e i is the i-th canonical vector

in (Zp)n
2

,

gM
−1UiM = g

∑
i∈[1,n] αi

−→e iUiM = gαi
−→e iM = gαiΨi

is the desired output of the natural projection map.
We can construct the natural projection π̄i : H = ⊕i∈[1,n]Hi → Hi analogously. Since Φj ’s are linearly

independent, we can define an invertible n2-by-n2 matrix M ′ having Φj as its j-th row, and then we define

π̄j by h 7→ hM
′−1UjM

′
.

The natural projection in Gt, πt,i : Gt = ⊕i∈[1,n]e(Gi, Hi) → e(Gi, Hi) can be also constructed by the

similar way. Since e(Gi, Hi) = 〈e(g, h)Ψi◦Φi〉 = 〈(g, h)(di1,··· ,din)〉 and D = (di`) is invertible n-by-n matrix,

πt,i(gt) can be computed by gD
−1UiD

t for gt ∈ Gt.

Group Membership Test. Anyone who knows the group description of G and σ can determine whether
given g is contained in G as follows:

1. If g ∈ Gn2

(by using the group membership test of G1), then go to the next step. Otherwise, output 0.

2. Let g = gΓ , where Γ = (α11, · · · , αnn) ∈ Zn2

p . For ∀i ∈ [1, n2 − n], test
∏
j,`∈[1,n] ê(g

αj` , hψ̂ij`) =

ê(g, h)Γ ·Ψ̂i
?
= 1Gt , where Ψ̂i = (ψ̂i11, · · · , ψ̂inn) and hΨ̂i is contained in σ. If yes, output 1. Otherwise,

output 0.

It is not hard to show that given g, the above Group Membership Test (GMT) algorithm outputs 1 if and

only if g ∈ G. (For g ∈ Gn2

, g = gΓ ∈ G if and only if Γ ∈ 〈Ψ1, · · · , Ψn〉 if and only if Γ · Ψ̂i = 0 for
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all i ∈ [1, n], where {Ψ̂i}i∈[1,n2−n] is a basis of 〈Ψ1, · · · , Ψn〉⊥.) To test a g’s membership in G, we need
to compute (n2 − n)n2 bilinear map ê and (n2 − n)(n2 − 1) multiplication in Gt if we ignore the cost for
computing the step 1 since it is respectively smaller than the cost for computing the step 2.

The above GMT is a perfect algorithm in the sense that it outputs without any errors. If we allow negligible
errors, then we can improve the efficiency of GMT by using some batch verification technique. Basing on
the k-linear assumption, we can further improve the efficiency of GMT. We relegate these improvements and
the batch verification technique to Appendix E.

Subgroup Decision Assumption. The proposed bilinear group generator satisfies the subgroup decision
assumption in generic group model when n = 2 and k = 1. We propose a new assumption which guarantees
the subgroup decision assumption. We provide an evidence why we believe this new assumption is secure by
showing that it holds in the generic group model.

Definition 12 Let G1 be a bilinear group generator. Define distribution Db by

G1(λ)
$→ (p,G,H,Gt, ê), g

$← G, h $← H,

gx1 , gx2 , gd1d2(x1x4−x2x3), gx1y, Tb ∈ G5,

Mg =

(
gd2x1x4−d1x2x3 g(d2−d1)x2x4

g(d1−d2)x1x3 gd1x1x4−d2x2x3

)
∈Mat2(G),

hx3 , hx4 , hd1x3 , hd1x4 , hx1x4−x2x3 ∈ H5,

Mh =

(
hd1x1x4−d2x2x3 h(d2−d1)x1x3

h(d1−d2)x2x4 hd2x1x4−d1x2x3

)
∈Mat2(H),

where x1, x2, x3, x4, y, d1, d2
$← Zp, T0 = gx2y, T1

$← G, and b ∈ {0, 1}. Define the advantage an algorithm
A, denoted by Adv1

A,G1 , to distinguish D0 and D1 by

Adv1
A,G1 =

∣∣∣Pr[A(D0)→ 1]− Pr[A(D1)→ 1]
∣∣∣.

