
A Generalization of the Rainbow BandSeparation Atta
k and its Appli
ations toMultivariate S
hemesEnri
o ThomaeHorst Görtz Institute for IT-se
urityFa
ulty of Mathemati
sRuhr-University of Bo
hum, 44780 Bo
hum, Germanyenri
o.thomae�rub.deAbstra
t. The Rainbow Signature S
heme is a non-trivial generaliza-tion of the well known Unbalan
ed Oil and Vinegar (UOV) signatures
heme (Euro
rypt '99) minimizing the length of the signatures. By nowthe Rainbow Band Separation atta
k is the best key re
overy atta
kknown. For some sets of parameters it is even faster than a dire
t atta
kon the publi
 key. Unfortunately the available des
ription of the atta
kis very ad ho
 and does not provide deep insights.In this arti
le we provide another view on the Rainbow Band Separa-tion atta
k using the theory of equivalent keys and a new generalization
alled good keys. Thereby we generalize the atta
k into a framework thatalso in
ludes Re
on
iliation atta
ks. We further formally prove the 
or-re
tness of the atta
k and show that it does not only perform well onRainbow, but on all multivariate quadrati
 (MQ) s
hemes that su�erfrom missing 
ross-terms. We apply our atta
k and break the Enhan
edSTS signature s
heme and all its variants, as well as the MFE en
ryptions
heme and its variant based on Diophantine equations. In the 
ase ofRainbow and Enhan
ed TTS we show that parameters have to be 
ho-sen 
arefully and that the remaining e�
ien
y gain over UOV is small.As there is still some room to improve the Band Separation atta
k, itis not 
lear whether layer-based MQ-s
hemes will eventually be
omesuper�uous or not.Key words: Multivariate Cryptography, Algebrai
 Cryptanalysis, BandSeparation, Key Re
overy Atta
k, Rainbow, Enhan
ed STS, Enhan
edTTS, MFE, Diophantine Equations1 Introdu
tionThe main idea of our algebrai
 key re
overy atta
k is the same as for the so-
alled Re
on
iliation atta
k on UOV [BBD09℄, but involves some new te
hniqueslike good keys, whi
h are a generalization of equivalent keys, as well as a spe
ialtreatment of non-existing 
ross-terms. In se
tion 3 we will see that the RainbowBand Separation atta
k des
ribed in [DYC+08℄ is a spe
ial 
ase of our atta
k.



2 Enri
o ThomaeIn 
ontrast to the ad ho
 des
ription of this atta
k in [DYC+08℄ on less thanhalf a page, we are able to proof 
orre
tness of the atta
k and reveal some addi-tional bihomogeneous stru
ture that was not used before. We revisit the atta
kon Rainbow (28, 18, 12, 12) with 
omplexity at most 267. As it is hard to usethe additional bihomogeneous stru
ture in a theoreti
al 
omplexity analysis, weperformed various experiments that suggests a real atta
k 
omplexity of 264.Also other multivariate signature s
hemes like Enhan
ed STS, MFE and En-han
ed TTS su�er even more from missing 
ross-terms and thus 
ould be at-ta
ked the same way. In se
tion 4 we brie�y introdu
e the STS signature s
hemeand all its variants. We show that our atta
k is better than the best know at-ta
k on the s
heme, whi
h was a HighRank atta
k, and also break all variantsof Enhan
ed STS proposed so far. We strongly disbelieve that there is a way to�x STS without ending up at the Rainbow or Oil, Vinegar and Salt signatures
heme. In se
tion 5 we apply our atta
k to Enhan
ed TTS and show that, in
ontrast to Rainbow, it slightly bene�ts from the additional stru
ture. Our at-ta
k redu
e the 
laimed se
urity of 288 to 247. In se
tion 6 we apply or atta
kon the MFE signature s
heme based on Diophantine equations and give a keyre
overy in 257 instead of 2113, as 
laimed by the authors. For all readers notfamiliar with multivariate s
hemes, we brie�y introdu
e the general idea andbasi
 notations in se
tion 2.2 Basi
 Fa
tsIn this se
tion we introdu
e the ne
essary notation and explain the most famousof all MQ-s
hemes, namely the Unbalan
ed Oil and Vinegar signature s
heme(UOV). It was proposed by Patarin et al. [KPG99℄ at Euro
rypt 1999 and is oneof the oldest MQ-s
hemes still unbroken. Understanding this simple and smarts
heme is fundamental to understand the whole zoo of signatures that arose inthe sequel.The general idea ofMQ-signature s
hemes is to use a publi
 multivariate quadrati
map P : Fn
q → F

m
q with

P =



p(1)(x1, . . . , xn)...
p(m)(x1, . . . , xn)


and

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj = x⊺P(k)x,where P(k) is the (n × n) matrix des
ribing the quadrati
 form of p(k) and

x = (x1, . . . , xn)
⊺. Note that we 
an negle
t linear and 
onstant terms as theynever mix with quadrati
 terms and thus have no positive e�e
t on se
urity. Inthe 
ase of Enhan
ed TTS those linear terms will even de
rease se
urity as wewill see later.



Generalization of the Rainbow Band Separation Atta
k 3The trapdoor is given by a stru
tured 
entral map F : Fn
q → F

m
q with

F =



f (1)(u1, . . . , un)...
f (m)(u1, . . . , un)


and

f (k)(u1, . . . , un) :=
∑

1≤i≤j≤n

γ
(k)
ij uiuj = u⊺F(k)u.In order to hide this trapdoor we 
hoose two se
ret linear transformations S, Tand de�ne P := T ◦ F ◦ S. See �gure 1 for illustration.
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m
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P

S T

FFig. 1. MQ-S
heme.For the UOV signature s
heme the variables ui with i ∈ V := {1, . . . , v}are 
alled vinegar variables and the remaining variables ui with i ∈ O :=
{v + 1, . . . , n} are 
alled oil variables. The 
entral map f (k) is given by

f (k)(u1, . . . , un) :=
∑

i∈V,j∈V

γ
(k)
ij uiuj +

∑

i∈V,j∈O

γ
(k)
ij uiuj .The 
orresponding matrix F(k) is depi
ted in �gure 2.

F(k) =

x1 . . . xv . . . xn

0

x1...
xv...
xn

︷
︸︸

︷
︷

︸︸
︷

vinegar variablesoil variablesFig. 2. Central map F of UOV. White parts denote zero entries while gray parts denotearbitrary entries.As we havem equations in m+v variables, �xing v variables will yield a solutionwith high probability. Due to the stru
ture of F(k), i.e. there are no quadrati




4 Enri
o Thomaeterms of two oil variables, we 
an randomly �x the vinegar variables to obtaina system of linear equations in the oil variables, whi
h is easy to solve. Thispro
edure is not possible for the publi
 key, as the transformation S of variablesfully mixes the variables (like oil and vinegar in a salad). Note that for UOV we
an dis
ard the transformation T , as the trapdoor is invariant under this lineartransformation of equations.



Generalization of the Rainbow Band Separation Atta
k 53 Cryptanalysis of RainbowRainbow was proposed in 2005 [DS05℄ and is a layer-based variant of the wellknown multivariate quadrati
 (MQ) signature s
heme Unbalan
ed Oil and Vine-gar (UOV). The downside of UOV is a 
omparably large signature expansionby a fa
tor of 3 for 
urrent parameters (m = 28, n = 84) [TW12b℄. Rainbowimproves this to signatures of length n = 42 for messages of length m = 24, alsofor 
urrent parameters (28, 18, 12, 12) [DYC+08℄. In the original paper [DS05℄this improvement was even larger, but Billet and Gilbert [BG06℄ broke the pa-rameter set (28, 6, 6, 5, 5, 11) in 2006 using a MinRank -Atta
k. The idea usedby Billet and Gilbert was known sin
e 2000 and �rst proposed in [GC00℄. AtCrypto 2008 Faugère et al. [FdVP08℄ re�ned the te
hnique of Billet and Gilbertusing Gröbner Bases. Ding et al. took this atta
k into a

ount and proposednew parameters of Rainbow [DYC+08℄ 
laimed to be se
ure against all knownatta
ks. In Algorithm 3 of [DYC+08℄ the authors also des
ribed the RainbowBand Separation atta
k, whi
h was 
ontributed to Yu-Hua Hu. Unfortunatelythe available des
ription of the atta
k on half of a page is very ad ho
 and doesnot provide deep insights.Up to now the parameter set (28, 18, 12, 12) is still 
lose to se
ure, even due totwo re
ent developments. Firstly in 2009 Bettale et al. published the HybridF5approa
h [BFP09℄ and thus redu
ed the 
omplexity of a dire
t atta
k on thepubli
 key of Rainbow (28, 18, 12, 12) to 277. And se
ondly in 2011 Faugère etal. [FDS11℄ analyzed systems of bihomogeneous equations and gave an upperbound on the degree of regularity for F4. This immediately redu
ed the 
om-plexity of MinRank-Atta
ks on Rainbow (28, 18, 12, 12) to 280.8. But anyway,neither of these te
hniques drasti
ally redu
ed the se
urity of Rainbow. We referto Petzold et al. [PBB10℄ for a 
omprehensive 
omparison of all known atta
kson Rainbow and proposals for se
ure parameters.Rainbow uses the same idea as UOV but in di�erent layers. A 
urrent 
hoi
eof parameters is given by (q, v1, o1, o2) = (28, 18, 12, 12). In parti
ular the �eldsize q = 28 and the number of layers is two. Note, two layers seems to be thebest 
hoi
e in order to prevent MinRank atta
ks and preserve short signaturesat the same time. The 
entral map F of Rainbow is divided into two layers
F(1), . . . ,F(12) and F(13), . . . ,F(24) of form given in �g. 3. A formal des
ription isgiven by the following formula.

f (k)(u1, . . . , un) :=
∑

i∈V1,j∈V1

γ
(k)
ij uiuj +

∑

i∈V1,j∈O1

γ
(k)
ij uiujfor k = 1, . . . , o1

f (k)(u1, . . . , un) :=
∑

i∈V1∪O1,j∈V1∪O1

γ
(k)
ij uiuj +

∑

i∈V1∪O1,j∈O2

γ
(k)
ij uiujfor k = o1 + 1, . . . , o1 + o2
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0

0

0

0

00

18 12 12

for F(1), . . . ,F(12)

and
0

18 12 12

for F(13), . . . ,F(24)Fig. 3. Central map of Rainbow (28, 18, 12, 12). White parts denote zero entries whilegray parts denote arbitrary entries.To use the trapdoor we �rst solve the small UOV system F(1), . . . ,F(12) by ran-domly �xing the 18 vinegar variables. The solution u1, . . . , u30 is now used asvinegar variables of the se
ond layer. Solving the obtained linear system yields
u31, . . . , u42.Algebrai
 Cryptanalysis of Rainbow. Now we investigate what the spe
ialstru
ture of F tells us about the se
ret keys S and T . More pre
isely an algebrai
key re
overy atta
k exploits the spe
ial stru
ture of F, i.e. zero entries at 
ertainknown pla
es, to obtain equations in T̃ := T−1 =: (t̃ij) and S̃ := S−1 throughthe following equality, whi
h we obtain from F = T−1 ◦ P ◦ S−1.

