
A Generalization of the Rainbow BandSeparation Attak and its Appliations toMultivariate ShemesEnrio ThomaeHorst Görtz Institute for IT-seurityFaulty of MathematisRuhr-University of Bohum, 44780 Bohum, Germanyenrio.thomae�rub.deAbstrat. The Rainbow Signature Sheme is a non-trivial generaliza-tion of the well known Unbalaned Oil and Vinegar (UOV) signaturesheme (Eurorypt '99) minimizing the length of the signatures. By nowthe Rainbow Band Separation attak is the best key reovery attakknown. For some sets of parameters it is even faster than a diret attakon the publi key. Unfortunately the available desription of the attakis very ad ho and does not provide deep insights.In this artile we provide another view on the Rainbow Band Separa-tion attak using the theory of equivalent keys and a new generalizationalled good keys. Thereby we generalize the attak into a framework thatalso inludes Reoniliation attaks. We further formally prove the or-retness of the attak and show that it does not only perform well onRainbow, but on all multivariate quadrati (MQ) shemes that su�erfrom missing ross-terms. We apply our attak and break the EnhanedSTS signature sheme and all its variants, as well as the MFE enryptionsheme and its variant based on Diophantine equations. In the ase ofRainbow and Enhaned TTS we show that parameters have to be ho-sen arefully and that the remaining e�ieny gain over UOV is small.As there is still some room to improve the Band Separation attak, itis not lear whether layer-based MQ-shemes will eventually beomesuper�uous or not.Key words: Multivariate Cryptography, Algebrai Cryptanalysis, BandSeparation, Key Reovery Attak, Rainbow, Enhaned STS, EnhanedTTS, MFE, Diophantine Equations1 IntrodutionThe main idea of our algebrai key reovery attak is the same as for the so-alled Reoniliation attak on UOV [BBD09℄, but involves some new tehniqueslike good keys, whih are a generalization of equivalent keys, as well as a speialtreatment of non-existing ross-terms. In setion 3 we will see that the RainbowBand Separation attak desribed in [DYC+08℄ is a speial ase of our attak.



2 Enrio ThomaeIn ontrast to the ad ho desription of this attak in [DYC+08℄ on less thanhalf a page, we are able to proof orretness of the attak and reveal some addi-tional bihomogeneous struture that was not used before. We revisit the attakon Rainbow (28, 18, 12, 12) with omplexity at most 267. As it is hard to usethe additional bihomogeneous struture in a theoretial omplexity analysis, weperformed various experiments that suggests a real attak omplexity of 264.Also other multivariate signature shemes like Enhaned STS, MFE and En-haned TTS su�er even more from missing ross-terms and thus ould be at-taked the same way. In setion 4 we brie�y introdue the STS signature shemeand all its variants. We show that our attak is better than the best know at-tak on the sheme, whih was a HighRank attak, and also break all variantsof Enhaned STS proposed so far. We strongly disbelieve that there is a way to�x STS without ending up at the Rainbow or Oil, Vinegar and Salt signaturesheme. In setion 5 we apply our attak to Enhaned TTS and show that, inontrast to Rainbow, it slightly bene�ts from the additional struture. Our at-tak redue the laimed seurity of 288 to 247. In setion 6 we apply or attakon the MFE signature sheme based on Diophantine equations and give a keyreovery in 257 instead of 2113, as laimed by the authors. For all readers notfamiliar with multivariate shemes, we brie�y introdue the general idea andbasi notations in setion 2.2 Basi FatsIn this setion we introdue the neessary notation and explain the most famousof all MQ-shemes, namely the Unbalaned Oil and Vinegar signature sheme(UOV). It was proposed by Patarin et al. [KPG99℄ at Eurorypt 1999 and is oneof the oldest MQ-shemes still unbroken. Understanding this simple and smartsheme is fundamental to understand the whole zoo of signatures that arose inthe sequel.The general idea ofMQ-signature shemes is to use a publi multivariate quadratimap P : Fn
q → F

m
q with

P =



p(1)(x1, . . . , xn)...
p(m)(x1, . . . , xn)


and

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n

γ
(k)
ij xixj = x⊺P(k)x,where P(k) is the (n × n) matrix desribing the quadrati form of p(k) and

x = (x1, . . . , xn)
⊺. Note that we an neglet linear and onstant terms as theynever mix with quadrati terms and thus have no positive e�et on seurity. Inthe ase of Enhaned TTS those linear terms will even derease seurity as wewill see later.



Generalization of the Rainbow Band Separation Attak 3The trapdoor is given by a strutured entral map F : Fn
q → F

m
q with

F =



f (1)(u1, . . . , un)...
f (m)(u1, . . . , un)


and

f (k)(u1, . . . , un) :=
∑

1≤i≤j≤n

γ
(k)
ij uiuj = u⊺F(k)u.In order to hide this trapdoor we hoose two seret linear transformations S, Tand de�ne P := T ◦ F ◦ S. See �gure 1 for illustration.
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FFig. 1. MQ-Sheme.For the UOV signature sheme the variables ui with i ∈ V := {1, . . . , v}are alled vinegar variables and the remaining variables ui with i ∈ O :=
{v + 1, . . . , n} are alled oil variables. The entral map f (k) is given by

f (k)(u1, . . . , un) :=
∑

i∈V,j∈V

γ
(k)
ij uiuj +

∑

i∈V,j∈O

γ
(k)
ij uiuj .The orresponding matrix F(k) is depited in �gure 2.

F(k) =

x1 . . . xv . . . xn

0

x1...
xv...
xn

︷
︸︸

︷
︷

︸︸
︷

vinegar variablesoil variablesFig. 2. Central map F of UOV. White parts denote zero entries while gray parts denotearbitrary entries.As we havem equations in m+v variables, �xing v variables will yield a solutionwith high probability. Due to the struture of F(k), i.e. there are no quadrati



4 Enrio Thomaeterms of two oil variables, we an randomly �x the vinegar variables to obtaina system of linear equations in the oil variables, whih is easy to solve. Thisproedure is not possible for the publi key, as the transformation S of variablesfully mixes the variables (like oil and vinegar in a salad). Note that for UOV wean disard the transformation T , as the trapdoor is invariant under this lineartransformation of equations.



Generalization of the Rainbow Band Separation Attak 53 Cryptanalysis of RainbowRainbow was proposed in 2005 [DS05℄ and is a layer-based variant of the wellknown multivariate quadrati (MQ) signature sheme Unbalaned Oil and Vine-gar (UOV). The downside of UOV is a omparably large signature expansionby a fator of 3 for urrent parameters (m = 28, n = 84) [TW12b℄. Rainbowimproves this to signatures of length n = 42 for messages of length m = 24, alsofor urrent parameters (28, 18, 12, 12) [DYC+08℄. In the original paper [DS05℄this improvement was even larger, but Billet and Gilbert [BG06℄ broke the pa-rameter set (28, 6, 6, 5, 5, 11) in 2006 using a MinRank -Attak. The idea usedby Billet and Gilbert was known sine 2000 and �rst proposed in [GC00℄. AtCrypto 2008 Faugère et al. [FdVP08℄ re�ned the tehnique of Billet and Gilbertusing Gröbner Bases. Ding et al. took this attak into aount and proposednew parameters of Rainbow [DYC+08℄ laimed to be seure against all knownattaks. In Algorithm 3 of [DYC+08℄ the authors also desribed the RainbowBand Separation attak, whih was ontributed to Yu-Hua Hu. Unfortunatelythe available desription of the attak on half of a page is very ad ho and doesnot provide deep insights.Up to now the parameter set (28, 18, 12, 12) is still lose to seure, even due totwo reent developments. Firstly in 2009 Bettale et al. published the HybridF5approah [BFP09℄ and thus redued the omplexity of a diret attak on thepubli key of Rainbow (28, 18, 12, 12) to 277. And seondly in 2011 Faugère etal. [FDS11℄ analyzed systems of bihomogeneous equations and gave an upperbound on the degree of regularity for F4. This immediately redued the om-plexity of MinRank-Attaks on Rainbow (28, 18, 12, 12) to 280.8. But anyway,neither of these tehniques drastially redued the seurity of Rainbow. We referto Petzold et al. [PBB10℄ for a omprehensive omparison of all known attakson Rainbow and proposals for seure parameters.Rainbow uses the same idea as UOV but in di�erent layers. A urrent hoieof parameters is given by (q, v1, o1, o2) = (28, 18, 12, 12). In partiular the �eldsize q = 28 and the number of layers is two. Note, two layers seems to be thebest hoie in order to prevent MinRank attaks and preserve short signaturesat the same time. The entral map F of Rainbow is divided into two layers
F(1), . . . ,F(12) and F(13), . . . ,F(24) of form given in �g. 3. A formal desription isgiven by the following formula.

f (k)(u1, . . . , un) :=
∑

i∈V1,j∈V1

γ
(k)
ij uiuj +

∑

i∈V1,j∈O1

γ
(k)
ij uiujfor k = 1, . . . , o1

f (k)(u1, . . . , un) :=
∑

i∈V1∪O1,j∈V1∪O1

γ
(k)
ij uiuj +

∑

i∈V1∪O1,j∈O2

γ
(k)
ij uiujfor k = o1 + 1, . . . , o1 + o2
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18 12 12

for F(1), . . . ,F(12)

and
0

18 12 12

for F(13), . . . ,F(24)Fig. 3. Central map of Rainbow (28, 18, 12, 12). White parts denote zero entries whilegray parts denote arbitrary entries.To use the trapdoor we �rst solve the small UOV system F(1), . . . ,F(12) by ran-domly �xing the 18 vinegar variables. The solution u1, . . . , u30 is now used asvinegar variables of the seond layer. Solving the obtained linear system yields
u31, . . . , u42.Algebrai Cryptanalysis of Rainbow. Now we investigate what the speialstruture of F tells us about the seret keys S and T . More preisely an algebraikey reovery attak exploits the speial struture of F, i.e. zero entries at ertainknown plaes, to obtain equations in T̃ := T−1 =: (t̃ij) and S̃ := S−1 throughthe following equality, whih we obtain from F = T−1 ◦ P ◦ S−1.

