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Abstract: Hummingbird is a lightweight encryption and message authentication primitive 

published in RISC’09 and WLC’10. In FSE’11, Markku-Juhani O.Saarinen presented a 

differential divide-and-conquer method which has complexity upper bounded by 264 operations 

and requires processing of few megabytes of chosen messages under two related nonces (IVs). The 

improved version, Hummingbird-2, was presented in RFIDSec 2011. Based on the idea of 

differential collision, this paper discovers some weaknesses of the round function WD16 

combining with key loading algorithm and we propose a related-key chosen-IV attack which can 

recover the full secret key. Under 24 pairs of related keys, the 128 bit initial key can be recovered, 

with the computational complexity of O(232.6) and data complexity of O(232.6). The result shows 

that the Hummingbird-2 cipher can’t resist related key attack. 
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1  Introduction 

Symmetric encryption algorithms are traditionally categorized into two types of schemes: 

block ciphers and stream ciphers. Stream ciphers distinguish themselves from block ciphers by the 

fact that they process plaintext symbols (typically bits) as soon as they arrive by applying a very 

simple but ever changing invertible transformation, it’s based on the idea of “One Time Pad 

Assumption”. As for block ciphers, their security are from the complexity of the encryption 

transformation, it’s based on the theory of “Confusion and Diffusion”. Nowadays, people try to 

combine the stream cipher and the block cipher together to make safer ciphers, such as CSA[4], 

Hummingbird family ciphers[1,2,3], etc. 

Hummingbird-1 is a recent cryptographic algorithm proposal for RFID tags and other 

constrained devices. It is covered by several pending patents and is being commercially marketed 

by the Revere Security. Revere has invested into Hummingbird’s cryptographic security assurance 

before its publication by contracting ISSI, a private consultancy employing some ex-NSA staff 

and members of U.Waterloo CACR. In FSE 2011, Markku-Juhani O. Saarinen proposed a 

differential divide-and-conquer method which has complexity upper bounded by 264 operations 

and requires processing of few megabytes of chosen messages under two related nonces (IVs). In 

RFIDSec 2011, the improved version, Hummingbird-2, was presented. It is also an encryption 

and message authentication primitive that has been designed particularly for resource- 

constrained devices such as RFID tags, wireless sensors, smart meters and industrial 

controllers. For Hummingbird-2, Xinxin Fan and Guang Gong proposed a side channel cube 

attack which can recover the first 48 bit initial key for the data complexity of O(218). There are no 

other cryptanalytic results on Hummingbird-2 up to now. 

Related key cryptanalysis is first introduced by Biham and independently by Knudsen in 

1993[7,8], it is a type of chosen-key attacks, in which the relationship between the keys used is 
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known. People try to get the information of the initial key by analyzing the ciphertexts under 

certain related keys. Combined with differential attack, Kelsey proposed Related Key differential 

cryptanalysis in Ref.[9], and it is also combined with impossible differential attack and high order 

differential attack. 

In the specification of Hummingbird-2, the author referred to a related key differential 

characteristic, but didn’t make an attack. In the present report we show that the published version 

of Hummingbird-2 is suspectible to a related-key chosen-IV attack that under 24 pairs of related 

keys, the 128 bit initial key can be recovered with the computational complexity of O(232.6) and 

data complexity of O(232.6). 

This paper is structed as follows. In Section 2 we give a description of Hummingbird-2. In 

Section 3 we present a key observation about the initialization and encryption procedure of 

algorithm, then we propose an attack that recover the key, furthermore we make an improvement 

of the attack, followed by conclusions in Section 4. 

2  Description of Hummingbird-2 

The Hummingbird-2 cipher has a 128-bit secret key K and a 128-bit internal state R 

which is initialized using a 64-bit Initialization Vector (i.e. IV). The key, registers and IV are 

denoted as follows: 
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    The nonlinear function f(x) and WD16(x,a,b,c,d) are expressed as 

x=(x3,x2,x1,x0) 
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The S-Boxes S1,S2,S3 and S4 are given in Table 1 below. 

