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ABSTRACT. In 2004, an algorithm is introduced to solve the DLP for elliptic
curves defined over a non prime finite field Fqn . One of the main steps of this
algorithm requires decomposing points of the curve E(Fqn) with respect to a fac-
tor base, this problem is denoted PDP. In this paper, we will apply this algorithm
to the case of Edwards curves, the well-known family of elliptic curves that al-
low faster arithmetic as shown by Bernstein and Lange. More precisely, we
show how to take advantage of some symmetries of twisted Edwards and twisted
Jacobi intersections curves to gain an exponential factor 2ω(n−1) to solve the cor-
responding PDP where ω is the exponent in the complexity of multiplying two
dense matrices. Practical experiments supporting the theoretical result are also
given. For instance, the complexity of solving the ECDLP for twisted Edwards
curves defined over Fq5 , with q ≈ 264, is supposed to be ∼ 2160 operations in
E(Fq5) using generic algorithms compared to 2130 operations (multiplications of
two 32-bits words) with our method. For these parameters the PDP is intractable
with the original algorithm.

The main tool to achieve these results relies on the use of the symmetries
and the quasi-homogeneous structure induced by these symmetries during the
polynomial system solving step. Also, we use a recent work on a new algorithm
for the change of ordering of Gröbner basis which provides a better heuristic
complexity of the total solving process.

1. INTRODUCTION

1.1. Context. One of the main number theoretic problems is, given a cyclic group
(G,∗) of generator g and an element h of this group, to find an integer x such that

h = g∗ · · · ∗g︸ ︷︷ ︸
x times

.

This problem is called the discrete logarithm problem and it is denoted DLP. To
solve the DLP, there exist algorithms which do not consider the structure and the
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representation of the group where the DLP is defined. They are called generic
algorithms and Shoup shows in [46] that they are exponential in general. The
Pollard rho method [43] is optimal among generic algorithms, up to a constant
factor, with a running time in O(

√
#G) group operations. Nevertheless for some

groups, the DLP is easier to solve. For instance if G is a multiplicative group
formed by the invertible elements of a finite field, the index calculus method [1]
solves the DLP in sub-exponential time.

A major application of the DLP is to design cryptographic protocols whose secu-
rity depends on the difficulty of solving the DLP. A cryptosystem has to be secure
and fast. Hence we have to consider groups with an efficient arithmetic, a compact
representation of their elements and where the DLP is intractable. To this end, in
1985 Miller [39] and Koblitz [36] independently introduced elliptic curve cryptog-
raphy based on the DLP in the group formed by rational points of an elliptic curve
defined over a finite field. This particular problem is denoted ECDLP. More re-
cently, some curve representations such as twisted Edwards [5, 4, 18] and twisted
Jacobi intersections [9, 29] have been widely studied by the cryptology community
for their efficient arithmetic. A few years after the introduction of elliptic curve
cryptography, it has been proposed to use the divisor class group of a hyperelliptic
curve over a finite field [37], in this case we note the discrete logarithm problem
HCDLP.

To estimate the security of cryptosystems based on the HCDLP, the resolution
of this problem has been extensively studied in recent years and index calculus
methods [2, 11, 19, 20, 33] have been developed for various classes of high genus
curves. Using the double large prime variation of Gaudry, Thomé, Thériault and
Diem [32], if the size of the finite field is sufficiently large and for curves having
genus greater than three, index calculus method is then faster than Pollard rho
method. In the particular case of non-hyperelliptic curves of genus 3, Diem and
Thomé got a further improvement of the index calculus [14, 17]. These methods
do not apply to curves having genus 1 or 2.

If the curve is defined over a non prime finite field, by applying a Weil restric-
tion, the discrete logarithm problem can be seen in an abelian variety of larger
dimension over the smaller field. In [31], an index calculus attack suited to this
context was proposed. Later on, Diem [16, 15] obtained rigorous proofs that for
some particular families of curves the discrete logarithm problem can be solved in
subexponential time.

Let us recall the principle of the algorithm in [31] in the case of interest in this
paper, namely the ECDLP in an elliptic curve E defined over a non prime finite field
Fqn with n > 1. Given P of prime order and Q, two points of E(Fqn) in Weierstrass
representation, we look for an integer X , if it exists, such that Q = [X ]P (where the
notation [m]P denotes, as usual, the scalar multiplication of P by m).

Step 1: First we compute the factor base F = {(x,y) ∈ E(Fqn) | x ∈ Fq}.
Step 2: Then we look for #F + 1 relations (#F independent relations and any

other) of the form

[a j]P⊕ [b j]Q = P1⊕·· ·⊕Pn ,(1)
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where P1, · · · ,Pn ∈F and a j and b j are randomly picked up in Z.
Step 3: Finally, using linear algebra, find λ1, . . . ,λ#F+1 such that the neutral el-

ement of E(Fqn) is equal to ∑
j
[λ j ·a j]P⊕ [λ j ·b j]Q and return X =−A

B

modulo the order of P, where A = ∑
j

λ j ·a j and B = ∑
j

λ j ·b j.

Our study starts from this algorithm. Thus, we assume the same two hypotheses
as in [31].

Hypothesis 1. There exist approximately qn

n! points of E(Fqn) which can be decom-
posed as the sum of n points in F . Thus each relation of Step 2 can be found with
probability 1

n! .

Hypothesis 2. Polynomial systems coming from the resolution of Equation (1) in
Step 2 are of dimension zero (they thus have a finite number of solutions over an
algebraic closure of Fqn).

Using the double large prime variation and for a fixed degree extension n, the
complexity of this index calculus attack is Õ(q2− 2

n ) where the notation Õ means
that we omit the logarithmic factors in q. It is thus faster than Pollard rho method
in Õ(q

n
2 ) for n ≥ 3 and sufficiently large q. However, this complexity hides an

exponential dependence in n in step 2, which is the main topic of this work. Thus,
the main focus of this paper is the resolution of the following problem.

Point Decomposition Problem (PDP). Given a point R in an elliptic curve E(Fqn)
and a factor base F ⊂ E(Fqn), find, if they exist, P1, . . . ,Pn in F , such that

R = P1⊕·· ·⊕Pn .

To solve the PDP, one can use the summation polynomials introduced by Se-
maev [44] and the resolution of the PDP is equivalent to solving a polynomial
system. This can be done by first computing a Gröbner basis of the system for
a degree ordering with F4 [21] or F5 [22]. Then computing the lexicographical
Gröbner basis by using a change of ordering algorithm [25, 26, 24].

We note that Nagao [41] introduced a variant of the index calculus algorithm,
well-suited to hyperelliptic curves, in which the PDP step is replaced by another
approach that creates relations from Riemann-Roch spaces. It also relies, in the
end, on polynomial system solving. If the curve is elliptic, the Nagao variant needs
to solve polynomial systems with a number of variables quadratic in n instead of
n variables with the summation polynomials of Semaev. Therefore, in the elliptic
case, it seems to be always better to use Semaev’s polynomials, so we stick to that
case in our study.

1.2. Contributions. In the case of the Pollard rho and sibling methods, it is well-
known that if there is a small rational subgroup in G, the Pohlig-Hellman reduction
allows to speeds-up the computation by a factor of roughly the square root of the
order of this subgroup. It is also the case if there is an explicit automorphism of
small order. For index calculus in general, it is far less easy to make use of such
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an additional structure. For instance, in the multiplicative group of a prime finite
field, the number field sieve algorithm must work in the full group, even if one is
interested only in the discrete logarithm in a subgroup. A key element is the action
of the rational subgroup that must be somewhat compatible with the factor base.
See for instance the article by Couveignes and Lercier [12], where a factor base is
chosen especially to fit this need, again in the context of multiplicative groups of
finite fields.

The aim of this paper is to emphasize some elliptic curves models where one
can indeed make use of the presence of a small rational subgroup to speed-up the
index calculus algorithm, and especially the PDP step. In particular, for curve
representations having an important interest from a cryptographic point of view,
we decrease the bound on the complexity by a factor of 2ω(n−1). More precisely,
under the hypothesis that the systems are regular, we have the following result.

Theorem 1.1. Let E be an elliptic curve defined over a non binary field Fqn where
n > 1. If E can be put in twisted Edwards or twisted Jacobi intersections represen-
tation then the complexity of solving the PDP is

• (proven complexity) Õ
(

n ·23(n−1)2
)

• (heuristic complexity) Õ
(

n2 ·2ω(n−1)2
)

where 2≤ω < 3 is the linear algebra constant that is the exponent in the complex-
ity of multiplying two dense matrices.

The proven complexity of Theorem 1.1 is obtained by using the classical com-
plexity of change of ordering algorithm, FGLM in O(nD3) [25] where D is the
number of solutions counted with multiplicities in the algebraic closure of the co-
efficient field. The heuristic complexity is obtained by using a change of ordering
algorithm recently proposed in [24]. This algorithm follows the approach of [26].
In the case of generic polynomial systems this algorithm has a proven complexity
of O(n log(D)D+ log(D)Dω). In the case where the given polynomial system is
not generic, a randomization technique allows to obtain the same, but heuristic,
complexity.

The main ingredient of the proof of Theorem 1.1 is to use the symmetries of
the curves corresponding to the group action: they allow to reduce the number of
solutions in Fq of the polynomial systems to be solved and to speed up intermediate
Gröbner bases computations.

The first symmetries to be used are inherent in the very definition of the PDP:
the ordering of the Pi’s does not change their sum, so that the full symmetric group
acts naturally on the polynomial system corresponding to the PDP. It is a classical
way to reduce the number of solutions by a factor n!, and speed up accordingly the
resolution.

Twisted Edwards and twisted Jacobi intersections curves have more symmetries
than ordinary elliptic curves, due to the presence of a rational 2-torsion point with
an interesting action. It is remarkable that, for the natural choice of the factor base,
this action translates into the polynomial systems constructed using summation
polynomials in a very simple manner: any sign change on an even number of
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variables is allowed. This action combined with the full symmetric group gives
the so-called dihedral Coxeter group, see for instance [35]. Using invariant theory
techniques [47], we can thus express the system in terms of adapted coordinates,
and therefore the number of solutions is reduced by a factor 2n−1 ·n! (the cardinality
of the dihedral Coxeter group). This yields a speed-up by a factor 23(n−1) (or
2ω(n−1) for the heuristic case) in the change of ordering step, compared to the
general case.

In the first step of the general method for solving polynomial systems, one has to
compute a degree reverse lexicographical ordering Gröbner basis. The complexity
of computing such a Gröbner basis with F4 or F5 is related to the maximal degree
reached by the polynomials during the computation. Without some assumptions
on the system, such a bound is very hard to handle. We will show that by using
the 2-torsion of twisted Edwards or Jacobi intersections curves the bound on the
complexity of computing a Gröbner basis for a degree monomial ordering is di-
vided by 2ω(n−1) when the systems are assumed to be regular (note that in [34],
a similar hypothesis for overdetermined systems has been supposed). Indeed, a
quasi-homogeneous structure (see [28]) appears when we apply the change of co-
ordinates associated to the action of the dihedral Coxeter group. Such a structure
amounts to consider a weighted degree instead of the usual degree.

We present also several practical experiments which confirm the exponential
decrease of the complexity. All experiments were carried out using the computer
algebra system MAGMA [7] and the FGb library [23].

1.3. Consequences and limitations. Our experiments show that for some param-
eters, the new version of the algorithm is significantly faster than generic algo-
rithms. For instance for a twisted Edwards or twisted Jacobi intersections curve
defined over Fq5 where log2(q) = 64, solving the ECDLP with generic algorithms
requires approximately 2160 operations in E(Fq5) and only 2130 basic arithmetic
operations (multiplications of two 32-bits words) with our approach.

We do not change the very nature of the attack; therefore it applies only to curves
defined over small extension fields. This work has no implication on the ECDLP
instances recommended by the NIST [42], since they are defined over prime finite
fields of high characteristic or binary fields of prime degree extension.

1.4. Related work. In [34], Joux and Vitse improve the complexity of the index
calculus algorithm for medium q. Indeed, to decrease the cost of polynomial sys-
tems involved in the attack they look for decompositions of points of the curve in
n−1 points instead of n. At a high level, it can be seen as looking for a decomposi-
tion in n points, where one of the point has been fixed to be the point at infinity. As
a consequence, the probability of finding a decomposition is reduced by a factor
of q, so that the complexity grows accordingly, and the range of application is for
moderate values of q. Conversely, in our work, the dependence in q is not affected,
but it is only limited to twisted Edwards and twisted Jacobi intersections curves.