F(i) = S̃⊺




m∑

j=1

t̃ijP
(j)


 S̃ (1)As P is publily known and we further know that some spei�ed entries of Fhave to be zero, we obtain ubi equations in the elements of S̃ and T̃ . The keyobservation is that the equations obtained by the fat that the oe�ient of uiujin f (k) is zero is of the form

0 =

n∑

x=1

n∑

y=1

n∑

z=1

αxyz t̃kxs̃yis̃zj (2)for some oe�ients αxyt ∈ Fq that depend on P(j) (f. [PTBW11, Se. 3℄ or[TW12b℄ for an expliit formula). In partiular every monomial ontains onevariable of the i-th olumn and one variable of the j-th olumn of S̃. We willlater make heavily use of this fat. But �rst let us alulate the omplexity ofa key reovery attak up to this point. Let us de�ne V1 := {u1, . . . , uv1}, O1 :=
{uv1+1, . . . , uv1+o1}, O2 := {uv1+o1+1, . . . , uv1+o1+o2} and O×V := {{u, v} |u ∈



Generalization of the Rainbow Band Separation Attak 7
O, v ∈ V }. The number of equations obtained by (1) equals the number ofsystemati zeros in all the f (k) and thus is

(o1 + o2) · |(O2 ×O2)|+ o1 · (|(O2 × (O1 ∪ V1))|+ |(O1 ×O1)|) = 7128.The number of variables in S̃ and T̃ is given by (v1+o1+o2)
2+(o1+o2)

2 = 2340.The omplexity of solving suh a system of equations using some Gröbner Basisalgorithm like F4 is 23608 (f. [BFSY05℄). In a nutshell, we �rst have to alulatethe degree of regularity dreg. For semi-regular sequenes, whih generi systemsare assumed to be, the degree of regularity is the index of the �rst non-positiveoe�ient in the Hilbert series Sm,n with
Sm,n =

∏m

i=1(1− zdi)

(1− z)n
, (3)where di is the degree of the i-th equation, m is the number of equations and

n the number of variables. The omplexity of solving a zero-dimensional (semi-regular) system using F4 is
O

((
n+ dreg
dreg

)α)
,with 2 ≤ α ≤ 3 the linear algebra onstant. The internal equations used by F4are very sparse and thus α = 2 is applied by ryptanalyst. Well, the onstru-tors of shemes are often of a di�erent opinion and use α = 3. Note that (3)hanges for small �elds, i.e. if the degree of regularity is larger than the numberof elements in the �eld. Note further that generi MQ-systems are assumed tohave worst-ase omplexity. As soon as the equations ontain some struture,e.g. they are bihomogeneous, the omplexity of solving them derease [FDS11℄.As our equations are partly bihomogeneous, 23608 is just an upper bound. Un-fortunately theoretial omplexity analyses of strutured MQ-systems is a veryimportant open problem and the formula given above is the best we know up tonow.A �rst improvement of this upper bound omplexity an be ahieved by usingequivalent keys, a notion introdued by Wolf and Preneel [WP05℄.De�nition 1 (Equivalent keys for Rainbow (v1, o1, o2)). Let S = (sij) and

T = (tij) be two regular matries. We label the equations given in (2) by (k, i, j)and de�ne
S := {(k, i, j) | (1 ≤ k ≤ o1 ∧ 1 ≤ i ≤ n ∧max{v1 + o1 + 1, i} ≤ j ≤ n)

∨ (1 ≤ k ≤ o1 ∧ v1 < i ≤ v1 + o1 ∧ i ≤ j ≤ v1 + o1)
∨ (o1 < k ≤ o1 + o2 ∧ o1 + o2 < i ≤ n ∧ i ≤ j ≤ n)the set of all equations obtained by systemati zero oe�ients in the entral map

F . Note S and T are a valid solution of S. We all two regular matries S′ and
T ′ equivalent keys, if they also ful�ll all equations in S.



8 Enrio ThomaeOr in other words, if S and T are seret keys for the orresponding entral map
F then we all S′ and T ′ equivalent keys, if T ◦F ◦S = P = T ′◦F ′◦S′ for a validtrapdoor F ′. That means S′ and T ′ preserve the struture of F , i.e. preserveall systemati zero oe�ients. Eah equivalent key is su�ient for an attakerto use the trapdoor. Choosing a speial representative of the lass of equivalentkeys will now allow us to redue the number of variables in S and T . Lets oneagain S̃ := S−1 and T̃ := T−1.We �rst onsider all transformations Ω−1u = Ω−1Sx, suh that

x⊺S⊺FSx = x⊺S⊺(Ω−1)⊺Ω⊺FΩΩ−1Sxand Ω⊺FΩ preserves the speial struture of F .Obviously we are allowed to map V1 7→ V1 as these monomials exist anyway.What we are not allowed is to map O1 ∪ O2 7→ V1 as this would destroy thezero oe�ients of monomials in (O1 × O1) and (O2 × O2) in the �rst layerequations. With the same argument we are allowed to map V1 ∪ O1 7→ O1 and
V1 ∪O1 ∪O2 7→ O2, i.e. Ω−1S = S̃Ω needs to be of the following form.

S′ = S̃Ω =




S̃
(1)
(v1×v1)

S̃
(2)
(v1×o1)

S̃
(3)
(v1×o2)

S̃
(4)
(o1×v1)

S̃
(5)
(o1×o1)

S̃
(6)
(o1×o2)

S̃
(7)
(o2×v1)

S̃
(8)
(o2×o1)

S̃
(9)
(o2×o2)







Ω
(1)
(v1×v1)

0 0

Ω
(2)
(o1×v1)

Ω
(3)
(o1×o1)

0

Ω
(4)
(o2×v1)

Ω
(5)
(o2×o1)

Ω
(6)
(o2×o2)


If S̃(9) is regular, whih is true with high probability (0.996 for o2 = 12) thenthere exists Ω(6) suh that S′(9) = S̃(9)Ω(6) = I. If S̃(9) and S̃(5) are regular,whih is true with high probability (0.992 for o1 = 12), then (S̃(5) S̃(6)

S̃(8) S̃(9)

) isregular, too. Thus there exist Ω(3) and Ω(5), suh that S′(5) = I and S′(8) = 0.As we know that S̃ is regular, it always exist Ω(1), Ω(2) and Ω(3), suh that
S′(1) = I, S′(4) = 0 and S′(7) = 0. To onlude, with high probability (0.992)there exist an equivalent key S′ of the form given in �gure 4. Note that wean randomize the algorithm by permuting olumns and rows and thus startagain if �nding S′ fails. The same holds for the transformation of equations T ,as we always an add equations within the same layer, as well as equations ofthe �rst to the seond layer, without destroying the zero oe�ients. Thus withoverwhelming probability it exists an equivalent key T ′ of the form given in�gure 4.The total number of variables is now redued to v1(o1 + o2) + 2o1o2 = 720.The number of equations stays the same, but as the �rst v1 olumns of S′does no longer ontain any variables, the orresponding o1 · |(O2×V1)| equationstransform from ubi to quadrati and furthermore are bihomogeneous in s′ij and
t′ij . In our ase we have 2592 quadrati and 4536 ubi equations. The omplexityof solving this system by F4 is 2374 whih still is infeasible. To further dereasethis omplexity we now introdue the notion of good keys.
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0

0 0

18 12 12

S′ = and T ′ =
0

12 12

Fig. 4. Equivalent keys for Rainbow (28, 18, 12, 12). White parts denote zero entries,gray parts denote arbitrary entries and there are ones at the diagonal.The overall idea is to derease the number of variables in S′ and T ′ as far aspossible while preserving a reasonable amount of equations at the same time.Therefore we generalize the notion of equivalent keys to keys that do not preservethe whole struture of F but just some of it. We all those keys good keys if theyalso reveal some parts of the keys S′ and T ′, respetively.De�nition 2 (Good keys for Rainbow (v1, o1, o2)). Let S be the set de�nedin de�nition 1, S′ ⊆ S and S, T equivalent keys. We all two regular matries Ŝand T̂ good keys, if they ful�ll all equations in S
′ and the sets

{(i, j) | sij = ŝij and (1 ≤ i ≤ v1∧v1 < j ≤ n)∨(v1 < i ≤ v1+o1∧v1+o1 < j ≤ n)}and
{(i, j) | tij = t̂ij for (1 ≤ i ≤ o1 ∧ o1 < j ≤ o1 + o2)}are both not empty.At a �rst glane it is not lear that good keys even exists. The following lemmaproves the existene of good keys and give a speial lass of them.Lemma 1. Let S′ and T ′ be equivalent keys for Rainbow of the form given in�gure 4. Then there exist good keys Ŝ and T̂ , of the following form.

0

0

0

0

18 12 12

Ŝ = and T̂ =

12 12

0Only the last olumn of Ŝ ontains arbitrary values in the �rst two bloks, whihare equal to the orresponding values in S′. Respetively, only the seond blok ofthe o1-th row of T̂ ontains arbitrary values, whih are equal to the orrespondingvalues in T ′.