We say that G1 satisfies the assumption 1 in G if for any probabilistic polynomial time algorithm A, Adv1
A,G1

is a negligible function of λ.

We prove that G1 satisfies the assumption 1 in the generic group model by applying the Boneh-Boyen-
Goh master theorem [9], more precisely, its generalized version by Freeman [18]. Freeman gave the general
definition of the independency and the master theorem using his definition of the independency as follows:

Definition 13 [18, Definition D.1] Let P = (u1, · · · , ur), Q = (v1, · · · , vs), R = (w1, · · · , wt), S = (χ1, · · · , χm)
be tuples of polynomials in Zp[X1, · · · , Xn]. Let f be a polynomial in Zp[X1, · · · , Xn]. We say that f · S is
dependent on (P,Q,R) if there exist integers ai,j for 1 ∈ [1, r] and j ∈ [1, s], integers bk for k ∈ [1, t], and
integers c` with ` ∈ [1,m], such that∑

i∈[1,r]

∑
j∈[1,s]

ai,juivj +
∑
k∈[1,t]

bkwk +
∑
`[1,m]

c`χ`Y

is non-zero in Zp[X1, · · · , Xn, Y ] but become zero when we set Y = f .
We say that f · S is independent of (P,Q,R) if f · S is not dependent on (P,Q,R).

Definition 14 [18, Definition D.2] Let G1 be a prime-order bilinear group generator, and let P,Q,R, f be
as in Definition 13. Define the following distribution:

GD = (p,G,H,Gt, e)
$← G1(λ), g

$← G, h $← H, gt = ê(g, h),−→x $← Z`p,
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Z = (gu1(−→x ), · · · , gur(−→x ), hv1(−→x ), · · · , hvs(
−→x ), g

w1(−→x )
t , · · · , gwt(

−→x )
t ),

T0 = g
f(−→x )
1 , T1

$← G.

We define the advantage of an algorithm A that outputs b ∈ {0, 1} in solving the (P,Q,R, f)-decision Diffie-
Hellman problem in G to be

(P,Q,R, f)−DDH-Adv[A,G1] =
∣∣∣Pr[A(GD,Z, T0)→ 1]− Pr[A(GD,Z, T1)→ 1]

∣∣∣.
Theorem 7 [18, Theorem D.3] Let (P,Q,R) be as in Definition 13, let f ∈ Zp[X1, · · · , Xn], and let p be a
prime. Let d = 2 ·max{degα : α ∈ P ∪Q∪R∪{f}}. If f ·Q is independent of (P,Q,R), then any algorithm
that solves the (P,Q,R, f)-decision Diffie-Hellman problem in G with advantage 1/2 in a generic bilinear
group of order p must take time at least Ω(

√
p/d− n), asymptotically as p→∞.

By applying the above definitions and the theorem to the assumption 1, we obtain the following theorem.

Theorem 8 Assumption 1 holds in the generic group model.

Proof. We define sets of polynomials in Zp[x1, x2, x3, x4, d1, d2, y] as follows:

P = {1, x1, x2, d1d2(x1x4 − x2x3), x1y, d2x1x4 − d1x2x3, (d2 − d1)x2x4, (d1 − d2)x1x3, d1x1x4 − d2x2x3},

Q = {1, x3, x4, d1x3, d1x4, x1x4 − x2x3, d1x1x4 − d2x2x3, (d2 − d1)x1x3, (d1 − d2)x2x4, d2x1x4 − d1x2x3},

R = {1} and f = {x2y}.

Then, the assumption 1 is equivalent to a (P,Q,R, f)-decision Diffie-Hellman problem in G. We will show
that f ·Q is independent of (P,Q,R). By the theorem 7, this is sufficient to show that G1 satisfies (P,Q,R, f)-
decision Diffie-Hellman problem in G. To show the independency, first we observe the variable y. The variable
y is used only for x1y in P and for x2y in f . We will show that f · Q is independent of (P ′, Q,R) where
P ′ = {x1y}. This is sufficient to show that f ·Q is independent of (P,Q,R). We will check this independency
step-by-step. First, we will compute all possible products between polynomials in {x1y, x2y} and in Q. For a
set S of polynomials, we say S is independent if there is no non-trivial sum of polynomials in S to be equal
to zero. Second, we will show that a set of the resulting polynomials (of the first step) is independent.