1.5. Organization of the paper. The paper is organized as follows. In Section 2,
we recall how to use the summation polynomials to solve the PDP. We also present
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some properties of twisted Edwards and Jacobi intersections curves. In Section 3
we give some results from invariant theory and present a general algorithm for
computing a Gröbner basis of an invariant ideal. The end of this section is de-
voted to the complexity of computing a Gröbner basis for a degree ordering of
an invariant polynomial system. Section 4 is devoted to the main contribution of
this article. We show how 2-torsion and 4-torsion points can be used to efficiently
solve the PDP. Finally, we present in Section 5 some experiments that confirm
the theoretical results and Section 6 concludes the paper by giving some possible
perspectives.

2. POINT DECOMPOSITION PROBLEM

In this section we first present the point decomposition problem (denoted PDP)
in the context of ECDLP and a general method to solve it. Then, we recall the sum-
mation polynomials introduced by Semaev to improve the efficiency of this general
method. Finally, we show how to compute summation polynomials corresponding
to the PDP over twisted Edwards and Jacobi intersections curves and recall some
properties of these curves.

2.1. General method for solving the PDP. Let E be an elliptic curve in Weier-
strass representation defined over Fqn with n > 1. Recall the PDP: given a point
R∈E(Fqn) and the factor base F = {(x,y)∈E(Fqn) | x∈Fq}⊂E find P1, . . . ,Pn ∈
F such that

R = P1⊕·· ·⊕Pn .

Writing Fqn = Fq[X ]/µ(X) = Fq[α] where µ(X) is an irreducible polynomial over
Fq of degree n and α is a root of µ(X) in Fqn , we can see Fqn as a vector space
over Fq for which {1,α, . . . ,αn−1} is a basis. Frey [30] showed that any instance
of the ECDLP can be mapped to an instance of the DLP in the Weil restriction
of E(Fqn) from Fqn to Fq. In the same way, the PDP over any elliptic curve
defined over a non prime finite field can be mapped to the PDP over the Weil
restriction of this curve. Indeed the Weil restriction A of E(Fqn) is the abelian
variety of dimension n for which an affine patch can be described by the set of

2n-tuples (x0, . . . ,xn−1,y0, . . . ,yn−1) ∈ (Fq)
2n such that

(
n−1

∑
i=0

xi ·α i,
n−1

∑
i=0

yi ·α i

)
is

a point of E(Fqn). The group law of E gives a group law on A which is given
by rational fractions depending on the coordinates of the summed points. Conse-
quently we can construct 2n rational fractions λ j in terms of the n(n+1) variables
xi,0,yi,0, . . . ,yi,n−1 for i = 1, . . . ,n such that

P1⊕ . . .⊕Pn = (λ1, . . . ,λ2n)

where Pi = (xi,0,0, . . . ,0,yi,0, . . . ,yi,n−1) ∈ F . To solve the PDP, we write P1⊕
. . .⊕ Pn = R which gives 2n equations in Fq. Adding the equations describing
Pi ∈ E for i = 1, . . . ,n−1, we obtain a polynomial system with n(n+1) variables
and n(n+ 1) equations in Fq. It is not necessary to add the equation for Pn ∈ E
because this information is already in the system. Indeed, we have P1, . . . ,Pn−1 ∈
E and Pn = R	 (P1⊕ . . .⊕ Pn−1) with R ∈ E and by consequence Pn too. The
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system has as many unknowns as equations then under regularity assumptions, it
is of dimension 0. The hypothesis of dimension 0 has been checked in practice
so we follow Hypothesis 2. In order to solve this system, we use Gröbner bases.
The complexity of Gröbner basis computation depends on the number of variables
which is quadratic in n. To speed up the resolution, one can reduce the number of
variables by using the summation polynomials introduced by Semaev in [44].

2.2. Solving the PDP using summation polynomials. The summation polyno-
mials are introduced by Semaev as a projection of the PDP over the set of x-
coordinate of each point.

Definition 1. Let E be an elliptic curve defined by a planar equation over a field
Fqn and let Fqn be an algebraic closure of this field. For all m≥ 2, the mth summa-
tion polynomial of E is defined by fm(x1, . . . ,xm) such that for all x1, . . . ,xm in Fqn ,
its evaluation fm(x1, . . . ,xm) is zero if and only if there exist y1, . . . ,ym ∈ Fqn such
that (xi,yi) is in E(Fqn) and (x1,y1)⊕ . . .⊕ (xm,ym) is the neutral element of E.

More generally the summation polynomials can be defined as a projection over
the set of any coordinate. Depending on the coordinate we project to, we need to
adjust the factor base: let c be the chosen coordinate, F has to be the set of all
points of the curve with c in Fq instead of Fqn . The probability of decomposing a
point w.r.t. F still follows the Hypothesis 1. In the context of Definition 1 and if
E is in Weierstrass representation we have the following result.

Theorem 2.1 (Semaev [44]). Let E be an elliptic curve defined over a field of
characteristic > 3 by a Weierstrass equation

E : y2 = x3 +a4x+a6(2)

the summation polynomials of E are given by
f2(x1,x2) = x1− x2

f3(x1,x2,x3) = (x1− x2)
2x2

3−2((x1x2 +a4)(x1 + x2)+2a6)x3+
(x1x2−a4)

2−4a6(x1 + x2)
fm(x1, . . . ,xn) = ResX( fm−k(x1, . . . ,xm−k−1,X), fk+2(xm−k, . . . ,xm,X))

for all m≥ 4 and for all m−3≥ k ≥ 1

where ResX( f1, f2) is the resultant of f1 and f2 with respect to X. Moreover, for
all m ≥ 3 the mth summation polynomial is symmetric and of degree 2m−2 in each
variable. Summation polynomials are irreducible.

We now detail how to use the summation polynomials to solve the PDP. Assume
that E is given by a Weierstrass equation. By definition, if the points P1, . . . , Pn
verify

fn+1(xP1 , . . . ,xPn ,xR) = 0Fqn(3)

then, up to signs, they give a solution of the PDP for R. By applying a Weil restric-
tion, we obtain

fn+1(xP1 , . . . ,xPn ,xR) = 0Fqn ⇐⇒
n−1

∑
k=0

ϕR,k(xP1 , . . . ,xPn) ·αk = 0Fqn
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where the ϕR,k(xP1 , . . . ,xPn) are polynomials in Fq[xP1 , . . . ,xPn ]. Thus, solving equa-
tion 3 is equivalent to solving the polynomial system S = {ϕR,k(xP1 , . . . ,xPn), k =
0, . . . ,n−1} in Fq.

We will detail in the next section how to solve such a system, taking advantage
from the fact that it is symmetric. An important parameter is the degree in each
variable which is 2n−1.

Remark 1. Let ı be the automorphism of degree 2 of E which associates to a point
its negation:

ı : E(Fqn) −→ E(Fqn)
(x,y) 7−→ 	(x,y) = (x,−y) .

Let πx and πy be respectively, the projection on x and y. We can note that πx(x,y) =
πx(ı(x,y)) and πy(x,y) 6= πy(ı(x,y)). Clearly, πx(E)'E/ı and the PDP in m points
have more solutions in Em than in (E/ı)m. This is not true for πy. By consequence,
by projecting on x, we obtain summation polynomials with smaller degree. In the
following, we then choose to project on the coordinate c, if it exists, such that there
exists an automorphism ψ of E such that πc(E) ' E/ψ and for all P, πc(P) =
πc(ψ(P)). For both studied representations, this automorphism exists and will be
ı.

We now study two curve representations having more symmetries than Weier-
strass representation. Following the same idea, we will show in the sequel, that
these additional symmetries allow to further reduce the difficulty of the resolution
of the PDP.

2.3. Curve representations adding symmetries in the PDP. Any elliptic curve
can be represented by a Weierstrass equation. Among these curves, some share
common properties that allow to choose another form of equation. In particular, we
study two families of elliptic curves, the twisted Edwards and Jacobi intersections
curves.

FIGURE 1. Edwards curve over
the real numbers.

2.3.1. Twisted Edwards curves. This family of
elliptic curve was introduced in 2008 in cryptog-
raphy [4]. This is a generalization of the repre-
sentation proposed by Edwards in [18]. These
curves were deeply studied by the cryptology
community, especially by Bernstein and Lange
[5], for their efficient arithmetic. In [4] the
authors show that the family of twisted Ed-
wards curves is isomorphic to the family of
Montgomery curves [40]. In particular these
curves always have a rational 2-torsion point
T2 = (0,−1) (and a rational 4-torsion point for
Edwards curves). A twisted Edwards curve is de-
fined over a field K of characteristic > 2 by

Ea,d : ax2 + y2 = 1+dx2y2(4)
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where a,d 6= 0 and a 6= d. If a = 1, E1,d is an Edwards curve. The group law of a
twisted Edwards curve is given by

(x1,y1)⊕ (x2,y2) =

(
x1y2 + y1x2

1+dx1x2y1y2
,

y1y2−ax1x2

1−dx1x2y1y2

)
with neutral element P∞ = (0,1). The opposite of a point P = (x,y) ∈ Ea,d(K) is
	P = (−x,y), and adding T2 to P gives P+ T2 = (−x,−y). Therefore the sym-
metries can be interpreted in terms of the group law. If a is a square in K then a
twisted Edwards curve has two 4-torsion points T4 =

(
a−

1
2 ,0
)

or
(
−a−

1
2 ,0
)

.
To solve the PDP in twisted Edwards representation, we have to construct the

summation polynomial of such a curve. As said in Remark 1, we compute the
summation polynomials as a projection of the PDP to the coordinate which is in-
variant under the 	 action. That is to say the y-coordinate for twisted Edwards
curves. The nth summation polynomial for twisted Edwards curves is then given
by 

f2(y1,y2) = y1− y2

f3(y1,y2,y3) = (y2
1y2

2− y2
1− y2

2 +
a
d )y

2
3 +2 d−a

d y1y2y3+
a
d

(
y2

1 + y2
2−1

)
− y2

1y2
2

fn(y1, . . . ,yn) = ResY ( fn−k(y1, . . . ,yn−k−1,Y ), fk+2(yn−k, . . . ,yn,Y ))
for all n≥ 4 and for all n−3≥ k ≥ 1

As in the case of Weierstrass representation, for all n≥ 3 the nth summation poly-
nomial is symmetric (see proof in Section 4.1.2) and of degree 2n−2 in each vari-
able. Moreover, the proof of irreducibility of summation polynomials by Semaev
does not depend on the representation of the curve or the coordinate we project to.
Hence, it can be applied mutatis mutandis for twisted Edwards or Jacobi intersec-
tions summation polynomials.

2.3.2. Twisted Jacobi intersections curves. This form of elliptic curves was intro-
duced in 2010 in [29]. As for twisted Edwards curves, it is a generalization of
Jacobi intersections curves (which are the intersections of two quadratic surfaces
defined in a 3-dimensional space) proposed by D.V. and G.V. Chudnovsky in [9].

FIGURE 2. Projection of
a Jacobi intersection curve
over the real numbers.

The twisted Jacobi intersections curves are defined
over a non binary field K by

Ea,b :
{

ax2 + y2 = 1
bx2 + z2 = 1

where a,b ∈ K, a,b 6= 0 and a 6= b. If a = 1, E1,b
is a Jacobi intersection curve. The family of twisted
Jacobi intersections curves contains all curves having
three rational 2-torsion points. These three 2-torsion
points are T2 = (0,1,−1),(0,−1,1) and (0,−1,−1).
The neutral element is P∞ = (0,1,1) and the neg-
ative of a point P = (x,y,z) ∈ Ea,b(K) is given by
	P = (−x,y,z). Adding one of the 2-torsion point to
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P gives respectively the points (−x,y,−z),(−x,−y,z)
and (x,−y,−z). The group law is given by

(x1,y1,z1)⊕(x2,y2,z2)=

(
x1y2z2 + x2y1z1

y2
2 +az2

1x2
2

,
y1y2−ax1z1x2z2

y2
2 +az2

1x2
2

,
z1z2−bx1y1x2y2

y2
2 +az2

1x2
2

)
.

Jacobi intersections curves can have zero, four or eight 4-torsion points :

•

(
± 1√

b
,±
√

b−a
b

,0

)
, if a 6= 1 non square or a = 1 and −1 non square

and b and b−a are squares in K.

•

(
± 1√

a
,0,±

√
a−b

a

)
, if b 6= 1 non square or b = 1 and −1 non square

and a and a−b are squares in K.

•

(
± 1√

b
,±
√

b−a
b

,0

)
,

(
± 1√

a
,0,±

√
a−b

a

)
, if a,b,−1 and a− b are

squares in K.
For these curves the y and z coordinates are invariant under the action of 	.

Hence we can compute the summation polynomials for these curves as a projection
of the PDP to the y or z coordinate. In fact the two summation polynomials for n
fixed are the same up to permutation of a and b, so we give only the polynomials
obtained by projection to y:

f2(y1,y2) = y1− y2

f3(y1,y2,y3) =
(
y2

1y2
2− y2

1− y2
2 +

b−a
b

)
y2

3 +2 a
b y1y2y3+

b−a
b

(
y2

1 + y2
2−1

)
− y2

1y2
2

fn(y1, . . . ,yn) = ResY ( fn−k(y1, . . . ,yn−k−1,Y ), fk+2(yn−k, . . . ,yn,Y ))
for all n≥ 4 and for all n−3≥ k ≥ 1

As for Weierstrass and twisted Edwards representations, these summation poly-
nomials are irreducible and for all n≥ 3 the nth summation polynomial is symmet-
ric and of degree 2n−2 in each variable.

