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Abstract. Finding the longest impossible differentials is an essential assignment in
proceeding impossible differential cryptanalysis. In this paper, we introduce a novel
tool to search the longest truncated impossible differentials for word-oriented block
ciphers with bijective S-boxes. It costs polynomial time to return a flag indicat-
ing whether a truncated differential is impossible under several filter conditions. To
demonstrate the strength of our tool, we show that it allows to automatically find
the longest truncated impossible differentials for many word-oriented block ciphers. It
independently rediscovers all known truncated impossible differentials on nine round
CLEFIA. What’s more, it finds new and longest truncated impossible differentials for
the AES, ARIA, Camellia without FL and FL−1 layers, E2, MIBS, LBlock and Pic-
colo. Finally, we give an impossible differential of 14-round LBlock to illustrate that
our tool is more powerful than the U-method and UID-method. We expect that the
tool proposed in this paper will be useful for evaluating the security of block ciphers
against impossible differentials, especially when one tries to design a word-oriented
block cipher with bijective S-boxes.

Key words: word-oriented block ciphers, truncated impossible differentials, differ-
ence propagation system, U-method, UID-method

1 Introduction

Impossible differential cryptanalysis is one of the most popular cryptanalytic tools
for block ciphers. It was firstly proposed by Knudsen to analyze DEAL [2] in 1998
and then extended by Biham et al. to attack IDEA [3] and Skipjack [4]. As a
variant of differential cryptanalysis, impossible differential cryptanalysis follows the
idea of difference but uses differentials with probability zero to achieve the right key
by discarding all wrong keys. Until now, impossible differential cryptanalysis has
shown its superiority against differential cryptanalysis in many block ciphers such
as IDEA, Skipjack, CLEFIA [5] and AES [1].

The success of impossible differential cryptanalysis is mainly based on the length
of impossible differentials. The longer the impossible differential is, the better the
attack will be. Another important factor is the pattern of impossible differentials, be-
cause the attack may be improved using new impossible differentials[11–13]. There-
fore, it’s meaningful to find them as many as possible.

Impossible differentials are usually constructed by a miss-in-the-middle approach,
whose basic idea is, first, to construct two probability-one differentials from encryp-
tion direction and decryption direction respectively, and then to demonstrate some
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contradictions when combining them together. Once the existence of these impos-
sible combinations is proven, attackers obtain an impossible differential, which can
be used to retrieve subkeys from the outer rounds of a block cipher. In this key
recovering step, many techniques have developed to improve the attack, including
precomputation tables [22], the early abort technique [19], using multiple impossible
differentials [18] and reduplicate key bits in the key schedule.

However, there are few techniques for finding impossible differentials of practical
block ciphers. Until now, most of them are constructed manually by experience and
intuition, or by carefully observing some properties of inner primitives [20, 21]. We
may miss some better impossible differentials in these cases because manual methods
are inefficient and unsystematic.

In this paper, we focus on automatic approaches of finding the longest truncated
impossible differentials for word-oriented block ciphers with bijective S-boxes. This
class of block ciphers are worth to be considered because they are so popular that
many famous ciphers are included in it, such as the AES, CLEFIA and E2 [16].

Related Work. In [4], Biham et al. described an automatic technique named
shrinking for finding global impossible differentials. Instead of the original block ci-
pher, Shrinking technique considers a shrunken variant of this cipher but preserves
its global structure. Then, for a given plaintext difference, Shrinking technique en-
crypts many pairs of plaintexts under various keys and selects the cipher differences
that never occur to construct impossible differentials. The problem is that impossible
differentials obtained by this technique may fail with some probabilities.

Other works considered the block cipher structures. In [9], Kim et al. proposed
the U-method to find the longest impossible differentials for various block cipher
structures with bijective round functions. In the U-method, the propagation of dif-
ferences in a structure is translated to simple matrix operations. And some incon-
sistent conditions are adopted to identify impossible differentials. Luo et al. [10]
developed the idea of U-method and proposed a more general method — UID-
method. The UID-method releases some limitations in the U-method and harnesses
more inconsistent conditions to judge impossible differentials.

Although the U-method and the UID-method are determinant, the results achieved
by them may not be used directly in analyzing practical ciphers. Because the length
of impossible differentials for the underlying structure may not be the longest. For
example, Wu et al. [11] found that Camellia without FL and FL−1 layers has 8
round impossible differentials while its underlying structure—Feistel structure —
only contributes a 5 round impossible differential. Another problem is that they
may fail to detect some kinds of impossible differentials when they are directly ap-
plied to the practical block ciphers because much information is chucked by them
in the process of finding impossible differentials.

Our Tool and Contributions. In this work, we show a powerful tool for auto-
matically searching the longest truncated impossible differentials on word-oriented
block ciphers. Unlike the miss-in-the-middle approach, which splits a block cipher
into two parts, we treat it as an entirety. The input of our tool is a system of equations
that describes the differential propagation of a block cipher and some constraints on
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Table 1. Summary of new truncated impossible differentials (ID) obtained by our tool. Camellia*
is the Camellia without FL and FL−1 layers.

