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Abstract. An unresolved problem in research on authenticated key exchange (AKE) is to con-
struct a secure protocol against advanced attacks such as key compromise impersonation and
maximal exposure attacks without relying on random oracles. HMQV, a state of the art AKE
protocol, achieves both efficiency and the strong security model proposed by Krawczyk (we call
it the CK+ model), which includes resistance to advanced attacks. However, the security proof
is given under the random oracle model. We propose a generic construction of AKE from a key
encapsulation mechanism (KEM). The construction is based on a chosen-ciphertext secure KEM,
and the resultant AKE protocol is CK+ secure in the standard model. The protocol gives the first
CK+ secure AKE protocols based on the hardness of integer factorization problem, code-based
problems, or learning problems with errors. In addition, instantiations under the Diffie-Hellman
assumption or its variant can be proved to have strong security without non-standard assumptions
such as πPRF and KEA1.
Keywords: authenticated key exchange, CK+ model, key encapsulation mechanism

1 Introduction

1.1 Background

Establishing secure channels is one of the most important areas of cryptographic research.
Secure channels provide secrecy and authenticity for both communication parties. When parties
can share secret information via a public communication channel, secure channels would be
constructed on (symmetric key) encryptions and message authentication codes with the shared
secret information called session keys. Public-key cryptography can provide various solutions:
one approach uses a key encapsulation mechanism (KEM) and another uses authenticated key
exchange (AKE).

In KEM, a receiver has public information, called a public key, and the corresponding secret
information, called a secret key. The public key is expected to be certified with the receiver’s
identity through an infrastructure such as a public key infrastructure (PKI). A sender who wants
to share information, a session key, with the receiver sends a ciphertext of the information and,
the receiver decrypts the ciphertext to extract the information. KEM can be easily constructed
from public-key encryption (PKE) under the reasonable condition that the plaintext space is
sufficiently large. The desirable security notion of KEM is formulated as the indistinguishability
against chosen ciphertext attacks (IND-CCA).

In AKE, each party has public information, called a static public key, and the correspond-
ing secret information, called a static secret key. The static public key is also expected to be
certified with a party’s identity through an infrastructure such as PKI. A party who wants
to share information with a party exchanges ephemeral public keys, generated from the corre-
sponding ephemeral secret keys, and computes a session state from their static public keys, the
corresponding static secret keys, the exchanged ephemeral public keys, and the corresponding
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ephemeral secret keys. Both parties then derive a session key from these values including the
session state using a function called the key derivation function. Many studies have investigated
the security notion of AKE [BR93,CK01,Kra05,LLM07,SEVB10]. The first security notion of
AKE based on indistinguishability was provided by Bellare and Rogaway [BR93] (BR model).
The BR model captures basic security requirements for AKE such as known key security and
impersonation resilience. However, the BR model cannot grasp more complicated situations
where a static secret key or session state of a party has been leaked. Accordingly, Canetti and
Krawczyk [CK01] defined the first security notion of AKE capturing the leakage of static secret
keys and session state and called it the Canetti-Krawczyk (CK) model. Though the CK model
represents leakage of information other than the target session of the adversary, some advanced
attacks such as key compromise impersonation (KCI), the breaking of weak perfect forward
secrecy (wPFS) and maximal exposure attacks (MEX) use secret information of the target ses-
sion; thus, the CK model is not resilient to such attacks. KCI means that when given a static
secret key, an adversary will try to impersonate some honest party in order to fool the owner
of the leaked secret key. wPFS implies that an adversary cannot recover a session key if the
adversary does not modify messages of the target session and the session is executed before the
static secret keys are compromised. In MEX, an adversary tries to distinguish the session key
from a random value under the disclosure of any pair of secret static keys and ephemeral secret
keys of the initiator and the responder in the session except for both the static and ephemeral
secret keys of the initiator or the responder. Resistance to MEX requires security against any
leakage situation that was not presumed. For example, an implementer of AKE may pretend to
generate secret keys in an insecure host machine in order to prevent the randomness generation
mechanisms in a tamper-proof module such as a smart card. Additionally, if a pseudo-random
number generator implemented in a system is poor, secret keys will be known to the adversary
even when the generation of ephemeral secret keys is operated in a tamper-proof module. Most
AKE protocols are proved in the CK model; however, it is unclear whether such protocols satisfy
resistance to advanced attacks due to the limitations of the CK model. A state of the art AKE
protocol HMQV [Kra05] satisfies all known security requirements for AKE, including resistance
to KCI, wPFS1, and MEX, as well as provable security in the CK model. In this paper, we call
this security model the CK+ model; it is known to be one of the ‘strongest’ models for AKE.
LaMacchia et al. [LLM07] and Sarr et al. [SEVB10] also proposed very strong security models
for AKE by re-formulating the concept of the CK+ model; they called them the eCK model and
the seCK model, respectively. These models allow an adversary to pose a query that directly
reveals the ephemeral secret key of the target session. However, Cremers points out that the CK
model and the eCK model are incomparable [Cre09,Cre11]; thus, the eCK model is not stronger
than the CK model while the CK+ model is. We will briefly show the difference between the
CK+ model and these models. Since MEX includes any non-trivial leakage situation, HMQV
(and CK+ secure protocols) achieves surprisingly strong security.

1.2 Motivating Problem

HMQV is one of the most efficient protocols and satisfies one of the strongest security models
(i.e., CK+ security). However, the security proof is given in the random oracle model (ROM)

1 HMQV does not provide full perfect forward secrecy (fPFS), which is the same as wPFS except that the
adversary can modify messages of the target session. Some schemes [JKL04,GKR10,CF11] have achieved fPFS.
However, the schemes [JKL04,GKR10] are clearly vulnerable to MEX; that is, the session key is computable
if an adversary obtains an ephemeral secret key of parties in the target session. The other scheme [CF11] is
resilient to MEX, but security is proved in the random oracle model. Upgrading wPFS to fPFS is not that
difficult; it can be done by simply adding MAC or a signature of ephemeral public keys. Thus, we do not
discuss fPFS in this paper.

2



under a specific number-theoretic assumption (Diffie-Hellman (DH) assumption). Moreover, to
prove resistance to MEX, the knowledge-of-exponent assumption (KEA1) [Dam91] (a widely
criticized assumption such as [Nao03]) is also necessary. Hence, one of the open problems in
research on AKE is to construct a secure scheme in the CK+ model without relying on random
oracles under standard assumptions.

Boyd et al. [BCGNP08,BCGNP09,GBGNM09] gave a partial solution to this problem by
noting that KEM and AKE are closely related and that it might be natural to construct AKE
from KEM. They proposed a generic construction of AKE from KEM (BCGNP construction),
and its security is proved in the CK model in the standard model (StdM). Also, the BCGNP
construction is shown to satisfy resistance to KCI. However, it is unclear whether the BCGNP
construction is secure when leakage of secret information occurs (i.e., resistance to MEX). In fact,
the BCGNP construction fails to satisfy CK+ security when we consider the following attack
scenario: Two parties exchange ciphertexts of an IND-CCA secure KEM scheme and generate a
session key from these. An adversary who obtains the ephemeral secret keys (randomness used in
generating ciphertexts) of the parties can compute the session key and win the game. Though
the BCGNP construction can be extended to satisfy wPFS, it is guaranteed under the DH
assumption, not a general assumption. It is quite restrictive because it cannot be instantiated
from the hardness of something other than the DH assumption such as an integer factoring
problem, code-based problem, or lattice problem. Thus, we still have no AKE protocol that
is secure in the ‘strongest’ model under just a general assumption without relying on random
oracles (ROs).

1.3 Our Contribution

We fully solve the open problem by providing a generic construction of AKE from KEM. Our
construction is a generalization of the BCGNP construction. The BCGNP construction uses
IND-CCA KEM, a strong randomness extractor, and a pseudo-random function (PRF) as build-
ing blocks. Our construction effectively follows the design principle of the BCGNP construction.
However, we first point out that the security proof of the BCGNP construction is not complete.
Specifically, a requirement for KEM has not been formulated. KEM keys must have enough
min-entropy in order to make outputs of the strong randomness extractor statistically indis-
tinguishable from a uniformly random chosen element. Thus, the assumption that the KEM
scheme satisfies such a property is additionally required. Fortunately, almost all IND-CCA
KEM schemes satisfy that. Also, we need an IND-CPA secure KEM in addition to the BCGNP
construction. Such an additional KEM can make our scheme wPFS and resilient to MEX. The
resultant AKE protocol is CK+ secure. Its security is proved under the existence of such KEMs,
a strong randomness extractor, and a PRF in the StdM. The existence of an IND-CCA secure
KEM has been shown from the hardness of integer factoring [HK09,MLLJ11], a code-based prob-
lem [McE78,DMQN09], or a lattice problem [PW08,Pei09,CHKP10,ABB10a,ABB10b,SSTX09,LPR10].
To the best of our knowledge, our generic construction provides the first CK+ secure AKE proto-
cols based on the hardness of the above problems. Regarding the DH assumption or its variant,
our generic construction is the first protocol that achieves CK+ security in the StdM without
non-standard assumptions (e.g., πPRF and KEA1).