To take advantage of the symmetries introduced by twisted Edwards and Jacobi
intersections curves, we have to know how to use the symmetries of a polynomial
ideal to simplify the computation of its Gröbner basis; this is the topic of the next
two sections.

3. SOLVING POLYNOMIAL SYSTEMS AND SYMMETRIES

In this section, we first recall some results about the complexity of computing
Gröbner bases. All these complexities are given in numbers of arithmetic opera-
tions. Then, we give some background on invariant theory. Finally, we recall a
classical strategy to solve invariant polynomial systems and we discuss its impact
on Gröbner basis computation complexity. For a more thorough reading on the
subject, see [13] for an introduction on computational commutative algebra and
[47] for a general exposition on computational invariant theory. In all this sec-
tion, we consider ideals generated by polynomial systems and their corresponding
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algebraic variety. It is worth noticing that even if some considered ideals are gen-
erated by homogeneous polynomials, we always consider their affine variety only.
In particular, the dimension of such an ideal is the one corresponding to its affine
variety.

3.1. Gröbner basis. A reduced Gröbner basis of a given ideal I ⊂ K[x1, . . . ,xn]
is a set of polynomials generating this ideal. It is not the unique basis of an ideal but
once the monomial ordering is fixed in the polynomial ring, it is a canonical basis
after normalization. This canonical basis can have a lot of useful properties. In
particular, by setting K an algebraic closure of K, from the lexicographical reduced
Gröbner basis of I , one can read off the set of elements in the affine space An =Kn

canceling all the polynomials in I . This set is called the algebraic variety or the
solutions of the ideal I . In the sequel, we consider ideals with corresponding
varieties of finite cardinality only, such ideals are said to be of dimension zero. In
this particular case, the reduced lexicographical Gröbner basis has the following
triangular form 

h1,1(x1, . . . ,xn), . . . ,h1,k1(x1, . . . ,xn)
h2,1(x2, . . . ,xn), . . . ,h2,k2(x2, . . . ,xn)
...
hn−1,1(xn−1,xn), . . . ,hn−1,kn−1(xn−1,xn)
hn(xn) .

From such a triangular form, one can deduce the solutions of I by factoring uni-
variate polynomials using Berlekamp or Cantor-Zassenhaus algorithm (see [49]).
As here the ideal is assumed to be zero-dimensional, one can count its number of
solutions in An with multiplicities, this number is denoted by D and it is also called
the degree of the ideal in this situation. The expected shape of a lexicographical
Gröbner basis is named shape position and has the following form:

x1−h1(xn)
...

xn−1−hn−1(xn)
hn(xn)

where, h1, . . . ,hn−1 are univariate polynomials of degree less than D and hn is a
univariate polynomial of degree exactly D.

Usually, to compute such a Gröbner basis we proceed in two steps. First we
compute a Gröbner basis for the degree reverse lexicographical ordering. Then,
from this basis, we compute the lexicographical Gröbner basis by using a change
of ordering algorithm [26, 25, 24]. For the the first step, we consider the algoritms
F4 or F5 [21, 22], we now present some results about their complexity.

3.1.1. Complexity of F4 and F5 algorithms. For these algorithms, we investigate
their complexity in the case of graded monomial ordering, that is to say, the mono-
mials are ordered with respect to a given graduation and in case of equality, another
ordering (e.g. reverse lexicographical) is applied in order to make it total. Such a
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usual graded monomial ordering is the degree reverse lexicographical (see [13]).
We recall that a graduation degw on the monomials of K[x1, . . . ,xn] is defined from
a given sequence of weights w = (w1, . . . ,wn) in the following way:

degw(x
α1
1 · · ·x

αn
n ) =

n

∑
i=1

wiαi.

It is worth noticing that the usual degree corresponds to degw with weights
(1, . . . ,1). In order to keep the standard notation, we use deg in this case and call
weighted degree for any other graduation (i.e when w 6= (1, . . . ,1)). In this gen-
eral context, we say that a polynomial is homogeneous if all its monomials have
the same graduation (in the literature, a polynomial which is homogeneous for a
weighted degree is usually said quasi-homogeneous but we do not use this termi-
nology here). It is important to note that the homogeneity of a polynomial depends
on the graduation.

Among polynomial systems, the homogeneous regular systems form a family of
polynomial systems for which the complexity of F4 and F5 is well handled.

Definition 2 (Regular systems). Let F = ( f1, . . . , fs) ∈ (K[x1, . . . ,xn])
s be a se-

quence of s ≤ n non-zero homogeneous polynomials for a fixed graduation degw.
The sequence F is said to be regular if for all i∈ {1, . . . ,s−1}, the polynomial fi+1
is not a zero divisor in the quotient ring K[x1, . . . ,xn]/〈 f1, . . . , fi〉. A homogeneous
polynomial system { f1, . . . , fs} is said to be regular if the sequence ( f1, . . . , fs) is
regular.

Here we consider only zero-dimensional ideals generated by a regular sequence
of polynomials. Moreover, if a regular sequence is of length the number of vari-
ables (s = n) then the ideal that it generates is zero-dimensional. In order to sim-
plify the notations we then consider that the number of polynomials in the system is
always the number of variables. For homogeneous regular systems, the complexity
of computing a graded reverse lexicographical Gröbner basis can be bounded by
the complexity of computing the reduced row echelon form of a particular matrix
(the Macaulay matrix, see Definition 4 below) which its size depends on a certain
graduation d = dreg (see [3]) called the degree of regularity of the system. This
quantity is defined as follows.

Definition 3 (Degree of regularity). Let I be a zero dimensional ideal in the poly-
nomial ring K[x1, . . . ,xn] equipped with a graded monomial ordering for a fixed
graduation degw. We assume that the ideal I is generated by a sequence of ho-
mogeneous polynomials ( f1, . . . , fn). Let LT(I ) be the leading term ideal of I ,
also called initial ideal, which is the ideal of K[x1, . . . ,xn] generated by the lead-
ing terms LT( f ) of the elements f in I . The degree of regularity of I , denoted
dreg, is defined as the minimal graduation d such that the set M(d) of monomials
m ∈K[x1, . . . ,xn] of graduation degw(m) greater or equal to d verifies

M(d)⊂ LT(I ) .
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For regular systems, the Macaulay bound gives a bound on dreg when the grad-
uation is the usual degree (see [38]). For a weighted degree, such a bound is given
in [28]. These results can be summarized in the following theorem.

Theorem 3.1 ([38][28]). Let F = ( f1, . . . , fn) be a regular sequence of non-zero
homogeneous polynomials of K[x1, . . . ,xn] equipped with a graded monomial or-
dering for a fixed graduation degw. By denoting di the graduation degw( fi) we
have the following bound

dreg ≤ max
i=1,...,n

{wi}+
n

∑
i=1

(di−wi) .

One can notice that if w = (1, . . . ,1), this bound is consistent with the usual one
given by the Macaulay bound. Finally, in order to estimate the complexity of F4 or
F5 algorithms, we need the size of the Macaulay matrix in graduation dreg.

Definition 4 (Macaulay matrix). Let { f1, . . . , fn} be a set of homogeneous polyno-
mials of K[x1, . . . ,xn] and > be a graded monomial ordering for a fixed graduation
degw. The Macaulay matrix in graduation d, denoted Mac(d), is the matrix whose
rows contain the coefficients of the polynomials t f j for j = 1, . . . ,n and all mono-
mials t of K[x1, . . . ,xn] such that degw(t f j) = d. Each column of the matrix corre-
sponds to a monomial of K[x1, . . . ,xn] of graduation d. The columns are arranged
in descending order w.r.t. the monomial ordering >.

The size of the Macaulay matrix in graduation d, is then deduce from the number
of monomials in n variables of graduation d. Hence, for homogeneous regular
systems, the arithmetic complexity of F4 or F5 algorithms can be bounded by:

(5) O
((

n+dreg−1
dreg

)ω)
for the usual degree,

(6) O
((

Gcdi=1,...,n{wi}
∏

n
i=1 wi

(
dreg +Sn

dreg +Sn−n+1

))ω)
for a weighted degree,

where Sn is defined by S1 = 0 and Si = Si−1 +wi
Gcd j=1,...,i−1{w j}
Gcd j=1,...,i{w j} for i ≥ 2 and 2 ≤

ω < 3 is the linear algebra constant. See [28] for more details about the size of
Macaulay matrices with weighted degree.

In most applications as in this work, polynomial systems are not homogeneous.
By consequence one needs to relate the complexity of solving an affine polynomial
system to the complexity of solving a particular homogeneous system. For this
purpose, we use the homogeneous component of highest graduation as specified in
the next definition.

Definition 5 (Affine regular systems). Let F = ( f1, . . . , fn) be a sequence of non-
zero affine polynomials of K[x1, . . . ,xn]. We denote by f (h)i the homogeneous com-
ponent of highest graduation of fi. The sequence F is said to be regular if the
sequence of homogeneous polynomials F(h) = ( f (h)1 , . . . , f (h)n ) is regular. An affine
polynomial system is said to be regular if it is defined by an affine regular sequence.
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Let F = { f1, . . . , fn} ⊂K[x1, . . . ,xn] equipped with a fixed graduation degw. As-
sume that F is an affine regular system as specified in the preceding definition.
Let G = {g1, . . . ,gn} ⊂K[x1, . . . ,xn,h] be the set of the homogenization of the ele-
ments in F . By equipping the polynomial ring K[x1, . . . ,xn,h] with the graduation
degw′ where w′n+1 = 1 and w′i =wi for i = 1, . . . ,n, the complexity of computing the
graded reverse lexicographical Gröbner basis of 〈F〉 can be bounded by the com-
plexity of computing the graded reverse lexicographical Gröbner basis of 〈G〉. By
consequence, for affine regular systems in K[x1, . . . ,xn], the complexity of comput-
ing a graded reverse lexicographical Gröbner basis can be bounded by the formula
in equation (5) or (6) after replacing n by n+1 and setting wn+1 = 1.

When the system is not regular, the complexity of algorithms F4 and F5 is much
more difficult to handle. Indeed, for affine non regular systems, some polynomials
of graduation d in the ideal can be obtained by combination of polynomials of
higher graduation i.e.:

(7) f =
n

∑
i=1

hi fi and ∃i ∈ {1, . . . ,n} such that degw(hi fi)> degw( f ) .

As this phenomenon is difficult to anticipate, the complexity of F4 or F5 is very
hard to estimate and there is no general tight bound on the complexity of F4 and F5
in this case.

In contrary to the computation of a Gröbner basis, for any class of polynomial
systems, the complexity of the second step in the resolution of polynomial systems
is well understood. This is what we present in the next section.

3.1.2. Complexity of change of ordering. The classical algorithm of change of or-
dering for Gröbner basis is FGLM [25]. Its complexity is in O(nD3) arithmetic op-
erations. For generic systems, this complexity can be reduced to O(n log2(D)D+
log(D)Dω) (see [24]).

Nevertheless, polynomial systems arising in this work are not generic in the
sense of [24]. However, the authors proposed also an algorithm for non generic
polynomial systems for which the complexity of the change of ordering can heuris-
tically be bounded by O(n log2(D)D+ log(D)Dω). This heuristic complexity has
been checked on various examples. In particular, it seems to be valid for polyno-
mial systems considered here.

For systems having symmetries i.e. invariant under the action of a linear group,
computing directly a Gröbner basis breaks symmetries, which is not satisfactory.
The two next sections are devoted to handle symmetries in the polynomial systems
solving process.

3.2. Invariant ring and reflection groups. In the sequel, we consider the action
of a finite linear group G. We assume that the field K has a positive “large enough
characteristic”, that is to say not dividing the cardinality of G. All notions of
invariant theory recalled in the following section, can be generalized to an affine
variety instead of the affine space.
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A linear group G ⊂ GL(K,n) naturally acts on the affine space An or any K-
vector space of dimension n by the matrix vector multiplication. This action can be
translated to polynomial rings. More precisely we have the following definition.

Definition 6 (Invariant rings). Let K[x1, . . . ,xn] be a polynomial ring in n variables
with coefficients in K. The action of a group G ⊂ GL(K,n) on K[x1, . . . ,xn] is
defined by

G×K[x1, . . . ,xn] −→ K[x1, . . . ,xn]
g, f 7−→ g · f

where g · f is defined by (g · f )(v) = f (g−1 · v) where v is the vector (x1, . . . ,xn).
This definition uses the inverse of g in order to get a left action. The invariant ring
of G is the set of all invariant polynomials in K[x1, . . . ,xn] :

K[x1, . . . ,xn]
G = { f ∈K[x1, . . . ,xn] | g · f = f for all g ∈G} .

