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Abstract. The Rainbow Signature Scheme is a non-trivial generaliza-
tion of the well known Unbalanced Oil and Vinegar (UOV) signature
scheme (Eurocrypt '99) minimizing the length of the signatures. By now
the Rainbow Band Separation attack is the best key recovery attack
known. For some sets of parameters it is even faster than a direct attack
on the public key. Unfortunately the available description of the attack
is very ad hoc and does not provide deep insights.

In this article we provide another view on the Rainbow Band Separa-
tion attack using the theory of equivalent keys and a new gemneralization
called good keys. Thereby we generalize the attack into a framework that
also includes Reconciliation attacks. We further formally prove the cor-
rectness of the attack and show that it does not only perform well on
Rainbow, but on all multivariate quadratic (MQ) schemes that suffer
from missing cross-terms. We apply our attack and break the Enhanced
STS signature scheme and all its variants, as well as the MFE encryption
scheme and its variant based on Diophantine equations. In the case of
Rainbow and Enhanced TTS we show that parameters have to be cho-
sen carefully and that the remaining efficiency gain over UOV is small.
As there is still some room to improve the Band Separation attack, it
is not clear whether layer-based M Q-schemes will eventually become
superfluous or not.

Key words: Multivariate Cryptography, Algebraic Cryptanalysis, Band
Separation, Key Recovery Attack, Rainbow, Enhanced STS, Enhanced
TTS, MFE, Diophantine Equations

1 Introduction

The main idea of our algebraic key recovery attack is the same as for the so-
called Reconciliation attack on UOV [BBD09], but involves some new techniques
like good keys, which are a generalization of equivalent keys, as well as a special
treatment of non-existing cross-terms. In section 3 we will see that the Rainbow
Band Separation attack described in [DYCT08] is a special case of our attack.
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In contrast to the ad hoc description of this attack in [DYC108] on less than
half a page, we are able to proof correctness of the attack and reveal some addi-
tional bihomogeneous structure that was not used before. We revisit the attack
on Rainbow (2%,18,12,12) with complexity at most 267, As it is hard to use
the additional bihomogeneous structure in a theoretical complexity analysis, we
performed various experiments that suggests a real attack complexity of 264.
Also other multivariate signature schemes like Enhanced STS, MFE and En-
hanced TTS suffer even more from missing cross-terms and thus could be at-
tacked the same way. In section 4 we briefly introduce the STS signature scheme
and all its variants. We show that our attack is better than the best know at-
tack on the scheme, which was a HighRank attack, and also break all variants
of Enhanced STS proposed so far. We strongly disbelieve that there is a way to
fix STS without ending up at the Rainbow or Oil, Vinegar and Salt signature
scheme. In section 5 we apply our attack to Enhanced TTS and show that, in
contrast to Rainbow, it slightly benefits from the additional structure. Our at-
tack reduce the claimed security of 288 to 247, In section 6 we apply or attack
on the MFE signature scheme based on Diophantine equations and give a key
recovery in 2°7 instead of 213, as claimed by the authors. For all readers not
familiar with multivariate schemes, we briefly introduce the general idea and
basic notations in section 2.

2 Basic Facts

In this section we introduce the necessary notation and explain the most famous
of all M @Q-schemes, namely the Unbalanced Oil and Vinegar signature scheme
(UOV). It was proposed by Patarin et al. [KPG99] at Eurocrypt 1999 and is one
of the oldest M Q-schemes still unbroken. Understanding this simple and smart
scheme is fundamental to understand the whole zoo of signatures that arose in
the sequel.

The general idea of M Q-signature schermnes is to use a public multivariate quadratic
map P : Fy — FJ* with

p(l)(xl, cey )

plm) (1,0 Tn)

and i
p(k) (Ila cee 5In) = Z ’YZ(] )'IZIJ = ‘rTm(k)Ia

1<i<j<n

where P*) is the (n x n) matrix describing the quadratic form of p*) and
x = (x1,...,2,)7. Note that we can neglect linear and constant terms as they
never mix with quadratic terms and thus have no positive effect on security. In
the case of Enhanced TTS those linear terms will even decrease security as we
will see later.
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The trapdoor is given by a structured central map F : Fjy — F* with

f(l)(ul,...,un)
F= :
f(m)(ul,...,un)
and

f(k) (ulv . 7un) = Z %(Jk)uzuj = uTg(k)u

1<i<j<n

In order to hide this trapdoor we choose two secret linear transformations S, T
and define P :=T o F o S. See figure 1 for illustration.

mn m
F; —— F;

Fig. 1. MO-Scheme.

For the UOV signature scheme the variables u; with ¢ € V := {1,... v}
are called vinegar variables and the remaining variables w; with ¢ € O :=

{v+1,...,n} are called oil variables. The central map ) is given by
TP (ug, . up) = Z ”yi(f)uiuj + Z ”yi(f)uiuj.
i€V,jeV i€V,5EO

The corresponding matrix F*) is depicted in figure 2.

X1 -+ Ty -0 Tn

T
vinegar variables

S(k) = Loy

0 } oil variables
Tn

Fig. 2. Central map § of UOV. White parts denote zero entries while gray parts denote
arbitrary entries.

As we have m equations in m+wv variables, fixing v variables will yield a solution
with high probability. Due to the structure of ), i.e. there are no quadratic
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terms of two oil variables, we can randomly fix the vinegar variables to obtain
a system of linear equations in the oil variables, which is easy to solve. This
procedure is not possible for the public key, as the transformation S of variables
fully mixes the variables (like oil and vinegar in a salad). Note that for UOV we
can discard the transformation 7', as the trapdoor is invariant under this linear
transformation of equations.
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3 Cryptanalysis of Rainbow

Rainbow was proposed in 2005 [DS05] and is a layer-based variant of the well
known multivariate quadratic (M Q) signature scheme Unbalanced Oil and Vine-
gar (UOV). The downside of UOV is a comparably large signature expansion
by a factor of 3 for current parameters (m = 28,n = 84) [TW12b]. Rainbow
improves this to signatures of length n = 42 for messages of length m = 24, also
for current parameters (28,18,12,12) [DYCT08]. In the original paper [DS05]
this improvement was even larger, but Billet and Gilbert [BGO06] broke the pa-
rameter set (2%,6,6,5,5,11) in 2006 using a MinRank-Attack. The idea used
by Billet and Gilbert was known since 2000 and first proposed in [GCO00]. At
Crypto 2008 Faugeére et al. [FAVPO08] refined the technique of Billet and Gilbert
using Grobner Bases. Ding et al. took this attack into account and proposed
new parameters of Rainbow [DYC08| claimed to be secure against all known
attacks. In Algorithm 3 of [DYC08| the authors also described the Rainbow
Band Separation attack, which was contributed to Yu-Hua Hu. Unfortunately
the available description of the attack on half of a page is very ad hoc and does
not provide deep insights.

Up to now the parameter set (2%,18,12,12) is still close to secure, even due to
two recent developments. Firstly in 2009 Bettale et al. published the HybridF5
approach [BFP09] and thus reduced the complexity of a direct attack on the
public key of Rainbow (2%,18,12,12) to 277. And secondly in 2011 Faugére et
al. [FDS11] analyzed systems of bihomogeneous equations and gave an upper
bound on the degree of regularity for Fy. This immediately reduced the com-
plexity of MinRank-Attacks on Rainbow (28,18,12,12) to 289%. But anyway,
neither of these techniques drastically reduced the security of Rainbow. We refer
to Petzold et al. [PBB10] for a comprehensive comparison of all known attacks
on Rainbow and proposals for secure parameters.