F(i) = S̃⊺




m∑

j=1

t̃ijP
(j)


 S̃ (1)As P is publi
ly known and we further know that some spe
i�ed entries of Fhave to be zero, we obtain 
ubi
 equations in the elements of S̃ and T̃ . The keyobservation is that the equations obtained by the fa
t that the 
oe�
ient of uiujin f (k) is zero is of the form

0 =

n∑

x=1

n∑

y=1

n∑

z=1

αxyz t̃kxs̃yis̃zj (2)for some 
oe�
ients αxyt ∈ Fq that depend on P(j) (
f. [PTBW11, Se
. 3℄ or[TW12b℄ for an expli
it formula). In parti
ular every monomial 
ontains onevariable of the i-th 
olumn and one variable of the j-th 
olumn of S̃. We willlater make heavily use of this fa
t. But �rst let us 
al
ulate the 
omplexity ofa key re
overy atta
k up to this point. Let us de�ne V1 := {u1, . . . , uv1}, O1 :=
{uv1+1, . . . , uv1+o1}, O2 := {uv1+o1+1, . . . , uv1+o1+o2} and O×V := {{u, v} |u ∈
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O, v ∈ V }. The number of equations obtained by (1) equals the number ofsystemati
 zeros in all the f (k) and thus is

(o1 + o2) · |(O2 ×O2)|+ o1 · (|(O2 × (O1 ∪ V1))|+ |(O1 ×O1)|) = 7128.The number of variables in S̃ and T̃ is given by (v1+o1+o2)
2+(o1+o2)

2 = 2340.The 
omplexity of solving su
h a system of equations using some Gröbner Basisalgorithm like F4 is 23608 (
f. [BFSY05℄). In a nutshell, we �rst have to 
al
ulatethe degree of regularity dreg. For semi-regular sequen
es, whi
h generi
 systemsare assumed to be, the degree of regularity is the index of the �rst non-positive
oe�
ient in the Hilbert series Sm,n with
Sm,n =

∏m

i=1(1− zdi)

(1− z)n
, (3)where di is the degree of the i-th equation, m is the number of equations and

n the number of variables. The 
omplexity of solving a zero-dimensional (semi-regular) system using F4 is
O

((
n+ dreg
dreg

)α)
,with 2 ≤ α ≤ 3 the linear algebra 
onstant. The internal equations used by F4are very sparse and thus α = 2 is applied by 
ryptanalyst. Well, the 
onstru
-tors of s
hemes are often of a di�erent opinion and use α = 3. Note that (3)
hanges for small �elds, i.e. if the degree of regularity is larger than the numberof elements in the �eld. Note further that generi
 MQ-systems are assumed tohave worst-
ase 
omplexity. As soon as the equations 
ontain some stru
ture,e.g. they are bihomogeneous, the 
omplexity of solving them de
rease [FDS11℄.As our equations are partly bihomogeneous, 23608 is just an upper bound. Un-fortunately theoreti
al 
omplexity analyses of stru
tured MQ-systems is a veryimportant open problem and the formula given above is the best we know up tonow.A �rst improvement of this upper bound 
omplexity 
an be a
hieved by usingequivalent keys, a notion introdu
ed by Wolf and Preneel [WP05℄.De�nition 1 (Equivalent keys for Rainbow (v1, o1, o2)). Let S = (sij) and

T = (tij) be two regular matri
es. We label the equations given in (2) by (k, i, j)and de�ne
S := {(k, i, j) | (1 ≤ k ≤ o1 ∧ 1 ≤ i ≤ n ∧max{v1 + o1 + 1, i} ≤ j ≤ n)

∨ (1 ≤ k ≤ o1 ∧ v1 < i ≤ v1 + o1 ∧ i ≤ j ≤ v1 + o1)
∨ (o1 < k ≤ o1 + o2 ∧ o1 + o2 < i ≤ n ∧ i ≤ j ≤ n)the set of all equations obtained by systemati
 zero 
oe�
ients in the 
entral map

F . Note S and T are a valid solution of S. We 
all two regular matri
es S′ and
T ′ equivalent keys, if they also ful�ll all equations in S.
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o ThomaeOr in other words, if S and T are se
ret keys for the 
orresponding 
entral map
F then we 
all S′ and T ′ equivalent keys, if T ◦F ◦S = P = T ′◦F ′◦S′ for a validtrapdoor F ′. That means S′ and T ′ preserve the stru
ture of F , i.e. preserveall systemati
 zero 
oe�
ients. Ea
h equivalent key is su�
ient for an atta
kerto use the trapdoor. Choosing a spe
ial representative of the 
lass of equivalentkeys will now allow us to redu
e the number of variables in S and T . Lets on
eagain S̃ := S−1 and T̃ := T−1.We �rst 
onsider all transformations Ω−1u = Ω−1Sx, su
h that

x⊺S⊺FSx = x⊺S⊺(Ω−1)⊺Ω⊺FΩΩ−1Sxand Ω⊺FΩ preserves the spe
ial stru
ture of F .Obviously we are allowed to map V1 7→ V1 as these monomials exist anyway.What we are not allowed is to map O1 ∪ O2 7→ V1 as this would destroy thezero 
oe�
ients of monomials in (O1 × O1) and (O2 × O2) in the �rst layerequations. With the same argument we are allowed to map V1 ∪ O1 7→ O1 and
V1 ∪O1 ∪O2 7→ O2, i.e. Ω−1S = S̃Ω needs to be of the following form.

S′ = S̃Ω =




S̃
(1)
(v1×v1)

S̃
(2)
(v1×o1)

S̃
(3)
(v1×o2)

S̃
(4)
(o1×v1)

S̃
(5)
(o1×o1)

S̃
(6)
(o1×o2)

S̃
(7)
(o2×v1)

S̃
(8)
(o2×o1)

S̃
(9)
(o2×o2)







Ω
(1)
(v1×v1)

0 0

Ω
(2)
(o1×v1)

Ω
(3)
(o1×o1)

0

Ω
(4)
(o2×v1)

Ω
(5)
(o2×o1)

Ω
(6)
(o2×o2)


If S̃(9) is regular, whi
h is true with high probability (0.996 for o2 = 12) thenthere exists Ω(6) su
h that S′(9) = S̃(9)Ω(6) = I. If S̃(9) and S̃(5) are regular,whi
h is true with high probability (0.992 for o1 = 12), then (S̃(5) S̃(6)

S̃(8) S̃(9)

) isregular, too. Thus there exist Ω(3) and Ω(5), su
h that S′(5) = I and S′(8) = 0.As we know that S̃ is regular, it always exist Ω(1), Ω(2) and Ω(3), su
h that
S′(1) = I, S′(4) = 0 and S′(7) = 0. To 
on
lude, with high probability (0.992)there exist an equivalent key S′ of the form given in �gure 4. Note that we
an randomize the algorithm by permuting 
olumns and rows and thus startagain if �nding S′ fails. The same holds for the transformation of equations T ,as we always 
an add equations within the same layer, as well as equations ofthe �rst to the se
ond layer, without destroying the zero 
oe�
ients. Thus withoverwhelming probability it exists an equivalent key T ′ of the form given in�gure 4.The total number of variables is now redu
ed to v1(o1 + o2) + 2o1o2 = 720.The number of equations stays the same, but as the �rst v1 
olumns of S′does no longer 
ontain any variables, the 
orresponding o1 · |(O2×V1)| equationstransform from 
ubi
 to quadrati
 and furthermore are bihomogeneous in s′ij and
t′ij . In our 
ase we have 2592 quadrati
 and 4536 
ubi
 equations. The 
omplexityof solving this system by F4 is 2374 whi
h still is infeasible. To further de
reasethis 
omplexity we now introdu
e the notion of good keys.
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0

0 0

18 12 12

S′ = and T ′ =
0

12 12

Fig. 4. Equivalent keys for Rainbow (28, 18, 12, 12). White parts denote zero entries,gray parts denote arbitrary entries and there are ones at the diagonal.The overall idea is to de
rease the number of variables in S′ and T ′ as far aspossible while preserving a reasonable amount of equations at the same time.Therefore we generalize the notion of equivalent keys to keys that do not preservethe whole stru
ture of F but just some of it. We 
all those keys good keys if theyalso reveal some parts of the keys S′ and T ′, respe
tively.De�nition 2 (Good keys for Rainbow (v1, o1, o2)). Let S be the set de�nedin de�nition 1, S′ ⊆ S and S, T equivalent keys. We 
all two regular matri
es Ŝand T̂ good keys, if they ful�ll all equations in S
′ and the sets

{(i, j) | sij = ŝij and (1 ≤ i ≤ v1∧v1 < j ≤ n)∨(v1 < i ≤ v1+o1∧v1+o1 < j ≤ n)}and
{(i, j) | tij = t̂ij for (1 ≤ i ≤ o1 ∧ o1 < j ≤ o1 + o2)}are both not empty.At a �rst glan
e it is not 
lear that good keys even exists. The following lemmaproves the existen
e of good keys and give a spe
ial 
lass of them.Lemma 1. Let S′ and T ′ be equivalent keys for Rainbow of the form given in�gure 4. Then there exist good keys Ŝ and T̂ , of the following form.