One of the fundamental results in invariant theory was proven by Hilbert in the
last decade of the nineteenth century and is summarized in the following theorem.

Theorem 3.2 (Hilbert’s finiteness theorem). The invariant ring of G is finitely
generated.

Following this theorem, many results were provided for the decomposition of
invariant rings. In particular, it is proven that K[x1, . . . ,xn]

G is a finitely gener-
ated free module over K[θ1, . . . ,θn] where θ1, . . . ,θn are algebraically independent.
Consequently there exist η1, . . . ,ηt ∈K[x1, . . . ,xn]

G such that

K[x1, . . . ,xn]
G =

t⊕
i=1

ηiK[θ1, . . . ,θn] .(8)

The decomposition (8) is called a Hironaka decomposition of K[x1, . . . ,xn]
G. The

polynomials θ1, . . . ,θn (resp. η1, . . . ,ηt) are the primary invariants (resp. sec-
ondary invariants) of K[x1, . . . ,xn]

G.
To solve pointwise invariant polynomial systems (i.e. each polynomial in the

system is in the invariant ring of the corresponding group) by using the symmetries,
one has to rewrite the systems in terms of the primary and secondary invariants. If
the invariant ring of G is not a polynomial algebra – i.e. the secondary invariants
are not reduced to {1} – considering the symmetries can complicate the resolu-
tion of the system. Actually, since secondary invariants are not independent, then
considering the symmetries when these invariants are not trivial increases the num-
ber of equations and variables to consider. Consequently, the polynomial systems
could be more difficult to solve. Moreover, computing a Hironaka decomposition
can be a difficult task. In the case where the invariant ring is not a polynomial
algebra one can use also SAGBI Gröbner bases, see for instance [27]; we will not
need this strategy in this work.

By consequence an elementary question is to know under which conditions on
G, its invariant ring is a graded polynomial algebra (and thus when the set of sec-
ondary invariants is trivial). The answer is given in the following theorem.
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Theorem 3.3 (Shephard, Todd, Chevalley[8, 45]). The invariant ring of G is a
polynomial algebra if and only if G is a pseudo-reflection group.

A group G⊂ GL(K,n) is said to be a pseudo-reflection group if it is generated
by its pseudo-reflections. A pseudo-reflection is a linear automorphism of An that
is not the identity map, but leaves a hyperplane H ⊂ An pointwise invariant.

Example 1. Coxeter groups can be represented thanks to a pseudo reflection
group. In particular, the dihedral Coxeter group Dn = (Z/2Z)n−1 oSn can be
represented by the action on An defined by the rule that Sn permutes the coordi-
nates of the vectors, whereas (Z/2Z)n−1 changes the sign on an even number of
its coordinates. From Theorem 3.3 the invariant ring of Dn is then a polynomial
algebra. In the sequel, the dihedral Coxeter group Dn will always correspond to
this representation. It is a well known group and its invariant ring too. Actually,

K[x1, . . . ,xn]
Dn =K[p2, . . . , p2(n−1), pn] =K[s1, . . . ,sn−1,en]

where pi =
n

∑
k=1

xi
k is the ith power sum, si = ∑

1≤k1<...<ki≤n

i

∏
j=1

x2
k j

is the ith elementary

symmetric polynomial in terms of x2
1, . . . ,x

2
n and en =

n

∏
k=1

xk is the nth elementary

symmetric polynomial in terms of x1, . . . ,xn.

In the case where G is a pseudo-reflection group, Theorem 3.3 allows to con-
struct an isomorphism ΩG between K[x1, . . . ,xn]

G and K[y1, . . . ,yn] where y1, . . . ,yn
are new indeterminates.

Definition 7. Let G be a pseudo-reflective group and θ1, . . . ,θn ∈ K[x1, . . . ,xn]
G

be the primary invariants of G. We denote by ΩG the ring isomorphism from
K[x1, . . . ,xn]

G to K[y1, . . . ,yn] corresponding to the change of coordinates by the
θi’s and defined by

Ω
−1
G : K[y1, . . . ,yn] −→ K[x1, . . . ,xn]

G

f 7−→ f (θ1, . . . ,θn) .

In the following, we denote by K[θ1, . . . ,θn] the polynomial ring given by the
image of ΩG.

We now see how to simplify the resolution of polynomial systems that are point-
wise invariant under a pseudo-reflection group.

3.3. Solving pointwise invariant system. Let G ⊂ GL(K,n) be a pseudo reflec-
tion group. Let I = 〈 f1(x1, . . . ,xn), . . . , fn(x1, . . . ,xn)〉 be an ideal of K[x1, . . . ,xn]
such that for i = 1, . . . ,n, the polynomial fi is in K[x1, . . . ,xn]

G. Clearly the variety
V (I ) is G-invariant. Let V (I )/G be the set of G-orbits of V (I ), we call it the
orbit variety of I . As the invariant ring of G admits a Hironaka decomposition, we
will see in the sequel that from V (I )/G one can compute all elements in V (I ).
Thus, to compute Gröbner bases keeping symmetries, one can compute a Gröbner
basis of an ideal having for variety the orbit variety V (I )/G instead of V (I ) and
then find all elements in all orbits ṽ ∈V (I )/G.
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Let {θ1(x1, . . . ,xn), . . . ,θn(x1, . . . ,xn)} be a set of generators – primary invariants
– of K[x1, . . . ,xn]

G. Since, the primary invariants are algebraically independent,
the G-orbit space An/G is the variety An see [47]. Let Ginv be the lexicographical
Gröbner Basis of

〈θ1(x1, . . . ,xn)− y1, . . . ,θn(x1, . . . ,xn)− yn〉 ⊂K[x1, . . . ,xn,y1, . . . ,yn]

where x1 > .. . > xn > y1 > .. . > yn. Let ṽ = (ṽ1, . . . , ṽn) ∈V (I )/G. All elements
in the G-orbit ṽ can be found by substituting the variables y1, . . . ,yn by ṽ1, . . . , ṽn in
the lexicographical Gröbner basis Ginv.

To compute V (I )/G we have to compute a Gröbner basis Gorb of

Ginv∪{ f1(x1, . . . ,xn), . . . , fn(x1, . . . ,xn)}

with respect to an ordering eliminating the xi’s. Actually, G = Gorb∩K[y1, . . . ,yn]
is a Gröbner basis of an ideal of variety V (I )/G.

Example 2. Let n = 2 and K = F65521. Let us consider the ideal I = 〈 f1, f2〉
where

f1(x1,x2) = x2
1x2

2− x2
1− x2

2−1
f2(x1,x2) = x4

1 + x3
1x2 + x1x3

2 + x4
2 .

The action of D2 leaves invariant both I and its variety, but not its lexicographical
Gröbner basis, which is:{

4x1 +3x15
2 −16x13

2 +29x11
2 −23x9

2−2x7
2 +21x5

2 +16x3
2 +8x2

x16
2 −5x14

2 +8x12
2 −5x10

2 −2x8
2 +5x6

2 +8x4
2 +5x2

2 +1
.

The corresponding Ginv and Gorb Gröbner basis are respectively
x2

1 + x2
2− y1

x1x2− y2
x1y2 + x3

2− x2y1
x4

2− x2
2y1 + y2

2


x1− x3

2y3
2− x3

2y2
2 +4x3

2y2 + x3
2− x2y3

2− x2y2
2 +3x2y2 + x2

x4
2− x2

2y2
2 + x2

2 + y2
2

y1− y2
2 +1

y4
2 + y3

2−4y2
2− y2 +1

The corresponding G basis in terms of y1 and y2 only is then{
y1− y2

2 +1
y4

2 + y3
2−4y2

2− y2 +1

which preserves the symmetries. One can notice that the degree of the ideal I is
16 whereas considering the symmetries yields an ideal of degree divided by 4.

In our case, we consider groups that are pseudo reflective, the impact on the
complexity comes from the fact that we reduce the degree of the polynomials we
consider by the change of coordinates ΩG and that all solutions in the same orbit
will correspond to only one solution of the new system. So that the total number of
solutions decreases. Hence, the complexity of the F4 and FGLM steps are reduced
accordingly.

The end of this section is devoted to the impact of such a change of coordinates
on the complexity of computing a graded reverse lexicographical or lexicographical
Gröbner basis.
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3.3.1. Complexity of F4 and F5 algorithms for a given pointwise invariant system.
For the resolution of the Point Decomposition Problem, we will see in the next
section that we can construct polynomial systems invariant under the action of
the dihedral Coxeter group. Moreover, we have observed in practice that using
the action of the symmetric group only, yields a regular system in this case. By
consequence, we now consider the complexity of computing a weighted degree
reverse lexicographical, denoted WDRL, Gröbner basis of SDn when it is assumed
that SSn is regular.

Let s1, . . . ,sn−1,en ∈K[x1, . . . ,xn] be the primary invariants of the dihedral Cox-
eter group Dn. As the symmetric group is a subgroup of Dn each of the primary
invariants of Dn can be written in terms of the elementary symmetric polynomials.
Let ρi denotes an expression of si in K[e1, . . . ,en] one can easily deduce that,

ρi = e2
i +2∑

i−1
j=1(−1) jei− jei+ j +2(−1)ie2i if i≤ bn/2c

ρi = e2
i +2∑

n−i
j=1(−1) jei− jei+ j if bn/2c< i < n

ρn = en

.

This representation of the primary invariants of Dn in K[e1, . . . ,en] allows to
construct a weighted degree which preserves the grading between the two rings
K[e1, . . . ,en] and K[s1, . . . ,sn−1,en].

Lemma 1. For all f ∈ K[x1, . . . ,xn]
Dn ⊂ K[x1, . . . ,xn]

Sn , if K[s1, . . . ,sn−1,en] is
equipped with the graduation degw with weights (2, . . . ,2,1) then degw (ΩDn( f )) =
deg(ΩSn( f )) .

Proof. Let ΩDn( f ) = ∑α=(α1,...,αn) cαsα1
1 · · ·s

αn−1
n−1 eαn

n with cα ∈K and

degw(ΩDn( f )) = max

{
αn +2

n−1

∑
i=1

αi | cα 6= 0

}
.

Then ΩSn( f ) = ∑α=(α1,...,αn) cαρ
α1
1 · · ·ρ

αn−1
n−1 ραn

n with

deg(ΩSn) = max

{
n

∑
i=1

deg(ρi)αi | cα 6= 0

}
= degw(ΩDn( f )) .

�

Let F be a sequence of invariant polynomials under the action of the dihedral
Coxeter group. If the image of F by ΩSn is a regular sequence, we now show that
ΩDn also allows to construct a regular sequence.

Proposition 1. Let ( f1, . . . , fn) ∈
(
K[x1, . . . ,xn]

Dn
)n ⊂

(
K[x1, . . . ,xn]

Sn
)n be a se-

quence of polynomials such that (ΩSn( f1), . . . ,ΩSn( fn))∈ (K[e1, . . . ,en])
n is a reg-

ular sequence for the usual graduation deg = degw with w = (1, . . . ,1).
If K[s1, . . . ,sn−1,en] is equipped with a weighted degree degw of weights w =

(2, . . . ,2,1) then (ΩDn( f1), . . . ,ΩDn( fn)) ∈ (K[s1, . . . ,sn−1,en])
n is a regular se-

quence.
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Proof. In order to simplify the notations, for all f ∈ K[x1, . . . ,xn]
Dn we denote by

f (s) (resp. f (d)) the polynomial ΩSn( f ) (resp. ΩDn( f )) and by f (s,h) (resp. f (d,h))
its homogeneous component of highest degree (resp. weighted degree).

Let α = (α1, . . . ,αn) ∈ Nn, we denote |α|= ∑
n
i=1 αi and |α|w = ∑

n−1
i=1 2αi +αn.

For all f ∈K[x1, . . . ,xn]
Dn we have

f (d)(s1, . . . ,sn−1,en) = ∑
|α|w=δ

cαsα1
1 · · ·e

αn
n +R1(s1, . . . ,sn−1,en)

where δ is the weighted degree of f (d), cα ∈K and R1 is a polynomial of weighted
degree less than δ . Let denote ρi−ρ

(h)
i by ri we have:

f (s)(e1, . . . ,en) = f (d)(ρ1, . . . ,ρn)

= ∑
|α|w=d

cα(ρ
(h)
1 + r1)

α1 · · ·(ρ(h)
n + rn)

αn +R1(ρ1, . . . ,ρn)

= ∑
|α|w=d

cα(ρ
(h)
1 )α1 · · ·(ρ(h)

n )αn +R2(e1, . . . ,en)

where R2 is a polynomial of degree less than δ which contains R1(ρ1, . . . ,ρn) by
Lemma 1. This implies that

f (s,h) = ∑
|α|w=d

cα(ρ
(h)
1 )α1 · · ·(ρ(h)

n )αn

= f (d,h)(ρ(h)
1 , . . . ,ρ

(h)
n ) .(9)

Assume that the sequence ( f (d,h)1 , . . . , f (d,h)n ) is not regular i.e. there exists i ∈
{2, . . . ,n} and 0 6= g,g1, . . . ,gi−1 ∈K[s1, . . . ,sn−1,en] such that

g1 f (d,h)1 + · · ·+gi−1 f (d,h)i−1 −g f (d,h)i = 0 .