We also rewrite the CK+ model before proving the security of our generic construction in
order to simplify the original model in [Kra05]. Specifically, the original model is defined as a
mix of four definitions (i.e., the CK model, wPFS, and resistance to KCI and MEX); thus, the
security proof must also be separated into four theorems, which may reduce the readability.
Therefore, we reformulate the CK+ model as follows: wPFS, resistance to KCI, and resistance
to MEX are integrated into the experiment of the extended model by exhaustively classifying
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leakage patterns. This definition is handy to prove security and rigourously captures all required
properties.

We summarize our contributions as follows:

– We propose a two-pass generic CK+ secure AKE construction from IND-CCA secure KEM
and PRF in the StdM.

– We achieve the first CK+ secure AKE protocols based on the hardness of integer factorization
problem, code-based problem, and lattice-based problem in the StdM.

– We achieve the first CK+ secure AKE protocol based on the DH assumption or its variant
in the StdM without knowledge assumptions.

– We reformulate the CK+ model to gain readability of the security proof.

The proposed generic construction can allow a hybrid instantiation; that is, the initiator and
the responder can use different KEMs under different assumptions. For example, the initiator
uses a factoring-based KEM while the responder uses a lattice-based KEM.

2 Security Model

In this section, we recall the CK+ model that was introduced by [Kra05]. We show a model
specified to two pass protocols for simplicity. It can be trivially extended to any round protocol.

2.1 CK+ vs. eCK

As indicated in Table 1, the CK+ model captures all non-trivial patterns of leakage of static and
ephemeral secret keys. The eCK model [LLM07], which is a variant of the CK model [CK01],
also captures all non-trivial patterns of leakage, as in Table 1. Since the CK+ model captures
all non-trivial patterns of leakage of static and ephemeral secret keys, the CK+ model can
theoretically be seen as a completion of the AKE security model.

In Table 1, the six cases in Definition 2 are listed, and these six cases cover wPFS, resistance
to KCI, and MEX as follows: Cases 2-(a), 2-(c), and 2-(f) capture KCI, since the adversary
obtains the static secret key of one party and the ephemeral secret key of the other party of
the test session. Case 2-(e) captures wPFS, since the adversary obtains the static secret keys of
both parties of the test session. Cases 2-(b) and 2-(d) capture MEX, since the adversary obtains
the ephemeral secret keys of both parties of the test session.

The main difference between the CK+ model and the eCK model is that the CK+ model
captures the session state reveal attack, but the eCK model does not. Thus, we adopt the CK+

model, which is stronger than the eCK model from the viewpoint of the session state reveal
attack, in this paper.

Notice that the timing of the static and ephemeral key reveal differs in the eCK and CK+

models. In the eCK model, an adversary can issue the static and ephemeral key reveal query
adaptively. In contrast, in the CK+ model, an adversary can issue a corrupt query to obtain the
static key, and the ephemeral key is given to the adversary when it is determined. We summarize
this in Table 2.

2.2 CK+ Security Model

We denote a party by Ui, and party Ui and other parties are modeled as probabilistic polynomial-
time (PPT) Turing machines w.r.t. security parameter κ. For party Ui, we denote static secret
(public) key by si (Si) and ephemeral secret (public) key by xi (Xi). Party Ui generates its own
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Table 1. Classification of attacks and proposed CK+ model [Kra05] and eCK model [LLM07].

Cases in Def.2 sskA eskA sskB eskB attack type CK+ model [Kra05] eCK model [LLM07]

2-(a) r ok ok n KCI X X
2-(b) ok r ok n MEX X X
2-(c) r ok ok r KCI X X
2-(d) ok r ok r MEX X X
2-(e) r ok r ok wPFS X X
2-(f) ok r r ok KCI X X

“2-(*)” means the corresponding case in Definition 2. “sskA” means the static secret key of owner A of
test session sid∗, and “sskB” means the static secret key of peer B of test session sid∗. “eskA” means the
ephemeral secret key of test session sid∗, and “eskB” means the ephemeral secret key of the matching
session sid∗. “ok” means the secret key is not revealed, “r” means the secret key may be revealed, and
“n” means no matching session exists. A X means that the model captures the attack.

Table 2. Comparison of CK+ model [Kra05] and eCK model [LLM07].

CK+ model [Kra05] eCK model [LLM07]

All non-trivial key leakage X X
Session state reveal X χ

Adaptive key leakage χ X

A X/χ means that the model does/does not capture the attack.

keys, si and Si, and the static public key Si is linked with Ui’s identity in some systems like
PKI.2

Session. An invocation of a protocol is called a session. Session activation is done by an
incoming message of the forms (Π, I, UA, UB) or (Π,R, UB, UA, XA), where we equate Π with
a protocol identifier, I and R with role identifiers, and UA and UB with user identifiers. If
UA is activated with (Π, I, UA, UB), then UA is called the session initiator. If UB is activated
with (Π,R, UB, UA, XA), then UB is called the session responder. The initiator UA outputs XA,
then may receive an incoming message of the forms (Π, I, UA, UB, XA, XB) from the responder
UB, UA then computes the session key SK if UA received the message. On the contrary, the
responder UB outputs XB, and computes the session key SK.

If UA is the initiator of a session, the session is identified by sid = (Π, I, UA, UB, XA) or
sid = (Π, I, UA, UB, XA, XB). If UB is the responder of a session, the session is identified by
sid = (Π,R, UB, UA, XA, XB). We say that UA is the owner of session sid, if the third coordinate
of session sid is UA. We say that UA is the peer of session sid, if the fourth coordinate of session
sid is UA. We say that a session is completed if its owner computes the session key. The matching
session of (Π, I, UA, UB, XA, XB) is session (Π,R, UB, UA, XA, XB) and vice versa.

Adversary. The adversary A, which is modeled as a probabilistic polynomial-time Turing
machine, controls all communications between parties including session activation by performing
the following adversary query.

– Send(message): The message has one of the following forms: (Π, I, UA, UB), (Π,R, UB, UA, XA),
or (Π, I, UA, UB, XA, XB). The adversary A obtains the response from the party.

2 Static public keys must be known to both parties in advance. They can be obtained by exchanging them
before starting the protocol or by receiving them from a certificate authority. This situation is common for all
PKI-based AKE schemes.
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To capture leakage of secret information, the adversary A is allowed to issue the following
queries.

– SessionKeyReveal(sid): The adversary A obtains the session key SK for the session sid if the
session is completed.

– SessionStateReveal(sid): The adversary A obtains the session state of the owner of session
sid if the session is not completed (the session key is not established yet). The session
state includes all ephemeral secret keys and intermediate computation results except for
immediately erased information but does not include the static secret key.

– Corrupt(Ui): This query allows the adversary A to obtain all information of the party Ui. If
a party is corrupted by a Corrupt(Ui, Si) query issued by the adversary A, then we call the
party Ui dishonest. If not, we call the party honest.

Freshness. For the security definition, we need the notion of freshness.

Definition 1 (Freshness). Let sid∗ = (Π, I, UA, UB, XA, XB) or (Π,R, UA, UB, XB, XA) be a
completed session between honest users UA and UB. If the matching session exists, then let sid∗

be the matching session of sid∗. We say session sid∗ is fresh if none of the following conditions
hold:

1. The adversary A issues SessionKeyReveal(sid∗), or SessionKeyReveal(sid∗) if sid∗ exists,
2. sid∗ exists and the adversary A makes either of the following queries

– SessionStateReveal(sid∗) or SessionStateReveal(sid∗),
3. sid∗ does not exist and the adversary A makes the following query

– SessionStateReveal(sid∗).

Security Experiment. For the security definition, we consider the following security exper-
iment. Initially, the adversary A is given a set of honest users and makes any sequence of the
queries described above. During the experiment, the adversary A makes the following query.

– Test(sid∗): Here, sid∗ must be a fresh session. Select random bit b ∈U {0, 1}, and return the
session key held by sid∗ if b = 0, and return a random key if b = 1.

The experiment continues until the adversary A makes a guess b′. The adversary A wins
the game if the test session sid∗ is still fresh and if the guess of the adversary A is correct, i.e.,
b′ = b. The advantage of the adversary A in the AKE experiment with the PKI-based AKE
protocol Π is defined as

AdvAKE
Π (A) = Pr[A wins]− 1

2
.

We define the security as follows.

Definition 2 (Security). We say that a PKI-based AKE protocol Π is secure in the CK+

model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible probability,
they both compute the same session key.

2. For any PPT bounded adversary A, AdvAKE
Π (A) is negligible in security parameter κ for the

test session sid∗,
(a) if sid∗ does not exist, and the static secret key of the owner of sid∗ is given to A.
(b) if sid∗ does not exist, and the ephemeral secret key of sid∗ is given to A.
(c) if sid∗ exists, and the static secret key of the owner of sid∗ and the ephemeral secret key

of sid∗ are given to A.
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(d) if sid∗ exists, and the ephemeral secret key of sid∗ and the ephemeral secret key of sid∗

are given to A.
(e) if sid∗ exists, and the static secret key of the owner of sid∗ and the static secret key of

the peer of sid∗ are given to A.
(f) if sid∗ exists, and the ephemeral secret key of sid∗ and the static secret key of the peer of

sid∗ are given to A.