Rainbow uses the same idea as UOV but in different layers. A current choice
of parameters is given by (g, v, 01,02) = (28,18,12,12). In particular the field
size ¢ = 28 and the number of layers is two. Note, two layers seems to be the
best choice in order to prevent MinRank attacks and preserve short signatures
at the same time. The central map F of Rainbow is divided into two layers
W52 and 309, ..., F3 of form given in fig. 3. A formal description is
given by the following formula.

FE s un) =Y v usug + > ¥ uiu,

1€Vy,jeEVL i€V1,j€01
fork=1,...,01
k . § : (k) § : (k)
f( )(ub .. 7un) = ’Yij UiUy —+ Fyij Ui
1€V1UO1,j€V1UO, 1€V1UO01,j€042

fork=o01+1,...,01 + 02
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0 0 and

for g, ..., 51 for ), ... 53V

Fig. 3. Central map of Rainbow (2%, 18,12, 12). White parts denote zero entries while
gray parts denote arbitrary entries.

To use the trapdoor we first solve the small UOV system §, ..., "2 by ran-
domly fixing the 18 vinegar variables. The solution u1,...,uso is now used as
vinegar variables of the second layer. Solving the obtained linear system yields
U31y ..., U42.

Algebraic Cryptanalysis of Rainbow. Now we investigate what the special
structure of § tells us about the secret keys S and 7'. More precisely an algebraic
key recovery attack exploits the special structure of §, i.e. zero entries at certain
known places, to obtain equations in 7 := T~! =: (#;;) and S := S~' through
the following equality, which we obtain from F =T"toP o S71L.

3 = g7 Zfijm(j) S (1)

j=1

As ‘B is publicly known and we further know that some specified entries of §
have to be zero, we obtain cubic equations in the elements of S and 7. The key
observation is that the equations obtained by the fact that the coefficient of u;u;
in f) is zero is of the form

n o n n _
0= Z Z Z awyztkmgyigzj (2)
r=1y=12=1

for some coefficients oy, € F, that depend on pU) (cf. [PTBW11, Sec. 3] or
[TW12b| for an explicit formula). In particular every monomial contains one
variable of the i-th column and one variable of the j-th column of S. We will
later make heavily use of this fact. But first let us calculate the complexity of
a key recovery attack up to this point. Let us define Vi := {uy,...,u,, }, O1 :=
{UU1+1, e ,uv1+01}, Oy = {UU1+01+1, e ,uv1+01+02} and O xV := {{u, U} | u e
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O,v € V}. The number of equations obtained by (1) equals the number of
systematic zeros in all the f*) and thus is

(01 +02) . |(02 X 02)| + 01 - (|(02 X (01 U Vl))| + |(01 X 01)|) = 7128.

The number of variables in S and T is given by (v1+01+02)2+ (01 +02)? = 2340.
The complexity of solving such a system of equations using some Grobner Basis
algorithm like Fy is 23698 (cf. [BFSYO05]). In a nutshell, we first have to calculate
the degree of regularity d,.4. For semi-regular sequences, which generic systems
are assumed to be, the degree of regularity is the index of the first non-positive
coefficient in the Hilbert series S,, , with

m _ ol
Sm,n = %7 (3)

where d; is the degree of the i-th equation, m is the number of equations and
n the number of variables. The complexity of solving a zero-dimensional (semi-

€g

with 2 < a < 3 the linear algebra constant. The internal equations used by Fy
are very sparse and thus a = 2 is applied by cryptanalyst. Well, the construc-
tors of schemes are often of a different opinion and use o« = 3. Note that (3)
changes for small fields, i.e. if the degree of regularity is larger than the number
of elements in the field. Note further that generic M Q-systems are assumed to
have worst-case complexity. As soon as the equations contain some structure,
e.g. they are bihomogeneous, the complexity of solving them decrease [FDS11].
As our equations are partly bihomogeneous, 236%® is just an upper bound. Un-
fortunately theoretical complexity analyses of structured M Q-systems is a very
important open problem and the formula given above is the best we know up to
now.

A first improvement of this upper bound complexity can be achieved by using
equivalent keys, a notion introduced by Wolf and Preneel [WP05].

Definition 1 (Equivalent keys for Rainbow (v1,01,02)). Let S = (s;5) and
T = (ti;) be two regular matrices. We label the equations given in (2) by (k,14,j)
and define

S:={(k,4,j) | 1 <k<oAl<i<nAmax{vi+o1+1,i} <j<n)
V(lSkSOl/\’Ul<i§v1+01/\i§j§1)1+01)
V(iog<k<or4+oaANor+0a<i<nAi<j<n)

the set of all equations obtained by systematic zero coefficients in the central map
F. Note S and T are a valid solution of S. We call two regular matrices S’ and
T’ equivalent keys, if they also fulfill all equations in S.
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Or in other words, if S and T are secret keys for the corresponding central map
F then we call S and T” equivalent keys, if ToFoS =P =T’ oF' oS’ for a valid
trapdoor F'. That means S’ and T’ preserve the structure of F, i.e. preserve
all systematic zero coefficients. Each equivalent key is sufficient for an attacker
to use the trapdoor. Choosing a special representative of the class of equivalent
keys will now allow us to reduce the number of variables in S and T'. Lets once
again S := S tand T :=T"1.

We first consider all transformations 2~ 'u = 2~ 1Sz, such that

2TSTFSx = 2TST(Q H)TQRTFNQ 1S
and 2752 preserves the special structure of F.

Obviously we are allowed to map V; +— V; as these monomials exist anyway.
What we are not allowed is to map O; U Os — V; as this would destroy the
zero coefficients of monomials in (O x O1) and (O3 x O3) in the first layer
equations. With the same argument we are allowed to map V3 UO; — Op and
Vi UO1UOs 5 Oy, i.e. 2715 = S needs to be of the following form.

(1) 3(2) S(3) (€]
so |20 g Je | (o) o
[ —
S'=580= §((%><v1) ﬁ((gﬁxol) §((g§><o2) Q((Zixvl) Q(((‘;%XOI) (6)0
S(Oszl) S(02><01) S(OQXO2) Q(Oszl) Q(OzXol) (02><02)

If SO is regular, which is true with high probability (0.996 for 0, = 12) then
there exists 2(6) such that S'® = S@Q©) = 1. If SO and S©® are regular,
36) §(6)
S8 5§09

regular, too. Thus there exist 2(3) and 2, such that S®) = I and S'® = 0.
As we know that S is regular, it always exist 2V, 23 and 2G), such that
S’ =1, 8% =0 and 7 = 0. To conclude, with high probability (0.992)
there exist an equivalent key S’ of the form given in figure 4. Note that we
can randomize the algorithm by permuting columns and rows and thus start
again if finding S’ fails. The same holds for the transformation of equations T,
as we always can add equations within the same layer, as well as equations of
the first to the second layer, without destroying the zero coefficients. Thus with
overwhelming probability it exists an equivalent key 7" of the form given in
figure 4.

which is true with high probability (0.992 for o, = 12), then is

The total number of variables is now reduced to vi(01 + 02) + 20102 = 720.
The number of equations stays the same, but as the first v; columns of S’
does no longer contain any variables, the corresponding o7 -|(O2 x V1)| equations
transform from cubic to quadratic and furthermore are bihomogeneous in sgj and
t’ij. In our case we have 2592 quadratic and 4536 cubic equations. The complexity
of solving this system by Fy is 237% which still is infeasible. To further decrease

this complexity we now introduce the notion of good keys.
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18 12 12
12 12
S'=10 and T/ = |\
0 0

Fig. 4. Equivalent keys for Rainbow (25,18, 12,12). White parts denote zero entries,
gray parts denote arbitrary entries and there are ones at the diagonal.