A set S of all possible products between polynomials in {x1y, x2y} and in Q are as follows:

S = {x1y, x1x3y, x1x4y, d1x1x3y, d1x1x4y, (x2
1x4 − x1x2x3)y, (d1x

2
1x4 − d2x1x2x3)y,

(d2 − d1)x2
1x3y, (d1 − d2)x1x2x4y, (d2x

2
1x4 − d1x1x2x3)y,

x2y, x2x3y, x2x4y, d1x2x3y, d1x2x4y, (x1x2x4 − x2
2x3)y, (d1x1x2x4 − d2x

2
2x3)y,

(d2 − d1)x1x2x3y, (d1 − d2)x2
2x4y, (d2x1x2x4 − d1x

2
2x3)y}.

We separate the above set according to degrees of polynomials.

S2 = {x1y, x2y}

S3 = {x1x3y, x1x4y, x2x3y, x2x4y}

S4 = {d1x1x3y, d1x1x4y, (x2
1x4 − x1x2x3)y, d1x2x3y, d1x2x4y, (x1x2x4 − x2

2x3)y}

S5 = {(d1x
2
1x4 − d2x1x2x3)y, (d2 − d1)x2

1x3y, (d1 − d2)x1x2x4y, (d2x
2
1x4 − d1x1x2x3)y,

(d1x1x2x4 − d2x
2
2x3)y, (d2 − d1)x1x2x3y, (d1 − d2)x2

2x4y, (d2x1x2x4 − d1x
2
2x3)y}.

Then, S = ∪i∈[2,5]Si. It is easy to show that each Si is independent, so we omit details. Each polynomial
in Si consists of only sum of monomials with degree i so that any summation of polynomials chosen from
different Si cannot be equal to zero. Therefore, the independency of Si implies the independency of S so
that we complete the proof for the independency of f ·Q of (P,Q,R). �
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Theorem 9 G satisfies (2, 1)-subgroup decision assumption if G1 satisfies the assumption 1.

Proof. We define some notation useful to simplify proof. For matrices, M = (mij), N = (nij) and L ∈
Mat2(Zp), gN := (gnij ), M (gN ) := (

∏
k∈[1,2](g

nkj )mik) = gMN , and (gN )L := (
∏
k∈[1,2](g

nik)mkj ) = gNL.
Note that we can extend this notation for the case when MNL is well-defined. Given an algorithm A breaking
(2, 1)-subgroup decision assumption and Db, we describe an algorithm B determining b with same advantage
as A’s. First, B will compute generators for G, H, G1 and H1, and the additional information for group
membership check σ. That is, B will compute

generators in G and H : gA
′X1 , gA

′X2 , hB
′Y1 , hB

′Y2 ,

G1 = 〈(ga
′−→x 1 , ga

′−→x 2)〉, H1 = 〈(hb
′−→y 1 , hb

′−→y 2)〉,

σ = {(g
−→w ′1(Y −1

1 )t , g−
−→w ′1(Y −1

2 )t), (g
−→w ′2(Y −1

1 )t , g−
−→w ′2(Y −1

2 )t), (h
−→z ′1(X−1

1 )t , h−
−→z ′1(X−1

2 )t), (h
−→z ′2(X−1

1 )t , h−
−→z ′2(X−1

2 )t)},

where Xi(Yi)
t = Di, which is a random diagonal matrix, −→x i is the first row of Xi,

−→y i is the first row of Yi,

and A′, B′
$← GL2(Zp), a′, b′

$← Zp, −→w ′1,−→w ′2,−→z ′1,−→z ′2
$← Z2

p.

Now, we describe B’s procedure. First it randomly chooses A,B,C
$← GL2(Zp), a, b

$← Zp,−→w ,−→z
$← Z2

p,
and computes

gA, gAC , (hx1x4−x2x3)B ,B (Mh)(C−1)t ,

G1 = 〈((g(ax1,ax2)), (g(ax1,ax2))C)〉, H1 = 〈(h(bx4,−bx3), (h(bd1x4,−bd1x3))(C−1)t)〉,

σ = {((gd1d2(x1x4−x2x3))
−→w i ,−

−→w i (Mg)C), (h
−→z i , h−

−→z i(C−1)t) for i ∈ [1, 2]},

and computes ((gx1y, Tb), (g
x1y, Tb)

C) as the challenge. Then, B sends the above all to A and transfers A’s
output as its result.