Block Cipher Word unit Previous results In this paper
Round No. of IDs Round No. of IDs New IDs

AES byte 4([22–26]) 269,554 4 3,608,100 3,338,546
ARIA byte 4([11–13, 21]) 156 4 94,416 94,260

Camellia* byte 8([11]) 3 8 4 1
E2 byte 6([20]) 1 6 56 55

MIBS nibble 8([15]) 2 8 8 6
LBlock nibble 14([14]) 1 14 80 79
Piccolo nibble 7 ([17]) 1(unshown) 7 450 449

the plaintext and ciphertext differences. Then, identifying an impossible differential
is equivalent to solving this system and showing that it doesn’t have any solution.

Experimental results indicate that our tool is indeed efficient and systematic.
It independently rediscovers all known truncated impossible differentials on nine
round CLEFIA [18]. What’s more, it finds new and longest truncated impossible
differentials for many other word-oriented block ciphers, such as the AES, Camellia
[6] without FL and FL−1 layers, MIBS [7], LBlock [14], ARIA [8], E2 and Piccolo
[17]. The number of new truncated impossible differentials obtained by our tool are
summarized in table 1.

Finally, we compare the ability of our tool with the U-method and UID-method
by illustrating an 14-round impossible differentials of LBlock. Results show that our
tool is more powerful than the U-method and UID-method.

Outline of this paper. In section 2, we introduce definitions of χ-function
and word-oriented block ciphers. In section 3, we describe how to build a system
of equations for finding truncated impossible differentials and discuss how to solve
this system. Our tool is proposed in section 4. In section 5, we apply our tool
to automatically search the longest truncated impossible differentials for various
word-oriented block ciphers. The comparison of our tool with the U-method and
UID-method is given in section 6. Finally, we conclude this paper.

2 Preliminaries

In this section, we briefly introduce the definition of χ-function and word-oriented
block ciphers. Note that we consider the exclusive-or (i.e., ⊕) difference in the whole
paper.

2.1 χ-Function

In this subsection, we first introduce the definition of χ-function and then discuss
some basic properties of χ-function.

Definition 1. (χ-function) Let χ be the function F2t → F2 defined as follows.

χ(x) =

¨
1 if x 6= 0,
0 if x = 0.

Then, we have
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Property 1. Suppose S : F2t → F2t is a bijective S-box, ∆α is the input difference
of S while ∆β is the output difference of S, then

χ(∆α)⊕ χ(∆β) = 0.

Property 2. Suppose a ·∆α⊕ b ·∆β = 0, where a, b ∈ F2t \ {0} and ∆α,∆β ∈ F2t ,
then

χ(∆α)⊕ χ(∆β) = 0.

The χ-function is suitable for truncated differential cryptanalysis, when we are
only concerned about whether there is a difference or not while the concrete value
of the difference is not taken into consideration.

2.2 Word-oriented Block Ciphers

A word-oriented block cipher is such a block cipher that (a) its input and output
data is a vector of words with fixed size, and (b) all inner operations consist only of
calculations of fixed size. In this work, we limit our attention to the class of word-
oriented block ciphers with bijective S-boxes. In such block ciphers, bijective S-boxes
are the only nonlinear primitives. Thus, it is natural to study wordwise differentials
as truncated differentials.

This class of block ciphers are worth considering since they are so popular that
many block ciphers are included in it. For instance, the AES, CLEFIA, E2, Camellia
without FL and FL−1 layers and ARIA are such block ciphers with word length
8-bit (i.e., byte) while the MIBS, LBlock and Piccolo are some lightweight block
ciphers with word length 4-bit (i.e., nibble).

3 Difference Propagation System

For any given block cipher E , we always can represent it as a multivariate system
Φ(P,C,K, V ) = 0 of plaintext P , the corresponding ciphertext C, subkeys K and
some intermediate variables V . However, in finding impossible differentials, what we
are concerned about is not the concrete values of P , C, K and V but the differences
of them. So, we restrict our attention to built a system of equations that describes the
propagation behavior when differences pass through the inner primitives of E . This
system will be called difference propagation system in the subsequent discussions.

We denote by Φ′(∆P,∆C,∆V ) = 0 the difference propagation system of E ,
where ∆P , ∆C and ∆V are the differences of plaintext P , ciphertext C and inter-
mediate variables V respectively. Notice that K vanishes in this system since subkey
differences are zero. Then, we have

Proposition 1. ∆P → ∆C is impossible if system¨
Φ′(∆P,∆C,∆V ) = 0,
Ψ(∆P,∆C) = 0,

(1)

doesn’t have any solution, where Ψ(∆P,∆C) = 0 contains some initial constraints
on the plaintext difference ∆P and ciphertext difference ∆C.