The overall idea is to decrease the number of variables in S’ and T’ as far as
possible while preserving a reasonable amount of equations at the same time.
Therefore we generalize the notion of equivalent keys to keys that do not preserve
the whole structure of F but just some of it. We call those keys good keys if they
also reveal some parts of the keys S’ and T”, respectively.

Definition 2 (Good keys for Rainbow (v1,01,02)). Let S be the set defined
in definition 1, S"C S and S, T equivalent keys. We call two regular matrices S
and T good keys, if they fulfill all equations in S’ and the sets

{(2,7) | 8ij =8i5 and (1 <i <vAvi <j <n)V(n <i<vi+oiAvi+o1 < j<n)}

and
{(,4) | tij =tij for 1 <i<o1 Aoy <j<o1+02)}
are both not empty.

At a first glance it is not clear that good keys even exists. The following lemma
proves the existence of good keys and give a special class of them.

Lemma 1. Let S’ and T’ be equivalent keys for Rainbow of the form given in
figure 4. Then there exist good keys S and T, of the following form.

18 12 12
12 12
0
S = 0 and T = |
0
0 0

Only the last column of S contains arbitrary values in the first two blocks, which
are equal to the corresponding values in S’. Respectively, only the second block of
the o1-th row of T contains arbitrary values, which are equal to the corresponding
values in T'.
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Proof. We first show that there exists a unique transformation S’(2 = §, if we
assume (2n,1 = ... = 2y, 40,) = 0. We need those zeros later, to preserve a
minimal amount of structure in F.

1 Séill)xm) SEEJQI)XOQ) Q((il)ixvl) éifm) ((Szx()rl)”() Do
S0=10 1 Séi)x@) ngfxm Qéffm) Q((SIXOQA)HO =5
0 0 I “Q((me) (02x01) (02%02)
Using linear algebra, we uniquely obtain 29 = (M = 0® = o, QM) =
Q((iimrl) = ('MW gG) —S’(Q))(UIXOQ_U. Obviously the last column of S"(?) and

S'(3) are not affected by this transformation. Furthermore omitting the zeros in
the last column of 2 would destroy all the structure in F (cf. figure 5).

As soon as we would allow to map u, to any of the variables in Vi or O1 all
the zero coefficients in F would vanish and thus no equations would be left to
perform an algebraic attack with.

Showing that T is a good key is trivial: If we just want to preserve the structure
of §°), we can forget everything but the o;-th row of 7. a

The secret map § = 27§ is of the from given in figure 5.

18 12 12 18 12 12
and
d
for §'(*2 for M, ... gD,
03 50

Fig. 5. Central map of Rainbow (2%,18,12,12) after applying the transformation £2
given by lemma 1. White parts denote zero entries and gray parts denote arbitrary
entries.

The total number of variables obtained by good keys chosen as above is vy +
01 + 0o = 42. To count the number of equations, we denote n := vy + 01 + 09
and label every equation obtained by a zero coefficient of u;u; in F*) by (i, 4, k)
(cf. equation (2)). First, (n,n,01) provides a cubic equation. Second, (n,n,7) for
i1=1,...,00—1,01+1,...,01 + 02 provides quadratic equations in the variables
sij. Third and most important, (4,n,01) for i =1,...,n — 1 provides quadratic,
bihomogeneous equations in s;; and ¢;;. Those equations are the main weakness
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of all layer based M Q-primitives. Their existence is due to the missing cross-
terms V7 X Oz and O; x Os in the first layer of Rainbow. Note that in the case
of UOV these equations do not exist. Applying the same approach to UOV,
provides m quadratic equations in 2m variables, which is infeasible for current
parameters of m = 26. For Rainbow (2%,18,12,12) we end up with 1 cubic,
23 quadratic and, due to the missing cross-terms, 41 bihomogeneous equations.
Solving this system of equations has a complexity of 2677 Again this complex-
ity estimation assumes generic equations. As our equations contain some special
structure, e.g. some of them are bihomogeneous, we can hope for a lower com-
plexity in practice. We implemented our attack and compared its running time
to those of random systems (cf. table 2). This way we obtained an empirical
complexity that is bounded from above by 264.

After we obtained one column of S’ and one row of T”, all the other parts of S’
and T” are revealed by linear equations. More precisely, by equations (i, n, j) for
i=1,...,nandj=1,...,01—1,01+1,...,01 402 we obtain n(0; +02 —1) linear
equations in the remaining (01 — 1)os variables of T”. After we recovered T all
the equations (i,j,k) fori =1,...,v1,j=v1+1,...,nand k=1,...,01 + 09,
and even some more, become linear. Solving this system of v1(0; + 02)? linear
equations in (v +01—1)oa+v10; variables easily reveals the unique solution of S’.

Table 1 shows the theoretical complexity of our attack for several parameters
given in [PBB10] which were considered to be secure.

Table 1. Attack complexity for several parameter sets believed to be secure. Note, the
parameters for small fields are still valid.

‘ parameter set ‘ field ‘ attack [log,] ‘

(18,13,14) | GF(2%) 69.5
(20,14,14) | GF(2%) 76.1
(17,18,17) | GF(31) 78.3
(21,20,20) | GF(2%) 88.1

Experimental Results. We have implemented our attack using the software
system Magma V2.16-1 [MAG]. All experiments were performed on a Intel Xeon
X33502.66GHz (Quadcore) with 8 GB of RAM using only one core. Table 2 give
the results for various parameter sets (v1,01,02) of Rainbow. Column 4 and 5
give the number of equations and variables obtained through our attack. Column
6 gives the log, value of the theoretical complexity assuming random equations
and thus the worst case complexity of our attack (cf. [BFSY05]). The following
three columns show the time in seconds that our attack required over different
fields. We guess that Fys is implemented more efficiently in Magma and thus it
needs longer to solve instances over Fos than over Fos. The last column describes
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the time it took us to solve a random instance with the same number of variables
and equations, assuming that a solution exists. Comparing these complexities to
the ones of our attack, we observe a factor of 32 for (6,4,4) that we are faster
over Fys than theoretically expected. As this set of parameters is a scaled variant
of (18,12,12) and the difference only increases, we conclude that the attack is
at least 32 times faster than the theoretical upper bound. Thus we end up with
an empirical complexity of 2627 to break Rainbow (28, 18,12, 12).