Note that the items 2.a, 2.c, and 2.f correspond to resistance to KCI, item 2.e corresponds to
wPFS, and items 2.b and 2.d correspond to resistance to MEX.

3 Generic AKE Construction from KEM without Random Oracles

In this section, we propose a generic construction of CK+-secure AKE from KEM.

3.1 Preliminaries

Security Notions of KEM Schemes. Here, we recall the definition of IND-CCA and IND-
CPA security for KEM, and min-entropy of KEM keys as follows.

Definition 3 (Model for KEM Schemes). A KEM scheme consists of the following 3-tuple
(KeyGen, EnCap, DeCap):

(ek , dk) ← KeyGen(1κ, rg) : a key generation algorithm which on inputs 1κ and rg ∈ RSG,
where κ is the security parameter and RSG is a randomness space, outputs a pair of keys
(ek , dk).

(K,CT ) ← EnCapek (re) : an encryption algorithm which takes as inputs encapsulation key
ek and re ∈ RSE, outputs session key K ∈ KS and ciphertext CT ∈ CS, where RSE is a
randomness space, KS is a session key space, and CS is a ciphertext space.

K ← DeCapdk (CT ) : a decryption algorithm which takes as inputs decapsulation key dk and
ciphertext CT ∈ CS, and outputs session key K ∈ KS.

Definition 4 (IND-CCA and IND-CPA Security for KEM). A KEM scheme is IND-
CCA-secure for KEM if the following property holds for security parameter κ; For any PPT
adversary A = (A1,A2), Advind−cca = |Pr[rg ← RSG; (ek, dk) ← KeyGen(1κ, rg); (state) ←
ADO(dk,·)

1 (ek); b ← {0, 1}; re ← RSE ; (K∗0 , CT
∗
0 ) ← EnCapek(re); K

∗
1 ← K; b′ ← ADO(dk,·)

2 (ek,
(K∗b , CT

∗
0 ), state); b′ = b] − 1/2| ≤ negl, where DO is the decryption oracle, K is the space of

session key and state is state information that A wants to preserve from A1 to A2. A cannot
submit the ciphertext CT = CT ∗0 to DO.

We say a KEM scheme is IND-CPA-secure for KEM if A does not access DO.

Definition 5 (Min-Entropy of KEM Key). A KEM scheme is k-min-entropy KEM if for
any ek, for distribution DKS of variable K defined by (K,CT ) ← EnCapek (re) and random
re ∈ RSE, H∞(DKS) ≥ k holds, where H∞ denotes min-entropy.

Security Notions of Randomness Extractor and Pseudo-Random Function. Let
Ext : S ×X → Y be a function with finite seed space S, finite domain X, and finite range Y .

Definition 6 (Strong Randomness Extractor). We say that function Ext is a strong ran-
domness extractor, if for any distribution DX over X with H∞(DX) ≥ k, ∆((US , Ext(US ,
DX)), (US , UY )) ≤ negl holds, where both US in (US ,Ext(US , DX)) denotes the same random
variable, ∆ denotes statistical distance, US , UX , UY denotes uniform distribution over S,X, Y
respectively, |X| = n ≥ k, |Y | = k, and |S| = d.
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Let κ be a security parameter and F = {Fκ : Domκ × FSκ → Rngκ}κ be a function
family with a family of domains {Domκ}κ, a family of key spaces {FSκ}κ and a family of ranges
{Rngκ}κ.

Definition 7 (Pseudo-Random Function). We say that function family F = {Fκ}κ is the
PRF family, if for any PPT distinguisher D, Advprf = |Pr[DFκ(·) → 1] − Pr[DRFκ(·) → 1]|
≤ negl, where RFκ : Domκ → Rngκ is a truly random function.

3.2 Construction

Our construction (GC) is based on an IND-CCA secure KEM, an IND-CPA secure KEM, PRFs,
and strong randomness extractors. While the requirements for the underlying building blocks
are not stronger than those for the previous generic construction [BCGNP08,BCGNP09], GC
achieves stronger security (i.e., CK+ security) without random oracles.

Necessity of Min-Entropy of KEM Key. In the BCGNP construction, a KEM scheme
is only assumed to be IND-CCA. However, it is not enough to prove the security. Both parties
derive the session key by applying decapsulated KEM keys to a strong randomness extractor
before applying them to PRFs. This extractor guarantees to output a statistically indistinguish-
able value from a uniform randomly chosen element from the same space. It requires as input
a seed and a KEM key with min-entropy κ, where κ is a security parameter. IND-CCA states
that no PPT adversary can distinguish the KEM key from a random element, but this is “only”
computational indistinguishability. What we need is statistical indistinguishability. Thus, we
must also assume that min-entropy of the KEM key is equal or larger than κ. This property is
not very strong; almost all IND-CCA secure schemes satisfy it. We will discuss later about this
property of concrete KEM schemes.

Design Principle. The main ideas to achieve CK+ security are to use the twisted PRF trick
and session-specific key generation.

First, we have to consider resistance to MEX. The most awkward pattern of MEX is the
disclosure of ephemeral secret keys of the initiator and the responder. If we use KEM naturally,
all randomness used to generate ciphertexts is leaked as ephemeral secret keys; thus, the ad-
versary can obtain encrypted messages without knowing secret keys. Hence, we have to avoid
using ephemeral secret keys as randomness of KEM directly. A possible solution is to generate
randomness from the static secret key as well as the ephemeral secret key by using a technique
such as the ordinary NAXOS trick [LLM07]. Though this trick leads to security against leakage
of ephemeral secret keys, the trick must apply an RO to the concatenation of the static and
ephemeral secret keys, and it uses the output as a quasi-ephemeral secret key. It is unsuitable
for our purpose to construct secure protocols in the StdM. Thus, we use a trick to achieve
the same properties as the NAXOS trick but without ROs. We call it the twisted PRF trick.3

This trick uses two PRFs (F, F ′) with reversing keys; we choose two ephemeral keys (r, r′) and
compute Fσ(r) ⊕ F ′r′(σ), where σ is the static secret key. The twisted PRF trick is especially
effective in the following two scenarios: leakage of both ephemeral secret keys of the initiator
and the responder, and leakage of the static secret key of the initiator and the ephemeral secret
key of the responder (i.e., corresponding to KCI). If (r, r′) is leaked, Fσ(r) cannot be computed
without knowing σ. Similarly, if σ is leaked, F ′r′(σ) cannot be computed without knowing r′. In
our KEM-based generic construction, the output of the twisted PRF is used as randomness for
the encapsulation algorithm.

3 A similar trick is used in the Okamoto AKE scheme [Oka07].
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Next, we have to consider the scenario in which static secret keys are leaked as the attack
scenario in wPFS. We cannot achieve a CK+ secure scheme by any combination of KEMs
using static secret keys as decapsulation keys against leakage of both static secret keys of the
initiator and the responder because an adversary can obtain all information the parties can
obtain by using static secret keys. Our solution is to generate session-specific decapsulation and
encapsulation keys. The initiator sends the temporary encapsulation key to the responder, the
responder encapsulates a KEM key with the temporary encapsulation key, and the initiator
decapsulates the ciphertext. Since this procedure does not depend on the static secret keys, the
KEM key is hidden even if both static secret keys of the initiator and the responder are leaked.
Note that security of KEM for temporary use only requires IND-CPA. The session-specific key
generation is effective for achieving wPFS.

As the BCGNP construction [BCGNP08,BCGNP09], we use IND-CCA secure KEM schemes
to exchange ciphertexts. CCA security is necessary to simulate SessionStateReveal queries in the
security proof. When we prove security in the case where ephemeral secret keys are leaked,
the simulator needs to embed the challenge ciphertext in the ephemeral public key in the test
session. Then, the static secret key to decrypt the challenge ciphertext is not known; that is,
the simulator must respond to the SessionStateReveal query for a session owned by the same
parties as the test session without knowing the static secret key. Hence, the simulator needs the
power of the decryption oracle to obtain intermediate computation results corresponding to the
SessionStateReveal query.

Generic Construction GC. The protocol of GC from KEMs (KeyGen, EnCap, DeCap) and
(wKeyGen, wEnCap, wDeCap) is as follows.

Public Parameters. Let κ be the security parameter, F : {0, 1}∗ × FS → RSE , F ′ : {0, 1}∗ ×
FS → RSE , and G : {0, 1}∗ × FS → {0, 1}κ be pseudo-random functions, where FS is the
key space of PRFs (|FS| = κ), RSE is the randomness space of encapsulation algorithms, and
RSG is the randomness space of key generation algorithms, and let Ext : SS × KS → FS be
a strong randomness extractor with randomly chosen seed s ∈ SS, where SS is the seed space
and KS is the KEM key space. These are provided as some of the public parameters.