10 Enrio ThomaeProof. We �rst show that there exists a unique transformation S′Ω = Ŝ, if weassume Ωn1 = . . . = Ωn(v1+o1) = 0. We need those zeros later, to preserve aminimal amount of struture in F .
S′Ω :=



I S

′(1)
(v1×o1)

S
′(2)
(v1×o2)

0 I S
′(3)
(o1×o2)

0 0 I







Ω
(1)
(v1×v1)

Ω
(2)
(v1×o1)

Ω
(3)
(v1×o2−1)||0

Ω
(4)
(o1×v1)

Ω
(5)
(o1×o1)

Ω
(6)
(o1×o2−1)||0

Ω
(7)
(o2×v1)

Ω
(8)
(o2×o1)

Ω
(9)
(o2×o2)




!
= ŜUsing linear algebra, we uniquely obtain Ω(4) = Ω(7) = Ω(8) = 0, Ω(1) =

Ω(5) = Ω(9) = I, Ω(2) = −S′(1) and Ω
(6)
(o1×o2−1) = −S

′(3)
(o1×o2−1) as well as

Ω
(3)
(v1×o2−1) = (S′(1)S′(3)−S′(2))(v1×o2−1). Obviously the last olumn of S′(2) and

S′(3) are not a�eted by this transformation. Furthermore omitting the zeros inthe last olumn of Ω would destroy all the struture in F (f. �gure 5).As soon as we would allow to map un to any of the variables in V1 or O1 allthe zero oe�ients in F would vanish and thus no equations would be left toperform an algebrai attak with.Showing that T̂ is a good key is trivial: If we just want to preserve the strutureof F(o1), we an forget everything but the o1-th row of T ′. ⊓⊔The seret map F′ = Ω⊺FΩ is of the from given in �gure 5.
18 12 12

for F′(12)

and 18 12 12

for F′(1), . . . ,F′(11),

F′(13), . . . ,F′(24)Fig. 5. Central map of Rainbow (28, 18, 12, 12) after applying the transformation Ωgiven by lemma 1. White parts denote zero entries and gray parts denote arbitraryentries.The total number of variables obtained by good keys hosen as above is v1 +
o1 + o2 = 42. To ount the number of equations, we denote n := v1 + o1 + o2and label every equation obtained by a zero oe�ient of uiuj in F(k) by (i, j, k)(f. equation (2)). First, (n, n, o1) provides a ubi equation. Seond, (n, n, i) for
i = 1, . . . , o1− 1, o1+1, . . . , o1+ o2 provides quadrati equations in the variables
sij . Third and most important, (i, n, o1) for i = 1, . . . , n− 1 provides quadrati,bihomogeneous equations in sij and tij . Those equations are the main weakness



Generalization of the Rainbow Band Separation Attak 11of all layer based MQ-primitives. Their existene is due to the missing ross-terms V1 ×O2 and O1 × O2 in the �rst layer of Rainbow. Note that in the aseof UOV these equations do not exist. Applying the same approah to UOV,provides m quadrati equations in 2m variables, whih is infeasible for urrentparameters of m = 26. For Rainbow (28, 18, 12, 12) we end up with 1 ubi,23 quadrati and, due to the missing ross-terms, 41 bihomogeneous equations.Solving this system of equations has a omplexity of 267.7. Again this omplex-ity estimation assumes generi equations. As our equations ontain some speialstruture, e.g. some of them are bihomogeneous, we an hope for a lower om-plexity in pratie. We implemented our attak and ompared its running timeto those of random systems (f. table 2). This way we obtained an empirialomplexity that is bounded from above by 264.After we obtained one olumn of S′ and one row of T ′, all the other parts of S′and T ′ are revealed by linear equations. More preisely, by equations (i, n, j) for
i = 1, . . . , n and j = 1, . . . , o1−1, o1+1, . . . , o1+o2 we obtain n(o1+o2−1) linearequations in the remaining (o1 − 1)o2 variables of T ′. After we reovered T ′ allthe equations (i, j, k) for i = 1, . . . , v1, j = v1 + 1, . . . , n and k = 1, . . . , o1 + o2,and even some more, beome linear. Solving this system of v1(o1 + o2)

2 linearequations in (v1+o1−1)o2+v1o1 variables easily reveals the unique solution of S′.Table 1 shows the theoretial omplexity of our attak for several parametersgiven in [PBB10℄ whih were onsidered to be seure.Table 1. Attak omplexity for several parameter sets believed to be seure. Note, theparameters for small �elds are still valid.parameter set �eld attak [log2](18,13,14) GF(28) 69.5(20,14,14) GF(28) 76.1(17,18,17) GF(31) 78.3(21,20,20) GF(24) 88.1Experimental Results. We have implemented our attak using the softwaresystem Magma V2.16-1 [MAG℄. All experiments were performed on a Intel XeonX33502.66GHz (Quadore) with 8 GB of RAM using only one ore. Table 2 givethe results for various parameter sets (v1, o1, o2) of Rainbow. Column 4 and 5give the number of equations and variables obtained through our attak. Column6 gives the log2 value of the theoretial omplexity assuming random equationsand thus the worst ase omplexity of our attak (f. [BFSY05℄). The followingthree olumns show the time in seonds that our attak required over di�erent�elds. We guess that F28 is implemented more e�iently in Magma and thus itneeds longer to solve instanes over F24 than over F28 . The last olumn desribes



12 Enrio Thomaethe time it took us to solve a random instane with the same number of variablesand equations, assuming that a solution exists. Comparing these omplexities tothe ones of our attak, we observe a fator of 32 for (6, 4, 4) that we are fasterover F28 than theoretially expeted. As this set of parameters is a saled variantof (18, 12, 12) and the di�erene only inreases, we onlude that the attak isat least 32 times faster than the theoretial upper bound. Thus we end up withan empirial omplexity of 262.7 to break Rainbow (28, 18, 12, 12).Table 2. Running times in seonds of our attak for di�erent sets of parameters, overdi�erent �elds. In omparison the running time in seonds for random systems is givenin the last olumn, as well as a theoretial omplexity in operations in olumn six.
v1 o1 o2 #eq. #var. theoretial attak [s] attak [s] attak [s] random [s]

m n [log2] GF(28) GF(24) GF(31) GF(28)5 4 4 20 13 26 0.5 0.7 0.4 66 4 4 21 14 26 0.7 1.1 0.6 237 4 4 22 15 31 1.4 2.1 1.1 1948 4 4 23 16 32 4.3 6.9 3.6 6419 4 4 24 17 33 35 64 29 33286 5 5 25 16 28 17 29 15 877 5 5 26 17 32 33 58 25 12708 5 5 27 18 34 87 159 73 44759 5 5 28 19 34 630 1185 527 -7 6 6 30 19 35 443 821 370 -8 6 6 31 20 35 877 1765 743 -9 6 6 32 21 36 3034 6052 2578 -8 7 7 35 22 41 12567 25311 10730 -
Conlusion. A immediate onsequene of our attak is that we should use atleast parameters (22, 16, 16) over F28 . Further we did not use all the struturefor the theoretial analysis of our attak, i.e. we negleted that a large portion ofthe obtained equations is bihomogeneous. Thus we should ask ourselves a veryimportant question: Is the gain in e�ieny by transforming UOV to Rainbowlarger than the loss of seurity? If not, Rainbow is super�uous as UOV willalways be both, more seure and e�ient. This question espeially arise beauseour attak on Rainbow use the missing ross-terms and thus is not appliable toUOV. Unfortunately, a fair omparison of the e�ieny/seurity ratio of UOVand Rainbow is out of the sope of this paper. To even de�ne e�ieny inthis ontext is an involved task. Do we only measure the blowup fator of the



Generalization of the Rainbow Band Separation Attak 13signature or do we take the omplexity of the signing algorithm into aount,too? Our intuition is that we roughly lose as muh seurity as we gain e�ienyin terms of the signature length while transforming UOV to Rainbow. Let usexplain this at the following example over F28 . Using Rainbow (28, 22, 16, 16),for whih our key reovery attak has omplexity at most 284, we map messagesof length 32 to signatures of length 54. For omparison, UOV with parameters
o = 28 and v = 56 is onsidered to have a seurity level of 284 against messagereovery attaks [BFP09,TW12b℄. Thus UOV maps a message of length 28 toa signature of length 84. Further we an use that UOV is well parametrized,while Rainbow is built on the edge, i.e. in order to prevent key reovery attakslike the one of Kipnis and Shamir [KS98,KPG99℄ on UOV, we only have toensure v − o− 1 ≥ 8. So hoosing v = 2o is a little onservative. More preisely
o = 28 and v = 37 is su�ient to prevent this type of key reovery attak. Inthis ase UOV maps a message of length 28 to a signature of length 65. To putseurity onerns in a nutshell, UOV is based on the MQ- and IP-problem andRainbow additionally use the di�ulty of the MinRank-problem. So everyonehave to deide on his own, if obtaining signatures of length 54 instead of 65 isworthwhile to take another lass of problems into aount.