Table 1 The S-Boxes of Hummingbird-2 
X 0 1 2 3 4 5 6 7 8 9 a b c d e f 

S1(x) 7 c e 9 2 1 5 f b 6 d 0 4 8 a 3 
S2(x) 4 a 1 6 8 f 7 c 3 0 e d 5 0 b 2 
S3(x) 2 f c 1 5 6 a d e 8 3 4 0 b 9 7 
S4(x) f 4 5 8 9 7 2 1 a 3 0 e 6 c d b 

    (1) The Initialization Process 

    First of all, the initial state of the registers R(0) are filled with IV as follows: 

R(0)= (0) (0) (0) (0) (0) (0) (0) (0)
1 2 3 4 5 6 7 8( , , , , , , , )R R R R R R R R =(IV1, IV2, IV3, IV4, IV1, IV2, IV3, IV4) 

    Then iterate for i＝0,1,2,3 as follows: 

   ( )
1 116( it WD R  1 2 3 4, , , , )i K K K K   

(<i>represents the binary expansion of i, ”” represents ”addition module 216”) 

 ( )
2 216( it WD R  1 5 6 7 8, , , , )t K K K K  

 ( )
3 316( it WD R  2 1 2 3 4, , , , )t K K K K  



 3

 ( )
4 416( it WD R  3 5 6 7 8, , , , )t K K K K  
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( 1) ( ) ( 1)
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( 1) ( ) ( 1)
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( 1) ( ) ( 1)
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( 1) ( ) ( 1)
8 8 4
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    The initial state of registers for encrypting the first plaintext word is R(4).  

(2) The Encryption Process 

    The encryption of the ith plaintext Pi to Ci need four iteration of WD16 as follows: 
( )

1 116( it WD R  1 2 3 4, , , , )iP K K K K  
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    The registers R1 to R8 are refreshed as follows: 
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1
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3  Cryptanalysis of Hummingbird-2 

Our representation obtains a series of differential characteristics based on the thought of 

related key attack and differential collision through the initialization and the encryption process of 

the algorithm. First we construct certain partial differentials within the round function WD16 by 

choosing proper related keys, then we detect whether the differential pairs we built has occurred 

by examining the difference of the ciphertexts. If the differential pairs occurred, we can use the 

differential cryptanalysis techniques to recover the key. 

3.1 Differential Properties of S-Boxes on Hummingbird-2 

First of all, introduce some concepts of differential cryptanalysis. 

Definition 1[14] A differential of a function f : 2 2
n nF F  is a pair (α, β) 2 2

n nF F   such that 

f(x+α)=f(x)+β for some x 2
nF . We call α the input difference and β the output difference. The 

differential probability ( )fp   of a differential (α, β) with respect to f(x) is defined as 

1 2 2 2 1 2 1 2( ) {( , ) : ( ) ( ) | }n n
fp p x x F F f x f x x x            
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Through analyzing the four S-Boxes of Hummingbird-2, we study the distribution of the 

probability of differentials, and get various differential pairs with different differential probability. 

As for our attack, we only use the highest differential probability which is 1/4 for all of the four 

S-Boxes, so we only illustrate these differential pairs in Table 2.(In the table 2, α→β represents the 

input difference and output difference respectively.) 

Table 2 Highest differential pairs of four S-Boxes of Hummingbird-2 

S box Highest probability differential pairs 

S1 
1→d,2→6,2→e,3→2,3→b,5→e,6→8,7→8,8→9, 

8→c,9→5,b→1,b→b,c→4,e→1,e→f,f→4,f→7 

S2 
1→3,1→7,2→d,3→2,3→e,4→5,4→6,6→9,7→8, 

7→e,a→2,b→4,b→9,c→1,d→d,e→4,e→f,f→1 

S3 
1→7,1→d,2→c,2→e,3→3,4→3,5→4,6→7,6→f, 

7→4,8→5,a→1,b→f,c→9,d→8,d→e,f→1,f→5 

S4 
1→e,2→a,2→b,3→1,7→1,7→e,8→5,8→f,9→c, 
a→4,a→f,b→2,c→3,c→8,e→2,e→9,f→7, f→9 

    Next, we can recover the key blocks using the high probability differential pairs above with 

the differential properties of the algorithm in the next Section 3.2. 

3.2 Differential Properties of Hummingbird-2 

The round function WD16 can be expressed in the Figure 1 below: 

( )
1

iRiP

 
Figure 1 Round function WD16 

In this chapter, we first deal with the differential characteristic of the WD16 function and then 

step by step we analyze the differential characteristic of the algorithm. 