0

0

0

0

18 12 12

Ŝ = and T̂ =

12 12

0Only the last 
olumn of Ŝ 
ontains arbitrary values in the �rst two blo
ks, whi
hare equal to the 
orresponding values in S′. Respe
tively, only the se
ond blo
k ofthe o1-th row of T̂ 
ontains arbitrary values, whi
h are equal to the 
orrespondingvalues in T ′.
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o ThomaeProof. We �rst show that there exists a unique transformation S′Ω = Ŝ, if weassume Ωn1 = . . . = Ωn(v1+o1) = 0. We need those zeros later, to preserve aminimal amount of stru
ture in F .
S′Ω :=



I S

′(1)
(v1×o1)

S
′(2)
(v1×o2)

0 I S
′(3)
(o1×o2)

0 0 I







Ω
(1)
(v1×v1)

Ω
(2)
(v1×o1)

Ω
(3)
(v1×o2−1)||0

Ω
(4)
(o1×v1)

Ω
(5)
(o1×o1)

Ω
(6)
(o1×o2−1)||0

Ω
(7)
(o2×v1)

Ω
(8)
(o2×o1)

Ω
(9)
(o2×o2)




!
= ŜUsing linear algebra, we uniquely obtain Ω(4) = Ω(7) = Ω(8) = 0, Ω(1) =

Ω(5) = Ω(9) = I, Ω(2) = −S′(1) and Ω
(6)
(o1×o2−1) = −S

′(3)
(o1×o2−1) as well as

Ω
(3)
(v1×o2−1) = (S′(1)S′(3)−S′(2))(v1×o2−1). Obviously the last 
olumn of S′(2) and

S′(3) are not a�e
ted by this transformation. Furthermore omitting the zeros inthe last 
olumn of Ω would destroy all the stru
ture in F (
f. �gure 5).As soon as we would allow to map un to any of the variables in V1 or O1 allthe zero 
oe�
ients in F would vanish and thus no equations would be left toperform an algebrai
 atta
k with.Showing that T̂ is a good key is trivial: If we just want to preserve the stru
tureof F(o1), we 
an forget everything but the o1-th row of T ′. ⊓⊔The se
ret map F′ = Ω⊺FΩ is of the from given in �gure 5.
18 12 12

for F′(12)

and 18 12 12

for F′(1), . . . ,F′(11),

F′(13), . . . ,F′(24)Fig. 5. Central map of Rainbow (28, 18, 12, 12) after applying the transformation Ωgiven by lemma 1. White parts denote zero entries and gray parts denote arbitraryentries.The total number of variables obtained by good keys 
hosen as above is v1 +
o1 + o2 = 42. To 
ount the number of equations, we denote n := v1 + o1 + o2and label every equation obtained by a zero 
oe�
ient of uiuj in F(k) by (i, j, k)(
f. equation (2)). First, (n, n, o1) provides a 
ubi
 equation. Se
ond, (n, n, i) for
i = 1, . . . , o1− 1, o1+1, . . . , o1+ o2 provides quadrati
 equations in the variables
sij . Third and most important, (i, n, o1) for i = 1, . . . , n− 1 provides quadrati
,bihomogeneous equations in sij and tij . Those equations are the main weakness
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k 11of all layer based MQ-primitives. Their existen
e is due to the missing 
ross-terms V1 ×O2 and O1 × O2 in the �rst layer of Rainbow. Note that in the 
aseof UOV these equations do not exist. Applying the same approa
h to UOV,provides m quadrati
 equations in 2m variables, whi
h is infeasible for 
urrentparameters of m = 26. For Rainbow (28, 18, 12, 12) we end up with 1 
ubi
,23 quadrati
 and, due to the missing 
ross-terms, 41 bihomogeneous equations.Solving this system of equations has a 
omplexity of 267.7. Again this 
omplex-ity estimation assumes generi
 equations. As our equations 
ontain some spe
ialstru
ture, e.g. some of them are bihomogeneous, we 
an hope for a lower 
om-plexity in pra
ti
e. We implemented our atta
k and 
ompared its running timeto those of random systems (
f. table 2). This way we obtained an empiri
al
omplexity that is bounded from above by 264.After we obtained one 
olumn of S′ and one row of T ′, all the other parts of S′and T ′ are revealed by linear equations. More pre
isely, by equations (i, n, j) for
i = 1, . . . , n and j = 1, . . . , o1−1, o1+1, . . . , o1+o2 we obtain n(o1+o2−1) linearequations in the remaining (o1 − 1)o2 variables of T ′. After we re
overed T ′ allthe equations (i, j, k) for i = 1, . . . , v1, j = v1 + 1, . . . , n and k = 1, . . . , o1 + o2,and even some more, be
ome linear. Solving this system of v1(o1 + o2)

2 linearequations in (v1+o1−1)o2+v1o1 variables easily reveals the unique solution of S′.Table 1 shows the theoreti
al 
omplexity of our atta
k for several parametersgiven in [PBB10℄ whi
h were 
onsidered to be se
ure.Table 1. Atta
k 
omplexity for several parameter sets believed to be se
ure. Note, theparameters for small �elds are still valid.parameter set �eld atta
k [log2](18,13,14) GF(28) 69.5(20,14,14) GF(28) 76.1(17,18,17) GF(31) 78.3(21,20,20) GF(24) 88.1Experimental Results. We have implemented our atta
k using the softwaresystem Magma V2.16-1 [MAG℄. All experiments were performed on a Intel XeonX33502.66GHz (Quad
ore) with 8 GB of RAM using only one 
ore. Table 2 givethe results for various parameter sets (v1, o1, o2) of Rainbow. Column 4 and 5give the number of equations and variables obtained through our atta
k. Column6 gives the log2 value of the theoreti
al 
omplexity assuming random equationsand thus the worst 
ase 
omplexity of our atta
k (
f. [BFSY05℄). The followingthree 
olumns show the time in se
onds that our atta
k required over di�erent�elds. We guess that F28 is implemented more e�
iently in Magma and thus itneeds longer to solve instan
es over F24 than over F28 . The last 
olumn des
ribes
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o Thomaethe time it took us to solve a random instan
e with the same number of variablesand equations, assuming that a solution exists. Comparing these 
omplexities tothe ones of our atta
k, we observe a fa
tor of 32 for (6, 4, 4) that we are fasterover F28 than theoreti
ally expe
ted. As this set of parameters is a s
aled variantof (18, 12, 12) and the di�eren
e only in
reases, we 
on
lude that the atta
k isat least 32 times faster than the theoreti
al upper bound. Thus we end up withan empiri
al 
omplexity of 262.7 to break Rainbow (28, 18, 12, 12).Table 2. Running times in se
onds of our atta
k for di�erent sets of parameters, overdi�erent �elds. In 
omparison the running time in se
onds for random systems is givenin the last 
olumn, as well as a theoreti
al 
omplexity in operations in 
olumn six.
v1 o1 o2 #eq. #var. theoreti
al atta
k [s] atta
k [s] atta
k [s] random [s]

m n [log2] GF(28) GF(24) GF(31) GF(28)5 4 4 20 13 26 0.5 0.7 0.4 66 4 4 21 14 26 0.7 1.1 0.6 237 4 4 22 15 31 1.4 2.1 1.1 1948 4 4 23 16 32 4.3 6.9 3.6 6419 4 4 24 17 33 35 64 29 33286 5 5 25 16 28 17 29 15 877 5 5 26 17 32 33 58 25 12708 5 5 27 18 34 87 159 73 44759 5 5 28 19 34 630 1185 527 -7 6 6 30 19 35 443 821 370 -8 6 6 31 20 35 877 1765 743 -9 6 6 32 21 36 3034 6052 2578 -8 7 7 35 22 41 12567 25311 10730 -
Con
lusion. A immediate 
onsequen
e of our atta
k is that we should use atleast parameters (22, 16, 16) over F28 . Further we did not use all the stru
turefor the theoreti
al analysis of our atta
k, i.e. we negle
ted that a large portion ofthe obtained equations is bihomogeneous. Thus we should ask ourselves a veryimportant question: Is the gain in e�
ien
y by transforming UOV to Rainbowlarger than the loss of se
urity? If not, Rainbow is super�uous as UOV willalways be both, more se
ure and e�
ient. This question espe
ially arise be
auseour atta
k on Rainbow use the missing 
ross-terms and thus is not appli
able toUOV. Unfortunately, a fair 
omparison of the e�
ien
y/se
urity ratio of UOVand Rainbow is out of the s
ope of this paper. To even de�ne e�
ien
y inthis 
ontext is an involved task. Do we only measure the blowup fa
tor of the
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k 13signature or do we take the 
omplexity of the signing algorithm into a

ount,too? Our intuition is that we roughly lose as mu
h se
urity as we gain e�
ien
yin terms of the signature length while transforming UOV to Rainbow. Let usexplain this at the following example over F28 . Using Rainbow (28, 22, 16, 16),for whi
h our key re
overy atta
k has 
omplexity at most 284, we map messagesof length 32 to signatures of length 54. For 
omparison, UOV with parameters
o = 28 and v = 56 is 
onsidered to have a se
urity level of 284 against messagere
overy atta
ks [BFP09,TW12b℄. Thus UOV maps a message of length 28 toa signature of length 84. Further we 
an use that UOV is well parametrized,while Rainbow is built on the edge, i.e. in order to prevent key re
overy atta
kslike the one of Kipnis and Shamir [KS98,KPG99℄ on UOV, we only have toensure v − o− 1 ≥ 8. So 
hoosing v = 2o is a little 
onservative. More pre
isely
o = 28 and v = 37 is su�
ient to prevent this type of key re
overy atta
k. Inthis 
ase UOV maps a message of length 28 to a signature of length 65. To putse
urity 
on
erns in a nutshell, UOV is based on the MQ- and IP-problem andRainbow additionally use the di�
ulty of the MinRank-problem. So everyonehave to de
ide on his own, if obtaining signatures of length 54 instead of 65 isworthwhile to take another 
lass of problems into a

ount.
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o Thomae4 Cryptanalysis of Enhan
ed STS and all its VariantsAnother way to a
hieve a se
ret map F =
(
f (1), . . . , f (m)