Secret and Public Keys. Party UI randomly selects σI ∈ FS and rI ∈ RSG, and runs the key
generation algorithm (ekI,1, dkI,1) ← KeyGen(1κ, rI), where RSG is the randomness space of
KeyGen. Party UI ’s static secret and public keys are ((dkI,1, σI), ekI,1).

Key Exchange. Party UA with secret and public keys ((dkA,1, σA), ekA,1), and who is the
initiator, and party UB with secret and public keys ((dkB,1, σB), ekB,1), and who is the responder,
perform the following two-pass key exchange protocol.

1. Party UA randomly chooses ephemeral secret keys rA,1, r
′
A,1 ∈ FS and rA,2 ∈ RSG. Party

UA computes (CTA,1, KA,1) ← EnCapekB,1(FσA(rA,1) ⊕ F ′r′A,1
(σA)) and (ekA,2, dkA,2) ←

wKeyGen(1κ, rA,2) and sends (UA, UB, CTA,1, ekA,2) to party UB.
2. Upon receiving (UA, UB, CTA,1, ekA,2), party UB chooses the ephemeral secret keys rB,1, r

′
B,1 ∈

FS and rB,2 ∈ RSE , computes (CTB,1, KB,1) ← EnCapekA,1(FσB (rB,1) ⊕ F ′r′B,1
(σB)) and

(CTB,2, KB,2) ← wEnCapekA,2(rB,2), and sends (UA, UB, CTB,1, CTB,2) to party UA.
Party UB computes KA,1 ← DeCapdkB,1(CTA,1), K ′1 ← Ext(s,KA,1), K ′2 ← Ext(s,KB,1) and
K ′3 ← Ext(s,KB,2), sets the session transcript ST = (UA, UB, ekA,1, ekB,1, CTA,1, ekA,2,
CTB,1, CTB,2) and the session key SK = GK′1(ST) ⊕ GK′2(ST) ⊕ GK′3(ST), completes the
session, and erases all session states.
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3. Upon receiving (UA, UB, CTB,1, CTB,2), party UA computes KB,1 ← DeCapdkA,1(CTB,1),
KB,2 ← wDeCapdkA,2(CTB,2),K ′1← Ext(s,KA,1),K ′2 ← Ext(s,KB,1) andK ′3 ← Ext(s,KB,2),
sets the session transcript ST = (UA, UB, ekA,1, ekB,1, CTA,1, ekA,2, CTB,1, CTB,2) and the
session key SK = GK′1(ST) ⊕ GK′2(ST) ⊕ GK′3(ST), completes the session, and erases all
session states.

The session state of a session owned by UA contains ephemeral secret keys (rA,1, r
′
A,1, rA,2),

KEM keys (KA,1,KB,1,KB,2), outputs of the extractor (K ′1,K
′
2,K

′
3) and outputs of PRFs

(FσA(rA,1), F ′r′A,1
(σA), GK′1(ST), GK′2(ST), GK′3(ST)). Similarly, the session state of a session

owned by UB contains ephemeral secret keys (rB,1, r
′
B,1, rB,2), decapsulated KEM keys (KA,1,KB,1,KB,2),

outputs of the extractor (K ′1,K
′
2,K

′
3) and outputs of PRFs (FσB (rB,1), F ′r′B,1

(σB), GK′1(ST), GK′2(ST),

GK′3(ST)).

Remark 1. Obviously, we can use arbitrary combinations of KEM schemes in the generic con-
struction. This means that each party can rely on a different assumption from the peer. Since
our construction does not contain any direct operation between derivatives of KEM schemes, it
is no problem that randomness spaces, public keys, or ciphertext are distinct from each other.

Security. We show the following theorem.

Theorem 1. If (KeyGen,EnCap,DeCap) is IND-CCA secure KEM and is κ-min-entropy KEM,
(wKeyGen,wEnCap, wDeCap) is IND-CPA secure KEM and is κ-min-entropy KEM, F, F ′, G are
PRFs, and Ext is a strong randomness extractor, then AKE scheme GC is CK+-secure.

The proof of Theorem 1 is shown in Appendix A. Here, we give an overview of the security
proof.

We have to consider the following four leakage patterns in the CK+ security model (matching
cases):

2-(c) the static secret key of the initiator and the ephemeral secret key of the responder

2-(d) both ephemeral secret keys

2-(e) both static secret keys

2-(f) the ephemeral secret key of the initiator and the static secret key of the responder

In case 2-(c), KA,1 is protected by the security of CTA,1 because r′A,1 is not leaked; therefore,
F ′r′A,1

(σA) is hidden and dkB,1 is not leaked. In case 2-(d), KA,1 and KB,1 are protected by

the security of CTA,1 and CTB,1 because σA and σB are not leaked; therefore, FσA(rA,1) and
FσB (rB,1) are hidden and dkA,1 and dkB,1 are not leaked. In case 2-(e), KB,2 is protected by
the security of CTB,2 because dkA,2 and rB,2 are not leaked. In case 2-(f), KB,1 is protected by
the security of CTB,1 because r′B,1 is not leaked; therefore, F ′r′B,1

(σB) is hidden and dkA,1 is not

leaked. Then, we transform the CK+ security game since the session key in the test session is
randomly distributed. First, we change part of the doubled PRF in the test session into a random
function because the key of part of the doubled PRF is hidden from the adversary; therefore,
the randomness of the protected KEM can be randomly distributed. Second, we change the
protected KEM key into a random key for each pattern; therefore, the input of Ext is randomly
distributed and has sufficient min-entropy. Third, we change the output of Ext into randomly
chosen values. Finally, we change one of the PRFs (corresponding to the protected KEM) into
a random function. Therefore, the session key in the test session is randomly distributed; thus,
there is no advantage to the adversary. We can show a similar proof in non-matching cases.
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4 Instantiations

4.1 Diffie-Hellman-based

We can achieve various AKE schemes as concrete instantiations based on the hardness of the
DH problem and its variants. These are derived from the generic construction GC in Sec-
tion 3. For example, we can apply efficient IND-CCA KEM schemes to GC from the decisional
DH [CS98,KD04] (DDH), computational DH [HK08,HJKS10], hashed DH [Kil07] and bilinear
DH assumptions [BMW05].

We can easily show that these schemes have κ-min-entropy KEM keys. The KEM part of
the Cramer-Shoup PKE consists of gzr1 ∈ G, where G is a finite cyclic group of order prime p,
gz1 is part of ek, and r is uniformly chosen randomness, and |r| is 2κ. Thus, gzr1 has min-entropy
larger than κ. Similarly, other schemes are also κ-min-entropy KEM.

The significant advantage of our instantiations in the StdM is reasonable assumption. First,
HMQV satisfies the same security model as our construction. However, it requires the KEA1
assumption and relies on ROs. Since it has been criticised, in particular because the KEA1
assumption does not appear to be “efficiently falsifiable” as Naor put it [Nao03], this assumption
is quite undesirable. Also, it was shown that there exist some protocols that are secure in the
ROM but are insecure if ROs are replaced by any specific function [CGH98]. A disadvantage of
our construction to HMQV is that HMQV is a one-round protocol but our scheme is not. One-
round protocols mean that the initiator and the responder can send their messages independently
and simultaneously. Conversely, in our scheme, the responder must wait to receive the message
from the initiator. Next, the AKE scheme by Okamoto [Oka07] is secure in the StdM. However,
it is not proved in the CK+ model and needs to assume existence of πPRF. πPRF is a stronger
primitive than ordinary PRF, and it is not known how to construct πPRF concretely. On
the contrary, our instantiations only require the standard notions of KEM and pseudo-random
function security. Moreover, the BCGNP construction [BCGNP08,BCGNP09] is secure in the
StdM with standard assumption. However, the security is not proved in the CK+ model.4 Thus,
DH-based AKE schemes from GC are first CK+ secure schemes in the StdM with standard
assumptions.

For example, our scheme can be instantiated with the Cramer-Shoup KEM [CS04] as an
IND-CCA KEM, and with the ElGamal KEM as an IND-CPA KEM under the DDH assump-
tion. Communication complexity (for two parties) of this instantiation is 8|p|, where |p| is the
length of a group element. Computational complexity (for two parties) of this instantiation
is 4 multi-exponentiations and 12 regular exponentiations (all symmetric operations such as
hash function/KDF/PRF and multiplications are ignored). We show a comparison between this
instantiation and previous schemes in Table 3.

4.2 Factoring-based

We can achieve several new AKE protocols as concrete instantiations based on the hardness of
integer factorization and its variants such as the RSA problem.