The round function WD16 can be viewed as a small “block cipher”. To minimize the 

probability of differential over round function WD16, it’s number of active S-Boxes must be 

minimized. As the algorithm consists of 4 round functions, and for each block of subkey it is used 

twice, on the same location of first round and the third round or the second round and the fourth 

round. So if we introduce a difference on the subkey of the first round or the second round which 

causes an active S-Box, at the same position on the third round or the fourth round must emerge an 

active S-Box. That is to say, the number of the active boxes is gemination, at least 2. 

Note the 16 bit input of the 4 S-Boxes is Y=(y15,y14,y13,y12,y11…,y0), y15 is the most significant 

bit and the y0 is the least significant bit, input of the four S-Boxes S1,S2,S3,S4 are (y3,y2,y1,y0), (y7,y6, 

y5,y4), (y11,y10,y9,y8),(y15,y14,y13,y12) respectively. Remark the 16 bit subkey Ki as (Ki[3],Ki[2],Ki[1], 

Ki[0]). 

We take 1K =K1K1’=( 1[3]K ,0000,0000,0000), ( 1K [3]0000) as an example: 

S4 is the only active S-Box of all the S-Boxes, for S4 , 1K → Z is one of the highest 

differential probability pairs with the differential probability of p, if we choose related keys with 
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2K = ( )L Z , 3K ,, 8K  are all zero, it is obvious that for each round function WD16, the 

probability for input difference and the output difference are both zero is p. Furthermore, each 

encryption process (or initialization process) consists of 4 round function WD16, according to the 

algorithm, at the same position of the third round the differential pair 1K → Z  also exists, so if 

the difference of the plaintext block is zero, under the related keys above, the difference of the 

ciphertext is also zero with the probability p2. 

We take 1K ＝(3000)16 as an example, the initialization and the encryption process of the 

algorithm have the properties below: 

Property 1 Differential characteristic of the initialization for each round: Under two related keys  

1 2 3 4 5 6 7 8 16( , , , , , , , ) (3000,0441,0000,0000,0000,0000,0000,0000)K K K K K K K K K           , 

the differential characteristic below pass each round of initialization for the probability of 1/24: 

1 2 3 4( , , , ) (0000,0000,0000,0000)IV IV IV IV 

3 3 3 3 3 3 3 3( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) (0000,0000,0000,0000,0000,0000,0000,0000)R R R R R R R R        
 

If we find some IV which make the differential characteristic above occurs, we can use the 

differential pair 0x3→0x1 of the S4 to recover the input, i.e. 1 1[3]IV K , as IV1 is known, then we 

can recover the subkey block K1[3] easily. 

Property 2 Differential characteristic of the whole initialization process: Under two related keys  

1 2 3 4 5 6 7 8 16( , , , , , , , ) (3000,0441,0000,0000,0000,0000,0000,0000)K K K K K K K K K           , 

the differential characteristic below pass the whole initialization process for the probability of 

1/216: 

1 2 3 4( , , , ) (0000,0000,0000,0000)IV IV IV IV 

0 0 0 0 0 0 0 0( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) (0000,0000,0000,0000,0000,0000,0000,0000)R R R R R R R R 
 

    For the initialization process are totally 4 round, so the characteristic in property 1 can hold 

through the whole initialization process with the probability of 1/216. 

Property 3 An iterated differential characteristic during the encryption process: Under the related 

keys in the property 2, the differential characteristic below pass each encryption process for the 

probability of 1/24: 

0 0 0 0 0 0 0 0( , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) (0000,0000,0000,0000,0000,0000,0000,0000,0000,0000)iP R R R R R R R R 

1 1 1 1 1 1 1 1( , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) (0000,0000,0000,0000,0000,0000,0000,0000,0000,0000)iC R R R R R R R R 
 

    The property 3 denote that if the difference of the plaintext is (0000), based on the situation 

of property 2, the difference of the ciphertext is (0000) for the probability of 1/24.  

    As for the several properties above, under the conditions of related keys, if the IV difference 

and the plaintext(P) difference are both zero, when we change the value of IV, we can always find 

such values which can satisfy the three properties. 

3.3 Key Recovery Attack on Hummingbird-2 

    In this section, we introduce the key recovery attack algorithm on Hummingbird-2. Here is 
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the clue of the attack: Firstly, we construct differentials through related keys, then we use different 

IVs to run the initialization process and the encryption process of the algorithm until we find a 

proper IV which satisfy the three properties in the section 3.2, whether a IV satisfy these properties 

can be shown through the output difference. If we find a proper IV, it means that the differential 

pair we constructed has occurred and we can get the input of the active S-Box for the first round of 

the initialization process, then the subkey can be calculated. Subkeys K1,,K7 can be recovered 

through this process gradually and K8 can be recovered by exhaustive search. 