In the remainder of this section, we first discuss how to built a difference prop-
agation system for finding truncated impossible differentials and then describe how
to solve system (1) and decide whether there is any solution.
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3.1 Built Difference Propagation Systems

Suppose E is an lt-bit word-oriented block cipher with bijective S-boxes, where
t is the word length. And ∆P and ∆C are the plaintext difference and cipher-
text difference of E respectively. They can be expressed as vectors, i.e., ∆P =
(∆P1, ∆P2, . . . ,∆Pl) and ∆C = (∆C1, ∆C2, . . . ,∆Cl), where ∆Pj , ∆Cj ∈ F2t for
1 ≤ j ≤ l.

We denote by ∆Xi and ∆Yi the input difference and output difference of round
i, respectively. For each bijective S-box in round i, we introduce two intermediate
variables, ∆Ui,j and ∆Wi,j , to represent its input difference and output difference.
After introducing these intermediate variables, we can express the differential propa-
gation of round i as a system of linear equations with variables ∆Xi, ∆Yi, ∆Ui,j and
∆Wi,j

1, since bijective S-boxes are the only non-linear primitives in E while other
primitives are linear (or affine) functions. The role of introducing two intermediate
variables before and after the S-boxes is equivalent to linearizing the system. More
precisely, we can describe the propagation behavior of a primitive as follows.

Proposition 2. Suppose a linear (or affine) primitive f : Fm
2t → Fn

2t of E is given,
α = (α1, α2, . . . , αm) is the input data and β = (β1, β2, . . . , βn) is the output data of
f , respectively. That is,

βj =
mM
i=1

ai,j · αi ⊕ cj , (2)

for 1 ≤ j ≤ n, where ai,j, cj ∈ F2t are constants. Then, we can built n linear
equations

∆βj =
mM
i=1

ai,j ·∆αi, for 1 ≤ j ≤ n. (3)

For a further step, we have

Proposition 3. Suppose S : F2t → F2t is a bijective S-box, that is, W = S(U),
then we can built a nonlinear equation

χ(∆U)⊕ χ(∆W ) = 0 (4)

from property 1.

Utilizing proposition 2 and proposition 3, we can translate the propagation of
differences in E to a system of equations. For the convenience of comprehension, we
employ r-round AES as an example to show how to generate a difference propagation
systems over F28 . Similar systems can be constructed for other word-oriented block
ciphers with bijective S-boxes (See section 5).

Example 1. The AES is a byte-oriented block cipher with bijective S-boxes over
F28 . An AES round has four consecutive layers: SubBytes, ShiftRows, MixColumns
and SubkeyAddition. And the final round doesn’t have the MixColumns layer. We
needn’t consider the SubkeyAddition layer here since it doesn’t influence the prop-
agation of differences. Additionally, we may even omit the last ShiftRows layer in
finding impossible differentials.

1 The variables may be changed when we build difference propagation system for a concrete block
cipher.



6 Shengbao Wu, Mingsheng Wang

We denote by ∆Xi the internal state entering round i (i.e., befor SubBytes)
while ∆Yi denotes the internal state after the SubBytes layer. Each state can be
represented by a 4 × 4 matrix over F28 . In such a matrix, every byte in row j and
column k is numbered as byte j + 4 · (k − 1), that is, byte one is in the top-left
corner, the first column is made of bytes 1-4, while the last column is made of bytes
13-16, with byte 16 in the bottom-right corner.

Then, r × 16 = 16 · r nonlinear equations for the SubBytes layers are:

χ(∆Xi,l)⊕ χ(∆Yi,l) = 0 for l = 1, 2, . . . , 16 and i = 1, 2, . . . , r. (5)

And (r− 1)× 16 = 16 · (r− 1) linear equations for the ShiftRows and MixColumns
layers are summarized as follows:

∆Xi+1 ⊕MC ×

�
∆Yi,1 ∆Yi,5 ∆Yi,9 ∆Yi,13
∆Yi,6 ∆Yi,10 ∆Yi,14 ∆Yi,2
∆Yi,11 ∆Yi,15 ∆Yi,3 ∆Yi,7
∆Yi,16 ∆Yi,4 ∆Yi,8 ∆Yi,12

�
= 0 for i = 1, 2, . . . , r − 1,

where MC denotes the MixColumns matrix. In this system, ∆X1 is the plaintext
difference and ∆Yr is the ciphertext difference.

3.2 Solve Difference Propagation Systems and Finding Impossible
Differentials

For a difference propagation system Φ′, we can divide it into two subsystems — L
and NL. L includes all linear equations while NL contains all nonlinear equations
from bijective S-boxes. We denote by Λ0 the set of all variables with zero difference
while Λ1 the set of all variables with nonzero difference.

Now, we need to decide whether∆P → ∆C is impossible under initial constraints
Ψ(∆P,∆C) = 0. Since we consider truncated differentials in this paper, we focus
on initial constraints with form VP = (χ(∆P1), χ(∆P2), . . . , χ(∆Pl)) and VC =
(χ(∆C1), χ(∆C2), . . . , χ(∆Cl)). Notice that VP and VC are nonzero vectors.