Some instantiations in the StdM are based on the hardness of the integer factorization
problem. By applying the Hofheinz-Kiltz PKE [HK09] and the Mei-Li-Lu-Jia PKE [MLLJ11],
which are IND-CCA secure in the StdM under the factoring assumption to GC, we can obtain

4 The BCGNP construction with an additional exchange of a DH value (called Protocol 2 in
[BCGNP08,BCGNP09]) can be proved in the CK model, and it satisfies wPFS and resistance to KCI. We
can extend the security of Protocol 2 to the CK+ security with the twisted PRF trick. If IND-CPA KEM in
GC is instantiated with the ElGamal KEM, our scheme is the same as Protocol 2 with the twisted PRF trick.
Thus, our scheme can also be seen as a generalization of the BCGNP construction.
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Table 3. Comparison of previous DH-based schemes and an instantiation of our scheme

Model Resource Assumption Computation Communication
(#[multi,regular]-exp) complexity

[Kra05] CK+ ROM gap DH & KEA1 [2, 2] 2|p| 512

[Oka07] eCK StdM DDH & πPRF [6, 6] 9|p| 2304

[BCGNP09] CK & KCI StdM DDH [4, 8] 6|p| 1536

Ours CK+ StdM DDH [4, 12] 8|p| 2048

For concreteness the expected ciphertext overhead for a 128-bit implementation is also given. Note that
computational costs are estimated without any pre-computation technique.

first CK+ secure AKE protocols in the StdM under the integer factorization assumption. Also,
we have other instantiations based on the hardness of RSA inversion. By applying the Chevallier-
Mames-Joye PKE [CMJ09] and the Kiltz-Mohassel-O’Neill PKE [KMO10], which are IND-CCA
secure in the StdM under the instance-independent RSA assumption to GC, we can obtain first
CK+ secure AKE protocols in the StdM under the RSA-type assumption.

We can regard a message in PKE as a KEM key when the message space is larger than κ
and messages are uniformly chosen randomness. In this case, it is obvious that such a KEM
scheme is κ-min-entropy KEM.

4.3 Code-based

We can achieve new AKE protocols as concrete instantiations based on code-based problems.
For the AKE protocol in the StdM, we can apply Dowsley et al.’s PKE [DMQN09] that is

IND-CCA secure in the StdM under the McEliece and LPN assumptions to GC. (See Ref. [DMQN09]
for definitions of these assumptions.) This is the first CK+ secure AKE protocol without ROs
based on a code-based problem.

As for factoring-based PKE, code-based PKE schemes are also κ-min-entropy KEM when
the message space is larger than κ and messages are uniformly chosen randomness.

Remark 2. Bernstein et al. [BLP11] estimated the size of a public key of the original McEliece
at about 2 Mbits for 128-bit security. If we employ “wild” McEliece by Bernstein et al. [BLP10]
rather than the original McEliece PKE, the size of the public key is reduced to 750K bits. Our
generic construction contains the public key of the KEM from the temporary key generation
in the first round message. If the randomized McEliece PKE by Nojima et al. [NIKM08] is
employed as the IND-CPA secure KEM, which is IND-CPA secure and requires the same size
for the public key as the original, the communication complexity of the resultant AKE scheme
is high. However, the way to construct an efficient and CK+ secure AKE scheme from codes is
an open problem.

4.4 Lattice-based

We also achieve new concrete AKE protocols based on the worst-case hardness of the (ring-)LWE
problems derived from our generic constructions.

PKE schemes [PW08,Pei09,CHKP10,ABB10a,ABB10b,SSTX09,LPR10,MP12] which are IND-
CCA secure in the StdM are easily converted into IND-CCA secure KEM schemes. Also, PRFs
are obtained from one-way functions [Ajt96,MR07,LM06,PR06] and directly constructed from
the (ring-)LWE assumptions with sub-exponential parameters [BPR12]. Thus, by applying these
building blocks to GC, we can obtain first CK+ secure AKE protocols in the StdM under the
(ring-)LWE assumption. Unfortunately, the obtained AKE protocols are still theoretical since
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these PKE schemes require huge keys, say, of the quadratic or cubic order of the security param-
eter, and thus, an efficient and direct construction of PRFs from the (ring-)LWE assumption
with polynomial parameters has not yet been achieved.

As for factoring-based PKE, lattice-based PKE schemes are also κ-min-entropy KEM when
the message space is larger than κ and messages are uniformly chosen randomness.
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Round Group Key Exchange in the Standard Model. In ICISC 2009, pages 1–15, 2009.

[GKR10] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Okamoto-Tanaka Revisited: Fully Authenticated
Diffie-Hellman with Minimal Overhead. In ACNS 2010, pages 309–328, 2010.

13



[HJKS10] Kristiyan Haralambiev, Tibor Jager, Eike Kiltz, and Victor Shoup. Simple and Efficient Public-Key
Encryption from Computational Diffie-Hellman in the Standard Model. In Public Key Cryptography
2010, pages 1–18, 2010.

[HK08] Goichiro Hanaoka and Kaoru Kurosawa. Efficient Chosen Ciphertext Secure Public Key Encryption
under the Computational Diffie-Hellman Assumption. In ASIACRYPT 2008, pages 308–325, 2008.

[HK09] Dennis Hofheinz and Eike Kiltz. Practical Chosen Ciphertext Secure Encryption from Factoring.
In EUROCRYPT 2009, pages 313–332, 2009.

[JKL04] Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee. One-Round Protocols for Two-Party Authen-
ticated Key Exchange. In ACNS 2004, pages 220–232, 2004.

[KD04] Kaoru Kurosawa and Yvo Desmedt. A New Paradigm of Hybrid Encryption Scheme. In CRYPTO
2004, pages 426–442, 2004.

[Kil07] Eike Kiltz. Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman. In
Public Key Cryptography 2007, pages 282–297, 2007.

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive Trapdoor Functions and Chosen-
Ciphertext Security. In EUROCRYPT 2010, pages 673–692, 2010.

[Kra05] Hugo Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In CRYPTO 2005,
pages 546–566, 2005.

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger Security of Authenticated Key
Exchange. In ProvSec 2007, pages 1–16, 2007.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized Compact Knapsacks are Collision Re-
sistant. In ICALP (2) 2006, pages 144–155, 2006.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors
over Rings. In EUROCRYPT 2010, pages 1–23, 2010.

[McE78] Robert J. McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory. In Deep Space
Network progress Report, 1978.

[MLLJ11] Qixiang Mei, Bao Li, Xianhui Lu, and Dingding Jia. Chosen Ciphertext Secure Encryption under
Factoring Assumption Revisited. In Public Key Cryptography 2011, pages 210–227, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller,
2012. To appear in EUROCRYPT 2012.

[MR07] Daniele Micciancio and Oded Regev. Worst-Case to Average-Case Reductions Based on Gaussian
Measures. SIAM Journal on Computing, 37(1):267–302, 2007. Preliminary version in FOCS 2004,
2004.

[Nao03] Moni Naor. On Cryptographic Assumptions and Challenges. In CRYPTO 2003, pages 96–109,
2003.

[NIKM08] Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov. Semantic security for the McEliece
cryptosystem without random oracles. Designs, Codes and Cryptography, 49(1-3):289–305, 2008.

[Oka07] Tatsuaki Okamoto. Authenticated Key Exchange and Key Encapsulation in the Standard Model.
In ASIACRYPT 2007, pages 474–484, 2007.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In STOC 2009, pages 333–342, 2009.

[PR06] Chris Peikert and Alon Rosen. Efficient Collision-Resistant Hashing from Worst-Case Assumptions
on Cyclic Lattices. In TCC 2006, pages 145–166, 2006.

[PW08] Chris Peikert and Brent Waters. Lossy Trapdoor Functions and Their Applications. In STOC 2008,
pages 187–196, 2008.

[SEVB10] Augustin P. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A New Security Model for
Authenticated Key Agreement. In SCN 2010, pages 219–234, 2010.
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A Proof of Theorem 1

In the experiment of CK+ security, we suppose that sid∗ is the session identity for the test
session, and that there are N users and at most ` sessions are activated. Let κ be the security
parameter, and let A be a PPT (in κ) bounded adversary. Suc denotes the event that A wins.
We consider the following events that cover all cases of the behavior of A.

– Let E1 be the event that the test session sid∗ has no matching session sid
∗
, the owner of sid∗

is the initiator and the static secret key of the initiator is given to A.
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– Let E2 be the event that the test session sid∗ has no matching session sid
∗
, the owner of sid∗

is the initiator and the ephemeral secret key of sid∗ is given to A.
– Let E3 be the event that the test session sid∗ has no matching session sid

∗
, the owner of sid∗

is the responder and the static secret key of the responder is given to A.
– Let E4 be the event that the test session sid∗ has no matching session sid

∗
, the owner of sid∗

is the responder and the ephemeral secret key of sid∗ is given to A.
– Let E5 be the event that the test session sid∗ has matching session sid

∗
, and both static

secret keys of the initiator and the responder are given to A.
– Let E6 be the event that the test session sid∗ has matching session sid

∗
, and both ephemeral

secret keys of sid∗ and sid∗ are given to A.
– Let E7 be the event that the test session sid∗ has matching session sid

∗
, and the static secret

key of the owner of sid∗ and the ephemeral secret key of sid∗ are given to A.
– Let E8 be the event that the test session sid∗ has matching session sid

∗
, and the ephemeral

secret key of sid∗ and the static secret key of the owner of sid∗ are given to A.

To finish the proof, we investigate events Ei ∧ Suc (i = 1, . . . , 8) that cover all cases of event
Suc.