14 Enrio Thomae4 Cryptanalysis of Enhaned STS and all its VariantsAnother way to ahieve a seret map F =
(
f (1), . . . , f (m)

)⊺ was given by the Se-quential Solution Method of Tsujii [STH89,TKI+86℄. The idea was somehow simi-lar to the independently proposed shemes of Shamir [Sha93℄ and Moh [Moh99℄.In 2004 Kasahara and Sakai extended this idea to the so-alled RSE system[KS04℄, whih later was generalized to the Stepwise Triangular System (STS)by Wolf et al. [WBP04℄. Here the entral polynomials f (k) are some randomquadrati polynomials in a restrited number of variables. See �gure 6 for thestepped struture of the resulting MQ-system. Inverting this map is possible aslong as solving r quadrati equations in r variables is pratial. Consequently,we need to restrit r to rather small values, e.g. r = 4 . . . 9.
f (1)(u1, . . . , ur)...
f (r)(u1, . . . , ur)...
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f (ir)(u1, . . . , uir)...
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Fig. 6. Central map of STS based signature shemes like RSSE(2)PKC or RSE(2)PKC.The gray parts of the matrix indiate that those variables our in the orrespondingpolynomial and white parts indiate that they do not.In the same year Wolf et al. [WBP04℄ showed how to e�iently break the pro-posed parameters of the STS shemes RSSE(2)PKC and RSE(2)PKC using aHighRank attak. At PQCrypto 2010 Tsujii et al. [TGTF10℄ tried to �x thesheme by proposing a new variant alled Enhaned STS, whih uses a om-plementary STS struture (f. �gure 7). Only a few months later they notiedthemselves that the sheme is obviously not immune to HighRank attaks, al-though this was originally a design goal. To �x this problem, they proposedseveral new variants [GT11,TG10℄. We will now shortly repeat the HighRankattak and then give a more e�ient algebrai key reovery attak whih makesuse of good keys and missing ross-terms. The latter are quadrati monomialsof two variables from di�erent sets, whih do not exist in the entral map F



Generalization of the Rainbow Band Separation Attak 15by onstrution. We onlude that it is impossible to �nd a seure and e�ientparameter set of Enhaned STS. We will also break the new variants of STS. Toonlude, we disuss (im)possible improvements and show that we either end upwith the Rainbow or Oil, Vinegar and Salt signature sheme.Cryptanalysis of Enhaned STS. To exploit di�erent ranks in plain STS,we use the quadrati form of the polynomials f (k), i.e. f (k) = u⊺F(i)u for
u = (u1, . . . , um)⊺ and some (m×m) matrix F(i). Note that we have n = m = Lrhere. Obviously the rank of these matries in the i-th step is ir. Now we use thatthe rank is invariant under the bijetive transformation S−1u = x of variables,i.e. rank(S⊺F(i)S) = rank(F(i)) for all i. In addition, the publi polynomials
p(i) = x⊺P(i)x are given by some linear ombination P(i) =

∑m

j=1 tijS
⊺F(j)S =

S⊺

(∑m

j=1 tijF
(j)
)
S. As the rank is hanged by the transformation of equations

T , we an use the rank property of the underlying entral equations f (k) as adistinguisher to obtain the full transformation T .Enhaned STS was thought to resist rank attaks. Tsujii et al. introdued twosets U = {u1, . . . , um} and V = {v1, . . . , vm−r} of variables and onstrutedentral polynomials f (k) whih all have the same rank m. The onstrution isvery similar to �gure 6, but every polynomial f (k) depends on m variables. See�gure 7 for details.
r

r...
r

polynomials
u1..ur · · · umv1..vr · · ·

vm−r

variables
Fig. 7. Central map of Enhaned STS. The gray parts of the matrix indiate that thosevariables our in the orresponding polynomial and white parts indiate that they donot.As the orresponding MQ-system F has m quadrati equations but n = 2m− rvariables, we ould �x all variables of V to random values and obtain an MQ-system of r equations and r variables in the �rst step. Solving this MQ-system,substituting the solution in the next step and so on, allows for a reasonable ef-�ient inversion of F .



16 Enrio ThomaeTsujii et al. themselves notied [TG10℄ that having the same rank m for theentral polynomials f (k) does not prevent rank attaks in any way, as the rankof the publi polynomials is 2m − r. The following simple HighRank attak isstill appliable. Note that due to the additional variables vi the minimal rank ofthe entral polynomials is m, for m ≥ 26 in pratie to prevent diret attaks.Thus Enhaned STS is at least seure against MinRank attaks [FdVP08,BG06℄.HighRank Attak. In order to reonstrut T we have to searh for linear om-binations of the publi polynomialsP(i), suh that the rank derease from 2m−rto m. Let σ ∈ Sm be a random permutation, whih we need for randomization.Then there exist λi ∈ Fq suh that the following linear ombination has rank
2m− 2r and thus the rank drops by r.

P(σ(r+1)) +

r∑

i=1

λiP
(σ(i)) =: P̃There are 2 di�erent solutions, as we an eliminate the r matries F(1), . . . ,F(r)or F(m−r+1), . . . ,F(m) suh that P̃ has rank 2m − 2r. In the �rst ase P̃ is alinear ombination of seret polynomials, who do not ontain variables v1, . . . , vrrespetively um−r+1, . . . , um in the latter ase. Thus brute foring all λi hasomplexity qr/2. One we have eliminated all the F(i) of one blok (e.g. 1 ≤ i ≤ r)in one polynomial P̃ we easily eliminate those F(i) in all the other m− r publipolynomials by just determining ker(P̃). The linear system ∑m

i=1 λiP
(i)ω = 0with ω ∈ ker(P̃) provides all m−r polynomials of rank 2m−2r. The omplexityof this step is 2(2m − r)3. Repeating this whole proedure L times yields rmatries P̃(i) of rank m. At this point we know the kernel of one of the entralbloks of F and ould use this to separate the matries in the steps before, whihare still linear ombinations of some S⊺F(i)S. Choosing a vetor that lies in thekernel of the matries obtained in the i-th step, but not in the kernel of matriesreovered in step i + 1, . . . , L easily provides T . The overall omplexity of thisHighRank attak is given by

L

2
qr + 2L(2m− r)3 +

L−1∑

i=1

(ir)3 = O(qr).Algebrai Key Reovery Attak. We saw that the omplexity of the High-Rank attak strongly depends on the �eld size q and the parameter r. Evenif r is restrited to small values due to e�ieny onstraints, it is possible tohoose q large enough to obtain a sheme seure against the previously men-tioned attak. For example, let r = 9 and q = 29. Now we desribe a new keyreovery attak that is almost independent of the �eld size q and thus makesit impossible to �nd a parameter set that is both e�ient and seure. To easeexplanation we �x a parameter set of Enhaned STS to illustrate the attak. Asthere are no parameters given in [TG10℄, whih is by the way not very ourteous



Generalization of the Rainbow Band Separation Attak 17to ryptanalyst, we hoose m = 27, r = 9 and q = 29 as this prevents messagereovery attaks via Gröbner Bases on the publi key as well as HighRank at-taks. The number of steps is given by L = m/r = 3. The number of variablesis n = 2m − r = |U | + |V | = 27 + 18 = 45. Note that a legitimate user wouldneed to solve three generi MQ-system with 9 equations and variables over F29to ompute a signature. While possible in theory, it is ine�ient for pratialuse. Solving a generi MQ-system with 9 equations and variables over F29 usingthe fastest known method, i.e. the hybrid approah [BFP09℄ by guessing onevariable, as well as the very fast F4 implementation of Magma V2.16-1 [MAG℄on a Intel Xeon X33502.66GHz (Quadore) with 4 GB of RAM using only oneore, took us 0.3 seonds. Thus the worst ase signing time is 3 · 29 · 0.3 ≈ 461seonds. But despite of hoosing suh a large r, we now show that the resultingsheme still is not seure.
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Fig. 8. Central map F of Enhaned STS and the minimal representative S and T ofthe lass of equivalent keys.Figure 8 shows the struture of the entral map F . The piture desribing F hasto be read like �gure 7. Every little square denotes a (9 × 9) array. Moreover,we give the struture of the seret key S̃ := S−1, whih is a (45 × 45) matrixwith ones at the diagonal, zeros at the white parts and unknown values at thegray parts. Note that there are many di�erent seret keys S respetively S−1that preserve the struture of F , i.e. preserve systematial zero oe�ients inthe polynomials f (i). We all all them equivalent keys and an assume that inevery lass there is one representative with the struture given in �gure 8 withoverwhelming probability (f. de�nition1). The same holds for T̃ := T−1. Weskip the derivation of S̃ and T̃ given in �gure 8 as it was already known and isvery similar to the proof of lemma 1.An algebrai key reovery attak uses the speial struture of F to obtainequations in S̃ and T̃ through the following equality (f. (1)) derived from
F = T−1 ◦ P ◦ S−1 with T̃ := T−1 =: (t̃ij) and S̃ := S−1.