We argue that B’s simulated transcript is identical to the real transcript. B’s construction is distributed
as if

X1 =

(
x1 x2

x3 x4

)
, X2 =

(
x1 x2

x3 x4

)
C, A′ = A(X1)−1,

D1 =

(
d2r 0
0 d1s

)
, D2 =

(
d1d2r 0

0 d1d2s

)
C, for some random r, s

$← Zp.

Y1 = D1(X−1
1 )t, Y2 = D2(X−1

2 )t, B′ = (x1x4 − x2x3)BXt
1D
−1
1 ,

a′ = a, b′ = b
x1x4 − x2x3

d2r
,−→w ′i = d1d2(x1x4 − x2x3)−→w iX

−1
1 D1, and −→z ′i = −→z iXt

1.

Then, the distribution of the simulated transcript is identical to the distribution of the real transcript.
Let us explain details. First, we consider about Mh and Mg.(

d1x1x4 − d2x2x3 (d2 − d1)x1x3

(d1 − d2)x2x4 d2x1x4 − d1x2x3

)
=

(
x1 x3

x2 x4

)(
d1 0
0 d2

)(
x4 −x3

−x2 x1

)

= (x1x4 − x2x3)Xt
1D
−1
1 D2(X−1

1 )t,

so Mh = h(x1x4−x2x3)Xt1D
−1
1 D2(X−1

1 )t , and similarly(
d2x1x4 − d1x2x3 (d2 − d1)x2x4

(d1 − d2)x1x3 d1x1x4 − d2x2x3

)
=

(
x4 −x2

−x3 x1

)(
d2 0
0 d1

)(
x1 x2

x3 x4

)
= d1d2(x1x4 − x2x3)X−1

1 D1D
−1
2 X1,

so Mg = gd1d2(x1x4−x2x3)X−1
1 D1D

−1
2 X1 .
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If we consider the exponent parts (that is, discrete logarithm based on g or h,) of elements generated by
B, we can verify the following equalities.

(A,AC) = (A′X1, A
′X2),

((x1x4 − x2x3)B, (x1x4 − x2x3)BXt
1D
−1
1 D2(X−1

1 )t(C−1)t)

= (B′D1(X−1
1 )t, B′D2(X−1

1 )t(C−1)t) = (B′Y1, B
′Y2),

((ax1, ax2), (ax1, ax2)C) = (a′−→x 1, a
′−→x 2),

((bx4,−bx3), (bd1x4,−bd1x3)(C−1)t)

= ((
b′d2rx4

(x1x4 − x2x3)
,
−b′d2rx3

(x1x4 − x2x3)
), (

b′d1d2rx4

(x1x4 − x2x3)
,
−b′d1d2rx3

(x1x4 − x2x3)
)(C−1)t) = (b′−→y 1, b

′−→y 2),

(d1d2(x1x4 − x2x3)−→w i,−d1d2(x1x4 − x2x3)−→w iX
−1
1 D1D

−1
2 X1C)

= (−→w ′iD−1
1 X1,−−→w iD

−1
2 X1C) = (−→w ′i(Y −1

1 )t,−−→w ′i(Y −1
2 )t),

(−→z i,−−→z i(C−1)t) = (−→z ′i(X−1
1 )t,−−→z ′i(X−1

1 )t(C−1)t) = (−→z ′i(X−1
1 )t,−−→z ′i(X−1

2 )t).

The variable y in the challenge ((gx1y, Tb), (g
x1y, Tb)

C) is a independent from the adversarial view. If
Tb = gx2y, then the challenge ((gx1y, Tb), (g

x1y, Tb)
C) = ((gx1 , gx2), (gx1 , gx2)C)y, and thus the challenge

is uniformly distributed in G1. Otherwise, Tb is uniformly distributed in G, and then the challenge is uni-
formly distributed in G. Therefore, B can determine b with the same advantage of A. �

E Other Group Membership Tests

E.1 Batch Group Membership Test

Given g1, · · · , gm, we describe Batch Group Membership Test (BGMT).