A.1 Event E1 ∧ Suc

We change the interface of oracle queries and the computation of the session key. These in-
stances are gradually changed over seven hybrid experiments, depending on specific sub-cases.
In the last hybrid experiment, the session key in the test session does not contain information
of the bit b. Thus, the adversary clearly only output a random guess. We denote these hybrid
experiments by H0, . . . ,H6 and the advantage of the adversary A when participating in exper-
iment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes the real experiment for CK+ security
and in this experiment the environment for A is as defined in the protocol. Thus, Adv(A,H0)
is the same as the advantage of the real experiment.

Hybrid experiment H1: In this experiment, if session identities in two sessions are iden-
tical, the experiment halts.

When two ciphertexts from different randomness are identical and two public keys from
different randomness are identical, session identities in two sessions are also identical. In the
IND-CCA secure KEM, such an event occurs with negligible probability. Thus, |Adv(A,H1)−
Adv(A,H0)| ≤ negl.

Hybrid experiment H2: In this experiment, the experiment selects a party UA and inte-
ger i ∈ [1, `] randomly in advance. If A poses Test query to a session except i-th session of UA,
the experiment halts.

Since guess of the test session matches withA’s choice with probability 1/N2`, Adv(A,H2) ≥
1/N2` ·Adv(A,H1).

Hybrid experiment H3: In this experiment, the computation of (CT ∗A,1,K
∗
A,1) in the test

session is changed. Instead of computing (CT ∗A,1,K
∗
A,1)← EnCapekB,1(FσA(rA,1)⊕F ′r′A,1(σA)), it

is changed as (CT ∗A,1,K
∗
A,1) ← EnCapekB,1(FσA(rA,1)⊕ RF (σA)), where we suppose that UB is

the intended partner of UA in the test session.
We construct a distinguisher D between PRF F ∗ : {0, 1}∗ × FS → RSE and a random

function RF from A in H2 or H3. D performs the following steps.
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Setup. D chooses pseudo-random functions F : {0, 1}∗ × FS → RSE and G : {0, 1}∗ ×
FS → {0, 1}k, where FS is the key space of PRFs, and a strong randomness extractor Ext :
SS × KS → FS with a randomly chosen seed s ∈ SS. Also, D embeds F ∗ into F ′. These
are provided as a part of the public parameters. Also, D sets all N users’ static secret and
public keys. D selects σI ∈ FS and rI ∈ RSG randomly, and runs key the generation algorithm
(ekI,1, dkI,1)← KeyGen(1κ, rI) and UI ’s static secret and public keys are ((dkI,1, σI), ekI,1).

Next, D sets the ephemeral public key of i-th session of UA (i.e., the test session) as follows:
D selects ephemeral secret keys r∗A,1 ∈ FS and r∗A,2 ∈ RSG randomly. Then, D poses σA to his
oracle (i.e., F ∗ or a random function RF ) and obtains x ∈ RSE . D computes (CT ∗A,1,K

∗
A,1)←

EnCapekB,1(FσA(r∗A,1) ⊕ x) and (dk∗A,2, ek
∗
A,2) ← KeyGen(r∗A,2), and sets the ephemeral public

key (CT ∗A,1, ek
∗
A,2) of i-th session of UA.

Simulation. D maintains the list LSK that contains queries and answers of SessionKeyReveal.
D simulates oracle queries by A as follows.

1. Send(Π, I, UP , UP̄ ): If P = A and the session is i-th session of UA, D returns the ephemeral
public key (CT ∗A,1, ek

∗
A,2) computed in the setup. Otherwise, D computes the ephemeral pub-

lic key (CTP,1, ekP,2) obeying the protocol, returns it and records (Π,UP , UP̄ , (CTP,1, ekP,2)).

2. Send(Π,R, UP̄ , UP , (CTP,1, ekP,2)): D computes the ephemeral public key (CTP̄ ,1, CTP̄ ,2)
and the session key SK obeying the protocol, returns the ephemeral public key, and records
(Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed session and SK in the list LSK .

3. Send(Π, I, UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)): If (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2))
is not recorded, D records the session (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) is not
completed. Otherwise, D computes the session key SK obeying the protocol, and records
(Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed session and SK in the list LSK .

4. SessionKeyReveal(sid):

(a) If the session sid is not completed, D returns an error message.

(b) Otherwise, D returns the recorded value SK.

5. SessionStateReveal(sid): D responds the ephemeral secret key and intermediate computation
results of sid as the definition. Note that the SessionStateReveal query is not posed to the
test session from the freshness definition.

6. Corrupt(UP ): D responds the static secret key and all unerased session states of UP as the
definition.

7. Test(sid): D responds to the query as the definition.

8. If A outputs a guess b′ = 0, D outputs that the oracle is the PRF F ∗. Otherwise, D outputs
that the oracle is a random function RF .

Analysis. For A, the simulation by D is same as the experiment H2 if the oracle is the PRF
F ∗. Otherwise, the simulation by D is same as the experiment H3. Thus, if the advantage of D
is negligible, then |Adv(A,H3)−Adv(A,H2)| ≤ negl.

Hybrid experiment H4: In this experiment, the computation of K∗A,1 in the test session
is changed again. Instead of computing (CT ∗A,1,K

∗
A,1)← EnCapekB,1(FσA(rA,1)⊕RF (σA)), it is

changed as choosing K∗A,1 ← KS randomly, where we suppose that UB is the intended partner
of UA in the test session.

We construct an IND-CCA adversary S from A in H3 or H4. S performs the following steps.

Init. S receives the public key ek∗ as a challenge.
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Setup. S chooses pseudo-random functions F : {0, 1}∗×FS → RSE , F ′ : {0, 1}∗×FS → RSE
and G : {0, 1}∗ ×FS → {0, 1}k, where FS is the key space of PRFs, and a strong randomness
extractor Ext : SS × KS → FS with a randomly chosen seed s ∈ SS. These are provided
as a part of the public parameters. Also, S sets all N users’ static secret and public keys
except UB. S selects σI ∈ FS and rI ∈ RSG randomly, and runs key the generation algorithm
(ekI,1, dkI,1)← KeyGen(1κ, rI) and UI ’s static secret and public keys are ((dkI,1, σI), ekI,1).

Next, S sets ek∗ as the static public key of UB. Also, S receives the challenge (K∗, CT ∗)
from the challenger.

Simulation. S maintains the list LSK that contains queries and answers of SessionKeyReveal.
S simulates oracle queries by A as follows.

1. Send(Π, I, UP , UP̄ ): If P = A and the session is i-th session of UA, S computes ekA,2 obey-
ing the protocol and returns the ephemeral public key (CT ∗, ekA,2). Otherwise, S com-
putes the ephemeral public key (CTP,1, ekP,2) obeying the protocol, returns it and records
(Π,UP , UP̄ , (CTP,1, ekP,2)).

2. Send(Π,R, UP̄ , UP , (CTP,1, ekP,2)): If P̄ = B and CTP,1 6= CT ∗, S poses CTP,1 to the
decryption oracle, obtains KP,1, computes the ephemeral public key (CTP̄ ,1, CTP̄ ,2) and
the session key SK obeying the protocol, returns the ephemeral public key, and records
(Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed session and SK in the list LSK .
Else if P̄ = B and CTP,1 = CT ∗, S sets KP,1 = K∗, computes the ephemeral public key
(CTP̄ ,1, CTP̄ ,2) and the session key SK obeying the protocol, returns the ephemeral public
key, and records (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed session and
SK in the list LSK . Otherwise, S computes the ephemeral public key (CTP̄ ,1, CTP̄ ,2) and
the session key SK obeying the protocol, returns the ephemeral public key, and records (Π,
UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed session and SK in the list LSK .

3. Send(Π, I, UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)): If (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2))
is not recorded, S records the session (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) is not com-
pleted. Else if P = A and the session is i-th session of UA, S computes the session key
SK obeying the protocol except that K∗A,1 = K∗, and records (Π,UP , UP̄ , (CTP,1, ekP,2),
(CTP̄ ,1, CTP̄ ,2)) as the completed session and SK in the list LSK . Otherwise, S computes the
session key SK obeying the protocol, and records (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2))
as the completed session and SK in the list LSK .

4. SessionKeyReveal(sid):
(a) If the session sid is not completed, S returns an error message.
(b) Otherwise, S returns the recorded value SK.

5. SessionStateReveal(sid): S responds the ephemeral secret key and intermediate computation
results of sid as the definition. If the owner of sid is UB, S poses ciphertexts received by UB
to the decryption oracle and can simulate all intermediate computation results. Note that
the SessionStateReveal query is not posed to the test session from the freshness definition.

6. Corrupt(UP ): S responds the static secret key and all unerased session states of UP as the
definition.

7. Test(sid): S responds to the query as the definition.
8. If A outputs a guess b′, S outputs b′.

Analysis. ForA, the simulation by S is same as the experiment H3 if the challenge is (K∗1 , CT
∗
0 ).