Table 2. Running times in seconds of our attack for different sets of parameters, over
different fields. In comparison the running time in seconds for random systems is given
in the last column, as well as a theoretical complexity in operations in column six.

v1 | o1 | 02 || #eq. | #var. | theoretical | attack [s] | attack [s] | attack [s] || random [s]
m n [log,] GF(2°%) | GF(2') | GF(31) || GF(2%)

51414 20 13 26 0.5 0.7 0.4 6
61414 21 14 26 0.7 1.1 0.6 23
71414 22 15 31 1.4 2.1 1.1 194
81414 23 16 32 4.3 6.9 3.6 641
91414 24 17 33 35 64 29 3328
6|5|5 25 16 28 17 29 15 87
71515 26 17 32 33 58 25 1270
8|5|5H 27 18 34 87 159 73 4475
915|5 28 19 34 630 1185 527 -
71616 30 19 35 443 821 370 -
816]|6 31 20 35 877 1765 743 -
916]|6 32 21 36 3034 6052 2578 -
81717 35 22 41 12567 25311 10730 -

Conclusion. A immediate consequence of our attack is that we should use at
least parameters (22,16, 16) over Fys. Further we did not use all the structure
for the theoretical analysis of our attack, i.e. we neglected that a large portion of
the obtained equations is bihomogeneous. Thus we should ask ourselves a very
important question: Is the gain in efficiency by transforming UOV to Rainbow
larger than the loss of security? If not, Rainbow is superfluous as UOV will
always be both, more secure and efficient. This question especially arise because
our attack on Rainbow use the missing cross-terms and thus is not applicable to
UOV. Unfortunately, a fair comparison of the efficiency/security ratio of UOV
and Rainbow is out of the scope of this paper. To even define efficiency in
this context is an involved task. Do we only measure the blowup factor of the
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signature or do we take the complexity of the signing algorithm into account,
too? Our intuition is that we roughly lose as much security as we gain efficiency
in terms of the signature length while transforming UOV to Rainbow. Let us
explain this at the following example over Fos. Using Rainbow (28,22,16, 16),
for which our key recovery attack has complexity at most 254, we map messages
of length 32 to signatures of length 54. For comparison, UOV with parameters
0 =28 and v = 56 is considered to have a security level of 284 against message
recovery attacks [BFP09,TW12b]. Thus UOV maps a message of length 28 to
a signature of length 84. Further we can use that UOV is well parametrized,
while Rainbow is built on the edge, i.e. in order to prevent key recovery attacks
like the one of Kipnis and Shamir [KS98,KPG99] on UOV, we only have to
ensure v — o — 1 > 8. So choosing v = 20 is a little conservative. More precisely
o = 28 and v = 37 is sufficient to prevent this type of key recovery attack. In
this case UOV maps a message of length 28 to a signature of length 65. To put
security concerns in a nutshell, UOV is based on the M Q- and IP-problem and
Rainbow additionally use the difficulty of the MinRank-problem. So everyone
have to decide on his own, if obtaining signatures of length 54 instead of 65 is
worthwhile to take another class of problems into account.
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4 Cryptanalysis of Enhanced STS and all its Variants

Another way to achieve a secret map F = (f(l), cee f(m))T was given by the Se-
quential Solution Method of Tsujii [STH89, TKI*86]. The idea was somehow simi-
lar to the independently proposed schemes of Shamir [Sha93] and Moh [Moh99].
In 2004 Kasahara and Sakai extended this idea to the so-called RSE system
[KS04], which later was generalized to the Stepwise Triangular System (STS)
by Wolf et al. [WBP04]. Here the central polynomials f*) are some random
quadratic polynomials in a restricted number of variables. See figure 6 for the
stepped structure of the resulting M Q-system. Inverting this map is possible as
long as solving r quadratic equations in r variables is practical. Consequently,
we need to restrict r to rather small values, e.g. 7 =4...9.

f(1>(u17 .. '7u7‘)
Step 1 .
f(T) (ul’ B u’“) wyeoup Varl.a,‘],oles wm
T
: =
. <
f(“_l)”'l)(ul, ey Uir) -g r
Step % resp. _‘Eﬁ \\\
f(")(ul,...,uir) a \\\
r
f((L71>T+1)(u17 R} ’le)
Step L :
f(m)(ul, ceey Um)

Fig. 6. Central map of STS based signature schemes like RSSE(2)PKC or RSE(2)PKC.
The gray parts of the matrix indicate that those variables occur in the corresponding
polynomial and white parts indicate that they do not.

In the same year Wolf et al. [WBP04] showed how to efficiently break the pro-
posed parameters of the STS schemes RSSE(2)PKC and RSE(2)PKC using a
HighRank attack. At PQCrypto 2010 Tsujii et al. [TGTF10] tried to fix the
scheme by proposing a new variant called Enhanced STS, which uses a com-
plementary STS structure (cf. figure 7). Only a few months later they noticed
themselves that the scheme is obviously not immune to HighRank attacks, al-
though this was originally a design goal. To fix this problem, they proposed
several new variants [GT11,TG10]. We will now shortly repeat the HighRank
attack and then give a more efficient algebraic key recovery attack which makes
use of good keys and missing cross-terms. The latter are quadratic monomials
of two variables from different sets, which do not exist in the central map F
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by construction. We conclude that it is impossible to find a secure and efficient
parameter set of Enhanced STS. We will also break the new variants of STS. To
conclude, we discuss (im)possible improvements and show that we either end up
with the Rainbow or Oil, Vinegar and Salt signature scheme.

Cryptanalysis of Enhanced STS. To exploit different ranks in plain STS,
we use the quadratic form of the polynomials f*), ie. f*) = w7y for
u = (uy,...,un)T and some (m xm) matrix F*. Note that we have n = m = Lr
here. Obviously the rank of these matrices in the i-th step is ir. Now we use that
the rank is invariant under the bijective transformation S~'u = z of variables,
i.e. tank(STFS) = rank(F®) for all 7. In addition, the public polynomials
p) = 2TPO 2 are given by some linear combination P = Py ti; ST S =

ST (ZTzl tijS(j )) S. As the rank is changed by the transformation of equations

T, we can use the rank property of the underlying central equations f*) as a
distinguisher to obtain the full transformation T'.

Enhanced STS was thought to resist rank attacks. Tsujii et al. introduced two
sets U = {u1,...,un} and V = {v1,...,0m_r} of variables and constructed
central polynomials f*) which all have the same rank m. The construction is
very similar to figure 6, but every polynomial f*) depends on m variables. See
figure 7 for details.

variables

wy . up R Ugm, V] -+ U . Um—r

polynomials

Fig. 7. Central map of Enhanced STS. The gray parts of the matrix indicate that those
variables occur in the corresponding polynomial and white parts indicate that they do
not.

As the corresponding M Q-system F has m quadratic equations but n = 2m —r
variables, we could fix all variables of V' to random values and obtain an M Q-
system of r equations and r variables in the first step. Solving this M Q-system,
substituting the solution in the next step and so on, allows for a reasonable ef-
ficient inversion of F.
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Tsujii et al. themselves noticed [TG10] that having the same rank m for the
central polynomials f*) does not prevent rank attacks in any way, as the rank
of the public polynomials is 2m — r. The following simple HighRank attack is
still applicable. Note that due to the additional variables v; the minimal rank of
the central polynomials is m, for m > 26 in practice to prevent direct attacks.
Thus Enhanced STS is at least secure against MinRank attacks [FdVP08,BG06].