1. If g1, · · · , gm ∈ Gn2

, then go to the next step. Otherwise, output 0.
2. Let gi = gΓi , where Γi = (αi11, · · · , αinn). Choose random integers r1, · · · , rm, s1, · · · , sn2−n ∈ Zp.
3. Test

∏
j,`∈[1,n] ê(

∏
i∈[1,m](g

αij`)ri ,
∏
i∈[1,n2−n](h

ψ̂ij`)si) = ê(g, h)(
∑
i∈[1,m] riΓi)·(

∑
i∈[1,n2−n] siΨ̂i) ?

=1Gt , where

Ψ̂i = (ψ̂i11, · · · , ψ̂inn) and hΨ̂i is contained in σ. If yes, output 1. Otherwise, output 0.

It is easy to show that if all g1, · · · , gm ∈ G, BGMT outputs 1. If gi0 = gΓi0 ∈ Gn2 \ G, then there
exists a Ψ̂i1 such that Γi0 · Ψ̂i1 6= 0. Then, the probability that (

∑
i∈[1,m] riΓi) · (

∑
i∈[1,n2−n] siΨ̂i) =∑

i∈[1,m]

∑
j∈[1,n2−n] risj(Γi · Ψ̂j) = 0 is at most 1/p, where the probability goes over the choices of ri’s

and sj ’s; hence, if one of gi is in Gn2 \G, then BGMT outputs 1 at most 1/p probability. The cost of BGMT
(when we ignore the costs for the step 1 and 2) is n2m exponentiations and n2(m− 1) multiplications in G,
n2(n2 − n) exponentiations and n2(n2 − n − 1) multiplications in H, n2 − 1 multiplications in Gt, and n2

bilinear map computations.

E.2 More Efficient Group Membership Test Based on k-Linear Assumption

We propose a More Efficient Group Membership Test (MEGMT), which is more efficient than the original
GMT, and the soundness of MEGMT is proved when k-Linear assumption holds. First, we need to a little

modify G, in particular, σ = {ê, {gΦ̂i}i∈[1,k], {hΨ̂i}i∈[1,k]}, where Φ̂i’s and Ψ̂i’s are uniformly and independently

chosen from 〈Φ1, · · · , Φn〉⊥ and 〈Ψ1, · · · , Ψn〉⊥, respectively.
Given g, we describe MEGMT k(σ, g).

1. If g ∈ Gn2

, then go to the next step. Otherwise, output 0.
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2. Let g = gΓ , where Γ = (α11, · · · , αnn). For ∀i ∈ [1, k], test
∏
j,`∈[1,n] ê(g

αj` , hψ̂ij`) = ê(g, h)Γ ·Ψ̂i
?
= 1Gt ,

where Ψ̂i = (ψ̂i11, · · · , ψ̂inn) and hΨ̂i is contained in σ. If yes, output 1. Otherwise, output 0.

If G1 satisfies k-Linear assumption in H, then no polynomial time algorithm A can generate g such that
g ∈ Gn2 \G but MEGMT k(σ, g) = 1 with non-negligible probability. We provide the formal theorem below
for this argument.

Theorem 10 If there exists an algorithm A such that given (G,G1, · · · , Gn, H,H1, · · · , Hn, Gt, e, σ) A out-

puts g ∈ Gn2 \ G passing MEGMT k with ε probability, then there exists an algorithm B solves k-Linear
problem in H with (1 − 1

p )ε advantage. Furthermore, the running time of B is almost equal to the running
time of A.

Proof. Let us overview the strategy of B to solve k-Linear problem in H in the bilinear group setting by
using A. Suppose that B receives the instances of k-Linear problem in H in the bilinear group setting,
(G,H,Gt, ê, h, v, vai , hb, i ∈ [1, k]). Define a map ẽ by

ẽ : Gn2−n × Hn2−n → Gt
(g1, · · · , gn2−n) , (h1, · · · , hn2−n) 7→

∏
i∈[1,n2−n] ê(gi, hi).