)⊺ was given by the Se-quential Solution Method of Tsujii [STH89,TKI+86℄. The idea was somehow simi-lar to the independently proposed s
hemes of Shamir [Sha93℄ and Moh [Moh99℄.In 2004 Kasahara and Sakai extended this idea to the so-
alled RSE system[KS04℄, whi
h later was generalized to the Stepwise Triangular System (STS)by Wolf et al. [WBP04℄. Here the 
entral polynomials f (k) are some randomquadrati
 polynomials in a restri
ted number of variables. See �gure 6 for thestepped stru
ture of the resulting MQ-system. Inverting this map is possible aslong as solving r quadrati
 equations in r variables is pra
ti
al. Consequently,we need to restri
t r to rather small values, e.g. r = 4 . . . 9.
f (1)(u1, . . . , ur)...
f (r)(u1, . . . , ur)...
f ((i−1)r+1)(u1, . . . , uir)...
f (ir)(u1, . . . , uir)...
f ((L−1)r+1)(u1, . . . , um)...
f (m)(u1, . . . , um)

︷
︸︸

︷
︷

︸︸
︷

︷
︸︸

︷

Step 1

Step i

Step LStep L

resp. r

r...
r

polynomials
u1· · ·ur · · · um

variables

Fig. 6. Central map of STS based signature s
hemes like RSSE(2)PKC or RSE(2)PKC.The gray parts of the matrix indi
ate that those variables o

ur in the 
orrespondingpolynomial and white parts indi
ate that they do not.In the same year Wolf et al. [WBP04℄ showed how to e�
iently break the pro-posed parameters of the STS s
hemes RSSE(2)PKC and RSE(2)PKC using aHighRank atta
k. At PQCrypto 2010 Tsujii et al. [TGTF10℄ tried to �x thes
heme by proposing a new variant 
alled Enhan
ed STS, whi
h uses a 
om-plementary STS stru
ture (
f. �gure 7). Only a few months later they noti
edthemselves that the s
heme is obviously not immune to HighRank atta
ks, al-though this was originally a design goal. To �x this problem, they proposedseveral new variants [GT11,TG10℄. We will now shortly repeat the HighRankatta
k and then give a more e�
ient algebrai
 key re
overy atta
k whi
h makesuse of good keys and missing 
ross-terms. The latter are quadrati
 monomialsof two variables from di�erent sets, whi
h do not exist in the 
entral map F
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k 15by 
onstru
tion. We 
on
lude that it is impossible to �nd a se
ure and e�
ientparameter set of Enhan
ed STS. We will also break the new variants of STS. To
on
lude, we dis
uss (im)possible improvements and show that we either end upwith the Rainbow or Oil, Vinegar and Salt signature s
heme.Cryptanalysis of Enhan
ed STS. To exploit di�erent ranks in plain STS,we use the quadrati
 form of the polynomials f (k), i.e. f (k) = u⊺F(i)u for
u = (u1, . . . , um)⊺ and some (m×m) matrix F(i). Note that we have n = m = Lrhere. Obviously the rank of these matri
es in the i-th step is ir. Now we use thatthe rank is invariant under the bije
tive transformation S−1u = x of variables,i.e. rank(S⊺F(i)S) = rank(F(i)) for all i. In addition, the publi
 polynomials
p(i) = x⊺P(i)x are given by some linear 
ombination P(i) =

∑m

j=1 tijS
⊺F(j)S =

S⊺

(∑m

j=1 tijF
(j)
)
S. As the rank is 
hanged by the transformation of equations

T , we 
an use the rank property of the underlying 
entral equations f (k) as adistinguisher to obtain the full transformation T .Enhan
ed STS was thought to resist rank atta
ks. Tsujii et al. introdu
ed twosets U = {u1, . . . , um} and V = {v1, . . . , vm−r} of variables and 
onstru
ted
entral polynomials f (k) whi
h all have the same rank m. The 
onstru
tion isvery similar to �gure 6, but every polynomial f (k) depends on m variables. See�gure 7 for details.
r

r...
r

polynomials
u1..ur · · · umv1..vr · · ·

vm−r

variables
Fig. 7. Central map of Enhan
ed STS. The gray parts of the matrix indi
ate that thosevariables o

ur in the 
orresponding polynomial and white parts indi
ate that they donot.As the 
orresponding MQ-system F has m quadrati
 equations but n = 2m− rvariables, we 
ould �x all variables of V to random values and obtain an MQ-system of r equations and r variables in the �rst step. Solving this MQ-system,substituting the solution in the next step and so on, allows for a reasonable ef-�
ient inversion of F .
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o ThomaeTsujii et al. themselves noti
ed [TG10℄ that having the same rank m for the
entral polynomials f (k) does not prevent rank atta
ks in any way, as the rankof the publi
 polynomials is 2m − r. The following simple HighRank atta
k isstill appli
able. Note that due to the additional variables vi the minimal rank ofthe 
entral polynomials is m, for m ≥ 26 in pra
ti
e to prevent dire
t atta
ks.Thus Enhan
ed STS is at least se
ure against MinRank atta
ks [FdVP08,BG06℄.HighRank Atta
k. In order to re
onstru
t T we have to sear
h for linear 
om-binations of the publi
 polynomialsP(i), su
h that the rank de
rease from 2m−rto m. Let σ ∈ Sm be a random permutation, whi
h we need for randomization.Then there exist λi ∈ Fq su
h that the following linear 
ombination has rank
2m− 2r and thus the rank drops by r.

P(σ(r+1)) +

r∑

i=1

λiP
(σ(i)) =: P̃There are 2 di�erent solutions, as we 
an eliminate the r matri
es F(1), . . . ,F(r)or F(m−r+1), . . . ,F(m) su
h that P̃ has rank 2m − 2r. In the �rst 
ase P̃ is alinear 
ombination of se
ret polynomials, who do not 
ontain variables v1, . . . , vrrespe
tively um−r+1, . . . , um in the latter 
ase. Thus brute for
ing all λi has
omplexity qr/2. On
e we have eliminated all the F(i) of one blo
k (e.g. 1 ≤ i ≤ r)in one polynomial P̃ we easily eliminate those F(i) in all the other m− r publi
polynomials by just determining ker(P̃). The linear system ∑m

i=1 λiP
(i)ω = 0with ω ∈ ker(P̃) provides all m−r polynomials of rank 2m−2r. The 
omplexityof this step is 2(2m − r)3. Repeating this whole pro
edure L times yields rmatri
es P̃(i) of rank m. At this point we know the kernel of one of the 
entralblo
ks of F and 
ould use this to separate the matri
es in the steps before, whi
hare still linear 
ombinations of some S⊺F(i)S. Choosing a ve
tor that lies in thekernel of the matri
es obtained in the i-th step, but not in the kernel of matri
esre
overed in step i + 1, . . . , L easily provides T . The overall 
omplexity of thisHighRank atta
k is given by

L

2
qr + 2L(2m− r)3 +

L−1∑

i=1

(ir)3 = O(qr).Algebrai
 Key Re
overy Atta
k. We saw that the 
omplexity of the High-Rank atta
k strongly depends on the �eld size q and the parameter r. Evenif r is restri
ted to small values due to e�
ien
y 
onstraints, it is possible to
hoose q large enough to obtain a s
heme se
ure against the previously men-tioned atta
k. For example, let r = 9 and q = 29. Now we des
ribe a new keyre
overy atta
k that is almost independent of the �eld size q and thus makesit impossible to �nd a parameter set that is both e�
ient and se
ure. To easeexplanation we �x a parameter set of Enhan
ed STS to illustrate the atta
k. Asthere are no parameters given in [TG10℄, whi
h is by the way not very 
ourteous
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k 17to 
ryptanalyst, we 
hoose m = 27, r = 9 and q = 29 as this prevents messagere
overy atta
ks via Gröbner Bases on the publi
 key as well as HighRank at-ta
ks. The number of steps is given by L = m/r = 3. The number of variablesis n = 2m − r = |U | + |V | = 27 + 18 = 45. Note that a legitimate user wouldneed to solve three generi
 MQ-system with 9 equations and variables over F29to 
ompute a signature. While possible in theory, it is ine�
ient for pra
ti
aluse. Solving a generi
 MQ-system with 9 equations and variables over F29 usingthe fastest known method, i.e. the hybrid approa
h [BFP09℄ by guessing onevariable, as well as the very fast F4 implementation of Magma V2.16-1 [MAG℄on a Intel Xeon X33502.66GHz (Quad
ore) with 4 GB of RAM using only one
ore, took us 0.3 se
onds. Thus the worst 
ase signing time is 3 · 29 · 0.3 ≈ 461se
onds. But despite of 
hoosing su
h a large r, we now show that the resultings
heme still is not se
ure.
F : ,

U
︷ ︸︸ ︷

V
︷ ︸︸ ︷

U1 U2 U3 V1 V2

U1 U2 U3 V1 V2

U
︷ ︸︸ ︷

V
︷ ︸︸ ︷

0

0

0

0

0

0

S̃ : and T̃ :

9 9 9

9

9

9

Fig. 8. Central map F of Enhan
ed STS and the minimal representative S and T ofthe 
lass of equivalent keys.Figure 8 shows the stru
ture of the 
entral map F . The pi
ture des
ribing F hasto be read like �gure 7. Every little square denotes a (9 × 9) array. Moreover,we give the stru
ture of the se
ret key S̃ := S−1, whi
h is a (45 × 45) matrixwith ones at the diagonal, zeros at the white parts and unknown values at thegray parts. Note that there are many di�erent se
ret keys S respe
tively S−1that preserve the stru
ture of F , i.e. preserve systemati
al zero 
oe�
ients inthe polynomials f (i). We 
all all them equivalent keys and 
an assume that inevery 
lass there is one representative with the stru
ture given in �gure 8 withoverwhelming probability (
f. de�nition1). The same holds for T̃ := T−1. Weskip the derivation of S̃ and T̃ given in �gure 8 as it was already known and isvery similar to the proof of lemma 1.An algebrai
 key re
overy atta
k uses the spe
ial stru
ture of F to obtainequations in S̃ and T̃ through the following equality (
f. (1)) derived from
F = T−1 ◦ P ◦ S−1 with T̃ := T−1 =: (t̃ij) and S̃ := S−1.