HighRank Attack. In order to reconstruct 7' we have to search for linear com-
binations of the public polynomials B, such that the rank decrease from 2m —r
to m. Let 0 € S,,, be a random permutation, which we need for randomization.
Then there exist A\; € F; such that the following linear combination has rank
2m — 2r and thus the rank drops by r.

m(U(TﬂLl)) + Z AP = gﬁ
=1

There are 2 different solutions, as we can eliminate the r matrices 0. ey )
or =+ . &™) such that P has rank 2m — 2r. In the first case P is a
linear combination of secret polynomials, who do not contain variables vy, ..., v,
respectively Up—r41, ..., U, in the latter case. Thus brute forcing all A\; has
complexity ¢” /2. Once we have eliminated all the % of one block (e.g. 1 < i < r)
in one polynomial ‘f} we easily eliminate those @ in all the other m — r public
polynomials by just determining ker(3). The linear system > .-, AN PDw =0
with w € ker(‘fk) provides all m —r polynomials of rank 2m — 2r. The complexity
of this step is 2(2m — r)3. Repeating this whole procedure L times yields 7
matrices i?(i) of rank m. At this point we know the kernel of one of the central
blocks of F and could use this to separate the matrices in the steps before, which
are still linear combinations of some STF®S. Choosing a vector that lies in the
kernel of the matrices obtained in the i-th step, but not in the kernel of matrices
recovered in step ¢ + 1,..., L easily provides T'. The overall complexity of this
HighRank attack is given by

L. , L-1 o i
50" +2L(2m — ) +> (ir)* = 0(q").

i=1

Algebraic Key Recovery Attack. We saw that the complexity of the High-
Rank attack strongly depends on the field size ¢ and the parameter r. Even
if r is restricted to small values due to efficiency constraints, it is possible to
choose ¢ large enough to obtain a scheme secure against the previously men-
tioned attack. For example, let 7 = 9 and ¢ = 2°. Now we describe a new key
recovery attack that is almost independent of the field size ¢ and thus makes
it impossible to find a parameter set that is both efficient and secure. To ease
explanation we fix a parameter set of Enhanced STS to illustrate the attack. As
there are no parameters given in [TG10], which is by the way not very courteous
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to cryptanalyst, we choose m = 27, r = 9 and ¢ = 2° as this prevents message
recovery attacks via Grobner Bases on the public key as well as HighRank at-
tacks. The number of steps is given by L = m/r = 3. The number of variables
isn=2m-—r=|U|+|V] =27+ 18 = 45. Note that a legitimate user would
need to solve three generic M Q-system with 9 equations and variables over Fao
to compute a signature. While possible in theory, it is inefficient for practical
use. Solving a generic M Q-system with 9 equations and variables over Foo using
the fastest known method, i.e. the hybrid approach [BFP09] by guessing one
variable, as well as the very fast F4 implementation of Magma V2.16-1 [MAG]|
on a Intel Xeon X33502.66GHz (Quadcore) with 4 GB of RAM using only one
core, took us 0.3 seconds. Thus the worst case signing time is 3 - 2% - 0.3 ~ 461
seconds. But despite of choosing such a large r, we now show that the resulting
scheme still is not secure.

U 14 U 14
e e N e e N 9 9 9
9
F: , 5: 10 and T . 9
0 0 9
U, Uy Uz Vi Va 0 0
0

Up Uz Uz Vi V2

Fig. 8. Central map F of Enhanced STS and the minimal representative S and T of
the class of equivalent keys.

Figure 8 shows the structure of the central map F. The picture describing F has
to be read like figure 7. Every little square denotes a (9 x 9) array. Moreover,
we give the structure of the secret key S = S~1, which is a (45 x 45) matrix
with ones at the diagonal, zeros at the white parts and unknown values at the
gray parts. Note that there are many different secret keys S respectively S—1
that preserve the structure of F, i.e. preserve systematical zero coefficients in
the polynomials (). We call all them equivalent keys and can assume that in
every class there is one representative with the structure given in figure 8 with
overwhelming probability (cf. definition1). The same holds for T := T—!. We
skip the derivation of Sand T given in figure 8 as it was already known and is
very similar to the proof of lemma 1.

An algebraic key recovery attack uses the special structure of F to obtain
equations in S and 7' through the following equality (cf. (1)) derived from
F=T"'oPoS ' withT:=T""=:(t;;) and S := S~ .

3 = g7 Zajm(j) S

j=1
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As B is publicly known and we further know that some of the entries of § are
systematically zero, we obtain cubic equations in the elements of S and T'. To
ease notation we use ;4 1= v; for j =1,...,m —r. It is interesting to observe
that the equations obtained from the coefficients u;u; in f*) are of the form

n n n
0= § § § awyztkmsyiszj
r=1y=12=1

for some coeflicients oy,. € F, that depend on the public key matrices pU)
(cf. [PTBW11, Sec. 3] or [TW12b| for an explicit formula). Due to the special

form of S this immediately implies that all equations obtained by zero mono-

mials w;u; with u; € Uy := {uq,...,u9} and u; € Us UUsz := {u1o,...,u1s} U
{urg,...,u27}, as well as w;v; with v; € Uy and v; € Vi UV, := {v1,..., 09} U
{v10,...,v18} become quadratic instead of cubic. This change hence greatly im-

proves the overall attack complexity. Defining U x V := {{u,v} |u € U,v € V}
the total amount of equations obtained by systematical zeros in F is

|(U20Us) x (U2 UUs)| + [(U2 UUs) x (V1 U Va)l)
[(Us UV1) x (Us UV)| + [(Us U VL) x (U2 U V3)))
(ViU V2) x (Vi U V)| +[(V1 U V2) x (U2 U Us)l)
- ((18-19)/2 + 18 - 18)

7-(171+ 324) = 13,365 cubic equations and

'|(U2UU3) ><U1|—|—9'|(U3UV1) ><U1|+9-|(V1U‘/2) XU1|
= 27 - 162 = 4374 quadratic equations.

+ o+

(
(
(
3

9
9
9
9
2
9

Solving this system of equations in 486 variables ;; and 1134 variables 3;;
with a common Grobner basis algorithm like F4 has a total complexity of 2377
(cf. [BFS04,BFSYO05]). This huge complexity is due to the large number of vari-
ables and the fact that the complexity estimation assumes generic equations and
thus does not take the structure of the equations into account. In order to de-
crease the complexity, we have to break down the problem into smaller pieces.
This can be done if we further decrease the number of variables in S and T'. To
achieve this goal we use good keys again (cf. definition 2).

Lemma 2. Let S and T be equivalent keys for Enhanced STS of the form given
in figure 8. Then there exist good keys S’ and T’, of the following form.

S" is all zero except the gray parts, which are equal to the corresponding values
in S and the diagonal, which contains only ones. Similarly, the gray parts of T
equals the corresponding values in T'.

Proof. To preserve the structure of F given in lemma 2 we are allowed to map
variables Uy UUs UU3 U Vo — U1 UU; UU3 U Vs as well as V; — V4. As soon as
we were to map variables from V; to any other set of variables, all polynomials
would contain variables from V; and thus the whole structure of F would be
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0 0 0 0 0|
F: , S 0 0 0| and 7':] 0 0 |o
0 0 0 0 o
Yot B 0 0 0 0
0 0 0

destroyed. Now we show that using such a transformation {2 of variables, we can
uniquely map S to S’ by S22 =5".