From equation (9) this implies that

g(h)(ρ(h)
1 , . . . ,ρ

(h)
n ) f (s,h)i −

i−1

∑
j=1

g(h)j (ρ
(h)
1 , . . . ,ρ

(h)
n ) f (s,h)j = 0 .

Since, ρ
(h)
1 , . . . ,ρ

(h)
n are algebraically independent we have g(h)(ρ(h)

1 , . . . ,ρ
(h)
n ) 6= 0.

Hence, f (s,h)i is a zero divisor in the quotient ring K[e1, . . . ,en]/〈 f (s,h)1 , . . . , f (s,h)i−1 〉.
This yields a contradiction hence the sequence ( f (d,h)1 , . . . , f (d,h)n ) is regular. �

Finally, we study the complexity of computing a (W)DRL Gröbner basis with
F4 or F5 for some regular sequences.

Theorem 3.4. Let f1, . . . , fn ∈ K[x1, . . . ,xn]
Dn be such that deg(ΩSn( fi)) = 2n−1

and such that the sequence F(s) = (ΩSn( f1), . . . ,ΩSn( fn)) is regular for the usual
graduation deg. The arithmetic complexity of computing a DRL Gröbner basis of
the system generated by F(s) is bounded by

O

((
n2n−1 +1

n

)ω
)

= O
(

2ωn(n−1)
)
.
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Let F(d) = (ΩDn( f1), . . . ,ΩDn( fn)). The arithmetic complexity of computing a
WDRL Gröbner basis with weights (2, . . . ,2,1) of the system generated by F(d) is
bounded by

O

(
2−ω(n−1)

(
n2n−1 +2

n

)ω
)

= O
(

2ω(n−1)2
)
.

Proof. As F(s) is a regular sequence, from Theorem 3.1 we can bound dreg(F(s))
by the Macaulay bound i.e.

dreg(F(s))≤ 1+
n

∑
i=1

(2n−1−1) = n2n−1−n+1 .

Hence, from equation (5) we obtain the expected result. From Lemma 1 and Propo-
sition 1, F(d) is a regular sequence such that degw(ΩDn( fi)) = 2n−1. Thus, again
from Theorem 3.1, we obtain

dreg(F(d))≤
n−1

∑
i=1

(2n−1−2)+2n−1−1+2 = n2n−1−2(n−1)+1 .

Hence, from equation (6) we obtain the second expected result. �

Remark 2. One can notice that considering the sequence F(d) (i.e. the system
SDn) instead of F(s) (i.e. SSn) divides by 2ω(n−1) the complexity of F4 or F5 in the
step of Gröbner basis computation. This factor on the complexity is consistent with
the results that we obtain in practice (see Section 5).

We now present the impact on the complexity of the change of ordering algo-
rithm.

3.3.2. Complexity of change of ordering for invariant ideals. Let I be a zero
dimensional ideal of K[x1, . . . ,xn] which is invariant under the action of a finite
pseudo reflection group G ⊂ GL(K,n). We now see more precisely the relation
between the number of solutions of I and the number of solutions of the ideal
corresponding to I after the change of variables associated to G denoted IG.
Let Orb(G,v) be the orbit of v ∈ An under the action of G and Stab(G,v) be the
stabilizer of v. From the orbit-stabilizer theorem, for all v ∈ An we have

#Orb(G,v) =
#G

#Stab(G,v)
.

The degree deg(I ) of the ideal I is the number of its solutions counted with
multiplicities. Let v ∈ V (I ) such a solution, its orbit Orb(G,v) under the action
of G is a solution of IG. The multiplicity of v is then given by the multiplicity of
Orb(G,v), seen as a solution of IG, times the number of elements in the stabilizer
Stab(G,v) of v. Moreover, V (I ) =

⋃
v∈V (I )

Orb(G,v) thus

deg(I ) = ∑
ṽ∈V (I )/G

mṽ ·#Stab(G,v) ·#Orb(G,v) = N ·#G ,
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where mṽ is the multiplicities of ṽ in V (I )/G, v is a representative of the orbit ṽ
and N is the number of G-orbits counted with multiplicities in V (I )/G.

By applying the change of variables associated to G we work in the orbit space.
Hence the number of solutions counted with multiplicities of IG is the number
of G-orbits counted with multiplicities in V (I ) that is to say N. In conclusion,
considering the action of a linear group divides the degree of the ideal by the group
cardinality. Since the complexities of change of ordering algorithms are polyno-
mial in the degree of the ideal, their complexities are then reduced accordingly.
This is summarized in the following Proposition.

Proposition 2. Let G be a pseudo reflection group. Let I be an ideal generated
by pointwise invariant polynomials under G. Applying the change of coordinates
associated to G divides the complexity of the change of ordering algorithm by
(#G)3 and by (#G)ω in the heuristic case.

Example 3. Continuing the example 2, the degree of I is 16 where the solutions
(2996,62525),(6897,58624),(58624,6897) and (62525,2996) are of multiplicity

two. The degree of 〈G 〉 is 4 =
16

#D2
and

• O1 = (64799,361) is a representative of {(2996,62525),(62525,2996)}
• O2 = (726,65158) is a representative of {(6897,58624),(58624,6897)}
• O3 = (6009,6009) is a representative of
{(7493,55256),(10265,58028),(55256,7493),(58028,10265)}
• O4 = (59513,59513) is a representative of
{(14169,28989),(28989,14169),(36532,51352),(51352,36532)}

Remark 3. Note that in general, a K-rational orbit can be formed by non K-
rational elements. That is to say, some K-rational solutions of the system after a
non-linear change of variables can correspond to solutions of the initial system
which have coordinates not in K.

4. USE OF SYMMETRIES TO IMPROVE THE ECDLP SOLVING

We now come back to the PDP problem, which is the heart of the index calculus
attack on elliptic curves. We will start by recalling the well-known strategy of
using the symmetric group to reduce the size of the systems, and then we will
consider the case of twisted Edwards and Jacobi intersections that provide further
symmetries.

Depending on the curve representation, the coordinate chosen for the projection
can be x, y or z. For more generality, here we note the chosen coordinate c and
the (n+ 1)th summation polynomial evaluated in one variable in the c-coordinate
of R is denoted f R

n+1. The notation c(P) denotes the c-coordinate of the point P.

Let Fi =
{

P ∈ E(Fqn) | c(P)
α i ∈ Fq

}
for any i = 0, . . . ,n−1 where α is a generator

of Fqn . For Weierstrass or twisted Edwards representations, we take as factor base
F = F0. For Jacobi intersections curves, if Fq is a prime field then F0 contains
only the 2-torsion of the curves; hence it does not contain enough points to be used
as factor base. Therefore, for this representation we take as factor base F = F1.
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4.1. Group action on the point decomposition problem.

4.1.1. The symmetric group Sn. As we have seen in Section 2, the summation
polynomials are symmetric and it is natural [31] to use this to decrease the cost
of the Gröbner basis computation. It is well known that the invariant ring of
Sn is a polynomial algebra with basis {e1, . . . ,en} where ei is the ith elementary
symmetric polynomial in terms of c1, . . . ,cn. There exists a unique polynomial
gR

n ∈ Fqn [e1, . . . ,en] such that gR
n is the expression of f R

n+1 in terms of the ei. We
have seen in Section 2 that fn+1 is of degree 2n−1 in each variable thus f R

n+1 too.
Consequently, by construction gR

n is of total degree 2n−1. Hence after the Weil re-
striction on gR

n we obtain a new system SSn
1⊂Fq[e1, . . . ,en] with n polynomials of

total degree 2n−1. The Bezout’s bound allows to bound the degree of the ideal gen-
erated by SSn by 2n(n−1). In practice, we observe in this context that this bound is
reached. Without taking into account the symmetric group, the bound would have
been n! times larger, therefore, the complexity of FGLM is reduced by (n!)ω (or by
(n!)3 in the non-heuristic case). Moreover the degree of the equations of SSn are
smaller than those of the equations of S and we observe that the system becomes
regular. Even if the gain of the F4, F5 algorithms is not quantifiable in theory, it is
significant in practice.

We are able to solve these systems for n = 2,3,4. For n = 2 or 3 the resolution
is instantaneous for all curve representations. In the following, we present some
practical results for n = 4 obtained by using the computer algebra system MAGMA
(V2.17-1) on a 2.93 GHz Intel R© E7220 CPU.

log2(q) F4 (s) Change-Order (s) Total time (s)

16
Weierstrass [31] 4 531 535

Edwards 0 201 201
Jacobi 0 209 209

64
Weierstrass [31] 354 4363 4717

Edwards 3 1100 1103
Jacobi 4 1448 1452

We note that for twisted Edwards or Jacobi intersections curves the running time
of the system resolution is equivalent and significantly smaller than for Weierstrass
representation. This can be explained by the particular shapes of the lexicographi-
cal Gröbner basis :

1The notation SG means that the system is expressed w.r.t. the change of variables associated to
G i.e. the change of variables formed by the primary and secondary invariants of Fq[x1, . . . ,xn]

G.
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Lexicographical Gröbner basis
of 〈SSn〉 for Weierstrass

representation :

e1 +h1(en)
e2 +h2(en)
...
en−2 +hn−2(en)
en−1 +hn−1(en)
hn(en)

Lexicographical Gröbner basis
of 〈SSn〉 for twisted Edwards

and Jacobi intersections
representations :

e1 +p1(en−1,en)
e2 +p2(en−1,en)
...
en−2 +pn−2(en−1,en)
pn−1(en−1,en)
pn(en)

where deg(hn) = 2n(n−1), deg(pn) = 2(n−1)2
, degen−1

(pn−1) = 2n−1 and for all curve
representations #VFq

(〈SSn〉) = 2n(n−1).

Remark 4. The form of the lexicographical Gröbner basis is given here in order to
explain some intuition of our approach. In particular, such a form does not repre-
sent any assumption in the proof of our main result Theorem 4.1, below. Actually,
one needs only a bound on the degree of the ideal considered in this proof. This
bound is obtained thanks to the Bezout’s theorem and results from invariant theory.

The gain of efficiency observed in the case of twisted Edwards and Jacobi in-
tersections curves is due to the smaller degree appearing in the computation of
Gröbner basis of SDn in comparison with the Weierstrass case. Note that the lexi-
cographical Gröbner bases for Weierstrass representation is in shape position. That
is to say, to find the solutions of the system from the lexicographical Gröbner ba-
sis, we need to factor only one univariate polynomial in the smallest variable. The
value of the others variables is obtained when the value of the smallest variable is
fixed. In this case, the smallest variable, here en, is said to be separating (see for
instance [10]). This means that any element in the variety of the ideal generated
by SSn is distinguishable by en. Contrary to Weierstrass representation, the lexi-
cographical Gröbner bases for twisted Edwards and Jacobi intersections curves are
not in shape position. The variable en is not separating for these two representa-
tions. In fact, for each solution of the system, there are 2n−1− 1 others solutions
with same value in en. By consequence, one would like to find a larger group than
Sn acting on the system (and thus on the variety of solutions) such that each orbit
gathers all such solutions with the same value in en. In the next section, we show
how to use such a larger group related to 2-torsion points in order to increase the
efficiency of the computation.

4.1.2. Consequence of the existence of 2-torsion points for twisted Edwards and
Jacobi intersections curves. Suppose that we have a solution (P1,P2, . . . ,Pn) to the
PDP, and denote by T2 a 2-torsion point. Thus for all k = 1, . . . ,

⌊n
2

⌋
we have

P1⊕ . . .⊕Pn⊕ [2k]T2 = R. Therefore from one decomposition of R (modulo the

order) we have in fact
b n

2c
∑
k=0

(
n
2k

)
= 2n−1 decompositions of R obtained by adding
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an even number of times a 2-torsion point :

R = P1⊕·· ·⊕Pn

= (P1⊕T2)⊕ (P2⊕T2)⊕P3⊕·· ·⊕Pn

= (P1⊕T2)⊕P2⊕ (P3⊕T2)⊕P4⊕·· ·⊕Pn

...
= P1⊕·· ·⊕Pn−2⊕ (Pn−1⊕T2)⊕ (Pn⊕T2)

= (P1⊕T2)⊕ (P2⊕T2)⊕ (P3⊕T2)⊕ (P4⊕T2)⊕P5⊕·· ·⊕Pn

...