F(i) = S̃⊺




m∑

j=1

t̃ijP
(j)


 S̃



18 Enrio ThomaeAs P is publily known and we further know that some of the entries of F aresystematially zero, we obtain ubi equations in the elements of S̃ and T̃ . Toease notation we use uj+m := vj for j = 1, . . . ,m− r. It is interesting to observethat the equations obtained from the oe�ients uiuj in f (k) are of the form
0 =

n∑

x=1

n∑

y=1

n∑

z=1

αxyz t̃kxs̃yis̃zjfor some oe�ients αxyz ∈ Fq that depend on the publi key matries P(j)(f. [PTBW11, Se. 3℄ or [TW12b℄ for an expliit formula). Due to the speialform of S̃ this immediately implies that all equations obtained by zero mono-mials uiuj with ui ∈ U1 := {u1, . . . , u9} and uj ∈ U2 ∪ U3 := {u10, . . . , u18} ∪
{u19, . . . , u27}, as well as uivj with ui ∈ U1 and vj ∈ V1 ∪ V2 := {v1, . . . , v9} ∪
{v10, . . . , v18} beome quadrati instead of ubi. This hange hene greatly im-proves the overall attak omplexity. De�ning U × V := {{u, v} |u ∈ U, v ∈ V }the total amount of equations obtained by systematial zeros in F is

9 · (|(U2 ∪ U3)× (U2 ∪ U3)|+ |(U2 ∪ U3)× (V1 ∪ V2)|)

+ 9 · (|(U3 ∪ V1)× (U3 ∪ V1)|+ |(U3 ∪ V1)× (U2 ∪ V2)|)

+ 9 · (|(V1 ∪ V2)× (V1 ∪ V2)|+ |(V1 ∪ V2)× (U2 ∪ U3)|)

= 9 · 3 · ((18 · 19)/2 + 18 · 18)

= 27 · (171 + 324) = 13, 365 ubi equations and
9 · |(U2 ∪ U3)× U1|+ 9 · |(U3 ∪ V1)× U1|+ 9 · |(V1 ∪ V2)× U1|

= 27 · 162 = 4374 quadrati equations.Solving this system of equations in 486 variables t̃ij and 1134 variables s̃ijwith a ommon Gröbner basis algorithm like F4 has a total omplexity of 2877(f. [BFS04,BFSY05℄). This huge omplexity is due to the large number of vari-ables and the fat that the omplexity estimation assumes generi equations andthus does not take the struture of the equations into aount. In order to de-rease the omplexity, we have to break down the problem into smaller piees.This an be done if we further derease the number of variables in S̃ and T̃ . Toahieve this goal we use good keys again (f. de�nition 2).Lemma 2. Let S̃ and T̃ be equivalent keys for Enhaned STS of the form givenin �gure 8. Then there exist good keys S′ and T ′, of the following form.
S′ is all zero exept the gray parts, whih are equal to the orresponding valuesin S̃ and the diagonal, whih ontains only ones. Similarly, the gray parts of T ′equals the orresponding values in T̃ .Proof. To preserve the struture of F given in lemma 2 we are allowed to mapvariables U1 ∪U2 ∪U3 ∪ V2 7→ U1 ∪U2 ∪U3 ∪ V2 as well as V1 7→ V1. As soon aswe were to map variables from V1 to any other set of variables, all polynomialswould ontain variables from V1 and thus the whole struture of F would be
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destroyed. Now we show that using suh a transformation Ω of variables, we anuniquely map S̃ to S′ by S̃Ω = S′.
S̃Ω :=




I S̃(1) S̃(2) S̃(3) S̃(4)

0 I S̃(5) S̃(6) S̃(7)

0 0 I S̃(8) S̃(9)

0 S̃(10) S̃(11) I 0

0 S̃(12) S̃(13) S̃(14) I







Ω(1) Ω(2) Ω(3) 0 Ω(4)

Ω(5) Ω(6) Ω(7) 0 Ω(8)

Ω(9) Ω(10) Ω(11) 0 Ω(12)

Ω(13) Ω(14) Ω(15) Ω(16) Ω(17)

Ω(18) Ω(19) Ω(20) 0 Ω(21)




!
= S′Obviously Ω(16) = I and thus S̃(3), S̃(6), S̃(8) and S̃(14) remain unhanged. As S̃is regular, all other Ω(i) are uniquely determined by S̃−1S′. Showing that T ′ is agood key is trivial: If we only want to f2r+1, . . . , f3r to ontain no V1 variables,we are allowed to map all polynomials exept f1, . . . , fr to one another. ⊓⊔Using the good keys of lemma 2 we end up with 405 ubi equations, 2916quadrati equations and 405 variables. The omplexity of solving suh a systemusing F4 is still 2151. To bring this game to an end, we only need to assure that

f30 do not ontain the variable v1. Analogous to lemma 2 we obtain |(U ∪ V2 ∪
V1\{v1})× {v1}| = 44 quadrati equations and one ubi equation. Using goodkeys analogous to lemma 2 we obtain 9 variables t27j for 1 ≤ j ≤ 9 as wellas 36 variables si28 for 1 ≤ i ≤ 36. Applying the generi omplexity analysisas before still provides the same, and hene infeasible omplexity of 2151. Thereason is that now the number of equations equals the number of variables, sothe overall omplexity does not derease. To obtain a better attak omplexitywe somehow have to use the fat that all quadrati equations are bihomogeneous,i.e. of the form ∑36

i=1

∑9
j=1 αijt27jsi28 for some αij ∈ Fq. In [FDS11℄ Faugèreet al. analyzed systems of suh a speial struture and gave an upper bound onthe degree of regularity for F4. To use their results we �rst have to guess onevariable tij suh that we obtain a system of 44 bihomogeneous equations in 44variables. Aording to their results we now obtain a degree of regularity of 9and a omplexity of 29(44+9
9

)2
≈ 273. In general the degree of regularity is r, aswe have r − 1 variables tij after guessing and thus the omplexity of our attakfor arbitrary parameters is given by
q

(
2m− 1

r

)2

.



20 Enrio ThomaeOne we obtained a single row/olumn of S̃ and T̃ , the whole system breaks downas all other elements are now determined through linear equations. Therefore letus label every equation obtained by a zero oe�ient of uiuj in f (k) by (ui, uj, k)(f. (2)). Now, (ui, v1, k) and (vj , v1, k) with i = 1, . . . , 27, j = 1, . . . , 18 and
k = 19, . . . , 26 provide linear equations in tij with i = 19, . . . , 26 and j = 1, . . . , 9.Next we an apply the same approah using good keys as above for v1 to vi,
i = 2, . . . , 9. As we already know the oe�ients tij of the appropriate good key,all bihomogeneous equations beome linear in sij . We now an determine thenext bloks in T through linear equations only. We repeat the proess until allseret oe�ients are reovered.To summarize our new attak, we �rst used the fat that ross-terms from
(U ∪ V2) × V1 do not exist to obtain quadrati instead of ubi equations inthe key reovery attak. Seond, we redued the number of variables throughgood keys. And third, we used the speial bihomogeneous struture of the equa-tions to lower the attak omplexity. In order to protet the sheme against thisattak we either have to inrease m or r. But as the omplexity of the signingalgorithm is 3q

(
r−1+dreg

r−1

)2, i.e. in the same order of magnitude of our attak,Enhaned STS annot be e�ient and seure at the same time. In general it donot seem to be a good idea to use an exponential time signing algorithm.Cryptanalysis of Chek Equation Enhaned STS. The original EnhanedSTS sheme ontains m quadrati equations in 2m − r variables in the publikey and thus have qm−r possible valid signatures to one message. Even if urrentalgorithms annot take advantage of underdeterminedMQ-systems, Tsujii et al.[TG10℄ suggested to strength their signature by adding m − r hek equationsand thus �x one unique signature. From a message reovery point of view, theattaker now would have to solve aMQ-system of 2m−r (publi key) equationsand variables. Before he had to solve a system of m equations and variables afterjust guessing the additional m− r variables.However, the hek equations do not a�et the algebrai key reover attak wejust desribed. Moreover, if the hek equations are not hosen purely randomand thus introduing new struture, the attak may even bene�t.Cryptanalysis of Hidden Pair of Bijetion. The overall idea of this variantis very general. Take a pair F (1), F (2) : Fm
q → F

m
q of bijetions with a disjoint setof variables, i.e. u = (u1, . . . , um) and v = (v1, . . . , vm) and onnet them witha funtion H ontaining all the ross-terms of u and v. The entral polynomial

f (k) is given by
f (k)(u, v) := F1(u) + F2(v) +H(u, v) for some H(u, v) :=

m∑

j=1

m∑

i=1

αijuivj .



Generalization of the Rainbow Band Separation Attak 21If F (1) and F (2) ontain some trapdoor and we assign u or v zero, we an invertthe entral map. An instantiation of this sheme using the STS trapdoor isdepited in �gure 9.
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Fig. 9. Seret map F of Hidden Pair of Bijetion using STS trapdoor.The �rst observation is that due to the ross-terms in H all the seret matries
F(i) have full rank 2m and thus rank attaks are not trivially appliable. Butthere is a smart way in applying rank attaks to the sheme. The weak point isthe signing algorithm proposed by Tsujii et al., whih �rst hooses u or v to bezero. They laimed that this would not help an attaker, as his hane to guessthe right hoie is 1

2 . Well, if we ollet 4m − 1 valid signatures x1, . . . , x4m−1to arbitrary massages, whih are all signed using the same seret S, we anbuilt an e�ient distinguisher. We know X := (x⊺1 , . . . , x
⊺

2m−1) is (up to olumnpermutations) of the following form
X = S·

0

0The probability of matrix X to have rank 2m − 1 is (1/2)2m−12
(
2m−1

m

) whihis su�iently large�for example hoosing m = 30 this equals 0.21. One wefound a olletion of signatures x1, . . . , x2m−1, suh that rank(X) = 2m− 1 weobtained an e�ient distinguisher. If X ||xj for j ≥ 2m still has rank 2m− 1 weadd xj to the set A. If the rank inrease by one we add xj to the set B. As soonas both sets A and B are of ardinality m we easily obtain a transformation
S̃ whih separates the U and V spae through linear algebra. After �xing oneof the both sets of variables we obtain a plain STS sheme and an apply theHighRank or the Key Reovery attak from above.In order to prevent this attak we would have to assign arbitrary values to urespetively v instead of all zeros. This immediately invalidate the trapdoor andmakes the sheme unusable. In every step we would have to solve a quadrati un-derdetermined system of equations without destroying possible solutions throughguessing variables.