Firstly, for 1 ≤ j ≤ l, we add ∆Pj to Λ0 and a linear equation ∆Pj = 0 to
system L if χ(∆Pj) = 0; Else, add ∆Pj to Λ1. Similar operations can be done on
∆C.

Then, we solve the system (1). What we mean ”solve” here is trying to predict
the information of unknown variables from known ones. Notice that every prediction
we made should be deterministic, that is, with probability one. This can be done in
the following two ways:

(i) Solving the linear system L. It can be solved by Gauss-Jordan Elimination
algorithm, which gets solutions by reducing the augmented matrix of L to reduced
row echelon form using elementary row operations. If a variable is zero, then it is
added to Λ0; Else, if a variable is nonzero, then it is added to Λ1.

(ii) ”Solving” the nonlinear system NL. From proposition 3, we know ∆U ∈ Λ1

as soon as we have ∆W ∈ Λ1 and vice versa, which provides an extra bit information
for us. What’s more, if we know one of them is zero, then another is zero too, which
provides an extra linear equation. In this case, we add a linear equation ∆U = 0 (or
∆W = 0) to linear system L and add an element ∆U (or ∆W ) to Λ0.
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The basic strategy for predicting information is clear now: solving system L and
NL alternately until a contradiction is found or we cannot get new information any
longer. An impossible differential is detected by the following proposition:

Proposition 4. ∆P → ∆C is impossible if one of the following two situations
happens

– I. Linear system L doesn’t have any solution. That is, the rank of its coefficient
matrix is unequal to the rank of its augmented matrix.

– II. Λ0 ∩ Λ1 6= ∅. It’s a contradiction because an element e ∈ Λ0 means χ(e) = 0
while e ∈ Λ1 means χ(e) = 1.

4 Algorithm to Find the Longest Truncated Impossible
Differential

In this section, we discuss how to implement a difference propagation system on
a computer and propose a specific algorithm to automatically search the longest
truncated impossible differentials.

4.1 Implementation of a Difference Propagation System

As mentioned above, a difference propagation system Φ′ is divided into two parts
— systems L and NL. In this subsection, we discuss how to implement them on a
computer.

Implement system L with a matrix. System L can be written formally as
A · x = b, where A, b and B = [A|b] are called the coefficient matrix, constant
matrix and augment matrix of this system respectively, x is the set of all variables
(in order) involved in the difference propagation system Φ′. Each column vector of
A corresponds to a unique variable in x. Thus, matrix A is determined once the
order of variables of x is fixed.

In computer manipulations, we don’t deal with the system in terms of equations
but instead make use of the augmented matrix. The Gauss-Jordan Elimination
algorithm is used to solve this system.

Implement system NL with a table. Once the order of variables in x is
given, we can store equations in system NL with a simple table using the column
indexes of B. First, initialize an empty table T , then for each equation in NL,
add an element {p, q} to T , where p, q are two integers (i.e., the column indexes of
B) indicating the two variables involved in the equation. For instance, in example
1, if the order of variables is fixed as [∆X1, ∆Y1, . . . ,∆Xr, ∆Yr], then table T for
equations in (5) is T = [{32(j − 1) + i, 32(j − 1) + 16 + i} : 1 ≤ i ≤ 16, 1 ≤ j ≤ r].

4.2 Automatically Find Truncated Impossible Differentials

Suppose we obtain the difference propagation system of a word-oriented block cipher,
with form of a matrix B and a table T . p = [p1, . . . , pl] and c = [c1, . . . , cl] are two
vectors, where pi and ci (1 ≤ i ≤ l) are the corresponding column indexes of ∆Pi

and ∆Ci in B, respectively. Let R
(i)
n be a 1 × n matrix whose i-th component is 1
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while other components are 0, where n is the number of columns of matrix B, and
ColSubMatrix(B, i, j) be the submatrix of B with columns from i to j.

After choosing the initial constraints VP and VC , our algorithm takes the matrix
B, table T , vectors p, c, VP and VC as inputs, and then solves the system as described
in section 3.2 automatically. Finally, it outputs a flag indicating whether ∆P → ∆C
is impossible. The specific description of our algorithm is shown in algorithm 1.
For an r-round word-oriented block cipher, we can obtain all r-round truncated
impossible differentials by enumerating all possible nonzero VP and VC . To obtain the
longest truncated impossible differential, it only needs to try several round numbers.

Algorithm Complexity. Suppose B′ is a matrix with m rows and n columns.
The time consumption for computing rank(B′) and Gauss-Jordan Elimination is
less than O(N3), where N = max{m,n}. And the time consumption for subprogram
Predict Info is about O(N2). Algorithm 1 terminates if index is false. Otherwise,
at least one of sets Λ0 and Λ1 is updated after each while loop. According to the
pigeon-hole principle, there must be a type II contradiction mentioned in proposition
4 when |Λ0|+ |Λ1| > n. Therefor, while loop runs n+ 1 times at most. In summary,
the time complexity of deciding a truncated impossible differential doesn’t exceed
O(N4).