F(i) = S̃⊺




m∑

j=1

t̃ijP
(j)


 S̃
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o ThomaeAs P is publi
ly known and we further know that some of the entries of F aresystemati
ally zero, we obtain 
ubi
 equations in the elements of S̃ and T̃ . Toease notation we use uj+m := vj for j = 1, . . . ,m− r. It is interesting to observethat the equations obtained from the 
oe�
ients uiuj in f (k) are of the form
0 =

n∑

x=1

n∑

y=1

n∑

z=1

αxyz t̃kxs̃yis̃zjfor some 
oe�
ients αxyz ∈ Fq that depend on the publi
 key matri
es P(j)(
f. [PTBW11, Se
. 3℄ or [TW12b℄ for an expli
it formula). Due to the spe
ialform of S̃ this immediately implies that all equations obtained by zero mono-mials uiuj with ui ∈ U1 := {u1, . . . , u9} and uj ∈ U2 ∪ U3 := {u10, . . . , u18} ∪
{u19, . . . , u27}, as well as uivj with ui ∈ U1 and vj ∈ V1 ∪ V2 := {v1, . . . , v9} ∪
{v10, . . . , v18} be
ome quadrati
 instead of 
ubi
. This 
hange hen
e greatly im-proves the overall atta
k 
omplexity. De�ning U × V := {{u, v} |u ∈ U, v ∈ V }the total amount of equations obtained by systemati
al zeros in F is

9 · (|(U2 ∪ U3)× (U2 ∪ U3)|+ |(U2 ∪ U3)× (V1 ∪ V2)|)

+ 9 · (|(U3 ∪ V1)× (U3 ∪ V1)|+ |(U3 ∪ V1)× (U2 ∪ V2)|)

+ 9 · (|(V1 ∪ V2)× (V1 ∪ V2)|+ |(V1 ∪ V2)× (U2 ∪ U3)|)

= 9 · 3 · ((18 · 19)/2 + 18 · 18)

= 27 · (171 + 324) = 13, 365 
ubi
 equations and
9 · |(U2 ∪ U3)× U1|+ 9 · |(U3 ∪ V1)× U1|+ 9 · |(V1 ∪ V2)× U1|

= 27 · 162 = 4374 quadrati
 equations.Solving this system of equations in 486 variables t̃ij and 1134 variables s̃ijwith a 
ommon Gröbner basis algorithm like F4 has a total 
omplexity of 2877(
f. [BFS04,BFSY05℄). This huge 
omplexity is due to the large number of vari-ables and the fa
t that the 
omplexity estimation assumes generi
 equations andthus does not take the stru
ture of the equations into a

ount. In order to de-
rease the 
omplexity, we have to break down the problem into smaller pie
es.This 
an be done if we further de
rease the number of variables in S̃ and T̃ . Toa
hieve this goal we use good keys again (
f. de�nition 2).Lemma 2. Let S̃ and T̃ be equivalent keys for Enhan
ed STS of the form givenin �gure 8. Then there exist good keys S′ and T ′, of the following form.
S′ is all zero ex
ept the gray parts, whi
h are equal to the 
orresponding valuesin S̃ and the diagonal, whi
h 
ontains only ones. Similarly, the gray parts of T ′equals the 
orresponding values in T̃ .Proof. To preserve the stru
ture of F given in lemma 2 we are allowed to mapvariables U1 ∪U2 ∪U3 ∪ V2 7→ U1 ∪U2 ∪U3 ∪ V2 as well as V1 7→ V1. As soon aswe were to map variables from V1 to any other set of variables, all polynomialswould 
ontain variables from V1 and thus the whole stru
ture of F would be
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F : ,

U
︷ ︸︸ ︷

V
︷ ︸︸ ︷

U1 U2 U3 V1 V2

U1 U2 U3 V1 V2

U
︷ ︸︸ ︷

V
︷ ︸︸ ︷

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

S′ : and T ′ :

9 9 9

0

0

0 0

0

9

9

9

destroyed. Now we show that using su
h a transformation Ω of variables, we 
anuniquely map S̃ to S′ by S̃Ω = S′.
S̃Ω :=




I S̃(1) S̃(2) S̃(3) S̃(4)

0 I S̃(5) S̃(6) S̃(7)

0 0 I S̃(8) S̃(9)

0 S̃(10) S̃(11) I 0

0 S̃(12) S̃(13) S̃(14) I







Ω(1) Ω(2) Ω(3) 0 Ω(4)

Ω(5) Ω(6) Ω(7) 0 Ω(8)

Ω(9) Ω(10) Ω(11) 0 Ω(12)

Ω(13) Ω(14) Ω(15) Ω(16) Ω(17)

Ω(18) Ω(19) Ω(20) 0 Ω(21)




!
= S′Obviously Ω(16) = I and thus S̃(3), S̃(6), S̃(8) and S̃(14) remain un
hanged. As S̃is regular, all other Ω(i) are uniquely determined by S̃−1S′. Showing that T ′ is agood key is trivial: If we only want to f2r+1, . . . , f3r to 
ontain no V1 variables,we are allowed to map all polynomials ex
ept f1, . . . , fr to one another. ⊓⊔Using the good keys of lemma 2 we end up with 405 
ubi
 equations, 2916quadrati
 equations and 405 variables. The 
omplexity of solving su
h a systemusing F4 is still 2151. To bring this game to an end, we only need to assure that

f30 do not 
ontain the variable v1. Analogous to lemma 2 we obtain |(U ∪ V2 ∪
V1\{v1})× {v1}| = 44 quadrati
 equations and one 
ubi
 equation. Using goodkeys analogous to lemma 2 we obtain 9 variables t27j for 1 ≤ j ≤ 9 as wellas 36 variables si28 for 1 ≤ i ≤ 36. Applying the generi
 
omplexity analysisas before still provides the same, and hen
e infeasible 
omplexity of 2151. Thereason is that now the number of equations equals the number of variables, sothe overall 
omplexity does not de
rease. To obtain a better atta
k 
omplexitywe somehow have to use the fa
t that all quadrati
 equations are bihomogeneous,i.e. of the form ∑36

i=1

∑9
j=1 αijt27jsi28 for some αij ∈ Fq. In [FDS11℄ Faugèreet al. analyzed systems of su
h a spe
ial stru
ture and gave an upper bound onthe degree of regularity for F4. To use their results we �rst have to guess onevariable tij su
h that we obtain a system of 44 bihomogeneous equations in 44variables. A

ording to their results we now obtain a degree of regularity of 9and a 
omplexity of 29(44+9
9

)2
≈ 273. In general the degree of regularity is r, aswe have r − 1 variables tij after guessing and thus the 
omplexity of our atta
kfor arbitrary parameters is given by
q

(
2m− 1

r

)2

.
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o ThomaeOn
e we obtained a single row/
olumn of S̃ and T̃ , the whole system breaks downas all other elements are now determined through linear equations. Therefore letus label every equation obtained by a zero 
oe�
ient of uiuj in f (k) by (ui, uj, k)(
f. (2)). Now, (ui, v1, k) and (vj , v1, k) with i = 1, . . . , 27, j = 1, . . . , 18 and
k = 19, . . . , 26 provide linear equations in tij with i = 19, . . . , 26 and j = 1, . . . , 9.Next we 
an apply the same approa
h using good keys as above for v1 to vi,
i = 2, . . . , 9. As we already know the 
oe�
ients tij of the appropriate good key,all bihomogeneous equations be
ome linear in sij . We now 
an determine thenext blo
ks in T through linear equations only. We repeat the pro
ess until allse
ret 
oe�
ients are re
overed.To summarize our new atta
k, we �rst used the fa
t that 
ross-terms from
(U ∪ V2) × V1 do not exist to obtain quadrati
 instead of 
ubi
 equations inthe key re
overy atta
k. Se
ond, we redu
ed the number of variables throughgood keys. And third, we used the spe
ial bihomogeneous stru
ture of the equa-tions to lower the atta
k 
omplexity. In order to prote
t the s
heme against thisatta
k we either have to in
rease m or r. But as the 
omplexity of the signingalgorithm is 3q

(
r−1+dreg

r−1

)2, i.e. in the same order of magnitude of our atta
k,Enhan
ed STS 
annot be e�
ient and se
ure at the same time. In general it donot seem to be a good idea to use an exponential time signing algorithm.Cryptanalysis of Che
k Equation Enhan
ed STS. The original Enhan
edSTS s
heme 
ontains m quadrati
 equations in 2m − r variables in the publi
key and thus have qm−r possible valid signatures to one message. Even if 
urrentalgorithms 
annot take advantage of underdeterminedMQ-systems, Tsujii et al.[TG10℄ suggested to strength their signature by adding m − r 
he
k equationsand thus �x one unique signature. From a message re
overy point of view, theatta
ker now would have to solve aMQ-system of 2m−r (publi
 key) equationsand variables. Before he had to solve a system of m equations and variables afterjust guessing the additional m− r variables.However, the 
he
k equations do not a�e
t the algebrai
 key re
over atta
k wejust des
ribed. Moreover, if the 
he
k equations are not 
hosen purely randomand thus introdu
ing new stru
ture, the atta
k may even bene�t.Cryptanalysis of Hidden Pair of Bije
tion. The overall idea of this variantis very general. Take a pair F (1), F (2) : Fm
q → F

m
q of bije
tions with a disjoint setof variables, i.e. u = (u1, . . . , um) and v = (v1, . . . , vm) and 
onne
t them witha fun
tion H 
ontaining all the 
ross-terms of u and v. The 
entral polynomial

f (k) is given by
f (k)(u, v) := F1(u) + F2(v) +H(u, v) for some H(u, v) :=

m∑

j=1

m∑

i=1

αijuivj .