In general, these decompositions do not correspond to solutions of the PDP, since
(Pi + T2) is not always in the factor base F . If the action of the 2-torsion point
leaves invariant the factor base F i.e. P ∈ F implies that P⊕ T2 ∈ F then the
2-torsion point can be used to reduce the size of the factor base (see Remark 5).
By consequence, if we know a decomposition of R w.r.t. the factor base F (re-
spectively a solution of the polynomial system to solve for solving the PDP) we
can construct 2n−1 decompositions of R w.r.t. F (respectively 2n−1 solutions of
the polynomial system).

Let c and c2 be respectively the c-coordinate of P and P⊕T2. The action of the
2-torsion point leaves the factor base invariant if

(10)

{
c2 =

p1(c)
p2(c)

with p1, p2 ∈ Fq[c] if F = F0

c2 = βc+ γ with β ∈ Fq and γ

α i ∈ Fq if F = Fi,1≤ i < n

where α is a generator of Fqn . The difference between the two cases is due to when
F = F0 the c-coordinates of the points in the factor base are in a field whereas
when F = Fi with i > 0 the c-coordinates of the points in the factor base are in a
vector space.

By consequence, if condition (10) is satisfied then the size of the factor base can
be reduced. Moreover, we can a priori use the action of the 2-torsion to speed up
the polynomial systems solving step in the PDP solving. Nevertheless, in order to
use the action of the 2-torsion point in the polynomial system solving process, we
need that c2 depends only on c and that the action of T2 on the coordinates is not
too much complicated. The simplest being a linear action.

For Weierstrass representation, the 2-torsion points of E(Fqn) are T2 = (X ,0)
where X is a root of X3 +a4X +a6 = 0 and we have

P⊕T2 =

(
x3 +a4x+a6

(X− x)2 − x−X ,
(2x+X)y
(x−X)

− y3

(x−X)3 − y
)
.

In this representation, we project the PDP on x-coordinate. As the x-coordinate of
the point P⊕T2 does not verify any of the equalities in (10), the 2-torsion points
cannot be used to decrease the factor base. Moreover, the action of the 2-torsion
points is not easy to handle in the polynomial systems solving process.
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In the case of twisted Edwards representation, the 2-torsion point of a twisted
Edwards curve is T2 = (0,−1) and P⊕T2 = (−x,−y). Thus the action of the 2-
torsion point leaves invariant the factor base and the 2n−1 decompositions of the
point R translate into as many solutions of the PDP. Furthermore, the action of the
2-torsion point being very simple we can use it to decrease the number of solutions
in the polynomial systems solving process.

Finally for twisted Jacobi intersections representation, the three 2-torsion points
of a twisted Jacobi intersections curve are T2 = (0,1,−1),(0,−1,1),(0,−1,−1).
Thus we have P⊕ T2 = (−x,y,−z),(−x,−y,z),(x,−y,−z) and similarly to the
twisted Edwards curves, the decompositions mentionned above should correspond
to solutions of the system associated to the decomposition of the point R.

Obviously, as Jacobi intersections curves have three 2-torsion points, the factor
base can be further decreased and from one decomposition of R one can construct
more than 2n−1 decompositions of R. However, since after projection on the c-
coordinate (y or z) for any 2-torsion points, c2 = ±c these decompositions will
match with only 2n−1 solutions of the system we want to solve.

As a consequence, for twisted Edwards or Jacobi intersections curve from one
solution of the polynomial system (c1, . . . ,cn) corresponding to the decomposition
R=P1⊕·· ·⊕Pn, we can construct 2n−1 solutions of the system by applying an even
number of sign changes. Obviously, each of these solutions can be the projection
of many decompositions. Hence, from one solution (c1, . . . ,cn) of f R

n+1, we have
not only n! solutions coming from Sn (see Section 4.1.1) but n! ·2n−1 : all n-tuples
formed by (c1, . . . ,cn) to which we apply an even number of sign changes and a
permutation of Sn, that is the orbit of (c1, . . . ,cn) under the action of the Coxeter
group Dn introduced in Section 3.

If a linear group acts on the variety of a polynomial system, there is no guarantee
that the system is in the invariant ring of the linear group. In our case, the system
obtained from f R

n+1 by a Weil restriction is invariant under the action of Dn and we
have the following result.

Proposition 3. f R
n+1(c1, . . . ,cn) ∈ Fqn [c1, . . . ,cn]

Dn .

The idea of the proof is to use the relations between generators of the dihedral
Coxeter group to show that these generators leave f R

n+1 invariant. First we use the
action of the linear group Dn on the solutions of f R

n+1 to underline that for any
g in Dn, the action of g on f R

n+1 leaves it invariant, up to a multiplicative factor
hg ∈ Fqn . Then we use that Dn is generated by elements of order 2, relations be-
tween generators of Dn and that Dn contains Sn to show that hg =±1 and hg = hg′

for all elements g and g′ in Dn. Finally we use the recursive construction of sum-
mation polynomials to show that one generator of Dn leaves f R

n+1 invariant and
consequently that Dn leaves f R

n+1 invariant.

Proof. The summation polynomials are irreducible hence f R
n+1 too and

〈
f R
n+1
〉
=√〈

f R
n+1

〉
. The solutions of f R

n+1 are invariant by the action of Dn thus for all

g ∈ Dn, g · f R
n+1 vanishes in all solutions of f R

n+1. Consequently for all g ∈ Dn,
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g · f R
n+1 ∈

〈
f R
n+1
〉

and so g · f R
n+1 = hg · f R

n+1 where hg ∈ Fqn [c1, . . . ,cn]. The group
Dn is a linear group hence for all g ∈Dn, deg

(
g · f R

n+1
)
= deg

(
f R
n+1
)

thus hg ∈ F×qn .
Let φ : Dn → F×qn be the application which maps g to hg as defined above.

Clearly, this application is a group morphism and thus φ(g)m = hm
g = 1 where

m is the order of g.
We note τi, j the transposition which swaps the elements in position i and j. Let

B = {τi,i+1 | i = 1, . . . ,n− 1} be a basis of Sn. A transposition is of order two
and all the transpositions are conjugated, hence φ(τi, j) = φ(τk,l) ∈ {−1,1} for all
i, j,k, l ∈ {1, . . . ,n}.

We now show, by induction, that fm is invariant under the permutation τ1,2.
Clearly (see Section 2.3), f3 is invariant under τ1,2. Let k > 2, assume that fk is
invariant under τ1,2. We have

fk+1 = ResX

(
fk (c1, . . . ,ck−1,X) , f3 (ck,ck+1,X)

)
= Det

(
SylX

(
fk (c1, . . . ,ck−1,X) , f3 (ck,ck+1,X)

))
where SylX(p1, p2) is the Sylvester matrix of p1 and p2 w.r.t. the variable X . The
Sylvester matrix of fk(c1, . . . ,ck−1,X) and f3(ck,ck+1,X) w.r.t. X is stable by per-
mutation of c1 and c2 (induction hypothesis). Hence its determinant too and fk+1
also. Consequently, fm is invariant under τ1,2 for all m≥ 3. Thus f R

n+1 is invariant
under τ1,2 and hτ = 1 for all τ ∈B. This confirms that the summation polynomials
are symmetric.

A basis of Dn is given by A = B∪ (−1,−2) where (−1,−2) denotes the sign
changes of the first two elements. The element (−1,−2) is of order 2 hence
h(−1,−2) = ±1. Let g = (−1,−2) · τ2,3 · τ1,2, g is of order 3 thus h3

g = 1 = (hτ1,2 ·
hτ2,3 · h(−1,−2))

3 = h3
(−1,−2). Consequently for all elements g in A , hg = 1 and so

f R
n+1 is invariant under Dn. �

As previously announced in Section 3, Fqn [c1, . . . ,cn]
Dn is a polynomial algebra

of basis {s1, . . . ,sn−1,en} (or {p2, . . . , p2(n−1), pn}). Hence, there exists a unique
polynomial gR

n ∈Fqn [s1, . . . ,sn−1,en] (respectively Fqn [p2, . . . , p2(n−1), pn]) such that
gR

n is the expression of f R
n+1 in terms of the primary invariants {s1, . . . ,sn−1,en} (re-

spectively {p2, . . . , p2(n−1), pn}). By applying a Weil restriction on gR
n we obtain a

new system SDn ⊂ Fq[s1, . . . ,sn−1,en] (respectively Fq[p2, . . . , p2(n−1), pn]) with n
variables and n equations. The degree of 〈SDn〉 can be bounded by

deg(〈S 〉)
#Dn

=
deg(〈S 〉)
n! ·2n−1 =

deg(〈SSn〉)
2n−1 =

2n(n−1)

2n−1 = 2(n−1)2
.

To estimate an explicit complexity bound on the resolution of the Point Decom-
position Problem we need to assume that the system SSn is regular. This property
for SSn has been verified on all experiments we did (see Table 1). Moreover, a
similar hypothesis was already done for the same kind of systems in [34]. Hence,
it is reasonable to assume it.
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Hypothesis 3. Polynomial systems arising from a Weil descent on summation poly-
nomial on which we apply the change of coordinates corresponding to the action
of the symmetric group are regular.

We can note that Hypothesis 3 implies Hypothesis 2. We have therefore obtained
our main theorem.

Theorem 4.1. In twisted Edwards (respectively twisted Jacobi intersections) repre-
sentation, under the Hypothesis 3, the Point Decomposition Problem can be solved
in time

• (proven complexity) Õ
(

n ·23(n−1)2
)

• (heuristic complexity) Õ
(

n2 ·2ω(n−1)2
)

where 2≤ ω < 3 is the linear algebra constant.

Proof. From Theorem 3.4, computing a Gröbner basis for a degree order of SDn

can be done in time Õ
(

2ω(n−1)2
)

.
Given this previous Gröbner basis, computing the lexicographical Gröbner basis

can be done in time Õ
(

n ·23(n−1)2
)

(resp. Õ
(

n2 ·2ω(n−1)2
)

in the heuristic case).
Finally, it is straightforward that the change of ordering step dominates which

concludes the proof. �

Considering the action of the dihedral Coxeter group reduces the lexicographical
Gröbner basis – for twisted Edwards and Jacobi intersections curves – which is now
in shape lemma.

Lexicographical Gröbner basis
of 〈SSn〉 :

e1 +p1(en−1,en)
e2 +p2(en−1,en)
...
en−2 +pn−2(en−1,en)
pn−1(en−1,en)
pn(en)

Lexicographical Gröbner basis
of 〈SDn〉 :

s1 +h1(en)
s2 +h2(en)
...
sn−2 +hn−2(en)
sn−1 +hn−1(en)
hn(en)

where
• deg(〈SSn〉) = 2n(n−1) and deg(〈SDn〉) = 2(n−1)2

• degen−1
(pn−1) = 2n−1, deg(pn) = 2(n−1)2

and deg(hn) = 2(n−1)2
.

As expected the degree of the ideal is divided by the cardinality of Dn, 2n−1 · n!
instead of n! when taking into account only the symmetric group.

Remark 5. In [31], the author uses the action of the automorphism ı to decrease
the size of the factor base. Let S1,S2 ⊂ E be such that F = S1∪S2, S1∩S2 = {P ∈
F |[2]P = P∞} and Si = Img(ı(S j)) with i 6= j. Instead of taking F as factor base,
he takes S1 of size ∼ q

2 without decreasing the probability of decomposition.
In addition to speed up the resolution of the polynomial systems, the use of

the 2-torsion points of twisted Edwards or Jacobi intersections curves allows to
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further decrease the size of the factor base by keeping the same probability of
decomposition. Following the previous idea we can write F = S1 ∪ S2 such that
for all P ∈F , S1 contains a representative of the orbit of P under the action of ı
and T2 and S2 contains all the others points in the orbit of P. Finally, we take as
factor base S1 of size ∼ q

4 for twisted Edwards curves and ∼ q
8 for twisted Jacobi

intersections curves.

In Section 5 we will show some experimental results which confirm that consid-
ering the action of the 2-torsion points significantly simplifies the resolution of the
PDP.

4.2. Can the 4-torsion points be used in the same way? As we saw in Sec-
tion 2.3 the twisted Edwards and Jacobi intersections curves can also have rational
4-torsion points. The natural question follows, whether 4-torsion points are as use-
ful as 2-torsion points for PDP resolution?

4.2.1. Action of the 4-torsion points of a twisted Edwards curve. The two 4-torsion
points of a twisted Edwards curve are T4 =

(
±a−

1
2 ,0
)

. Thus, if P = (x,y) ∈
Ea,d(Fqn) then we have

P⊕T4 =
(
±a−

1
2 · y,±a

1
2 · x
)

The sum of P with a 4-torsion point swaps – up to multiplication by ±a
1
2 or ±a−

1
2

– the coordinates of the point P. Hence, the action of T4 does not leave invariant
the factor base. Moreover, in this representation the x-coordinate cannot be ex-
pressed in terms of the y-coordinate only so we cannot use this action to decrease
the number of solutions of polynomial systems to solve.