I S §@ g3 g@& W 0@ B o W

0 I S® g6 g NG 06 oM o B
Se:=10 0 1 §® 30|| " 000 oun o ou|Llg

0510 g1y 1 o N13) H(14) H(15) H(16) (H(17)

0 5(12) §(13) g(14) N8 H(19) NH(20) o Y

Obviously 216 = I and thus §®), 5©) §®) and §(1~4) remain unchanged. As S
is regular, all other 2() are uniquely determined by S—'S’. Showing that 7" is a
good key is trivial: If we only want to fo,41,..., f3, to contain no V; variables,
we are allowed to map all polynomials except f1,..., f- to one another. a

Using the good keys of lemma 2 we end up with 405 cubic equations, 2916
quadratic equations and 405 variables. The complexity of solving such a system
using Fy is still 2151, To bring this game to an end, we only need to assure that
f30 do not contain the variable v;. Analogous to lemma 2 we obtain |(U UV, U
Vi\{v1}) x {v1}| = 44 quadratic equations and one cubic equation. Using good
keys analogous to lemma 2 we obtain 9 variables to7; for 1 < j < 9 as well
as 36 variables s;os for 1 < ¢ < 36. Applying the generic complexity analysis
as before still provides the same, and hence infeasible complexity of 2'°!. The
reason is that now the number of equations equals the number of variables, so
the overall complexity does not decrease. To obtain a better attack complexity
we somehow have to use the fact that all quadratic equations are bihomogeneous,
i.e. of the form E?ﬁl ?:1 Oéijt27j$i28 for some Q5 S Fq. In [FDS].].] Faugére
et al. analyzed systems of such a special structure and gave an upper bound on
the degree of regularity for Fy. To use their results we first have to guess one
variable t;; such that we obtain a system of 44 bihomogeneous equations in 44
variables. According to their results we now obtain a degree of regularity of 9
and a complexity of 2° (44; 9)2 ~ 273, In general the degree of regularity is 7, as
we have r — 1 variables ¢;; after guessing and thus the complexity of our attack
for arbitrary parameters is given by

(2m—1)2
q .
.
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Once we obtained a single row/column of S and T, the whole system breaks down
as all other elements are now determined through linear equations. Therefore let
us label every equation obtained by a zero coeflicient of u;u; in f ®) by (ui, uj, k)
(cf. (2)). Now, (uj,v1,k) and (vj,v1,k) with 4 = 1,...,27, 7 = 1,...,18 and
k =19,...,26 provide linear equations in ¢;; with¢=19,...,26and 7 =1,...,9.
Next we can apply the same approach using good keys as above for v; to v;,
i=2,...,9. As we already know the coefficients ¢;; of the appropriate good key,
all bihomogeneous equations become linear in s;;. We now can determine the
next blocks in T' through linear equations only. We repeat the process until all
secret, coefficients are recovered.

To summarize our new attack, we first used the fact that cross-terms from
(U U V3) x V1 do not exist to obtain quadratic instead of cubic equations in
the key recovery attack. Second, we reduced the number of variables through
good keys. And third, we used the special bihomogeneous structure of the equa-
tions to lower the attack complexity. In order to protect the scheme against this
attack we either have to increase m or r. But as the complexity of the signing
algorithm is 3¢ (Tfitcf”g)Q, i.e. in the same order of magnitude of our attack,
Enhanced STS cannot be efficient and secure at the same time. In general it do

not seem to be a good idea to use an exponential time signing algorithm.

Cryptanalysis of Check Equation Enhanced STS. The original Enhanced
STS scheme contains m quadratic equations in 2m — r variables in the public
key and thus have ¢~ " possible valid signatures to one message. Even if current
algorithms cannot take advantage of underdetermined M Q-systems, Tsujii et al.
[TG10] suggested to strength their signature by adding m — r check equations
and thus fix one unique signature. From a message recovery point of view, the
attacker now would have to solve a M Q-system of 2m —r (public key) equations
and variables. Before he had to solve a system of m equations and variables after
just guessing the additional m — r variables.

However, the check equations do not affect the algebraic key recover attack we
just described. Moreover, if the check equations are not chosen purely random
and thus introducing new structure, the attack may even benefit.

Cryptanalysis of Hidden Pair of Bijection. The overall idea of this variant
is very general. Take a pair F(), F(2) IF:I" — IE‘;” of bijections with a disjoint set
of variables, i.e. u = (u1,...,um) and v = (v1,...,v,) and connect them with
a function H containing all the cross-terms of w and v. The central polynomial
) is given by

) (u,v) == Fy(u) + Fy(v) + H(u,v) for some H(u,v) := Z Z QU V; .

j=1i=1
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If F) and F® contain some trapdoor and we assign u or v zero, we can invert
the central map. An instantiation of this scheme using the STS trapdoor is
depicted in figure 9.

U Vv UxV
—_— N
@ or T r
=
cS> r r r
k g
fP(u0)= § + . +
ai N : N
\\ \\
r r r

Fig. 9. Secret map F of Hidden Pair of Bijection using STS trapdoor.

The first observation is that due to the cross-terms in H all the secret matrices
F® have full rank 2m and thus rank attacks are not trivially applicable. But
there is a smart way in applying rank attacks to the scheme. The weak point is
the signing algorithm proposed by Tsujii et al., which first chooses u or v to be
zero. They claimed that this would not help an attacker, as his chance to guess

the right choice is % Well, if we collect 4m — 1 valid signatures x1,...,ZT4m—1
to arbitrary massages, which are all signed using the same secret S, we can
built an efficient distinguisher. We know X := (2],...,2],. ;) is (up to column

permutations) of the following form

The probability of matrix X to have rank 2m — 1 is (1/2)?™~12(*"") which
is sufficiently large—for example choosing m = 30 this equals 0.21. Once we
found a collection of signatures x1,...,Z2m,m—1, such that rank(X) = 2m — 1 we
obtained an efficient distinguisher. If X || x; for j > 2m still has rank 2m — 1 we
add z; to the set A. If the rank increase by one we add z; to the set B. As soon
as both sets A and B are of cardinality m we easily obtain a transformation
S which separates the U and V space through linear algebra. After fixing one
of the both sets of variables we obtain a plain STS scheme and can apply the
HighRank or the Key Recovery attack from above.

In order to prevent this attack we would have to assign arbitrary values to w
respectively v instead of all zeros. This immediately invalidate the trapdoor and
makes the scheme unusable. In every step we would have to solve a quadratic un-
derdetermined system of equations without destroying possible solutions through
guessing variables.
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Remark 1. We did not fully analyze the latest variant of Enhanced STS pub-
lished on Eprint [TTGF12] yet, but are quite confident that our attack also
applies.

Conclusions or: Where do we take it from here? In summary, we have
introduced a new attack on Enhanced STS that makes use of the heavily struc-
tured central map in terms of missing cross-terms. We rate it very unlikely that
Enhanced STS or its variants can be repaired while providing an efficient signing
algorithm. So the question at hand is if non-linearity could help in any way to
improve UOV or Rainbow.

One answer was already given by Kipnis et al. in the paper that proposed UOV
[KPGO3]. One of their possible variants to repair the balanced Oil and Vinegar
scheme and thus to avoid the attack of Kipnis and Shamir [KS98] was called Oil,
Vinegar and Salt signature scheme. Here the variables are divided into three sets
O,V and S. The central map F is constructed such that there are no monomials
u;u; with u; € O and u; € VU S. After fixing the vinegar variables we obtain a
system linear in the O variables and quadratic in the S variables. The best known
way to solve such a system is to brute-force the .S variables and then solve the
remaining linear system. This way we loose a factor of ¢/°! in terms of efficiency.
As it turned out later, a modified version of the Kipnis and Shamir attack actu-
ally can be applied to the Oil, Vinegar and Salt scheme. Ironically, the factor we
gain in terms of security compared to the original scheme is exactly the factor
we loose in terms of efficiency. But as the (positive) effect of non-linearity to the
public key size is negligible compared to the (negative) effect to the efficiency of
the scheme, the best trade-off is to just skip the salt variables and hence use the
original UOV scheme.