Otherwise, the simulation by S is same as the experiment H4. Also, both K∗A,1 in two experi-
ments have κ-min-entropy because (KeyGen,EnCap,DeCap) is κ-min-entropy KEM. Thus, if the
advantage of S is negligible, then |Adv(A,H4)−Adv(A,H3)| ≤ negl.
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Hybrid experiment H5: In this experiment, the computation of K ′∗1 in the test session
is changed. Instead of computing K ′∗1 ← Ext(s,K∗A,1), it is changed as choosing K ′∗1 ∈ FS
randomly.

Since K∗A,1 is randomly chosen in H4, it has sufficient min-entropy. Thus, by the definition
of the strong randomness extractor, |Adv(A,H5)−Adv(A,H4)| ≤ negl.

Hybrid experiment H6: In this experiment, the computation of SK in the test session
is changed. Instead of computing SK = GK′1(ST) ⊕ GK′2(ST) ⊕ GK′3(ST), it is changed as
SK = x ⊕ GK′2(ST) ⊕ GK′3(ST) where x ∈ {0, 1}κ is chosen randomly and we suppose that UB
is the intended partner of UA in the test session.

We construct a distinguisher D′ between PRF F ∗ : {0, 1}∗ × FS → {0, 1}k and a random
function RF from A in H5 or H6. D′ performs the following steps.

Setup. D′ chooses pseudo-random functions F : {0, 1}∗ × FS → RSE , F ′ : {0, 1}∗ × FS →
RSE , sets G = F ∗, where FS is the key space of PRFs, and a strong randomness extractor
Ext : SS ×KS → FS with a randomly chosen seed s ∈ SS. These are provided as a part of the
public parameters. Also, D′ sets all N users’ static secret and public keys. D′ selects σI ∈ FS
and rI ∈ RSG randomly, and runs key the generation algorithm (ekI,1, dkI,1)← KeyGen(1κ, rI)
and UI ’s static secret and public keys are ((dkI,1, σI), ekI,1).

Simulation. D′ maintains the list LSK that contains queries and answers of SessionKeyReveal.
D′ simulates oracle queries by A as follows.

1. Send(Π, I, UP , UP̄ ): D′ computes the ephemeral public key (CTP,1, ekP,2) obeying the pro-
tocol, returns it and records (Π,UP , UP̄ , (CTP,1, ekP,2)).

2. Send(Π,R, UP̄ , UP , (CTP,1, ekP,2)): D′ computes the ephemeral public key (CTP̄ ,1, CTP̄ ,2)
and the session key SK obeying the protocol, returns the ephemeral public key, and records
(Π, UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed session and SK in the list
LSK .

3. Send(Π, I, UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)): If (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2))
is not recorded, D′ records the session (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) is not com-
pleted. Else if P = A and the session is i-th session of UA, D′ poses ST to his oracle (i.e.,
F ∗ or a random function RF ), obtains x ∈ {0, 1}κ, computes the session key SK = x
⊕ GK′B,2(ST) ⊕ GK′B,3(ST), and records (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the

completed session and SK in the list LSK . Otherwise, D′ computes the session key SK obey-
ing the protocol, and records (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed
session and SK in the list LSK .

4. SessionKeyReveal(sid):

(a) If the session sid is not completed, D′ returns an error message.

(b) Otherwise, D′ returns the recorded value SK.

5. SessionStateReveal(sid): D′ responds the ephemeral secret key and intermediate computation
results of sid as the definition. Note that the SessionStateReveal query is not posed to the
test session from the freshness definition.

6. Corrupt(UP ): D′ responds the static secret key and all unerased session states of UP as the
definition.

7. Test(sid): D′ responds to the query as the definition.

8. If A outputs a guess b′ = 0, D′ outputs that the oracle is the PRF F ∗. Otherwise, D′ outputs
that the oracle is a random function RF .
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Analysis. For A, the simulation by D′ is same as the experiment H5 if the oracle is the PRF
F ∗. Otherwise, the simulation by D′ is same as the experiment H6. Thus, if the advantage of
D′ is negligible, then |Adv(A,H6)−Adv(A,H5)| ≤ negl.

In H6, the session key in the test session is perfectly randomized. Thus, A cannot obtain
any advantage from Test query.

Therefore, Adv(A,H6) = 0 and Pr[E1 ∧ Suc] is negligible.

A.2 Event E2 ∧ Suc

The proof in this case is essentially same as the event E1∧Suc. There is a difference in the exper-
iment H3. In the event E1∧Suc, instead of computing (CT ∗A,1,K

∗
A,1)← EnCapekB,1(FσA(rA,1)⊕

F ′r′A,1
(σA)), it is changed as (CT ∗A,1,K

∗
A,1) ← EnCapekB,1(FσA(rA,1) ⊕ RF (σA)), where we sup-

pose that UB is the intended partner of UA in the test session. In the event E2 ∧ Suc, it is
changed as (CT ∗A,1,K

∗
A,1) ← EnCapekB,1(RF (rA,1) ⊕ F ′r′A,1(σA)). Since A cannot obtain σA by

the freshness definition in this event, we can construct a distinguisher D from A in the similar
manner in the proof of the event E1 ∧ Suc.

A.3 Event E3 ∧ Suc

The proof in this case is essentially same as the event E1 ∧ Suc. There is differences in ex-
periments H3 and H4. In H3 of the event E1 ∧ Suc, instead of computing (CT ∗A,1,K

∗
A,1) ←

EnCapekB,1(FσA(rA,1) ⊕ F ′r′A,1
(σA)), it is changed as (CT ∗A,1,K

∗
A,1) ← EnCapekB,1(FσA(rA,1) ⊕

RF (σA)), where we suppose that UB is the intended partner of UA in the test session. In H3 of
the event E3 ∧ Suc, instead of computing (CT ∗B,1,K

∗
B,1)← EnCapekA,1(FσB (rB,1)⊕ F ′r′B,1(σB)),

it is changed as (CT ∗B,1,K
∗
B,1)← EnCapekA,1(FσB (rB,1)⊕RF (σB)). In H4 of the event E1∧Suc,

instead of computing (CT ∗A,1,K
∗
A,1)← EnCapekB,1(FσA(rA,1)⊕RF (σA)), it is changed as choos-

ing K∗A,1 ← KS randomly. In H4 of the event E3 ∧ Suc, instead of computing (CT ∗B,1,K
∗
B,1)←

EnCapekA,1(FσB (rB,1) ⊕ RF (σB)), it is changed as choosing K∗B,1 ← KS randomly. Since A
cannot obtain σB by the freshness definition in this event, we can construct a distinguisher D
from A in the similar manner in the proof of the event E1 ∧ Suc.

A.4 Event E4 ∧ Suc

The proof in this case is essentially same as the event E2 ∧ Suc. There is differences in ex-
periments H3 and H4. In H3 of the event E2 ∧ Suc, instead of computing (CT ∗A,1,K

∗
A,1) ←

EnCapekB,1(FσA(rA,1) ⊕ F ′r′A,1
(σA)), it is changed as (CT ∗A,1,K

∗
A,1) ← EnCapekB,1(RF (rA,1) ⊕

F ′r′A,1
(σA)), where we suppose that UB is the intended partner of UA in the test session. In H3

of the event E3∧Suc, instead of computing (CT ∗B,1,K
∗
B,1)← EnCapekA,1(FσB (rB,1)⊕F ′r′B,1(σB)),

it is changed as (CT ∗B,1,K
∗
B,1)← EnCapekA,1(RF (rB,1)⊕F ′r′B,1(σB)). In H4 of the event E2∧Suc,

instead of computing (CT ∗A,1,K
∗
A,1)← EnCapekB,1(RF (rA,1)⊕F ′r′A,1(σA)), it is changed as choos-

ing K∗A,1 ← KS randomly. In H4 of the event E3 ∧ Suc, instead of computing (CT ∗B,1,K
∗
B,1)←

EnCapekA,1(RF (rB,1) ⊕ F ′r′B,1(σB)), it is changed as choosing K∗B,1 ← KS randomly. Since A
cannot obtain σB by the freshness definition in this event, we can construct a distinguisher D
from A in the similar manner in the proof of the event E1 ∧ Suc.
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A.5 Event E5 ∧ Suc

We change the interface of oracle queries and the computation of the session key. These instances
are gradually changed over six hybrid experiments, depending on specific sub-cases. In the last
hybrid experiment, the session key in the test session does not contain information of the bit b.
Thus, the adversary clearly only output a random guess. We denote these hybrid experiments
by H0, . . . ,H5 and the advantage of the adversary A when participating in experiment Hi by
Adv(A,Hi).

Hybrid experiment H0: This experiment denotes the real experiment for CK+ security
and in this experiment the environment for A is as defined in the protocol. Thus, Adv(A,H0)
is the same as the advantage of the real experiment.

Hybrid experiment H1: In this experiment, if session identities in two sessions are iden-
tical, the experiment halts.

By the same as the event E1 ∧ Suc, |Adv(A,H1)−Adv(A,H0)| ≤ negl.

Hybrid experiment H2: In this experiment, the experiment selects a party UA and inte-
ger i ∈ [1, `] randomly in advance. If A poses Test query to a session except i-th session of UA,
the experiment halts.

By the same as the event E1 ∧ Suc, Adv(A,H2) ≥ 1/N2` ·Adv(A,H1).