4.2.2. Action of the 4-torsion points of a twisted Jacobi intersections curve. In
this section, we present a similar method, as for 2-torsion, to use the 4-torsion
of twisted Jacobi intersections curves. Although we will see in Section 5 that
this method does not allow to simplify the polynomial system solving step in the
PDP solving, we present it for completeness and in order to report the experiments
we did. Moreover, we will see that this approach is not useless, since it allows
to further decrease the size of the factor base and consequently to speed up the
complete solving of the ECDLP by index calculus attack.

We concentrate first on the case of the following 4-torsion point:

T4 =

(
± 1√

a
,0,±

√
a−b

a

)
.

After a few simplifications, adding T4 to a generic point P = (x,y,z) of Ea,b(Fqn)
gives the formula

P⊕T4 =

(
± 1√

a
· y

z
,±
√

a−b · x
z
,±
√

a−b
a
· 1

z

)
.
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As seen in Section 2.3, for twisted Jacobi intersections curves, it is possible to
use either y or z for projecting the PDP and obtain interesting summation polyno-
mials. To take advantage of the action of T4, we project on z and work with the
summation polynomial fz.

One can notice that the z-coordinate of P⊕T4 depends only on the z-coordinate

of P. However, due to the factor ±
√

a−b
a and also that for this representation the

factor base cannot be F0 the action of T4 does not leave the factor base invariant.
By consequence, in order to normalize a bit more the action of T4 and to use the

action of the 4-torsion, we assume that a−b
a is a fourth power and do the change of

coordinate

Z = 4

√
a

a−b
z,

so that adding T4 changes the Z-coordinate to ±1/Z. Moreover, in this case the
factor base F = F0 seems to be large enough. Hence, the action of T4 leaves the
factor base invariant and can be used to further decrease the size of the factor base
∼ q

16 . This change of coordinate preserves the property that adding T2 changes the
sign of the Z-coordinate, so that we still have the action of Dn on fZ . This explicit
action of T4 transforms a decomposition into another one, but unfortunately, this
action is not linear and therefore does not fit easily in the framework that we have
developed. As a consequence, we will not be able to reduce the degree of the ideal
as much as we could hope for. Still, by adding a well-chosen variable to make the
symmetry more visible, we constrain the LEX Gröbner basis to be in non shape
position that had shown to be useful for T2, before reducing the degree of the ideal.

We explain this strategy in the case of n = 4. Adding T4 to the 4 points of a
decomposition gives another decomposition, where all the Zi have been inverted.
We defined a new coordinate v4 that is invariant by this involution:

v4 = Z1Z2Z3Z4 +
1

Z1Z2Z3Z4
= e4(Z1,Z2,Z3,Z4)+

1
e4(Z1,Z2,Z3,Z4)

.

Therefore, we add the equation e4v4− e2
4−1 = 0 to the system obtained by apply-

ing a Weil restriction on g4 (the expression of f R
Z,5 in terms of s1,s2,s3,e4). The

corresponding LEX Gröbner basis has the following form:
s1 + `1(e4,v4)
s2 + `2(e4,v4)
s3 + `3(e4,v4)
e4v4− e2

4−1
`4(v4)

where deg(`i) = 2n(n−2) for all i = 1, . . . ,4 and the degree of the ideal remains
2(n−1)2

as when using only T2.

Remark 6. For n > 4, the variable v4 must be replaced by a variable that is in-
variant by any change of a multiple of four number of variables by their inverses.

We can note that adding two times T4 (i.e. adding a 2-torsion point) does not
change the Z-coordinate. By consequence, we can change only an even number
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of variables by their inverse. Instead of v4 = e4 +
1
e4

we could use v′4 =
s2+1+e2

4
e4

to further decrease the degree of the univariate polynomial in the lexicographical
Gröbner basis.

The construction that we have just shown works mutatis mutandis with the other
4-torsion point of the form

T4 =

(
± 1√

b
,±
√

b−a
b

,0

)
,

but in that case, we have to work with the y-coordinate instead of the z-coordinate.
From the parameters of the system, it is not clear that adding a variable to re-

duce the degree of the polynomials in the resulting Gröbner basis is worthwhile.
Nevertheless, whether we add the variable v4 or not, the action of this 4-torsion
point allows to further decrease the size of the factor base by a factor 2. Indeed, we
mention in the beginning of Section 4 that for twisted Jacobi intersections curves
we cannot use the factor base F0 since it does not contain enough points. Hence,
in this case the 4-torsion does not leave invariant the factor base and then cannot be
used to decrease to size of the factor base. However, by changing the representa-
tion of the curve to normalize the action of the 4-torsion, the corresponding factor
base F0 seems to contain the expected number of points and then can be choose
for index calculus attack. Moreover, in this case the action of the 4-torsion leaves
invariant the factor base and in consequence can be used to further decrease the
size of the factor base by a factor 2.

5. EXPERIMENTAL RESULTS AND SECURITY ESTIMATES

All experiments or comparisons in this section assume that the elliptic curve is
a twisted Edwards or twisted Jacobi intersection curve. We recall that only curves
with a particular torsion structure can be put into these forms and are subject to our
improved attack.

The PDP problem for n = 2 is not interesting, since it does not yield an attack
that is faster than the generic ones. For n = 3, the PDP problem can be solved
very quickly, so that our improvements using symmetries are difficult to measure.
Therefore, we will concentrate on the n = 4 and higher cases. Most of our exper-
iments are done with MAGMA, which provides an easy-to-reproduce environment
(the MAGMA codes to solve the PDP are available on the website of the third author
at http://www-polsys.lip6.fr/~huot/CodesPDP). For the largest computa-
tions, we used the FGb library which is more efficient for systems of the type
encountered in the context of this paper. The FGb library also provides a precise
count of the number of basic operations (a multiplication of two 32-bit integers is
taken as unit) that are required in a system resolution. We will use this information
to interpolate security levels for large inputs.

5.1. Experiments with n = 4. In the case of n = 4, as mentioned in [34] the res-
olution is still fast enough so that the “n− 1” approach by Joux-Vitse does not
pay. So we compare the three following approaches: the classical index-calculus
of [31] based on Weierstrass representation (denoted W. [31], in the following)

http://www-polsys.lip6.fr/~huot/CodesPDP
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and our approaches using the 2-torsion point (denoted T2) and using additionally
the 4-torsion point (denoted T2,4). For T2 and T2,4, we have implemented the two
choices for the basis of the invariant ring for the dihedral Coxeter group given
in Section 3.2, that we denote by si and pi. As previously announced, we ob-
serve that SSn ∈ K[e1, . . . ,en] is a regular sequence. Which is not the case of
SSn ∈ K[p1, . . . , pn]. Hence, following results in Section 3, we equipped the ring
K[s1, . . . ,sn−1,en] with the weighted degree with weights (2, . . . ,2,1). While the
ring K[p2, . . . , p2(n−1), pn] is equipped with the usual degree. The results are given
in Table 1, where one finds for various sizes of the base field the runtimes and the
maximal (weighted) degree reached by polynomials during the computation of a
(W)DRL Gröbner basis with F4. In column dmax/dtheo one can find the maximal
(weighted) degree reached by the polynomials and when the system is regular the
bound on this maximal degree given by Theorem 3.1. The two last columns of Ta-
ble 1 give the number of multiplications of two 32-bits words required to solve the
corresponding polynomial system. The penultimate column gives an interpolated
number of multiplications of two 32-bits words required by the MAGMA software.
Since we observe that the most consuming step is the change of ordering we in-
terpolate this number thanks to the complexity of the FGLM algorithm in O(nD3)
arithmetic operations. The last column gives the exact number of multiplications
of two 32-bits words required by the FGb implementation. Since, FGb library
uses the recent sparse change of ordering algorithm in [26] its practical arithmetic
complexity is closer to be quadratic in the number of solutions than cubic.

lo
g 2
(q
) F4 dmax/dtheo

Change Total #ops # ops
Order FGb

si pi si pi si pi si pi si pi

w
ei

gh
ts

(2
,.
..
,2
,1
)

(1
,.
..
,1
)

(2
,.
..
,2
,1
)

(1
,.
..
,1
)

(2
,.
..
,2
,1
)

(1
,.
..
,1
)

(2
,.
..
,2
,1
)

(1
,.
..
,1
)

M
A

G
M

A

(2
,.
..
,2
,1
)

(1
,.
..
,1
)

16
W. [31] 5s 29/29 423s 428s 236 229

T2 < 1s < 1s 26/27 14 1s 3s < 2s < 4s
227 224 226

T2,4 < 1s 1s 21 15 2s 3s < 3s 4s 224 227

64
W. [31] 331s 29/29 5994s 6325s 240 233

T2 2s 32s 26/27 14 13s 24s 15s 56s
231 228 230

T2,4 8s 61s 21 15 12s 25s 20s 86s 228 231

128
W. [31] 480s 29/29 7179s 7559s 242 235

T2 2s 40s 26/27 14 14s 32s 16s 72s
233 230 232

T2,4 9s 80s 21 15 16s 32s 25s 112s 230 233

TABLE 1. Computing time of Gröbner basis with MAGMA (V2-19.1) on
one core of a 2.00 GHz Intel R© E7540 CPU for n = 4. The last column
(number of operations) is based on FGb.

We can observe that taking into account the symmetries dramatically decreases
the computing time of the PDP resolution by a factor of about 400. This is con-
sistent with the theoretical expected gain, as shown by the interpolated number
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of multiplications of two 32-bits words required by MAGMA which is divided by
29 = 23(n−1); and also shown by the exact number of multiplications of two 32-bits
words required by FGb which is divided by 25 of the order of 22(n−1) corresponding
to a quadratic complexity for the change of ordering.

These experiments also show that the choice of the invariant ring basis si or
pi for the dihedral Coxeter group is not computationally equivalent. Indeed, the
degrees of the polynomials depend on it: it is 8 for the si basis and 12 with the pi.
Moreover, one of the sequence is regular while the other is not. As a consequence,
the DRL part of the computation is more costly for the pi than for the si. One can
notice that for the systems expressed in terms of the primary invariant of Sn and
the systems expressed in terms of the primary invariants of Dn, s1, . . . ,sn−1,en, the
maximal (weighted) degree reached by the polynomials during the computation
of a degree monomial ordering Gröbner basis is tightly bounded by the bound of
Theorem 3.1. We observe that the system SSn (resp. SDn) is regular when we
consider the usual degree (resp. the weighted degree with weights (2, . . . ,2,1)).

Moreover, we notice that the change of ordering step is the most time consum-
ing step which is consistent with the complexity analysis of Theorem 4.1. This
shows that it is important to have precise complexity bound for the change of or-
dering. Moreover, the complexity of change of ordering depends on the number
of solutions of the system so this emphasizes the impact of the action of a pseudo
reflective group.

One can notice that adding a variable to decrease the degree of polynomials in
the computation of Gröbner basis (to use the 4-torsion) does not speed up the com-
putation in this case. Indeed, adding the variable v4 breaks the quasi-homogeneous
structure since we do not find an appropriate weight for this variable. Hence, in the
following the 4-torsion point is used only to further decrease the size of the factor
base. That is to say, we change the representation as presented in the previous sec-
tion but we do not add the variable v4. In this context the 4-torsion can be used for
any n.

It can be observed that the two steps of the resolution are faster with the si
basis. This is a general practical fact observed during our experiments. Thus, in
the sequel, we consider only the si basis.

5.2. Experiments for n = 5 and n = 6. Until now, the only viable approach for
handling the cases where n is at least 5 was the approach by Joux and Vitse [34].
This approach can be seen as an hybrid approach where one mixes an exhaustive
search and an algebraic resolution (e.g. see [6] for application of such a strategy
in another context). If one looks for a decomposition of a given point R, instead
of searching for n points of the factor base whose sum is equal to R, one can
search for only n−1 points of the factor base whose sum is equal to R. Using this
technique simplifies the resolution of the polynomial systems, since we manipulate
the summation polynomial of degree n instead of n+ 1 so that the degree and the
number of variables are reduced. Furthermore the systems become overdetermined
and if they have a solution, then in general it is unique. Hence the DRL Gröbner
basis is also the LEX Gröbner basis and we do not need the FGLM step in the
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general solving strategy. On the other hand, it decreases the probability of finding
a decomposition by a factor q/n.

One of the main improvement brought by this work, is that we are now able
to solve the polynomial systems coming from the summation polynomials for n =
5 when the symmetries are used. Still, these computations are not feasible with
MAGMA and we use the FGb library. Actually, the graded reverse lexicographical
Gröbner basis can be computed with MAGMA but the change of ordering cannot.
The timings are given in table 2.

log2(q) F5 dmax/dtheo Change-Order Total # ops

16 W. [31] > 2 days ??/76
T2 567s 72/73 2165s 2732s 244

TABLE 2. Computing time of Gröbner basis with FGb on a 3.47 GHz
Intel R© X5677 CPU for n = 5.