STS can be seen as a layer-based version of Oil, Vinegar and Salt. So we can
rephrase the question between UOV and UOV+S in this setting. In particular,
we have to ask ourselves if the layered structure of STS allows for a better trade-
off between efficiency and security than UOV. Unfortunately, we have to leave
the final answer as an open question. However, we incline to the negative. To
illustrate this, we want to elaborate some thoughts on this matter. One the one
hand, it is not clear even for UOV if the ratio between efficiency and security
increases for the layer-based scheme Rainbow. Especially the attack of section 3,
which is not applicable to UOV, challenges this hope. On the other hand, the
attack of Kipnis and Shamir [KS98] is not practical for layer-based schemes like
Rainbow. So the question remains, if and how much security we can gain at all
by introducing some non-linearity in each layer. Our intuition is that the loss
of efficiency is always greater or equal than the gain of security in these cases
and hence of no avail in practice. The reason is that on the one hand the signing
algorithm becomes exponential instead of polynomial, as soon as we introduce
non-linear parts. In comparison, the attack stays exponential in both cases, i.e.
there is no gap between the legitimate user and the attacker.
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The only exception from this rule seem to be Grobner bases that are used as
a trapdoor. Clearly we have to use Vinegar variables in that case, as otherwise
MinRank attacks are applicable. But we found no way to fuse this into a working
scheme—but got the impression that this is not possible at all. Hence, we leave it
as an open problem, how to embed a Grobner Basis into a scheme using Vinegar
variables and to derive a both secure and efficient scheme.
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5 Cryptanalysis of Enhanced TTS

Enhanced TTS was proposed by Yang and Chen in 2005 [YCO05]. The overall
idea of the scheme was to use several layers of UOV trapdoors and to make
them as sparse as possible. In contrast to UOV this would prevent the Kipnis
and Shamir attack [KS98] without increasing the number of vinegar variables.
In fact, while we have a signature blow up of factor 3 for UOV, enTTS improves
this figure to 1.3. As enTTS was designed for high speed implementation it uses
as few monomials as possible.

There are two different scalable central maps given in [YCO05], one is called even
sequence and the other odd sequence. The following equations show the even
sequence.

20—5
FO =i+ > Vigtitay gyt mod 202y for 20— 4 < i <407,
j=1
L—4 20—5
f(i) =u;+ Z VigUitj—(40—6)Ui—j—20-1 F Z YVij Witj—30+5Ui—j+0—4
J=1 j=t-3
for 40 —6 <i <40 -3,
60—5
f(i) = Ui + YioUi—2042Ui—2¢—2 T+ Z Yi,j—(46—3) Udl—3+i—jUj
j=i+1

i—1
+Yii—ae+3U0U; + Z Vi j—(46-3)Ua(i—j)— (i mod 2)Uj T Vi i—de+2U0U;
J=40—2
for 44 —2 <7 <6/ —5.

The number of equations and variables is m = 4¢ and n = 6/—4, respectively, for
some parameter ¢. The first observation is that the number of equations obtained
by (2) is very large, as only 2¢ — 3 monomials per equation are non-zero. The
second observation is that the linear terms provide an enormous amount of new
equations, as their coefficients are not chosen at random but fixed. Considering
only the linear parts of the public polynomials p¥) we obtain the following
equation analogously to (1)

ei+2¢_5:§ Zfij(%j),...,%(lj))T for 1 <i<m, (4)
j=1

where e; denote the all-zero vector with a single 1 in the i-th entry and %(J ) is the
coefficient of z; in p{). We obtain a total amount of 4¢(6¢ — 4) bihomogeneous
equations in the (4¢)? variables of T and in the (6¢ — 4)2 variables of S. But
despite of this large amount of equations a theoretical complexity analysis of
solving those equations provide infeasible large results, due to the large amount
of variables. Note that in practice the solving algorithm may seriously benefit of
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the equations internal structure. We leave it as an open problem to implement
this attack and run experiments to determine the real complexity of attacking
enTTS this way.

In the sequel we once again focus on reducing the number of variables. Note
that most of the equations (4) vanish as soon as we use equivalent keys. This is
also true for a large amount of zero-coefficients in the quadratic part. Thus we
generalize the scheme by adding more monomials. In particular, we adapt the
definition of enTTS as follows: As soon as a monomial z;x; with 2; € U and
x; € V occurs in the original enTTS polynomial ) we just assume that all
monomials z;x; with z; € U and x; € V occur as well. This way we easily see
that enTTS is a very special case of the Rainbow signature scheme, neglecting
the linear parts. We chose the parameter set (n,m) = (32,24) and thus £ = 6
given in [YCO05], as this provides a security level of 2%8. See figure 10 for an
illustration.

8 10 4 10 8 10 4 10 8 10 4 10
8(1)7"',’3(10) 3(11)7“‘75(14) 3'(15)7"'78(24)
T— S=|0
0 0 0
000

Fig. 10. Secret map F of TTS (32,24) and equivalent keys 7" and S.

The attack is similar to the one described in section 4. Suppose we just want do
preserve zero coefficients of z322; in polynomial uTF ¥ w. This leads to the good
keys given in figure 11 and thus to 31 bihomogeneous equations in 10 variables
t14; with ¢ = 15,...,24 and 22 variables s;3» with j = 1,...,22. Analogous to
section 4 we first have to guess one variable ¢;;. Solving the remaining system
of 31 bihomogeneous equations in 31 variables has complexity 23 (31;510)2 ~ 208
(cf. [FDS11)).

Remark 2. Using the good key T” of figure 11 gives arbitrary values for the first
4¢ — 2 entries in e; of (4). Only the last 2¢ — 2 entries are invariant under the
transformation £2. But due to the good key S’ these entries become arbitrary as
well, except the last one. Thus we obtain one more bihomogeneous equation from
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o
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Fig.11. Good Keys T" and S’ for enTTS (32, 24).

(4) using good keys. Now we can apply [FDS11] without guessing one variable
. . 2

beforehand and obtain an overall complexity of (**'")” ~ 265,

But due to the special structure of enTTS we can do even better. Applying the
transformation of variables {2 analogous to lemma 1, we see that the monomial
usz2u32 do not occur in any of the secret polynomials. This way we additionally
obtain 23 quadratic equations in s;;. The complexity of solving a generic system
of 23 4+ 32 quadratic and 1 cubic equation in 32 variables is 2477. Note that this
complexity is just an upper bound as we assumed generic equations and thus
did not use the special bihomogeneous structure.
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6 Cryptanalysis of MFE Based on Diophantine Equations

The MFE encryption scheme was published at CT-RSA 2006 [WYHLO06] and
broken at PKC 2007 by Ding et Al. [DHN'07|. The variant using Diophantine
equations was published at Designs, Codes and Cryptography in 2011 [GH11].
Clearly the security goals of MFE are out of date, as even a direct attack on the
public key using Fy or XL is efficient due to the small number of equations and
variables. Therefore we will not give another attack on MFE, but concentrate on
the more secure variant proposed in [GH11]. Note that our attack also applies to
the original MFE scheme and very likely would be as efficient as the high order
linearization attack of [DHNT07].

MFE Encryption Scheme. We briefly describe the main idea of MFE. For a
detailed description please refer to [WYHLOG6].