Hybrid experiment H3: In this experiment, the computation of K∗B,2 in the test session
is changed. Instead of computing (CT ∗B,2,K

∗
B,2)← wEnCapekA,2(rB,2), it is changed as choosing

K∗B,2 ← KS randomly, where we suppose that UB is the intended partner of UA in the test
session.

We construct an IND-CPA adversary S from A in H2 or H3. S performs the following steps.

Init. S receives the public key ek∗ as a challenge.

Setup. S chooses pseudo-random functions F : {0, 1}∗×FS → RSE , F ′ : {0, 1}∗×FS → RSE
and G : {0, 1}∗ ×FS → {0, 1}k, where FS is the key space of PRFs, and a strong randomness
extractor Ext : SS × KS → FS with a randomly chosen seed s ∈ SS. These are provided
as a part of the public parameters. Also, S sets all N users’ static secret and public keys. S
selects σI ∈ FS and rI ∈ RSG randomly, and runs key the generation algorithm (ekI,1, dkI,1)←
KeyGen(1κ, rI) and UI ’s static secret and public keys are ((dkI,1, σI), ekI,1).

Next, S receives the challenge (K∗, CT ∗) from the challenger.

Simulation. S maintains the list LSK that contains queries and answers of SessionKeyReveal.
S simulates oracle queries by A as follows.

1. Send(Π, I, UP , UP̄ ): If P = A and the session is i-th session of UA, S computes CTA,1
obeying the protocol and returns the ephemeral public key (CTA,1, ek

∗). Otherwise, S com-
putes the ephemeral public key (CTP,1, ekP,2) obeying the protocol, returns it and records
(Π,UP , UP̄ , (CTP,1, ekP,2)).

2. Send(Π,R, UP̄ , UP , (CTP,1, ekP,2)): If P̄ = B, S computes CTP̄ ,1 and the session key SK
obeying the protocol except that KB,2 = K∗, returns the ephemeral public key (CTP̄ ,1, CT

∗),
and records (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed session and SK
in the list LSK . Otherwise, S computes the ephemeral public key (CTP̄ ,1, CTP̄ ,2) and
the session key SK obeying the protocol, returns the ephemeral public key, and records
(Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed session and SK in the list LSK .
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3. Send(Π, I, UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)): If (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2))
is not recorded, S records the session (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) is not com-
pleted. Else if P = A and the session is i-th session of UA, S computes the session key
SK obeying the protocol except that K∗B,2 = K∗, and records (Π,UP , UP̄ , (CTP,1, ekP,2),
(CTP̄ ,1, CTP̄ ,2)) as the completed session and SK in the list LSK . Otherwise, S computes the
session key SK obeying the protocol, and records (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2))
as the completed session and SK in the list LSK .

4. SessionKeyReveal(sid):

(a) If the session sid is not completed, S returns an error message.

(b) Otherwise, S returns the recorded value SK.

5. SessionStateReveal(sid): S responds the ephemeral secret key and intermediate computation
results of sid as the definition. Note that the SessionStateReveal query is not posed to the
test session from the freshness definition.

6. Corrupt(UP ): S responds the static secret key and all unerased session states of UP as the
definition.

7. Test(sid): S responds to the query as the definition.

8. If A outputs a guess b′, S outputs b′.

Analysis. ForA, the simulation by S is same as the experiment H2 if the challenge is (K∗1 , CT
∗
0 ).

Otherwise, the simulation by S is same as the experiment H3. Also, both K∗B,2 in two experi-
ments have κ-min-entropy because (wKeyGen,wEnCap,wDeCap) is κ-min-entropy KEM. Thus,
if the advantage of S is negligible, then |Adv(A,H3)−Adv(A,H2)| ≤ negl.

Hybrid experiment H4: In this experiment, the computation of K ′∗3 in the test session
is changed. Instead of computing K ′∗3 ← Ext(s,K∗B,2), it is changed as choosing K ′∗3 ∈ FS
randomly.

Since K∗B,2 is randomly chosen in H3, it has sufficient min-entropy. Thus, by the definition
of the strong randomness extractor, |Adv(A,H4)−Adv(A,H3)| ≤ negl.

Hybrid experiment H5: In this experiment, the computation of SK in the test session
is changed. Instead of computing SK = GK′1(ST) ⊕ GK′2(ST) ⊕ GK′3(ST), it is changed as
SK = GK′1(ST) ⊕ GK′2(ST) ⊕ x where x ∈ {0, 1}κ is chosen randomly and we suppose that UB
is the intended partner of UA in the test session.

We construct a distinguisher D′ between PRF F ∗ : {0, 1}∗ × FS → {0, 1}k and a random
function RF from A in H4 or H5. D′ performs the following steps.

Setup. D′ chooses pseudo-random functions F : {0, 1}∗×FS → RSE and F ′ : {0, 1}∗×FS →
RSE , and sets G = F ∗, where FS is the key space of PRFs, and a strong randomness extractor
Ext : KS → FS. These are provided as a part of the public parameters. Also, D′ sets all N
users’ static secret and public keys. D′ selects σI ∈ FS and rI ∈ RSG randomly, and runs key
the generation algorithm (ekI,1, dkI,1) ← KeyGen(1κ, rI) and UI ’s static secret and public keys
are ((dkI,1, σI), ekI,1).

Simulation. D′ maintains the list LSK that contains queries and answers of SessionKeyReveal.
D′ simulates oracle queries by A as follows.

1. Send(Π, I, UP , UP̄ ): D′ computes the ephemeral public key (CTP,1, ekP,2) obeying the pro-
tocol, returns it and records (Π,UP , UP̄ , (CTP,1, ekP,2)).
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2. Send(Π,R, UP̄ , UP , (CTP,1, ekP,2)): If P = A and the session is partnered with i-th session
of UA, D′ poses ST to his oracle (i.e., F ∗ or a random function RF ), obtains x ∈ {0, 1}κ, com-
putes the session key SK = GK′A,1(ST)⊕GK′B,2(ST)⊕ x, and records (Π,UP , UP̄ , (CTP,1, ekP,2),

(CTP̄ ,1, CTP̄ ,2)) as the completed session and SK in the list LSK . Otherwise, D′ computes
the ephemeral public key (CTP̄ ,1, CTP̄ ,2) and the session key SK obeying the protocol, re-
turns the ephemeral public key, and records (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as
the completed session and SK in the list LSK .

3. Send(Π, I, UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)): If (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2))
is not recorded, D′ records the session (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) is not com-
pleted. Else if P = A and the session is i-th session of UA, D′ poses ST to his oracle (i.e., F ∗

or a random function RF ), obtains x ∈ {0, 1}κ, computes the session key SK = GK′A,1(ST)

⊕ GK′B,2(ST) ⊕ x, and records (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed

session and SK in the list LSK . Otherwise, D′ computes the session key SK obeying the
protocol, and records (Π,UP , UP̄ , (CTP,1, ekP,2), (CTP̄ ,1, CTP̄ ,2)) as the completed session
and SK in the list LSK .

4. SessionKeyReveal(sid):
(a) If the session sid is not completed, D′ returns an error message.
(b) Otherwise, D′ returns the recorded value SK.

5. SessionStateReveal(sid): D′ responds the ephemeral secret key and intermediate computation
results of sid as the definition. Note that the SessionStateReveal query is not posed to the
test session from the freshness definition.

6. Corrupt(UP ): D′ responds the static secret key and all unerased session states of UP as the
definition.

7. Test(sid): D′ responds to the query as the definition.
8. If A outputs a guess b′ = 0, D′ outputs that the oracle is the PRF F ∗. Otherwise, D′ outputs

that the oracle is a random function RF .

Analysis. For A, the simulation by D′ is same as the experiment H4 if the oracle is the PRF
F ∗. Otherwise, the simulation by D′ is same as the experiment H5. Thus, if the advantage of
D′ is negligible, then |Adv(A,H5)−Adv(A,H4)| ≤ negl.

In H5, the session key in the test session is perfectly randomized. Thus, A cannot obtain
any advantage from Test query.

Therefore, Adv(A,H5) = 0 and Pr[E5 ∧ Suc] is negligible.

A.6 Event E6 ∧ Suc

The proof in this case is essentially same as the event E2∧Suc. The situation that the ephemeral
secret key of sid

∗
is given to A is the same as sid has no matching session because A can decide

arbitrary ephemeral key. Thus, the proof in this event follows that in the event E2 ∧ Suc.

A.7 Event E7 ∧ Suc

The proof in this case is essentially same as the event E1∧Suc. The situation that the ephemeral
secret key of sid

∗
is given to A is the same as sid has no matching session because A can decide

arbitrary ephemeral key. Thus, the proof in this event follows that in the event E1 ∧ Suc.

A.8 Event E8 ∧ Suc

The proof in this case is essentially same as the event E4∧Suc. The situation that the ephemeral
secret key of sid

∗
is given to A is the same as sid

∗
has no matching session because A can decide

arbitrary ephemeral key. Thus, the proof in this event follows that in the event E4 ∧ Suc.
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