For n= 5 Theorem 3.1 gives also a precise bound on the maximal degree reached
by the polynomials. The regular hypothesis has been checked also on these sys-
tems.

Our improved algorithm using symmetries can be combined with the “n− 1”
approach of Joux and Vitse. This allows us to compare the running times with the
approach taken in [34] in the case of n= 5, and to handle, for the first time, the case
of n = 6. The results are summarized in tables 3 and 4. For n = 6, MAGMA was
not able to solve the system, so we used again FGb. Because of the low success
probability, this technique is interesting only for medium q. Hence, we limit the
size of q to 32 bits, and even to 16 bits for n = 6.

log2(q) F4 # ops

16
W. [34] 13.400s 232

T2 0.090s 222

T2,4 0.130s 224

32
W. [34] 1278s 234

T2 1.100s 224

T2,4 1.760s 226

TABLE 3. Computing time of Gröbner basis with MAGMA (V2-19.1) on
one core of a 2.00 GHz Intel R© E7540 CPU for n = 5 and decomposition
in n−1 points. Operation counts are obtained using FGb.

Using symmetries decreases the running time also for decompositions in n− 1
points. For n = 5, the speed-up is by a factor about 150 for a 16-bit base field and
by 1000 for a 32-bit base field. For n = 6, without using the symmetries of twisted
Edwards or twisted Jacobi intersections curves, we can not compute decomposi-
tions in n−1 points while this work allows to compute them in approximately 40
minutes.
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log2(q)
F5 # ops
si si

16 W. [34] > 2 days
T2 2448s 239

TABLE 4. Computing time of DRL Gröbner basis with FGb on a 3.47
GHz Intel R© X5677 CPU for n = 6 and decomposition in n−1 points.

In Table 3, we can observe that considering the action of 4-torsion points of
Jacobi intersections curves is more time consuming. Indeed, if the system admits a
solution then it also admits all the solutions associated to the action of the 4-torsion
points. By consequence, the overdetermined systems have not the same DRL and
LEX Gröbner basis and their computation are slower. By consequence, for the
“n−1” variant, the trade-off between the size of the factor base and the difficulty
of decomposing a point is better when using only the 2-torsion.

Indeed, when we consider only the action of T2, we use the factor base F = F1
(F0 is too small). Hence, the action of T4 does not leave the factor base invariant.
Moreover, the decompositions related to the action of the 4-torsion do not neces-
sarily correspond to solutions of the system obtained after the Weil restriction on
summation polynomials. In fact, we observe that the corresponding system has the
expected number of solutions that is 0 or 1.

Remark 7. For n ≥ 6, the first difficulty to solve the PDP is the construction of
the summation polynomials. Actually, the seventh summation polynomial or the
seventh summation polynomial evaluated in the c-coordinate of a point R have
never been computed.

5.3. Security level estimates. To conclude these experimental results, we use our
operation counts for the PDP to estimate the cost of a complete resolution of the
ECDLP for twisted Edwards or twisted Jacobi intersections curves. In this section,
we count only arithmetic operations and we neglect communications and mem-
ory occupation. Hence, this does not give an approximation of the computation
time but this gives a first approximation of the cost to solve some instances of the
ECDLP.

We compare the result with all previously known attacks, including the generic
algorithms, whose complexity is about q

n
2 operations in E(Fqn). The cost of an

elliptic curve operation can be approximated by log2(q
n)2. Since our cost unit for

boolean operations is a 32-bit integer multiplication, we roughly approximate the
cost of an elliptic curve operation by n2 log232(q)2 and the total boolean cost of a
generic attack by

n2q
n
2 log232(q)2.

According to Remark 5 and the end of Section 4, for index calculus using the
point decomposition in n points we look for N relations where N is:

• q
2 for Weierstrass representation,

• q
4 for twisted Edwards curves,
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• q
8 for twisted Jacobi intersections curves and by using only the 2-torsion,

• q
16 for twisted Jacobi intersections curves and by using the 2-torsion and
the 4-torsion.

The probability to decompose a point is 1
n! . Let c(n,q,m) be the number of

boolean operations needed to solve one polynomial system obtained from a Weil
restriction of the (m+ 1)th summation polynomial defined over Fqn , evaluated in
one variable. This number of operations is obtained by experiments with FGb as
demonstrated in the previous subsections. From the function c(n,q,m) one can
deduce the total number of operations needed to solve the ECDLP over Fqn :

N ·n! · c(n,q,n)+n3 log232 (q)2 N2 .

The second term in the sum is the cost of sparse linear algebra by using for instance
Wiedemann algorithm [50].

If we use the point decomposition in n− 1 points, due to exhaustive search,
the probability to find a decomposition is now 1

q·(n−1)! . Hence the total number of
operations is, in this case, given by

q(n−1)! ·N · c(n,q,n−1)+n2(n−1) log232 (q)2 ·N2 .

When the linear algebra step is more time consuming than the relation search, by
using the double large prime variation [32] we can rebalance the costs of these two
steps (see [48, 32]). The total number of operations needed to solve the ECDLP
over Fqn by using the double large prime variation is given by:

log2(q)
(

1+ r
n−1

n

)
(n−2)!q1+(n−2)(1−r)c(n,q,n)+n3 log232(q)2N2r

where we look for r such that the two parts of this complexity are equal.
The results are summarized in Table 5. The notations T2 and T2,4 still denote

the use of the 2-torsion points of twisted Edwards and twisted Jacobi intersections
curves and the use of the 2-torsion and 4-torsion points of twisted Jacobi intersec-
tions curves respectively.

We observe that the smallest number of operations obtained for each parameter
is given by index calculus using symmetries induced by the 2-torsion points (and
4-torsion point when decomposing in n points is possible) or generic algorithms.
We note that for n≤ 5 our version of the index calculus attack is better than generic
algorithms. For example, if log2(q) = 64 and n = 4 generic algorithms need 2134

operations to attack the ECDLP and we obtain 2116 by using the 2-torsion points
and 4-torsion point. In this case, our approach is more efficient than the basic
index calculus, solving this instance of ECDLP in 2121 operations. For n = 5, the
resolution of the PDP was intractable but with our method, we can now solve these
instances of PDP and we attack the corresponding instances of ECDLP with a gain
of 239 over generic algorithms and a gain of 240 over Joux and Vitse approach.

We remark that for parameters for which it is possible to choose between the
decomposition in n or n−1 points, the best solution is the first. For n = 6 we are
not able to decompose a point in n points of the factor base. Consequently it is
necessary to use the decomposition in n− 1 points. For n = 6 generic algorithms
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parameters tation decomposition in
and

torsion n n−1
n log2(q) used points points

4

32

Weierstrass

268

268 267 [31] 268

T2 Edwards 266 261 266 266

T2 Jacobi 264 260 264 264

T2,4 Jacobi 262 259 262

64

Weierstrass

2134

2134 2101 [31] 2121 2121

T2 Edwards 2132 295 2118 2118

T2 Jacobi 2130 294 2117 2117

T2,4 Jacobi 2128 293 2116 2116

128

Weierstrass

2264

2264 2167 [31] 2220 2220

T2 Edwards 2262 2161 2216 2216

T2 Jacobi 2260 2160 2215 2215

T2,4 Jacobi 2258 2159 2215 2215

5

32

Weierstrass

285

269 ∞ 2102 [34] 285

T2 Edwards 267 283 291 283

T2 Jacobi 265 282 290 282

T2,4 Jacobi 263 281 292 281

64

Weierstrass

2167

2135 ∞ 2168 [34] 2167

T2 Edwards 2133 2117 2157 2130 2130

T2 Jacobi 2131 2116 2156 2129 2129

T2,4 Jacobi 2129 2115 2158 2128 2128

128

Weierstrass

2329

2265 ∞ 2298 [34] 2298

T2 Edwards 2263 2183 2287 2235 2235

T2 Jacobi 2261 2182 2286 2234 2234

T2,4 Jacobi 2259 2181 2288 2233 2233

6

32
Weierstrass

2102
270 ∞ ∞ 2102

T2 Edwards 268 ∞ 2110 2102

T2 Jacobi 266 ∞ 2109 2102

64
Weierstrass

2200
2136 ∞ ∞ 2200

T2 Edwards 2134 ∞ 2176 2176

T2 Jacobi 2132 ∞ 2175 2175

128
Weierstrass

2394
2266 ∞ ∞ 2394

T2 Edwards 2264 ∞ 2306 2306

T2 Jacobi 2262 ∞ 2305 2305

TABLE 5. Number of operations needed to solve the ECDLP defined
over Fqn for n = 4,5,6 and 32≤ log2(q)≤ 128.
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have a complexity in O
(
q3
)
, while the index calculus attack using the decompo-

sition in n− 1 points has a complexity in O
(
C(n) ·q2

)
where C(n) is exponential

in n. Hence to be better than generic algorithms, we have to consider high values
of q and consequently high security levels. For instance if log2(q) = 64, the index
calculus attack using symmetries of twisted Edwards or twisted Jacobi intersec-
tions curves and decomposition in n− 1 points needs less operations (2176) than
the generic algorithms, (2200). In our point of view the only hope to have a better
gain in general (for lower security level) compared to generic algorithms, would
be to remove the bad dependence in q in the complexity that seems intrinsic to the
“n−1” approach.

In cryptology, one looks for parameters giving some user-prescribed security
level. Thereafter we give the domain parameters for different security levels ex-
pressed in number of boolean operations.

Security level 280 2112

n 4 5 6 4 5 6

Generic Algorithm

lo
g 2
(q
)

38 31 26 54 43 36
Index Calculus 42 32 19 62 56 34

Security level 2128 2192

n 4 5 6 4 5 6

Generic Algorithm

lo
g 2
(q
)

62 49 41 93 74 62
Index Calculus 72 64 42 113 103 73

TABLE 6. Domain parameters according to the security level given in
number of boolean operations needed to solve the ECDLP.

In Table 6, we compare for a fixed security level the size of q that we have to
choose for n = 4,5,6 by considering the attack based on generic algorithms with
the attack based on the best version of index calculus. For the index calculus at-
tack, except for n = 6, the size of q is obtained by considering decomposition in
n points using the symmetries (2-torsion and 4-torsion) of twisted Jacobi intersec-
tions curves. This table confirms the previous observations. For n= 4,5, the size of
q is increased because of the new version of index calculus proposed in this work.
For n = 6 this is true only for very high security level.

6. PERSPECTIVES

We have highlighted some geometrical properties of twisted Edwards and Ja-
cobi intersections curves implying new symmetries simplifying the resolution of
the Point Decomposition Problem. However, this improvement applies to only par-
ticular instances of ECDLP defined over a finite field of characteristic different
from two. Using symmetries to improve some instances of ECDLP in characteris-
tic two is more difficult. Actually, when the characteristic of the based field divides
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the order of the linear group acting on the polynomial system to solve, the invariant
theory cannot be applied in the same way as done here. This is in general the case
when the characteristic is two. Thus, even if we note some symmetries in charac-
teristic two, it is still an open issue to prove same results in this case as the ones we
provide here.

In order to solve the PDP, we construct the (n+ 1)th summation polynomials.
However, in practice, one can effectively compute the mth summation polynomials
up to m = 6 only. Hence, without the n−1 variant, one can use the index calculus
attack only for elliptic curves defined over Fqn with n < 6. Thus to further improve
the PDP resolution, a question remains: how good polynomial systems model-
ing the PDP for n ≥ 6 can be constructed efficiently? Where good means here a
polynomial system with a comparable resolution complexity as the one given in
Theorem 4.1.

Finally, as we study only instances of ECDLP, a natural question follows: in
the same way, by using symmetries, is it possible to increase the efficiency of the
resolution of some instances of HCDLP for genus two curves?
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and Applied Algebra, 139(1–3):61–88, June 1999. (Cited on pages 3 and 11.)

[22] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to
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[38] D. Lazard. Gröbner bases, gaussian elimination and resolution of systems of algebraic equa-

tions. In J. van Hulzen, editor, Computer Algebra, volume 162 of Lecture Notes in Computer
Science, pages 146–156. Springer Berlin / Heidelberg, 1983. (Cited on page 13.)

[39] V. Miller. Use of elliptic curves in cryptography. In Lecture notes in computer sciences; 218 on
Advances in cryptology—CRYPTO 85, pages 417–426, New York, NY, USA, 1986. Springer-
Verlag New York, Inc. (Cited on page 2.)

[40] P. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathematics
of computation, 48(177):243–264, 1987. (Cited on page 8.)

[41] K. Nagao. Decomposed attack for the jacobian of a hyperelliptic curve over an extension field.
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