Generalization of the Rainbow Band Separation Atta
k 21If F (1) and F (2) 
ontain some trapdoor and we assign u or v zero, we 
an invertthe 
entral map. An instantiation of this s
heme using the STS trapdoor isdepi
ted in �gure 9.
r

r...
r

polynomials
U

︷ ︸︸ ︷

f (k)(u, v) = +

r

r...
r

V
︷ ︸︸ ︷

+
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r

U×V
︷ ︸︸ ︷

Fig. 9. Se
ret map F of Hidden Pair of Bije
tion using STS trapdoor.The �rst observation is that due to the 
ross-terms in H all the se
ret matri
es
F(i) have full rank 2m and thus rank atta
ks are not trivially appli
able. Butthere is a smart way in applying rank atta
ks to the s
heme. The weak point isthe signing algorithm proposed by Tsujii et al., whi
h �rst 
hooses u or v to bezero. They 
laimed that this would not help an atta
ker, as his 
han
e to guessthe right 
hoi
e is 1

2 . Well, if we 
olle
t 4m − 1 valid signatures x1, . . . , x4m−1to arbitrary massages, whi
h are all signed using the same se
ret S, we 
anbuilt an e�
ient distinguisher. We know X := (x⊺1 , . . . , x
⊺

2m−1) is (up to 
olumnpermutations) of the following form
X = S·

0

0The probability of matrix X to have rank 2m − 1 is (1/2)2m−12
(
2m−1

m

) whi
his su�
iently large�for example 
hoosing m = 30 this equals 0.21. On
e wefound a 
olle
tion of signatures x1, . . . , x2m−1, su
h that rank(X) = 2m− 1 weobtained an e�
ient distinguisher. If X ||xj for j ≥ 2m still has rank 2m− 1 weadd xj to the set A. If the rank in
rease by one we add xj to the set B. As soonas both sets A and B are of 
ardinality m we easily obtain a transformation
S̃ whi
h separates the U and V spa
e through linear algebra. After �xing oneof the both sets of variables we obtain a plain STS s
heme and 
an apply theHighRank or the Key Re
overy atta
k from above.In order to prevent this atta
k we would have to assign arbitrary values to urespe
tively v instead of all zeros. This immediately invalidate the trapdoor andmakes the s
heme unusable. In every step we would have to solve a quadrati
 un-derdetermined system of equations without destroying possible solutions throughguessing variables.



22 Enri
o ThomaeRemark 1. We did not fully analyze the latest variant of Enhan
ed STS pub-lished on Eprint [TTGF12℄ yet, but are quite 
on�dent that our atta
k alsoapplies.Con
lusions or: Where do we take it from here? In summary, we haveintrodu
ed a new atta
k on Enhan
ed STS that makes use of the heavily stru
-tured 
entral map in terms of missing 
ross-terms. We rate it very unlikely thatEnhan
ed STS or its variants 
an be repaired while providing an e�
ient signingalgorithm. So the question at hand is if non-linearity 
ould help in any way toimprove UOV or Rainbow.One answer was already given by Kipnis et al. in the paper that proposed UOV[KPG03℄. One of their possible variants to repair the balan
ed Oil and Vinegars
heme and thus to avoid the atta
k of Kipnis and Shamir [KS98℄ was 
alled Oil,Vinegar and Salt signature s
heme. Here the variables are divided into three sets
O, V and S. The 
entral map F is 
onstru
ted su
h that there are no monomials
uiuj with ui ∈ O and uj ∈ V ∪ S. After �xing the vinegar variables we obtain asystem linear in the O variables and quadrati
 in the S variables. The best knownway to solve su
h a system is to brute-for
e the S variables and then solve theremaining linear system. This way we loose a fa
tor of q|S| in terms of e�
ien
y.As it turned out later, a modi�ed version of the Kipnis and Shamir atta
k a
tu-ally 
an be applied to the Oil, Vinegar and Salt s
heme. Ironi
ally, the fa
tor wegain in terms of se
urity 
ompared to the original s
heme is exa
tly the fa
torwe loose in terms of e�
ien
y. But as the (positive) e�e
t of non-linearity to thepubli
 key size is negligible 
ompared to the (negative) e�e
t to the e�
ien
y ofthe s
heme, the best trade-o� is to just skip the salt variables and hen
e use theoriginal UOV s
heme.STS 
an be seen as a layer-based version of Oil, Vinegar and Salt. So we 
anrephrase the question between UOV and UOV+S in this setting. In parti
ular,we have to ask ourselves if the layered stru
ture of STS allows for a better trade-o� between e�
ien
y and se
urity than UOV. Unfortunately, we have to leavethe �nal answer as an open question. However, we in
line to the negative. Toillustrate this, we want to elaborate some thoughts on this matter. One the onehand, it is not 
lear even for UOV if the ratio between e�
ien
y and se
urityin
reases for the layer-based s
heme Rainbow. Espe
ially the atta
k of se
tion 3,whi
h is not appli
able to UOV, 
hallenges this hope. On the other hand, theatta
k of Kipnis and Shamir [KS98℄ is not pra
ti
al for layer-based s
hemes likeRainbow. So the question remains, if and how mu
h se
urity we 
an gain at allby introdu
ing some non-linearity in ea
h layer. Our intuition is that the lossof e�
ien
y is always greater or equal than the gain of se
urity in these 
asesand hen
e of no avail in pra
ti
e. The reason is that on the one hand the signingalgorithm be
omes exponential instead of polynomial, as soon as we introdu
enon-linear parts. In 
omparison, the atta
k stays exponential in both 
ases, i.e.there is no gap between the legitimate user and the atta
ker.
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k 23The only ex
eption from this rule seem to be Gröbner bases that are used asa trapdoor. Clearly we have to use Vinegar variables in that 
ase, as otherwiseMinRank atta
ks are appli
able. But we found no way to fuse this into a workings
heme�but got the impression that this is not possible at all. Hen
e, we leave itas an open problem, how to embed a Gröbner Basis into a s
heme using Vinegarvariables and to derive a both se
ure and e�
ient s
heme.
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o Thomae5 Cryptanalysis of Enhan
ed TTSEnhan
ed TTS was proposed by Yang and Chen in 2005 [YC05℄. The overallidea of the s
heme was to use several layers of UOV trapdoors and to makethem as sparse as possible. In 
ontrast to UOV this would prevent the Kipnisand Shamir atta
k [KS98℄ without in
reasing the number of vinegar variables.In fa
t, while we have a signature blow up of fa
tor 3 for UOV, enTTS improvesthis �gure to 1.3. As enTTS was designed for high speed implementation it usesas few monomials as possible.There are two di�erent s
alable 
entral maps given in [YC05℄, one is 
alled evensequen
e and the other odd sequen
e. The following equations show the evensequen
e.
f (i) = ui +

2ℓ−5∑

j=1

γijuju2ℓ−4+(i+j+1 mod 2ℓ−2) for 2ℓ− 4 ≤ i ≤ 4ℓ− 7,

f (i) = ui +

ℓ−4∑

j=1

γijui+j−(4ℓ−6)ui−j−2ℓ−1 +

2ℓ−5∑

j=ℓ−3

γijui+j−3ℓ+5ui−j+ℓ−4for 4ℓ− 6 ≤ i ≤ 4ℓ− 3,

f (i) = ui + γi0ui−2ℓ+2ui−2ℓ−2 +

6ℓ−5∑

j=i+1

γi,j−(4ℓ−3)u4ℓ−3+i−juj

+γi,i−4ℓ+3u0ui +

i−1∑

j=4ℓ−2

γi,j−(4ℓ−3)u2(i−j)−(i mod 2)uj + γi,i−4ℓ+2u0uifor 4ℓ− 2 ≤ i ≤ 6ℓ− 5.The number of equations and variables is m = 4ℓ and n = 6ℓ−4, respe
tively, forsome parameter ℓ. The �rst observation is that the number of equations obtainedby (2) is very large, as only 2ℓ − 3 monomials per equation are non-zero. These
ond observation is that the linear terms provide an enormous amount of newequations, as their 
oe�
ients are not 
hosen at random but �xed. Consideringonly the linear parts of the publi
 polynomials p(j) we obtain the followingequation analogously to (1)
ei+2ℓ−5 = S̃




m∑

j=1

t̃ij(γ
(j)
1 , . . . , γ(j)n )⊺


 for 1 ≤ i ≤ m, (4)where ei denote the all-zero ve
tor with a single 1 in the i-th entry and γ(j)i is the
oe�
ient of xi in p(j). We obtain a total amount of 4ℓ(6ℓ− 4) bihomogeneousequations in the (4ℓ)2 variables of T̃ and in the (6ℓ − 4)2 variables of S̃. Butdespite of this large amount of equations a theoreti
al 
omplexity analysis ofsolving those equations provide infeasible large results, due to the large amountof variables. Note that in pra
ti
e the solving algorithm may seriously bene�t of
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k 25the equations internal stru
ture. We leave it as an open problem to implementthis atta
k and run experiments to determine the real 
omplexity of atta
kingenTTS this way.In the sequel we on
e again fo
us on redu
ing the number of variables. Notethat most of the equations (4) vanish as soon as we use equivalent keys. This isalso true for a large amount of zero-
oe�
ients in the quadrati
 part. Thus wegeneralize the s
heme by adding more monomials. In parti
ular, we adapt thede�nition of enTTS as follows: As soon as a monomial xixj with xi ∈ U and
xj ∈ V o

urs in the original enTTS polynomial f (k), we just assume that allmonomials xixj with xi ∈ U and xj ∈ V o

ur as well. This way we easily seethat enTTS is a very spe
ial 
ase of the Rainbow signature s
heme, negle
tingthe linear parts. We 
hose the parameter set (n,m) = (32, 24) and thus ℓ = 6given in [YC05℄, as this provides a se
urity level of 288. See �gure 10 for anillustration.