We can see that ẽ(g
−→x , h

−→y ) = ê(g, h)
−→x ·−→y for −→x and −→y ∈ Zn2−n

p .

Let h′i = ((vai)r1vsi,1 , · · · , (vai)rn2−nvsi,n2−n) ∈ Hn2−n for random integers ri’s and si,j ’s in Zp, and

i ∈ [1, k]. If B has a non-identity element g′1 = g
−→γ ∈ Gn2−n such that for ∀i ∈ [1, k] ê(g′1, h

′
i) = 1Gt

and g′1 is independent from hb, then B can solves k-Linear Problem in H by testing ẽ(g′1, h
′)

?
= 1Gt , where

h′ = ((hb)r1h
∑
i∈[1,k] si,1 , · · · , (hb)rn2−nh

∑
i∈[1,k] si,n2−n) ∈ Hn2−n.

From the fact that ẽ(g′1, h
′
i) = 1 for ∀i ∈ [1, k], we know that

−→γ · (air1 + si,1, · · · , airn2−n + si,n2−n) = 0 for ∀i.

If b =
∑
i∈[1,k] ai, then −→γ · (br1 +

∑
i∈[1,k] si,1, · · · , brn2−n +

∑
i∈[1,k] si,n2−n) = 0; hence, ẽ(g′1, h

′) = 1Gt .

Otherwise, i.e. b is random integer, then (br1 +
∑
i∈[1,k] si,1, · · · , brn2−n +

∑
i∈[1,k] si,n2−n) is a uniformly

distributed in Zn2−n
p and also independent from (air1+si,1, · · · , airn2−n+si,n2−n) = 0 for ∀i; The probability

that −→γ · (br1 +
∑
i∈[1,k] si,1, · · · , brn2−n +

∑
i∈[1,k] si,n2−n) = 0 is 1

p since we assume that g′1 is independent

from hb so (br1 +
∑
i∈[1,k] si,1, · · · , brn2−n +

∑
i∈[1,k] si,n2−n) is a random vector independent from −→γ ; hence

ẽ(g′1, h
′) = 1Gt with 1

p probability.

Therefore, the goal of B is a finding such a g′1 ∈ Gn2−n by using A. If A outputs such a g′1 with ε
probability, then B can solve k-Linear Problem with (1− 1

p )ε advantage.

Now, we describe B’s procedure to find such a g′1 by using A. From (G,H,Gt, ê), B normally generates
all outputs of G except σ. Let Xi be used in the procedure of G. B chooses random integers rj and si,j from

Zp for j ∈ [1, n2 − n], i ∈ [1, k], and B defines hΨ̂i to be satisfied that

Ψ̂i = −→z i,1‖−→z i,2Xt
1(X−1)t‖ · · · ‖−→z i,nXt

1(X−1
n )t,

and
−→z i,1‖−→z i,2‖ · · · ‖−→z i,n−1 = (vair1 + vsi,1, · · · , vairn2−n + vsi,n2−n) and −→z i,n = −

∑
i∈[1,k]

−→z i,

where −→z i ∈ Znp and v = logh v. Since B has v, vai , rj ’s, si,j ’s and Xi’s, B can compute hΨ̂i as the above.

After normally generating the remaining part of σ, B sends all outputs to A and receives gΓ from A. Let
Γ = −→w 1‖ · · · ‖−→w n for some −→w i ∈ Znp . B defines g′1 ∈ Gn2−n by

(g
−→w 1(g

−→wn)−XnX1 , · · · , (g
−→wn−1)X

−1
n−1X1(g

−→wn)−XnX1).
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Next, we argue that g′1 is a non-identity element in Gn2

and ẽ(g′1, h
′
i) = 1Gt for ∀i if gΓ ∈ Gn2−n \G and

MEGMT k(σ, gΓ ) = 1, where h′i = h
−→z i,1‖···‖−→z i,n2−n . Suppose that gΓ ∈ Gn2 \G and MEGMT k(σ, gΓ ) = 1.

gΓ ∈ Gn2 \G if and only if there exists at least one i such that −→w iX
−1
i 6= −→w nX