22 Enrio ThomaeRemark 1. We did not fully analyze the latest variant of Enhaned STS pub-lished on Eprint [TTGF12℄ yet, but are quite on�dent that our attak alsoapplies.Conlusions or: Where do we take it from here? In summary, we haveintrodued a new attak on Enhaned STS that makes use of the heavily stru-tured entral map in terms of missing ross-terms. We rate it very unlikely thatEnhaned STS or its variants an be repaired while providing an e�ient signingalgorithm. So the question at hand is if non-linearity ould help in any way toimprove UOV or Rainbow.One answer was already given by Kipnis et al. in the paper that proposed UOV[KPG03℄. One of their possible variants to repair the balaned Oil and Vinegarsheme and thus to avoid the attak of Kipnis and Shamir [KS98℄ was alled Oil,Vinegar and Salt signature sheme. Here the variables are divided into three sets
O, V and S. The entral map F is onstruted suh that there are no monomials
uiuj with ui ∈ O and uj ∈ V ∪ S. After �xing the vinegar variables we obtain asystem linear in the O variables and quadrati in the S variables. The best knownway to solve suh a system is to brute-fore the S variables and then solve theremaining linear system. This way we loose a fator of q|S| in terms of e�ieny.As it turned out later, a modi�ed version of the Kipnis and Shamir attak atu-ally an be applied to the Oil, Vinegar and Salt sheme. Ironially, the fator wegain in terms of seurity ompared to the original sheme is exatly the fatorwe loose in terms of e�ieny. But as the (positive) e�et of non-linearity to thepubli key size is negligible ompared to the (negative) e�et to the e�ieny ofthe sheme, the best trade-o� is to just skip the salt variables and hene use theoriginal UOV sheme.STS an be seen as a layer-based version of Oil, Vinegar and Salt. So we anrephrase the question between UOV and UOV+S in this setting. In partiular,we have to ask ourselves if the layered struture of STS allows for a better trade-o� between e�ieny and seurity than UOV. Unfortunately, we have to leavethe �nal answer as an open question. However, we inline to the negative. Toillustrate this, we want to elaborate some thoughts on this matter. One the onehand, it is not lear even for UOV if the ratio between e�ieny and seurityinreases for the layer-based sheme Rainbow. Espeially the attak of setion 3,whih is not appliable to UOV, hallenges this hope. On the other hand, theattak of Kipnis and Shamir [KS98℄ is not pratial for layer-based shemes likeRainbow. So the question remains, if and how muh seurity we an gain at allby introduing some non-linearity in eah layer. Our intuition is that the lossof e�ieny is always greater or equal than the gain of seurity in these asesand hene of no avail in pratie. The reason is that on the one hand the signingalgorithm beomes exponential instead of polynomial, as soon as we introduenon-linear parts. In omparison, the attak stays exponential in both ases, i.e.there is no gap between the legitimate user and the attaker.



Generalization of the Rainbow Band Separation Attak 23The only exeption from this rule seem to be Gröbner bases that are used asa trapdoor. Clearly we have to use Vinegar variables in that ase, as otherwiseMinRank attaks are appliable. But we found no way to fuse this into a workingsheme�but got the impression that this is not possible at all. Hene, we leave itas an open problem, how to embed a Gröbner Basis into a sheme using Vinegarvariables and to derive a both seure and e�ient sheme.



24 Enrio Thomae5 Cryptanalysis of Enhaned TTSEnhaned TTS was proposed by Yang and Chen in 2005 [YC05℄. The overallidea of the sheme was to use several layers of UOV trapdoors and to makethem as sparse as possible. In ontrast to UOV this would prevent the Kipnisand Shamir attak [KS98℄ without inreasing the number of vinegar variables.In fat, while we have a signature blow up of fator 3 for UOV, enTTS improvesthis �gure to 1.3. As enTTS was designed for high speed implementation it usesas few monomials as possible.There are two di�erent salable entral maps given in [YC05℄, one is alled evensequene and the other odd sequene. The following equations show the evensequene.
f (i) = ui +

2ℓ−5∑

j=1

γijuju2ℓ−4+(i+j+1 mod 2ℓ−2) for 2ℓ− 4 ≤ i ≤ 4ℓ− 7,

f (i) = ui +

ℓ−4∑

j=1

γijui+j−(4ℓ−6)ui−j−2ℓ−1 +

2ℓ−5∑

j=ℓ−3

γijui+j−3ℓ+5ui−j+ℓ−4for 4ℓ− 6 ≤ i ≤ 4ℓ− 3,

f (i) = ui + γi0ui−2ℓ+2ui−2ℓ−2 +

6ℓ−5∑

j=i+1

γi,j−(4ℓ−3)u4ℓ−3+i−juj

+γi,i−4ℓ+3u0ui +

i−1∑

j=4ℓ−2

γi,j−(4ℓ−3)u2(i−j)−(i mod 2)uj + γi,i−4ℓ+2u0uifor 4ℓ− 2 ≤ i ≤ 6ℓ− 5.The number of equations and variables is m = 4ℓ and n = 6ℓ−4, respetively, forsome parameter ℓ. The �rst observation is that the number of equations obtainedby (2) is very large, as only 2ℓ − 3 monomials per equation are non-zero. Theseond observation is that the linear terms provide an enormous amount of newequations, as their oe�ients are not hosen at random but �xed. Consideringonly the linear parts of the publi polynomials p(j) we obtain the followingequation analogously to (1)
ei+2ℓ−5 = S̃




m∑

j=1

t̃ij(γ
(j)
1 , . . . , γ(j)n )⊺


 for 1 ≤ i ≤ m, (4)where ei denote the all-zero vetor with a single 1 in the i-th entry and γ(j)i is theoe�ient of xi in p(j). We obtain a total amount of 4ℓ(6ℓ− 4) bihomogeneousequations in the (4ℓ)2 variables of T̃ and in the (6ℓ − 4)2 variables of S̃. Butdespite of this large amount of equations a theoretial omplexity analysis ofsolving those equations provide infeasible large results, due to the large amountof variables. Note that in pratie the solving algorithm may seriously bene�t of



Generalization of the Rainbow Band Separation Attak 25the equations internal struture. We leave it as an open problem to implementthis attak and run experiments to determine the real omplexity of attakingenTTS this way.In the sequel we one again fous on reduing the number of variables. Notethat most of the equations (4) vanish as soon as we use equivalent keys. This isalso true for a large amount of zero-oe�ients in the quadrati part. Thus wegeneralize the sheme by adding more monomials. In partiular, we adapt thede�nition of enTTS as follows: As soon as a monomial xixj with xi ∈ U and
xj ∈ V ours in the original enTTS polynomial f (k), we just assume that allmonomials xixj with xi ∈ U and xj ∈ V our as well. This way we easily seethat enTTS is a very speial ase of the Rainbow signature sheme, negletingthe linear parts. We hose the parameter set (n,m) = (32, 24) and thus ℓ = 6given in [YC05℄, as this provides a seurity level of 288. See �gure 10 for anillustration.

F(1), . . . ,F(10) F(11), . . . ,F(14) F(15), . . . ,F(24)

8 10 4 10 8 10 4 10 8 10 4 10

0

0 0

T = 0

0 0

0 00

S =Fig. 10. Seret map F of TTS (32, 24) and equivalent keys T and S.The attak is similar to the one desribed in setion 4. Suppose we just want dopreserve zero oe�ients of x32xi in polynomial u⊺F(14)u. This leads to the goodkeys given in �gure 11 and thus to 31 bihomogeneous equations in 10 variables
t14i with i = 15, . . . , 24 and 22 variables sj32 with j = 1, . . . , 22. Analogous tosetion 4 we �rst have to guess one variable tij . Solving the remaining systemof 31 bihomogeneous equations in 31 variables has omplexity 28

(
31+10

10

)2
≈ 268(f. [FDS11℄).Remark 2. Using the good key T ′ of �gure 11 gives arbitrary values for the �rst

4ℓ − 2 entries in ei of (4). Only the last 2ℓ − 2 entries are invariant under thetransformation Ω. But due to the good key S′ these entries beome arbitrary aswell, exept the last one. Thus we obtain one more bihomogeneous equation from
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0

0 0

0 0

T ′ = 0

0 0

0 00

0 0

0S′ =Fig. 11. Good Keys T ′ and S′ for enTTS (32, 24).(4) using good keys. Now we an apply [FDS11℄ without guessing one variablebeforehand and obtain an overall omplexity of (32+11
11

)2
≈ 265.But due to the speial struture of enTTS we an do even better. Applying thetransformation of variables Ω analogous to lemma 1, we see that the monomial

u32u32 do not our in any of the seret polynomials. This way we additionallyobtain 23 quadrati equations in sij . The omplexity of solving a generi systemof 23+ 32 quadrati and 1 ubi equation in 32 variables is 247.7. Note that thisomplexity is just an upper bound as we assumed generi equations and thusdid not use the speial bihomogeneous struture.