    Next, we take the recovery process of the four significant bits of subkey K1, ie. 1[3]K as an 

example to introduce the procedure of the key recover. 

Algorithm 1 The key recovery algorithm 

Phase1. Encrypt using related keys K and K K , changing IV until we find a IV which make 

0 0 1 1', 'C C C C  ; 

(Remark: P0, P1 can be any value but the difference P0, P1 must be zero) 

Phase2. As the input difference and the output difference of S4 is 0 3 0 1x x , searching S-Box 
distribution of the probability of differentials we can recover 1 1[3]IV K , then we can get a 

1[3]K candidate set because IV1 is known and the correct 1[3]K must be within; 

Phase3. Make the intersection of the candidate sets, if the number of the candidate set is bigger 
than one, goto Phase1, find new candidate set and make the intersection; Else if the number of the 
candidate set is equal to zero, clear the candidate set and goto Phase1; Otherwise return the 
unique 1[3]K and finish the algorithm. 

Using the algorithm above we can always get the right value of K1[3], the rest 12 bits 1[0]K , 

1[1]K and 1[2]K can be recovered in the same way. 

Similarly, through using different related keys and known K1, we can use the same technique 

to recover K2, under the condition of known K1 and K2 we can recover K3, etc. Then we can 

recover K2,K3,K4,K5,K6,K7 in turn. 

The related keys we constructed to recover all of the key blocks are shown in Table 3 below: 

Table 3 Related Keys needed to recover different key blocks 
The key blocks 
to be recovered 

The high probability 
differential pairs used The constructed related key K 

K1[0] 3→2 16(0003, 2088,0000,0000,0000,0000,0000,0000)

K1[1] b→4 16(00 0,0411,0000,0000,0000,0000,0000,0000)b  

K1[2] d→8 16(0 00, 2082,0000,0000,0000,0000,0000,0000)d  

K1[3] 3→1 16(3000,0441,0000,0000,0000,0000,0000,0000)  

K2[0] 3→2 16(0000,0003, 2088,0000,0000,0000,0000,0000)

K2[1] b→4 16(0000,00 0,0411,0000,0000,0000,0000,0000)b  

K2[2] d→8 16(0000,0 00, 2082,0000,0000,0000,0000,0000)d  

K2[3] 3→1 16(0000,3000,0441,0000,0000,0000,0000,0000)  

K3[0] 3→2 16(0000,0000,0003, 2088,0000,0000,0000,0000)

K3[1] b→4 16(0000,0000,00 0,0411,0000,0000,0000,0000)b  

K3[2] d→8 16(0000,0000,0 00, 2082,0000,0000,0000,0000)d  

K3[3] 3→1 16(0000,0000,3000,0441,0000,0000,0000,0000)  

K4[0] 3→2 16(0000,0000,0000,0003, 2088,0000,0000,0000)

K4[1] b→4 16(0000,0000,0000,00 0,0411,0000,0000,0000)b  
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K4[2] d→8 16(0000,0000,0000,0 00, 2082,0000,0000,0000)d  

K4[3] 3→1 16(0000,0000,0000,3000,0441,0000,0000,0000)  

K5[0] 3→2 16(0000,0000,0000,0000,0003, 2088,0000,0000)  

K5[1] b→4 16(0000,0000,0000,0000,00 0,0411,0000,0000)b  

K5[2] d→8 16(0000,0000,0000,0000,0 00, 2082,0000,0000)d  

K5[3] 3→1 16(0000,0000,0000,0000,3000,0441,0000,0000)  

K6[0] 3→2 16(0000,0000,0000,0000,0000,0003, 2088,0000)  

K6[1] b→4 16(0000,0000,0000,0000,0000,00 0,0411,0000)b  

K6[2] d→8 16(0000,0000,0000,0000,0000,0 00, 2082,0000)d  

K6[3] 3→1 16(0000,0000,0000,0000,0000,3000,0441,0000)  

K7[0] 3→2 16(0000,0000,0000,0000,0000,0000,0003, 2088)  

K7[1] b→4 16(0000,0000,0000,0000,0000,0000,00 0,0411)b  

K7[2] d→8 16(0000,0000,0000,0000,0000,0000,0 00, 2082)d  

K7[3] 3→1 16(0000,0000,0000,0000,0000,0000,3000,0441)  

Now, we have recovered 112 bits(K1,,K7) of the K, the last 16 bits K8 can be recovered by 

exhaustive search. 