Remark 1. (Validity of our tool with more kinds of constraints.) Besides VP and
VC , some linear constraints between nonzero variables in ∆P and ∆C can also be
added in the choosing initial constraints step. Our tool still works in this case by
translating them to row matrixes firstly and then adding these rows to matrix B′.

Remark 2. (Reuse the matrix B and table T .) Since the encryption process of a
block cipher is deterministic, we need only to build the difference propagation system
once. So, matrix B and table T can be reused for different VP and VC .

5 Results and Applications

We apply our tool to find the longest truncated impossible differentials for various
byte-(or nibble-)oriented block ciphers, such as the AES, CLEFIA, E2, Camellia
without FL and FL−1 layers, ARIA, LBlock, MIBS and Piccolo. We may classify
them into three groups according to their underlying structures: the SP structure
(AES and ARIA), Feistel structure (Camellia without FL and FL−1 layers, LBlock,
MIBS and E2), and generalized feistel structure (CLEFIA and Piccolo). Figure 1
shows these structures. Notice that the operation of adding subkeys is exclusive or in
these block ciphers. Therefore, we needn’t consider them since they don’t influence
the differential propagation. The results of this section are obtained under a 2.66GHz
processor with MAGMA package [27].

5.1 Block Ciphers with SP Structure

For an r round block cipher with SP structure (See Fig.1), we denote by ∆Xi the
internal state entering round i (i.e., before the S-box layer) while ∆Yi denotes the
internal state after the S-box layer. Each state is a row vector with length l. As
mentioned above, we omit the subkey addition layer since it doesn’t influence the
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Input: Matrix B, table T , vector p and c, VP and VC .
Output: A flag indicates whether ∆P → ∆C is impossible.

// Initialize the constraints VP and VC.

B′ := B; Λ0 := ∅; Λ1 := ∅; n :=NumberOfColumns(B′);
for i := 1 to l do

Λ1 := Λ1 ∪ {pi} if Vp[i] = 1;

Λ0 := Λ0 ∪ {pi} and B′ :=AddRow(B′, R
(pi)
n ) if Vp[i] = 0;

Λ1 := Λ1 ∪ {ci} if Vc[i] = 1;

Λ0 := Λ0 ∪ {ci} and B′ :=AddRow(B′, R
(ci)
n ) if Vc[i] = 0;

// Predict information and find contradictions.

flag := false; index :=true;
while index do

A′ :=ColSubMatrix(B′, 1, n− 1);
if rank(A′) 6= rank(B′) then

flag := true;
else

// Gauss-Jordan Elimination.

B′ :=Reduced-row-echelon-form-of(B′);
< B′, Λ0, Λ1, temp >:= Predict Info(B′, T , Λ0, Λ1);
index := temp;
if Λ0 ∩ Λ1 6= ∅ then

flag := true; index :=false;

return flag.

Predict Info(B′, T , Λ0, Λ1);
n0 := |Λ0|; n1 := |Λ1|; temp :=false;
// Extract information from the reduced row echelon form of B′.
for i := 1 to NumberOfRows(B′) do

S := ∅;
for j := 1 to n− 1 do

S := S ∪ {j} if B′[i, j] 6= 0;

// Update Λ0 using definition 1.

if |S| = 1 and B′[i, n] = 0 then
Λ0 := Λ0 ∪ S;

// Update Λ1 using definition 1 or property 2.

if (|S| = 1 and B′[i, n] 6= 0) or (|S| = 2, B′[i, n] = 0 and S ∩ Λ1 6= ∅) then
Λ1 := Λ1 ∪ S;

// Scan table T and use proposition 3 to recover information.

for j := 1 to NumberOfElements(T ) do
if T [j] ∩ Λ0 6= ∅ and T [j] \ Λ0 6= ∅ then

B′ :=AddRow(B′, R
(e)
n ) for e ∈ T [j] \ Λ0;

Λ0 := Λ0 ∪ T [j];

if T [j] ∩ Λ1 6= ∅ then
Λ1 := Λ1 ∪ T [j];

if |Λ0| > n0 or |Λ1| > n1 then
temp :=true;

return < B′, Λ0, Λ1, temp >.

Algorithm 1: Automatically judge a truncated impossible differential.
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Fig. 1. Underlying structures of block ciphers.

differential propagation. Additionally, we omit the last linear permutation layer.
Then, we can built the difference propagation system as follows:

χ(∆Xi,j)⊕ χ(∆Yi,j) = 0,

∆XT
k+1 ⊕ P ·∆Y T

k = 0,

where P is the matrix of linear permutation layer, ∆XT
k+1 is the transposed vector

of ∆Xk+1 and 1 ≤ i ≤ r, 1 ≤ j ≤ l and 1 ≤ k ≤ r − 1. In this system, ∆X1 is the
plaintext difference and ∆Yr is the ciphertext difference.