Generalization of the Rainbow Band Separation Attak 276 Cryptanalysis of MFE Based on Diophantine EquationsThe MFE enryption sheme was published at CT-RSA 2006 [WYHL06℄ andbroken at PKC 2007 by Ding et Al. [DHN+07℄. The variant using Diophantineequations was published at Designs, Codes and Cryptography in 2011 [GH11℄.Clearly the seurity goals of MFE are out of date, as even a diret attak on thepubli key using F4 or XL is e�ient due to the small number of equations andvariables. Therefore we will not give another attak on MFE, but onentrate onthe more seure variant proposed in [GH11℄. Note that our attak also applies tothe original MFE sheme and very likely would be as e�ient as the high orderlinearization attak of [DHN+07℄.MFE Enryption Sheme. We brie�y desribe the main idea of MFE. For adetailed desription please refer to [WYHL06℄.The entral map F : F12
2k → F

15
2k : (x1, . . . , x12) 7→ (y1, . . . , y15) is de�ned by

y1 = x1 + φ(x1) + ψ1

y2 = x2 + φ(x1, x2) + ψ2

y3 = x3 + φ(x1, x2, x3) + ψ3

y4 = x1x5 + x2x7 y10 = x3x9 + x4x11
y5 = x1x6 + x2x8 y11 = x3x10 + x4x12
y6 = x3x5 + x4x7 y12 = x5x9 + x7x11
y7 = x3x6 + x4x8 y13 = x5x10 + x7x12
y8 = x1x9 + x2x11 y14 = x6x9 + x8x11
y9 = x1x10 + x2x12 y15 = x6x10 + x8x12where φ1, φ2 and φ2 are random quadrati polynomials and ψ1, ψ2 and ψ3 arepolynomials in y4, . . . , y15 obtained by a speial determinant relation. On a highlevel view the entral map is a mix of two di�erent priniples. First y1, y2 and

y3 are omposed of a stepwise triangular struture (f. STS in setion 4) and amasking ψ1, ψ2, ψ3 whih hides this struture. To derypt, we an easily alulatethe values of ψi, as they only depend on y4, . . . , y15 and unmask y1, y2 and y3.Conseutively solving these equations yields x1, x2 and x3. Seond y4, . . . , y15are partitioned in 3 bloks of oil and vinegar struture (f. UOV setion 2), i.e.plugging in x1, x2 and x3 provide linear equations and so on. The publi map Pis obtained as usual by P = T ◦ F ◦ S.MFE Enryption Sheme Based on Diophantine Equations. The variantof [GH11℄ generalize the idea of MFE to another lass of Diophantine equations.In partiular they use a Diophantine equation of the form
ψ1ψ2 = f1f2 + f3f4 + f5f6 + f7f8 + f9f10where f1, . . . , f10 are quadrati polynomials with oil and vinegar struture and

ψ1, ψ2 are the polynomials used for masking later on. To �nd an instantiation



28 Enrio Thomaeof ψi and fi the authors used the polynomial ring
R = F2k [z1, z2, z3, z4, w1, w2, w3, w4, u1, u2, u3, u4, v1, v2, v3, v4] (5)and Plüker oordinates (f. de�nition 3), whih are know to satisfy the followingidentity
0 = (p12zw + p12uv)p

34(z, w, u, v) + (p13zw + p13uv)p
24(z, w, u, v) +

(p14zw + p14uv)p
23(z, w, u, v) + (p23zw + p23uv)p

14(z, w, u, v) +

(p24zw + p24uv)p
13(z, w, u, v) + (p34zw + p34uv)p

12(z, w, u, v). (6)De�nition 3 (Plüker oordinates). Given the polynomial ring de�ned in (5),the Plüker oordinates are de�ned by
pijzw := ziwj − zjwi = ziyj + wjyi,

pij(z, w, u, v) := pijzu + pijwu + pijwv.To transform the 5 last terms of the sum (6) in oil and vinegar form, the authorsused the isomorphism
ρ : R → F2k [x1, x2, x3, x4, x5, x6, x7, x8, y1, y2, y3, y4, y5, y6, y7, y8]

: (z1, z2, z3, z4, w1, w2, w3, w4, u1, u2, u3, u4, v1, v2, v3, v4) 7→

(x1, x3, y1 + y5, y3 + y7, x4, x2, y5, y7, x5, x7, y4, y2, x8, x6, y8, y6)Note that there were two typos in the de�nition of ρ in [GH11℄ (on�rmed by[Gao12℄).The entral map F : F56
2k → F

74
2k : (x1, . . . , x24, y1, . . . , y32) 7→ (z1, . . . , z74) isde�ned by

z1 = x1 + φ1(x1) + ψ1,1(x1, . . . , x8)
z2 = x2 + φ2(x1, x2) + ψ1,2(y1, . . . , y8)
z3 = x3 + φ3(x1, . . . , x3) + ψ2,2(y9, . . . , y16)
z4 = x4 + φ4(x1, . . . , x4) + ψ3,2(y17, . . . , y24)
z5 = x5 + φ5(x1, . . . , x5) + ψ1,1(x9, . . . , x16)
z6 = x6 + φ6(x1, . . . , x6) + ψ1,1(x17, . . . , x24)
z7 = x7 + φ7(x1, . . . , x7) + ψ4,2(y25, . . . , y32)
z7+i = f1,i(x1, . . . , x8, y1, . . . , y8) 1 ≤ i ≤ 10
z17+i = f2,i(x1, . . . , x8, y9, . . . , y16) 1 ≤ i ≤ 10
z27+i = f2,i(y1, . . . , y8, y9, . . . , y16) 1 ≤ i ≤ 8
z36 = f2,10(y1, . . . , y8, y9, . . . , y16)
z36+i = f3,i(x1, . . . , x8, y17, . . . , y24) 1 ≤ i ≤ 10
z46+i = f2,i(x9, . . . , x16, y9, . . . , y16) 1 ≤ i ≤ 8
z55 = f2,10(x9, . . . , x16, y9, . . . , y16)
z56+i = f3,i(x17, . . . , x24, y17, . . . , y24) 1 ≤ i ≤ 8
z64 = f3,10(x17, . . . , x24, y17, . . . , y24) 1 ≤ i ≤ 8
z56+i = f3,i(x17, . . . , x24, y17, . . . , y24)
z64+i = f4,i(x9, . . . , x16, y25, . . . , y32) 1 ≤ i ≤ 10



Generalization of the Rainbow Band Separation Attak 29where φ1, . . . , φ7 are random quadrati polynomials and fi,j := f1,j for i = 2, 3, 4and j = 1, 3, 5, 7, 9. Further we de�ne
ψ2,2 := ρ(p34(z, w, v, u)) ψ3,2 := ρ(p34(w, z, u, v)) ψ4,2 := ρ(p34(w, z, v, u))
f2,2 := ρ(p24(z, w, v, u)) f3,2 := ρ(p24(w, z, u, v)) f4,2 := ρ(p24(w, z, v, u))
f2,4 := ρ(p23(z, w, v, u)) f3,4 := ρ(p23(w, z, u, v)) f4,4 := ρ(p23(w, z, v, u))
f2,6 := ρ(p14(z, w, v, u)) f3,6 := ρ(p14(w, z, u, v)) f4,6 := ρ(p14(w, z, v, u))
f2,8 := ρ(p13(z, w, v, u)) f3,8 := ρ(p13(w, z, u, v)) f4,8 := ρ(p13(w, z, v, u))
f2,10 := ρ(p12(z, w, v, u)) f3,10 := ρ(p12(w, z, u, v)) f4,10 := ρ(p12(w, z, v, u))To use the struture of F for an algebrai key reovery attak, e.g. missingross-terms, we need to look at the equations expliitly:

z1 = x1 + φ1(x1) + x1x2 + x3x4 + x5x6 + x7x8

z2 = x2 + φ2(x1, x2) + y1y2 + y3y4 + y5y6 + y7y8

z3 = x3 + φ3(x1, . . . , x3) + y9y14 + y10y13 + y11y16 + y12y15

z4 = x4 + φ4(x1, . . . , x4) + y17y18 + y17y22 + y19y20 + y19y24 + y21y22 + y23y24

z5 = x5 + φ5(x1, . . . , x5) + x9x10 + x11x12 + x13x14 + x15x16

z6 = x6 + φ6(x1, . . . , x6) + x17x18 + x19x20 + x21x22 + x23x24

z7 = x7 + φ7(x1, . . . , x7) + y25y26 + y25y30 + y26y29 + y27y28 + y27y32 + y28y31

z8 = (x1 + x4)y5 + x4y1 + x5y8 + x8y4

z9 = (x2 + x3)y2 + x2y6 + x6y7 + x7y3

z10 = (x1 + x4)y7 + x4y3 + x5y6 + x8y2

z11 = (x2 + x3)y4 + x2y8 + x6y5 + x7y1

z12 = (x2 + x3)y5 + x2y1 + x6y4 + x7y8

z13 = (x1 + x4)y2 + x4y6 + x5y3 + x8y7

z14 = (x2 + x3)y7 + x2y3 + x6y2 + x7y6

z15 = (x1 + x4)y4 + x4y8 + x5y1 + x8y5

z16 = y1y7 + y2y8 + y3y5 + y4y6

z17 = (x1 + x4)x7 + (x2 + x3)x5 + x2x8 + x4x6

z18 = (x1 + x4)y13 + x4y9 + x5y16 + x8y12

z19 = (x2 + x3)y14 + x2y10 + x6y11 + x7y15

z20 = (x1 + x4)y15 + x4y11 + x5y14 + x8y10

z21 = (x2 + x3)y16 + x2y12 + x6y9 + x7y13

z22 = (x2 + x3)y13 + x2y9 + x6y12 + x7y16

z23 = (x1 + x4)y14 + x4y10 + x5y15 + x8y11

z24 = (x2 + x3)y15 + x2y11 + x6y10 + x7y14

z25 = (x1 + x4)y16 + x4y12 + x5y13 + x8y9

z26 = y9y15 + y10y16 + y11y13 + y12y14

z27 = (x1 + x4)x6 + x2x5 + (x2 + x3)x8 + x4x7

z28 = (y1 + y4)y13 + y4y9 + y5y16 + y8y12
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z29 = (y2 + y3)y14 + y2y10 + y6y11 + y7y15