3.4 Complexities of the Attack 

The precondition of the attack is the occurrence of first two ciphertext difference are zero, 

first of all, let us consider the probability of the occurrence. According to section 3.2, the 

probability of 0 0 1 1', 'C C C C  is 1/232, during the process of choosing different IVs, the 

probability of the occurrence increase with the data size, the relation is shown in Table 4 below: 

Table 4 The Relationship between the Data Size and the Ciphertext Collision 

Data Size 223 224 225 226        
Collision Probability 0.39 0.63 0.86 0.98        

With the increasing of the data size, the collision probability approaches 1 gradually, that is to 

say, if the data size is sufficient, the collision will occur. According to the Table above, when the 

data size reaches O(226), the collision can occur with the probability of 98%, we adopt this result 

when we calculate the data complexity of our attack, the data complexity to recover the first 4 bits 

of the key is O(226). 

Then we consider the probability to get the unique key if the collision above appears. 

If randomly distributed, the probability of '( 0,1)i iC C i   is 1/232. Under the condition in 

section 3.2, the probability is 1/224, so if the inside of the encryption process is random whereas 

the ciphertext difference can pass the collision test, the probability is 2-32/(2-32+2-24)=1/(28+1) 

0.4%. Through differential techniques we can get four Ki[j] candidates, when we get four such 

candidate sets, if the intersection of the sets is zero, it is definitely the random case , then we 

should discard the candidates and choose new IVs to start over; If the differential characteristic 

satisfy the properties we constructed, the probability of acquire a unique key is 98%(More details 

see Appendix 1). So in the key recover algorithm, we can determine whether we should add more 

data to reduce the scale of the candidate set or not. Now, we need about 228 pairs of plaintexts to 

recover the first 4 bits of the key. 
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In this way, we can recover the first 112 bits of the key in turn with data complexity of O(232.8) 

and computational complexity of O(232.8), to recover the subkey block K8 we need one plaintext 

block, the computational complexity is O(216). So the data complexity and computational 

complexity of the attack to recover the 128 bits key are both O(232.8). As we need one related key 

to recover each four bits of subkeys and each related key is different from each other according to 

table 3, we need 112/4=28 pairs of related keys totally. 

3.5 An Improvement of the Attack 

As all the subkeys are recovered by blocks in turn, we can add exhaustive scale to reduce the 

related keys and the complexity. We listed the relations as below: 

Table 5 Relationship of Related Keys, Computational Complexity and 
      Data Complexity under different Exhaustive Scale 

Exhaustive Scale(bit) 20 24 28 32 36 

Related Keys needed(pairs) 27 26 25 24 23 

Computational Complexity O(232.8) O(232.7) O(232.6) O(232.6) O(236) 

Data Complexity O(232.8) O(232.7) O(232.6) O(232.6) O(236) 

Through analysis, after our improvement of the attack, the computational complexity can be 

reduced to O(232.8), the data complexity can be reduced to O(232.8), and the related keys needed 

can be reduced to 24 pairs at the same time. 

4  Conclusion 

The designers of Hummingbird-2 claimed that the Hummingbird-2 is resistant to all 

previously known cryptanalytic attacks, including related key attack. However, in this paper, we 

present a related-key chosen IV attack combining with differential techniques on Hummingbird-2. 

First of all, using related keys to construct partial differential with probability, ensure the collision 

with sufficient chosen IVs, and judge it by the difference of ciphertext, then use differential 

techniques to recover the initial key. As the key loading algorithm is too simple, though adding the 

influence of the registers, these effects can be eliminated by differential techniques, which make 

the attack possible. Under 24 pairs of related keys, we can recover the 128 bit initial key with 

computational complexity of O(232.8) and data complexity of O(232.8). Compared with the attack 

proposed by Markku-Juhani O. Saarinen, our attack use the inner differential characteristic of 

round function WD16 rather than the outer differential characteristic. Furthermore, we have 

proved that the Hummingbird-1 can also be analyzed in the same way. The result in this paper 

shows that Hummingbird-2 cipher can’t resist the related-key attack. The ability of Hummingbird 

family ciphers to resist other cryptanalysis is further to be studied. 
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Appendix 1 

Set A, B, C, D and E represent the candidates sets eliminating the correct subkey block Ki[j]: 
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