F(1), . . . ,F(10) F(11), . . . ,F(14) F(15), . . . ,F(24)

8 10 4 10 8 10 4 10 8 10 4 10

0

0 0

T = 0

0 0

0 00

S =Fig. 10. Se
ret map F of TTS (32, 24) and equivalent keys T and S.The atta
k is similar to the one des
ribed in se
tion 4. Suppose we just want dopreserve zero 
oe�
ients of x32xi in polynomial u⊺F(14)u. This leads to the goodkeys given in �gure 11 and thus to 31 bihomogeneous equations in 10 variables
t14i with i = 15, . . . , 24 and 22 variables sj32 with j = 1, . . . , 22. Analogous tose
tion 4 we �rst have to guess one variable tij . Solving the remaining systemof 31 bihomogeneous equations in 31 variables has 
omplexity 28

(
31+10

10

)2
≈ 268(
f. [FDS11℄).Remark 2. Using the good key T ′ of �gure 11 gives arbitrary values for the �rst

4ℓ − 2 entries in ei of (4). Only the last 2ℓ − 2 entries are invariant under thetransformation Ω. But due to the good key S′ these entries be
ome arbitrary aswell, ex
ept the last one. Thus we obtain one more bihomogeneous equation from
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0

0 0

0 0

T ′ = 0

0 0

0 00

0 0

0S′ =Fig. 11. Good Keys T ′ and S′ for enTTS (32, 24).(4) using good keys. Now we 
an apply [FDS11℄ without guessing one variablebeforehand and obtain an overall 
omplexity of (32+11
11

)2
≈ 265.But due to the spe
ial stru
ture of enTTS we 
an do even better. Applying thetransformation of variables Ω analogous to lemma 1, we see that the monomial

u32u32 do not o

ur in any of the se
ret polynomials. This way we additionallyobtain 23 quadrati
 equations in sij . The 
omplexity of solving a generi
 systemof 23+ 32 quadrati
 and 1 
ubi
 equation in 32 variables is 247.7. Note that this
omplexity is just an upper bound as we assumed generi
 equations and thusdid not use the spe
ial bihomogeneous stru
ture.
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k 276 Cryptanalysis of MFE Based on Diophantine EquationsThe MFE en
ryption s
heme was published at CT-RSA 2006 [WYHL06℄ andbroken at PKC 2007 by Ding et Al. [DHN+07℄. The variant using Diophantineequations was published at Designs, Codes and Cryptography in 2011 [GH11℄.Clearly the se
urity goals of MFE are out of date, as even a dire
t atta
k on thepubli
 key using F4 or XL is e�
ient due to the small number of equations andvariables. Therefore we will not give another atta
k on MFE, but 
on
entrate onthe more se
ure variant proposed in [GH11℄. Note that our atta
k also applies tothe original MFE s
heme and very likely would be as e�
ient as the high orderlinearization atta
k of [DHN+07℄.MFE En
ryption S
heme. We brie�y des
ribe the main idea of MFE. For adetailed des
ription please refer to [WYHL06℄.The 
entral map F : F12
2k → F

15
2k : (x1, . . . , x12) 7→ (y1, . . . , y15) is de�ned by

y1 = x1 + φ(x1) + ψ1

y2 = x2 + φ(x1, x2) + ψ2

y3 = x3 + φ(x1, x2, x3) + ψ3

y4 = x1x5 + x2x7 y10 = x3x9 + x4x11
y5 = x1x6 + x2x8 y11 = x3x10 + x4x12
y6 = x3x5 + x4x7 y12 = x5x9 + x7x11
y7 = x3x6 + x4x8 y13 = x5x10 + x7x12
y8 = x1x9 + x2x11 y14 = x6x9 + x8x11
y9 = x1x10 + x2x12 y15 = x6x10 + x8x12where φ1, φ2 and φ2 are random quadrati
 polynomials and ψ1, ψ2 and ψ3 arepolynomials in y4, . . . , y15 obtained by a spe
ial determinant relation. On a highlevel view the 
entral map is a mix of two di�erent prin
iples. First y1, y2 and

y3 are 
omposed of a stepwise triangular stru
ture (
f. STS in se
tion 4) and amasking ψ1, ψ2, ψ3 whi
h hides this stru
ture. To de
rypt, we 
an easily 
al
ulatethe values of ψi, as they only depend on y4, . . . , y15 and unmask y1, y2 and y3.Conse
utively solving these equations yields x1, x2 and x3. Se
ond y4, . . . , y15are partitioned in 3 blo
ks of oil and vinegar stru
ture (
f. UOV se
tion 2), i.e.plugging in x1, x2 and x3 provide linear equations and so on. The publi
 map Pis obtained as usual by P = T ◦ F ◦ S.MFE En
ryption S
heme Based on Diophantine Equations. The variantof [GH11℄ generalize the idea of MFE to another 
lass of Diophantine equations.In parti
ular they use a Diophantine equation of the form
ψ1ψ2 = f1f2 + f3f4 + f5f6 + f7f8 + f9f10where f1, . . . , f10 are quadrati
 polynomials with oil and vinegar stru
ture and

ψ1, ψ2 are the polynomials used for masking later on. To �nd an instantiation
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o Thomaeof ψi and fi the authors used the polynomial ring
R = F2k [z1, z2, z3, z4, w1, w2, w3, w4, u1, u2, u3, u4, v1, v2, v3, v4] (5)and Plü
ker 
oordinates (
f. de�nition 3), whi
h are know to satisfy the followingidentity
0 = (p12zw + p12uv)p

34(z, w, u, v) + (p13zw + p13uv)p
24(z, w, u, v) +

(p14zw + p14uv)p
23(z, w, u, v) + (p23zw + p23uv)p

14(z, w, u, v) +

(p24zw + p24uv)p
13(z, w, u, v) + (p34zw + p34uv)p

12(z, w, u, v). (6)De�nition 3 (Plü
ker 
oordinates). Given the polynomial ring de�ned in (5),the Plü
ker 
oordinates are de�ned by
pijzw := ziwj − zjwi = ziyj + wjyi,

pij(z, w, u, v) := pijzu + pijwu + pijwv.To transform the 5 last terms of the sum (6) in oil and vinegar form, the authorsused the isomorphism
ρ : R → F2k [x1, x2, x3, x4, x5, x6, x7, x8, y1, y2, y3, y4, y5, y6, y7, y8]

: (z1, z2, z3, z4, w1, w2, w3, w4, u1, u2, u3, u4, v1, v2, v3, v4) 7→

(x1, x3, y1 + y5, y3 + y7, x4, x2, y5, y7, x5, x7, y4, y2, x8, x6, y8, y6)Note that there were two typos in the de�nition of ρ in [GH11℄ (
on�rmed by[Gao12℄).The 
entral map F : F56
2k → F

74
2k : (x1, . . . , x24, y1, . . . , y32) 7→ (z1, . . . , z74) isde�ned by

z1 = x1 + φ1(x1) + ψ1,1(x1, . . . , x8)
z2 = x2 + φ2(x1, x2) + ψ1,2(y1, . . . , y8)
z3 = x3 + φ3(x1, . . . , x3) + ψ2,2(y9, . . . , y16)
z4 = x4 + φ4(x1, . . . , x4) + ψ3,2(y17, . . . , y24)
z5 = x5 + φ5(x1, . . . , x5) + ψ1,1(x9, . . . , x16)
z6 = x6 + φ6(x1, . . . , x6) + ψ1,1(x17, . . . , x24)
z7 = x7 + φ7(x1, . . . , x7) + ψ4,2(y25, . . . , y32)
z7+i = f1,i(x1, . . . , x8, y1, . . . , y8) 1 ≤ i ≤ 10
z17+i = f2,i(x1, . . . , x8, y9, . . . , y16) 1 ≤ i ≤ 10
z27+i = f2,i(y1, . . . , y8, y9, . . . , y16) 1 ≤ i ≤ 8
z36 = f2,10(y1, . . . , y8, y9, . . . , y16)
z36+i = f3,i(x1, . . . , x8, y17, . . . , y24) 1 ≤ i ≤ 10
z46+i = f2,i(x9, . . . , x16, y9, . . . , y16) 1 ≤ i ≤ 8
z55 = f2,10(x9, . . . , x16, y9, . . . , y16)
z56+i = f3,i(x17, . . . , x24, y17, . . . , y24) 1 ≤ i ≤ 8
z64 = f3,10(x17, . . . , x24, y17, . . . , y24) 1 ≤ i ≤ 8
z56+i = f3,i(x17, . . . , x24, y17, . . . , y24)
z64+i = f4,i(x9, . . . , x16, y25, . . . , y32) 1 ≤ i ≤ 10
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k 29where φ1, . . . , φ7 are random quadrati
 polynomials and fi,j := f1,j for i = 2, 3, 4and j = 1, 3, 5, 7, 9. Further we de�ne
ψ2,2 := ρ(p34(z, w, v, u)) ψ3,2 := ρ(p34(w, z, u, v)) ψ4,2 := ρ(p34(w, z, v, u))
f2,2 := ρ(p24(z, w, v, u)) f3,2 := ρ(p24(w, z, u, v)) f4,2 := ρ(p24(w, z, v, u))
f2,4 := ρ(p23(z, w, v, u)) f3,4 := ρ(p23(w, z, u, v)) f4,4 := ρ(p23(w, z, v, u))
f2,6 := ρ(p14(z, w, v, u)) f3,6 := ρ(p14(w, z, u, v)) f4,6 := ρ(p14(w, z, v, u))
f2,8 := ρ(p13(z, w, v, u)) f3,8 := ρ(p13(w, z, u, v)) f4,8 := ρ(p13(w, z, v, u))
f2,10 := ρ(p12(z, w, v, u)) f3,10 := ρ(p12(w, z, u, v)) f4,10 := ρ(p12(w, z, v, u))To use the stru
ture of F for an algebrai
 key re
overy atta
k, e.g. missing
ross-terms, we need to look at the equations expli
itly:

z1 = x1 + φ1(x1) + x1x2 + x3x4 + x5x6 + x7x8

z2 = x2 + φ2(x1, x2) + y1y2 + y3y4 + y5y6 + y7y8

z3 = x3 + φ3(x1, . . . , x3) + y9y14 + y10y13 + y11y16 + y12y15

z4 = x4 + φ4(x1, . . . , x4) + y17y18 + y17y22 + y19y20 + y19y24 + y21y22 + y23y24

z5 = x5 + φ5(x1, . . . , x5) + x9x10 + x11x12 + x13x14 + x15x16

z6 = x6 + φ6(x1, . . . , x6) + x17x18 + x19x20 + x21x22 + x23x24

z7 = x7 + φ7(x1, . . . , x7) + y25y26 + y25y30 + y26y29 + y27y28 + y27y32 + y28y31

z8 = (x1 + x4)y5 + x4y1 + x5y8 + x8y4

z9 = (x2 + x3)y2 + x2y6 + x6y7 + x7y3

z10 = (x1 + x4)y7 + x4y3 + x5y6 + x8y2

z11 = (x2 + x3)y4 + x2y8 + x6y5 + x7y1

z12 = (x2 + x3)y5 + x2y1 + x6y4 + x7y8

z13 = (x1 + x4)y2 + x4y6 + x5y3 + x8y7

z14 = (x2 + x3)y7 + x2y3 + x6y2 + x7y6

z15 = (x1 + x4)y4 + x4y8 + x5y1 + x8y5

z16 = y1y7 + y2y8 + y3y5 + y4y6

z17 = (x1 + x4)x7 + (x2 + x3)x5 + x2x8 + x4x6

z18 = (x1 + x4)y13 + x4y9 + x5y16 + x8y12

z19 = (x2 + x3)y14 + x2y10 + x6y11 + x7y15

z20 = (x1 + x4)y15 + x4y11 + x5y14 + x8y10

z21 = (x2 + x3)y16 + x2y12 + x6y9 + x7y13

z22 = (x2 + x3)y13 + x2y9 + x6y12 + x7y16

z23 = (x1 + x4)y14 + x4y10 + x5y15 + x8y11

z24 = (x2 + x3)y15 + x2y11 + x6y10 + x7y14

z25 = (x1 + x4)y16 + x4y12 + x5y13 + x8y9

z26 = y9y15 + y10y16 + y11y13 + y12y14

z27 = (x1 + x4)x6 + x2x5 + (x2 + x3)x8 + x4x7

z28 = (y1 + y4)y13 + y4y9 + y5y16 + y8y12
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z29 = (y2 + y3)y14 + y2y10 + y6y11 + y7y15