z30 = (y1 + y4)y15 + y4y11 + y5y14 + y8y10

z31 = (y2 + y3)y16 + y2y12 + y6y9 + y7y13

z32 = (y2 + y3)y13 + y2y9 + y6y12 + y7y16

z33 = (y1 + y4)y14 + y4y10 + y5y15 + y8y11

z34 = (y2 + y3)y15 + y2y11 + y6y10 + y7y14

z35 = (y1 + y4)y16 + y4y12 + y5y13 + y8y9

z36 = (y1 + y4)y6 + y2y5 + (y2 + y3)y8 + y4y7

z37 = (x1 + x4)y21 + x4y17 + x5y24 + x8y20

z38 = (x2 + x3)y18 + x3y22 + (x6 + x7)y19 + x6y23

z39 = (x1 + x4)y23 + x4y19 + x5y22 + x8y18

z40 = (x2 + x3)y20 + x3y24 + (x6 + x7)y17 + x6y21

z41 = (x2 + x3)y21 + x2y17 + x6y20 + x7y24

z42 = (x1 + x4)y18 + x1y22 + (x5 + x8)y19 + x8y23

z43 = (x2 + x3)y23 + x2y19 + x6y18 + x7y22

z44 = (x1 + x4)y20 + x1y24 + (x5 + x8)y17 + x8y21

z45 = y17y23 + y18y24 + y19y21 + y20y22

z46 = (x1 + x4)x7 + x1x6 + (x2 + x3)x5 + x3x8

z47 = (x9 + x12)y13 + x12y9 + x13y16 + x16y12

z48 = (x10 + x11)y14 + x10y10 + x14y11 + x15y15

z49 = (x9 + x12)y15 + x12y11 + x13y14 + x16y10

z50 = (x10 + x11)y16 + x10y12 + x14y9 + x15y13

z51 = (x10 + x11)y13 + x10y9 + x14y12 + x15y16

z52 = (x9 + x12)y14 + x12y10 + x13y15 + x16y11

z53 = (x10 + x11)y15 + x10y11 + x14y10 + x15y14

z54 = (x9 + x12)y16 + x12y12 + x13y13 + x16y9

z55 = (x9 + x12)x14 + x10x13 + (x10 + x11)x16 + x12x15

z56 = (x17 + x20)y21 + x20y17 + x21y24 + x24y20

z57 = (x18 + x19)y18 + x19y22 + (x22 + x23)y19 + x22y23

z58 = (x17 + x20)y23 + x20y19 + x21y22 + x24y18

z59 = (x18 + x19)y20 + x19y24 + (x22 + x23)y17 + x22y21

z60 = (x18 + x19)y21 + x18y17 + x22y20 + x23y24

z61 = (x17 + x20)y18 + x17y22 + (x21 + x24)y19 + x24y23

z62 = (x18 + x19)y23 + x18y19 + x22y18 + x23y22

z63 = (x17 + x20)y20 + x17y24 + (x21 + x24)y17 + x24y21

z64 = x17x22 + (x17 + x20)x23 + (x18 + x19)x21 + x19x24

z65 = (x9 + x12)y29 + x12y25 + x13y32 + x16y28
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z66 = (x10 + x11)y30 + x11y26 + (x14 + x15)y27 + x15y31

z67 = (x9 + x12)y31 + x12y27 + x13y30 + x16y26

z68 = (x10 + x11)y32 + x11y28 + (x14 + x15)y25 + x15y29

z69 = (x10 + x11)y29 + x10y25 + x14y28 + x15y32

z70 = (x9 + x12)y30 + x9y26 + (x13 + x16)y27 + x13y31

z71 = (x10 + x11)y31 + x10y27 + x14y26 + x15y30

z72 = (x9 + x12)y32 + x9y28 + (x13 + x16)y25 + x13y29

z73 = y25y31 + y26y32 + y27y29 + y28y30

z74 = (x9 + x12)x14 + x9x15 + (x10 + x11)x16 + x11x13Let Z(i) be the matrix desribing the quadrati form of the entral polynomial
zi, i.e. zi(x) = x⊺Z(i)x with x := (x1, . . . , x24, y1, . . . , y32). Due to P = T ◦F ◦S,we know that every publi polynomial p(i) is of the form

P(i) = S⊺




74∑

j=1

tijZ
(j)




︸ ︷︷ ︸
=:Z̃

S.For arbitrary hosen T the matrix Z̃ is of form given in �gure 12. All the whitevalues denote oe�ients that are systematial zero and thus an be used toreover S without reovering T at the same time.
8 8 8 8 8 8 8

xi
︷ ︸︸ ︷

yi
︷ ︸︸ ︷

resp.
Fig. 12. Matrix Z̃, where gray parts denote arbitrary values of the orresponding o-e�ients and white parts denote zeros, respetively. The left matrix is a generalizedversion of the detailed right matrix.At this stage an algebrai key reovery attak fails due to the large number ofvariables sij . To be preise, we derive 74 · 15 · 82 = 71040 quadrati equations



32 Enrio Thomaein 6 · 7 · 82 = 2688 variables sij . The omplexity of solving a generi systemof this size using F4 or XL would be 2320 and thus infeasible. To redue thisomplexity we have to use the speial struture of the entral polynomials ziand �nd good keys minimizing the number of variables while maximizing thepreserved struture of the entral map. The �rst observation is that variables
y25, y28, y29, y32 only our in the six polynomials z7, z65, z68, z69, z72, z73. Thus,with high probability, there exist a linear ombination

P(7) +

6∑

i=1

t̃iP
(i) = S⊺



∑

j∈I

tjZ
(j)


Swith I := {1, . . . , 74}\{7, 65, 68, 69, 72, 73}. Now we an use a linear transfor-mation Ω that maps every variable exept y32 to every of the other variables.We obtain the good key S′ shown in �gure 13. Furthermore Ω preserves all zerooe�ients of monomials xiy32 and yiy32.

S′ =Fig. 13. Good Key S′ for MFE based on Diophantine equations, where white partsdenote zeros, gray parts denote arbitrary values and ones at the diagonal.We end up with 55 bihomogeneous quadrati (from xiy32 and yiy32 with i 6= 32)and one ubi equation (from y32y32) in 52 variables sij and 6 variables ti. Un-fortunately the number of bihomogeneous equations is less than the number ofvariables and thus we annot diretly apply the results of [FDS11℄. But afterguessing 3 variables ti we an use their formula and obtain a attak omplexityof q3(59+4
4

)2
≈ 286. Well this already beats the laimed seurity of 2113, but wean do even better.A �rst simple optimization is to use 4 instead of 1 rows of T and thus ob-tain 4 entral polynomials with the struture desribed above. We end up with

4 · 55 = 220 bihomogeneous quadrati and 4 ubi equations in 52 + 4 · 6 = 76variables. As it is an oben problem to determine the omplexity of solving suhblok-wise bihomogeneous equations we only an assume generi equations andthus obtain a very bad upper bound of 271 to solve the system using F4.But we an do even better by ignoring the transformation T and just using thestruture given in �gure 12.



Generalization of the Rainbow Band Separation Attak 33Let J := {x14, x16, x21, x23, y6, y13, y14, y15, y16, y18, y20, y21, y23, y29, y30, y31, y32}and K := {x1, . . . , x24, y1, . . . , y36}\J . The ruial observation is that non of theentral polynomials zi ontains monomials J × J . In order to preserve the zerooe�ient of y232 we are thus allowed to map every variable to variables of J andevery variable exept y32 to variables of K. Let us label olumns and rows of Sby (x1, . . . , x24, y1, . . . , y32), i.e. sx2,y32
is the element of S in the 2nd row and56th olumn. The good key S, whih only preserves the zero oe�ients of y232only onsists of 56 − 17 = 39 variables si,y32

for i ∈ K in the last olumn. Weomit a formal proof, as it is the same like for lemma 1 and 2. In total we ob-tain 74 quadrati equations (the oe�ient of y232 has to be zero in every publipolynomial independently of T ) in 39 variables si,y32
. Solving this system hasomplexity 256.Now we an repeat this progress for y231 and obtain si,y31

for i ∈ K with om-plexity 256 again. At this point we an determine si,y32
for i ∈ J using that theoe�ients of y31y32 has to be zero. Solving those 74 equations in 17 variableshas omplexity 220. Next we obtain 3 · 74 equations through y230, y30y31, y30y32and an determine variables si,y30

for i ∈ K and si,y31
for i ∈ J at one. Solv-ing this system of 222 equations in 56 variables has omplexity 245. Note thatfrom now on more and more equations beome available in every step, until weobtained all olumns of S labeled by J . To determine the remaining olumns of

S, we use that non of the elements of K is onneted to more than 9 out of 17elements of J in all the entral equations zi. Thus we obtain at least 8 · 74 equa-tions to determine the 56 variables of olumn j ∈ K of S. This has omplexity
230. Note that if we proeed sequential we an also use zero oe�ients of K×Kand thus obtain muh more equations. As soon as all the olumns of S labeledwith all the monomials ourring in zi are determined we obtain the i-th row ofthe seret key T through linear equations.To summarize, a key reovery attak on MFE based on Diophantine equationshas omplexity 2 · 256 = 257.AknowledgmentsI want to thank Christopher Wolf (Bohum) for various ontributions, espeiallyin the setions about Enhaned STS and Enhaned TTS. I want to thank PeterCzypek (Bohum) for fruitful disussions and helpful remarks on Enhaned TTS.Furthermore I thank the reviewers of [TW12a℄ for helpful omments.The author was supported by the German Siene Foundation (DFG) throughan Emmy Noether grant. Furthermore the author was in part supported by theEuropean Commission through the IST Programme under ontrat ICT-2007-216676 Erypt II.
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