−1
n . (In other words, gΓ

′ ∈ G
if and only if Γ ′ is of the form −→wX1‖ · · · ‖−→wXn.) Therefore, gΓ ∈ Gn2 \ G implies that g′1 ∈ Gn2−n is a

non-identity element in Gn2

. Furthermore, since gΓ passes MEGMT k,

0 = Γ · Ψ̂i
=
∑
j∈[1,n]

(−→w jX
−1
j X1) · −→z i,j

=
∑

j∈[1,n−1]

(−→w jX
−1
j X1) · −→z i,j + (−→w nX

−1
n X1) · −→z i,n

=
∑

j∈[1,n−1]

(−→w jX
−1
j X1) · −→z i,j −

∑
j∈[1,n−1]

(−→w nX
−1
n X1) · −→z i,j

=
∑

j∈[1,n−1]

(−→w jX
−1
j X1 −−→w nX

−1
n X1) · −→z i,j

for all i ∈ [1, k]. Therefore, ẽ(g′1, h
′
i) = ê(g, h)

∑
j∈[1,n−1](

−→w jX−1
j X1−−→wnX−1

n X1)·−→z ij = 1Gt ; hence, we obtain g′1
aforementioned at the beginning of the proof.

Finally, we argue that in the view of A the distribution of B’s output is identical to the that of real
G. Showing that Ψ̂i is independently and uniformly chosen from 〈Ψ̂1, · · · , Ψ̂n〉⊥ is sufficient to prove it since
others are normally generated.

Let us consider about elements in 〈Ψ̂1, · · · , Ψ̂n〉⊥. For each element Θ ∈ Zn2

p , we can rewrite Θ by
−→u 1‖−→u 2X

t
1(X−1

2 )t‖ · · · ‖−→u nXt
1(X−1

n )t for some −→u i ∈ Znp since Xi’s are n-rank matrices. Then, we can see
the following equivalences:

Θ ∈ 〈Ψ̂1, · · · , Ψ̂n〉⊥ if and only if Ψ̂i ·Θ = 0 for ∀i ∈ [1, k]

if and only if
∑
j∈[1,n]

(−→e iX1) · −→u j = 0 for ∀i ∈ [1, k] if and only if
∑
j∈[1,n]

−→u j = 0.

Therefore, if we randomly choose −→u 1, · · · −→u n such that
∑
j∈[1,n]

−→u j = 0, and we set Θ by

−→u 1‖−→u 2X
t
1(X−1

2 )t‖ · · · ‖−→u nXt
1(X−1

n )t,

thenΘ is uniformly distributed inΘ ∈ 〈Ψ̂1, · · · , Ψ̂n〉⊥. Since B defines Ψ̂i = −→z i1‖−→z i,2Xt
1(X−1

2 )t‖ · · · ‖−→z i,nXt
1(X−1

n )t

and −→z i,j are randomly chosen vectors from Znp with satisfying
∑
j∈[1,n]

−→z i,j , each Ψ̂i is independently and

uniformly distributed in 〈Ψ̂1, · · · , Ψ̂n〉⊥. �

We note that we can apply the batch verification technique to MEGMT k again. We call such a test by
BMEGMT k. Moreover, although we describe several tests for elements in G, we can analogously test for
elements in H. We provide comparisons among group membership tests in the table 1.
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Test Computational Costs Error Assump.

pairê expG mulG expH mulH mulGt Prob.

GMT m(n2 − n)n2 0 0 0 0 m(n2 − n)(n2 − 1) 0 ·

BGMT n2 mn2 (m− 1)n2 (n2 − n)n2 (n2 − n− 1)n2 n2 − 1 neg. ·

MEGMT k mkn2 0 0 0 0 mk(n2 − 1) neg. k-linear

BMEGMT k n2 mn2 (m− 1)n2 kn2 (k − 1)n2 n2 − 1 neg. k-linear

pairê, expG, ,mulG, expH,mulH, and mulGt mean the number of bilinear map ê computations, exponentiations in G,

multiplications in G, exponentiations in H, multiplications in H, and multiplications in Gt, respectively.

(We ignore the costs for testing membership in Gn
2
.)

Table 1. Comparisons among group membership tests for m elements in G ⊂ Gn2
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