The AES and ARIA are word-oriented block ciphers with l = 16. For the AES,
our tool finds 3,608,100 of four round truncated impossible differentials in hours by
using a variant of our tool (See Appendix A). The classes of impossible differentials
discussed in [22–26] are included in our result set. For the ARIA, besides the results
shown in [11–13], our tool finds 94,260 new 4-round truncated impossible differentials
in several days.

We observe that all impossible differentials of AES follow an inherent rule. We
can describe them explicitly (See Appendix A). However, there is no such rule for
ARIA (We don’t introduce them in this paper due to lack of space).

5.2 Block Ciphers with the Feistel Structure

For an r round block cipher with Feistel structure (See Fig.1), we denote by ∆Xi−1
the state of right branch and ∆Xi the state of left branch entering round i. Thus,
(∆X1, ∆X0) is the plaintext difference and (∆Xr+1, ∆Xr) is the ciphertext differ-
ence. Each state is a row vector with length l

2 .
Camellia, MIBS and LBlock are Feistel ciphers with SP-type F -function while

E2 is a Feistel cipher with SPS-type F -function. If F is an SP structure, we denote
by ∆Yi the state after the S-box layer. Then, we have

χ(∆Xi,j)⊕ χ(∆Yi,j) = 0,

τ(∆Xi−1)
T ⊕∆XT

i+1 ⊕ P ·∆Y T
i = 0,

where P is the matrix of linear permutation layer in F , 1 ≤ i ≤ r and 1 ≤ j ≤ l
2 .

τ is a 2-nibble left rotation of difference ∆Xi−1 in LBlock and it’s an identical
permutation in Camellia and MIBS. A similar system can be built by introducing
some new variables to represent the input difference and output difference of the
second S-boxes layer if F is an SPS structure.

We apply our tool to search the longest truncated impossible differentials for
Camellia without FL and FL−1 layers, MIBS, LBlock and E2. Since there is always
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Table 2. Truncated impossible differentials (0,∆X1) 6→r (∆Xr+1, 0) for some Feistel ciphers.
Previous results are marked with bold type. Camellia* is the Camellia without FL and FL−1

layers.

Ciphers r No. Truncated Impossible Differentials

Camellia* 8 4 (e1, e1), (e2, e2), (e3, e3)[11], (e4, e4).

MIBS 8 6 (e3, e8), (e7, e5) [15], (e3, e5), (e5, e3), (e5, e7) , (e8, e3).

(ei, ej), for 1 ≤ i, j ≤ 8, where (e3, e2) is given in [14].
LBlock 14 80 (e1, e{4,6}), (e2, e{2,8}), (e3, e{5,7}), (e4, e{5,7}), (e5, e{2,8}), (e6, e{4,6}),

(e7, e{1,3}), (e8, e{1,3}), (e{1,2}, e1), (e{3,8}, e2), (e{5,6}, e3), (e{3,8}, e4),
(e{5,6}, e5), (e{4,7}, e6), (e{1,2}, e7), (e{4,7}, e8).

(e1, e1), (e1, e3)[20], (e1, e5), (e1, e6), (e1, e8), (e2, e5), (e2, e6), (e2, e7),
(e2, e8), (e3, e1), (e3, e3), (e3, e6), (e3, e8), (e4, e5), (e4, e6), (e4, e8),
(e5, e1), (e5, e2), (e5, e3), (e5, e4), (e5, e5), (e5, e6), (e5, e8), (e6, e1),

E2 6 56 (e6, e2), (e6, e3), (e6, e4), (e6, e5), (e6, e6), (e6, e7), (e7, e2), (e7, e6),
(e7, e7), (e7, e8), (e8, e1), (e8, e2), (e8, e3), (e8, e4), (e8, e5), (e8, e7),
(e5, e{2,7}), (e5, e{4,7}), (e6, e{1,8}), (e6, e{3,8}), (e7, e{2,5}), (e7, e{5,8}),
(e8, e{1,6}), (e8, e{3,6}), (e{2,7}, e5), (e{4,7}, e5), (e{1,8}, e6), (e{3,8}, e6),
(e{2,5}, e7), (e{5,8}, e7), (e{1,6}, e8), (e{3,6}, e8).

a five round impossible differential (0, ∆X0) 6→5 (∆X6, 0) for the Feistel structure
with bijective round function when ∆X0 = ∆X6, we focus on finding impossible
differentials (0, ∆X0) 6→r (∆Xr+1, 0) with r ≥ 6. Results for these ciphers can be
obtained in an hour.

Suppose I is a set, eI denotes a vector whose i-th (for all i ∈ I) component
is nonzero while other components are zero. Then, the results obtained by our
tool are illustrated in table 2, where (eI , eJ) is the shortened form of (0, ∆X1) 6→r

(∆Xr+1, 0). For example, (e{5,6}, e5) in the results of LBlock means

(00000000, 0000α1α200) 6→14 (0000β000, 00000000), (6)

where α1, α2 and β are nonzero 4-bit differences.