z30 = (y1 + y4)y15 + y4y11 + y5y14 + y8y10

z31 = (y2 + y3)y16 + y2y12 + y6y9 + y7y13

z32 = (y2 + y3)y13 + y2y9 + y6y12 + y7y16

z33 = (y1 + y4)y14 + y4y10 + y5y15 + y8y11

z34 = (y2 + y3)y15 + y2y11 + y6y10 + y7y14

z35 = (y1 + y4)y16 + y4y12 + y5y13 + y8y9

z36 = (y1 + y4)y6 + y2y5 + (y2 + y3)y8 + y4y7

z37 = (x1 + x4)y21 + x4y17 + x5y24 + x8y20

z38 = (x2 + x3)y18 + x3y22 + (x6 + x7)y19 + x6y23

z39 = (x1 + x4)y23 + x4y19 + x5y22 + x8y18

z40 = (x2 + x3)y20 + x3y24 + (x6 + x7)y17 + x6y21

z41 = (x2 + x3)y21 + x2y17 + x6y20 + x7y24

z42 = (x1 + x4)y18 + x1y22 + (x5 + x8)y19 + x8y23

z43 = (x2 + x3)y23 + x2y19 + x6y18 + x7y22

z44 = (x1 + x4)y20 + x1y24 + (x5 + x8)y17 + x8y21

z45 = y17y23 + y18y24 + y19y21 + y20y22

z46 = (x1 + x4)x7 + x1x6 + (x2 + x3)x5 + x3x8

z47 = (x9 + x12)y13 + x12y9 + x13y16 + x16y12

z48 = (x10 + x11)y14 + x10y10 + x14y11 + x15y15

z49 = (x9 + x12)y15 + x12y11 + x13y14 + x16y10

z50 = (x10 + x11)y16 + x10y12 + x14y9 + x15y13

z51 = (x10 + x11)y13 + x10y9 + x14y12 + x15y16

z52 = (x9 + x12)y14 + x12y10 + x13y15 + x16y11

z53 = (x10 + x11)y15 + x10y11 + x14y10 + x15y14

z54 = (x9 + x12)y16 + x12y12 + x13y13 + x16y9

z55 = (x9 + x12)x14 + x10x13 + (x10 + x11)x16 + x12x15

z56 = (x17 + x20)y21 + x20y17 + x21y24 + x24y20

z57 = (x18 + x19)y18 + x19y22 + (x22 + x23)y19 + x22y23

z58 = (x17 + x20)y23 + x20y19 + x21y22 + x24y18

z59 = (x18 + x19)y20 + x19y24 + (x22 + x23)y17 + x22y21

z60 = (x18 + x19)y21 + x18y17 + x22y20 + x23y24

z61 = (x17 + x20)y18 + x17y22 + (x21 + x24)y19 + x24y23

z62 = (x18 + x19)y23 + x18y19 + x22y18 + x23y22

z63 = (x17 + x20)y20 + x17y24 + (x21 + x24)y17 + x24y21

z64 = x17x22 + (x17 + x20)x23 + (x18 + x19)x21 + x19x24

z65 = (x9 + x12)y29 + x12y25 + x13y32 + x16y28
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z66 = (x10 + x11)y30 + x11y26 + (x14 + x15)y27 + x15y31

z67 = (x9 + x12)y31 + x12y27 + x13y30 + x16y26

z68 = (x10 + x11)y32 + x11y28 + (x14 + x15)y25 + x15y29

z69 = (x10 + x11)y29 + x10y25 + x14y28 + x15y32

z70 = (x9 + x12)y30 + x9y26 + (x13 + x16)y27 + x13y31

z71 = (x10 + x11)y31 + x10y27 + x14y26 + x15y30

z72 = (x9 + x12)y32 + x9y28 + (x13 + x16)y25 + x13y29

z73 = y25y31 + y26y32 + y27y29 + y28y30

z74 = (x9 + x12)x14 + x9x15 + (x10 + x11)x16 + x11x13Let Z(i) be the matrix des
ribing the quadrati
 form of the 
entral polynomial
zi, i.e. zi(x) = x⊺Z(i)x with x := (x1, . . . , x24, y1, . . . , y32). Due to P = T ◦F ◦S,we know that every publi
 polynomial p(i) is of the form

P(i) = S⊺




74∑

j=1

tijZ
(j)




︸ ︷︷ ︸
=:Z̃

S.For arbitrary 
hosen T the matrix Z̃ is of form given in �gure 12. All the whitevalues denote 
oe�
ients that are systemati
al zero and thus 
an be used tore
over S without re
overing T at the same time.
8 8 8 8 8 8 8

xi
︷ ︸︸ ︷

yi
︷ ︸︸ ︷

resp.
Fig. 12. Matrix Z̃, where gray parts denote arbitrary values of the 
orresponding 
o-e�
ients and white parts denote zeros, respe
tively. The left matrix is a generalizedversion of the detailed right matrix.At this stage an algebrai
 key re
overy atta
k fails due to the large number ofvariables sij . To be pre
ise, we derive 74 · 15 · 82 = 71040 quadrati
 equations
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o Thomaein 6 · 7 · 82 = 2688 variables sij . The 
omplexity of solving a generi
 systemof this size using F4 or XL would be 2320 and thus infeasible. To redu
e this
omplexity we have to use the spe
ial stru
ture of the 
entral polynomials ziand �nd good keys minimizing the number of variables while maximizing thepreserved stru
ture of the 
entral map. The �rst observation is that variables
y25, y28, y29, y32 only o

ur in the six polynomials z7, z65, z68, z69, z72, z73. Thus,with high probability, there exist a linear 
ombination

P(7) +

6∑

i=1

t̃iP
(i) = S⊺



∑

j∈I

tjZ
(j)


Swith I := {1, . . . , 74}\{7, 65, 68, 69, 72, 73}. Now we 
an use a linear transfor-mation Ω that maps every variable ex
ept y32 to every of the other variables.We obtain the good key S′ shown in �gure 13. Furthermore Ω preserves all zero
oe�
ients of monomials xiy32 and yiy32.

S′ =Fig. 13. Good Key S′ for MFE based on Diophantine equations, where white partsdenote zeros, gray parts denote arbitrary values and ones at the diagonal.We end up with 55 bihomogeneous quadrati
 (from xiy32 and yiy32 with i 6= 32)and one 
ubi
 equation (from y32y32) in 52 variables sij and 6 variables ti. Un-fortunately the number of bihomogeneous equations is less than the number ofvariables and thus we 
annot dire
tly apply the results of [FDS11℄. But afterguessing 3 variables ti we 
an use their formula and obtain a atta
k 
omplexityof q3(59+4
4

)2
≈ 286. Well this already beats the 
laimed se
urity of 2113, but we
an do even better.A �rst simple optimization is to use 4 instead of 1 rows of T and thus ob-tain 4 
entral polynomials with the stru
ture des
ribed above. We end up with

4 · 55 = 220 bihomogeneous quadrati
 and 4 
ubi
 equations in 52 + 4 · 6 = 76variables. As it is an oben problem to determine the 
omplexity of solving su
hblo
k-wise bihomogeneous equations we only 
an assume generi
 equations andthus obtain a very bad upper bound of 271 to solve the system using F4.But we 
an do even better by ignoring the transformation T and just using thestru
ture given in �gure 12.
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k 33Let J := {x14, x16, x21, x23, y6, y13, y14, y15, y16, y18, y20, y21, y23, y29, y30, y31, y32}and K := {x1, . . . , x24, y1, . . . , y36}\J . The 
ru
ial observation is that non of the
entral polynomials zi 
ontains monomials J × J . In order to preserve the zero
oe�
ient of y232 we are thus allowed to map every variable to variables of J andevery variable ex
ept y32 to variables of K. Let us label 
olumns and rows of Sby (x1, . . . , x24, y1, . . . , y32), i.e. sx2,y32
is the element of S in the 2nd row and56th 
olumn. The good key S, whi
h only preserves the zero 
oe�
ients of y232only 
onsists of 56 − 17 = 39 variables si,y32

for i ∈ K in the last 
olumn. Weomit a formal proof, as it is the same like for lemma 1 and 2. In total we ob-tain 74 quadrati
 equations (the 
oe�
ient of y232 has to be zero in every publi
polynomial independently of T ) in 39 variables si,y32
. Solving this system has
omplexity 256.Now we 
an repeat this progress for y231 and obtain si,y31

for i ∈ K with 
om-plexity 256 again. At this point we 
an determine si,y32
for i ∈ J using that the
oe�
ients of y31y32 has to be zero. Solving those 74 equations in 17 variableshas 
omplexity 220. Next we obtain 3 · 74 equations through y230, y30y31, y30y32and 
an determine variables si,y30

for i ∈ K and si,y31
for i ∈ J at on
e. Solv-ing this system of 222 equations in 56 variables has 
omplexity 245. Note thatfrom now on more and more equations be
ome available in every step, until weobtained all 
olumns of S labeled by J . To determine the remaining 
olumns of

S, we use that non of the elements of K is 
onne
ted to more than 9 out of 17elements of J in all the 
entral equations zi. Thus we obtain at least 8 · 74 equa-tions to determine the 56 variables of 
olumn j ∈ K of S. This has 
omplexity
230. Note that if we pro
eed sequential we 
an also use zero 
oe�
ients of K×Kand thus obtain mu
h more equations. As soon as all the 
olumns of S labeledwith all the monomials o

urring in zi are determined we obtain the i-th row ofthe se
ret key T through linear equations.To summarize, a key re
overy atta
k on MFE based on Diophantine equationshas 
omplexity 2 · 256 = 257.A
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