5.3 Block Ciphers with the Generalized Feistel Structure

CLEFIA is a generalized Feistel cipher with SP -type F -functions. And Piccolo has a
variant of generalized Feistel structure with an SPS-type F-function. The underlying
structures of them is shown in Fig.1. Both of them have l = 16.

We denote by ∆Xi the input difference of round i and ∆Zi the internal state
before WP layer, where WP is a word permutation. Additionally, we can introduce
some variables to represent the internal state of F function as we have done in the
Feistel ciphers. ∆X1 is the plaintext difference while ∆Zr is the ciphertext difference
since there is not the WP layer in the final round.

In this paper, we focus on finding truncated impossible differentials with form
∆X1 = ∆Zr = (0000, ????, 0000, ????), where ”?” can be zero or nonzero difference.
The number of truncated differentials for ∆X1 and ∆Zr is reduced to 216 now. Our
computer enumerates them in an hour. For the CLEFIA, our tool independently
rediscovers all known truncated impossible differentials listed in [18] but doesn’t
find new results. In [17], the designers claimed that they find a 7-round impossible
differential using modified U-method. However, the specification is not shown. With
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the application of our tool, we find 450 truncated impossible differentials for 7-round
Piccolo. They are distributed in two classes

(0000, 00α1α2, 0000, α3α400) 6→7 (0000, β1β200, 0000, 00β3β4), (7)

(0000, α1α200, 0000, 00α3α4) 6→7 (0000, 00β1β2, 0000, β3β400), (8)

where each χ(αi), χ(βi) ∈ {0, 1} for 1 ≤ i ≤ 4 and at least one of αi and βi is
nonzero.

6 Comparison of Our Tool with the U-method and UID-method

In this section, we investigate the relationship of our tool with the U-method and
UID-method.

On the one hand, block cipher structures discussed in the U-method and UID-
method can be treated as special word-oriented block ciphers with bijective S-boxes,
which means they also can be disposed by our tool.

Fig. 2. A truncated impossible differential of 14-round LBlock.
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On the other hand, our tool can detect more kinds of impossible differentials.
The example we chosen is the 14-round impossible differential (e1, e{4,6}) of LBlock (
see Table 2). To see it precisely, a step-by-step deduction following by our algorithm
is illustrated below in Fig.2, where ”0”, ”*” and ”?” are represented a nibble with
zero difference, nonzero difference and undetermined difference, respectively.

In Round i of LBlock, the input and output difference of the S-box layer is
denoted as ∆Xi = (∆Xi,1∆Xi,2 · · ·∆Xi,8) and ∆Yi = (∆Yi,1∆Yi,2 · · ·∆Yi,8), respec-
tively. P is a nibble permutation, that is,

P (∆Yi,1∆Yi,2∆Yi,3∆Yi,4∆Yi,5∆Yi,6∆Yi,7∆Yi,8)

= (∆Yi,2∆Yi,4∆Yi,1∆Yi,3∆Yi,6∆Yi,8∆Yi,5∆Yi,7).

And ”≪ 2” means left rotation with two nibbles (8 bits). Thus, we have

(∆Yi,2∆Yi,4∆Yi,1∆Yi,3∆Yi,6∆Yi,8∆Yi,5∆Yi,7)

=(∆Xi+1,1∆Xi+1,2∆Xi+1,3∆Xi+1,4∆Xi+1,5∆Xi+1,6∆Xi+1,7∆Xi+1,8)

⊕(∆Xi−1,3∆Xi−1,4∆Xi−1,5∆Xi−1,6∆Xi−1,7∆Xi−1,8∆Xi−1,1∆Xi−1,2)

(9)

for 1 ≤ i ≤ 14.
Now, for given (∆X1, ∆X0) = (00000000, ∗0000000) and (∆X15, ∆X14) = (000∗

0 ∗ 00, 00000000), we can deduce the internal state of LBlock round by round. After
8 rounds deduction in the forward direction, we obtain that the output difference of
round 8 is

(∆X9, ∆X8) = (????????, ?? ∗ ∗?? ∗ ∗). (10)

While in the backward direction, after 6 round deduction, we obtain that the input
difference of round 9 is

(∆X9, ∆X8) = (0?∗?∗?0?, ∗????∗??). (11)

It seems that it’s not an impossible differential when we combine (10) and (11)
together, because the symbol ”?” can be any value. In fact, the progress is terminated
in this step when using the U-method and UID-method.

However, our algorithm still works. From equation (11), we know ∆X9,1 and
∆X9,7 is zero, thus ∆Y9,1 is zero. From Fig.2, we find ∆X7,1 is zero, which implies
∆Y8,5 = 0 using equation (9). Thus ∆X8,5 is zero. Now, ∆Y9,1 = 0 and ∆X8,5 =
0 implies ∆X10,3 = 0, which means ∆Y10,3 is zero. Next, from ∆Y10,3 = 0 and
∆X11,4 = 0 (See Fig.2), we can deduce that ∆X9,6 = 0, which means ∆Y9,6 is zero.
Finally, from ∆Y9,6 = 0 and ∆X10,5 = 0 (See Fig.2), we conclude ∆X8,7 is zero,
which contradicts with ∆X8,7 6= 0 in equation (10). Therefore, (e1, e{4,6}) is indeed
a 14-round truncated impossible differential of LBlock.

7 Conclusions and Future Work

In this paper, we focus on automatic tool of finding the longest truncated impossible
differentials for word-oriented block ciphers with bijective S-boxes. The block cipher
structures studied in the U-method and UID-method are specific cases in this paper.
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What’s more, our tool is more powerful than them. With the application of our tool,
we rediscover all truncated impossible differentials for nine round CLEFIA. And we
find new and longest truncated impossible differentials for many byte-(and nibble-
)oriented block ciphers.

Since the conditions of judging an impossible differential are sufficient conditions
in this paper, results obtained by our tool must be correct if one implements our
algorithm and block ciphers on computer correctly. On the other hand, our tool is
efficient since it costs polynomial time to judge an truncated impossible differential.

We except that the tool proposed in this article, especially the idea of building
and solving a difference propagation system, is not only helpful for evaluating the
security of block ciphers against impossible differential cryptanalysis, but also useful
in other attacks.

Future work will include the application of difference propagation system in
other attacks and the improvement of impossible differential cryptanalysis on block
ciphers using new results obtained by our tool.
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A All Impossible Differentials of 4-round AES

In this section, we describe all 4-round impossible differentials of AES obtained by
our tool. We use the same notation introduced in example 1, that is, ∆X1 is the
plaintext difference and ∆Y4 is the ciphertext difference.

For given nonzero ∆X1 and ∆Y4, we denote by I = {j : ∆X1,j 6= 0 for 1 ≤
j ≤ 16} and J = {j : ∆Y4,j 6= 0 for 1 ≤ j ≤ 16}. Suppose a1 = {1, 6, 11, 16}, a2 =
{2, 7, 12, 13}, a3 = {3, 8, 9, 14}, a4 = {4, 5, 10, 15} and bi = {4·i−3, 4·i−2, 4·i−1, 4·i}
for 1 ≤ i ≤ 4. We denote by H(I) the number of true events that I ∩ ai 6= ∅ for
1 ≤ i ≤ 4. For example, H(I) = 2 if I = {1, 2} because I ∩ a1 6= ∅ and I ∩ a2 6= ∅
but I ∩ a3 = ∅ and I ∩ a4 = ∅. Similarly, we denote by H(J) the number of true
events that I ∩ bi 6= ∅ for 1 ≤ i ≤ 4. Then, we can search all four round truncated
impossible differentials as follows.

1. We set truncated values for only a part of elements in ∆X1 and ∆Y4 while let
other elements undetermined.

2. Use Algorithm 1 to predict the information of undetermined elements in ∆X1

and ∆Y4.
3. Construct impossible differentials using conditions that contradicts with the in-

formation obtained in step 2.
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For example, if we choose set a1 and b1 and initialize ∆X1 = (?0000?0000?0000?)
and ∆Y4 = (????000000000000) in step 1. That is, only 12 elements of ∆X1 and ∆Y4
is determined. Then, using Algorithm 1, we find ∆X1,j for j ∈ a1 and ∆Y4,j for j ∈ b1
are zero. That is, from the conditions in step 1, the undetermined elements in ∆X1

and∆Y4 is determined now. Thus, we conclude that any (χ(∆X1,1), χ(∆X1,6), χ(∆X1,11),
χ(∆X1,16)) 6= (0000) to any (χ(∆Y4,1), χ(∆Y4,2), χ(∆Y4,3), χ(∆Y4,4)) 6= (0000) is
impossible, which implies that we obtain 15 × 15 = 225 truncated impossible dif-
ferentials simultaneously. Other set of impossible differentials can be obtained by
changing the choice in step 1. Finally, we have

Proposition 5. All 3,608,100 four round truncated impossible differentials of AES
can be summarized as H(I) +H(J) ≤ 4.

Since H(I) = 1 provides
�
4
1

�
× (24 − 1) = 60 choices, H(I) = 2 provides

�
4
2

�
×

(24 − 1)2 = 1350 choices, and H(I) = 3 provides
�
4
3

�
× (24 − 1)3 = 13500 choices,

the number of H(I) +H(J) ≤ 4 is

60× (60 + 1350 + 13500) + 1350× (60 + 1350) + 13500× 60 = 3, 608, 100.

Impossible differentials discussed in [22–26] are subsets of our generalized results
shown in proposition 5. They include 269,554 impossible differentials in total.

What should be stressed here is that the method used in this section is highly
relevant to the structure properties of AES. Thus, it’s difficult to extend it to other
block ciphers in this paper.