The central map F : F%% — F;E (21, ..,212) = (y1,--.,y15) is defined by

y1 =1+ P(z1) + U1
Yo = T2+ P(x1,22) + P2

ys = x3+ P(x1, 22, 73) + 13

Y4 = T1T5 + Ta27 Y10 — T3T9 + T4T11
Ys — T1Te + TaTg Y11 — T3T10 + T4T12
Y6 — T3Ts + T4T7 Y12 — TpT9 + T7T11
Y7 = T3%e + TaT8 Y13 = TsT10 + T7212
Ys = T1T9 + T2x11 Y14 = T6T9 + TT11
Y9 = T1T10 + T2T12 Y15 = T6T10 T T3T12

where ¢1, ¢2 and ¢ are random quadratic polynomials and 1, and 3 are
polynomials in yq, ..., y15 obtained by a special determinant relation. On a high
level view the central map is a mix of two different principles. First y;,y2 and
y3 are composed of a stepwise triangular structure (cf. STS in section 4) and a
masking 11, 12, 13 which hides this structure. To decrypt, we can easily calculate
the values of v;, as they only depend on yq,...,y15 and unmask y;,y2 and ys.
Consecutively solving these equations yields x1,x2 and z3. Second yy,...,¥y15
are partitioned in 3 blocks of oil and vinegar structure (cf. UOV section 2), i.e.
plugging in x1, 22 and x3 provide linear equations and so on. The public map P
is obtained as usual by P =T o Fo S.

MFE Encryption Scheme Based on Diophantine Equations. The variant
of [GH11] generalize the idea of MFE to another class of Diophantine equations.
In particular they use a Diophantine equation of the form

1Yo = fife + fafa+ fsfe + frfs + fofio

where f1,..., fio are quadratic polynomials with oil and vinegar structure and
11,9 are the polynomials used for masking later on. To find an instantiation
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of ©; and f; the authors used the polynomial ring

R = For 21, 22, 23, 24, W1, Wa, W3, Wa, U1, U2, U3, Ua, V1, V2, V3, Va] (5)
and Pliicker coordinates (cf. definition 3), which are know to satisty the following
identity

0= (pia, + pa)p* (z,w, u,v) + (pls, + o )P™ (2, w0, u,0) +

(PHd + pE)p® (2, w,u,0) + (022, + p2)p
(P2 + Po)P™ (2, w,u,0) + (P20, + P3P

14(25 w’ u? v) +

2 (z,w,u,0). (6)
Definition 3 (Pliicker coordinates). Given the polynomial ring defined in (5),
the Pliicker coordinates are defined by
p?w = ZjW5 — 2w = ziyj + w;ys,
P (2, w,u,0) = p¥, + P, + D,
To transform the 5 last terms of the sum (6) in oil and vinegar form, the authors

used the isomorphism

p: R — For[r1, 72,73, 74, T5, T6, T7, T8, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Ys)
: (Zl,ZQ,23,Z4,’UJ1,UJ2,7.U3,w4,Ul,’lLQ,Ug,U4,'Ul,'UQ,'Ug,’U4) =
($17$37y1 + Ys5,Y3 + y77$47x27y57y77x57x77y47y27$87x67y87y6)

Note that there were two typos in the definition of p in [GH11] (confirmed by
[Gaol2]).

The central map F : F§E — IF;% (@1, Toa Y1, Y32) > (21,000, 274) 18
defined by
21 =x1+ d1(x1) +11(zr, ..., )
72 =Ta+ go(w1,72)  + Y 2(y1,---,y8)
z3 :IE3+¢3({E1,...,$3)+1/)22(y9,...,y16)
g =xg+ Ga(w1,. .., x0) FU32(017, -, Y24)
25 =$5+¢5($1,...,J]5)+’¢1 1(5[: .. 1'16)
26 = a6+ Po(w1,...,26) + 1, 1(3617,-- ,T24)
27 :367+¢>7($1,---,x7)+1/142(y25,---,y32)
Z7+1‘ :fl)i($1,...,.Ig,yl,...,yg) 1§Z§10
Zl7+i:f27i({E1,...,wg,yg,...,ylﬁ) 1§Z§10
Zor4i = fo.i(Y1, .- Y8y Yo, -+ -5 Y16) 1<i<8
236 = fa,00(Y1,s -5 Y8y Yoy -5 Y16)
23641 = f3,6(T1, ..., 8, Y17, -, Y24) 1<i<10
24640 = f2,i(T9, ..., T16,Y9, - - -1 Y16) 1<:<8
255 :f2,10($97---a$167997-'-7916)
25643 = f3,i(T17, ... Toa, Y175+ - -5 Y2u) 1<i<8
z6a = fa10(T17,- ., T2a, Y175+ -, Y24) 1<¢<8
2564+i — f3,z‘(l“17, sy T24, Y175 - - - ,y24)

Zeati = fa,i(To, ..., %16,Y25, .- -, Y32) 1<:7<10



f2,2
foa
f2.6
fa.8
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where ¢1, ..., ¢7 are random quadratic polynomials and f; ; := f1 ; fori =2,3,4

and j =1,3,5,7,9. Further we define

¢2,2 = p(p34(27 w,v, U)) ¢3,2 = p(p34(w7 z, U, U)) ¢4,2 = p(p34(w7 Z,0, ’LL))
p(p24(z,w,v,u)) f3,2 = p(p24(wvzvuav)) f4>2 = p(p24(w,z,v,u))
p(P*2(z,w,v,u)  faa = p(P(w,z,u,0))  faa = p(P*(w, 2,0, u))
p(p"(z,w,v,u)  fae = p((w, z,u,0)  fas = p(pM(w, 2,0, u))
p(pl?’(szvvvu)) f3,8 = p(pls(wazauav)) f4,8 = p(p13(w,z,v,u))
p(p12(z,w,v,u)) f3,10 = p(plz(wazauav)) f4,10 = p(plz(w,z,v,u))

f2,10 :=

To use the structure of F for an algebraic key recovery attack, e.g. missing
cross-terms, we need to look at the equations explicitly:

22

zZ3 =

24
25
26

27

Z8

29

210

211

212

213

214

215

216

z17

218

Z19

220

221

222

223

224

226

z27

228

Z1,%2) + y1Y2 + Y3Ya + YsYs + Yrys
z3 + ¢3(x1,...,x3) + Yoyia + Y10y13 + Y11y16 + Y12y15
5 + ¢5(21,...,25) + ToZ10 + T11T12 + T13T14 + T15T16

6 + P6(T1,...,%6) + T17T18 + T19X20 + T21T22 + T23T24

(
(
(
=24+ ¢a(1,. .., T4) + y17y18 + Y17y22 + Y19Y20 + Y10Y24 + Y21Y22 + Y23Y24
(
(
(

)
)
)
)

7+ ¢7(21, ..., 27) + Y25Y26 + Y25Y30 + Y26Y20 + Y27Y28 + Y27Y32 + Y28Ys1

(z1 4 z4)ys + xay1 + T5Ys + TaYa
(
(

)
T2 + T3)y2 + TaYs + Toyr + T7Y3
)
(x2 + x3)ya + T2ys + Teys + T7y1
)
)
)

T1+ Ta)Y7 + Tays + TsYe + T8Y2

(z2 4+ 23)ys + x2y1 + Teys + T7Ys
(z1 + ®a)y2 + Tays + T5Y3 + TsYy7
(z2 4+ z3)y7 + x2y3 + Tey2 + T7Y6
(z1 4 z4)ya + Tays + T5y1 + TsYs
Y1y7 + y2ys + Ysys + Yays

x

x

1+ z4)x7 + (x2 + x3)x5 + T2T8 + TaT6

1+ Ta)y13 + TaYo + Tsyie + T8Yi2
T2 + T3)y14 + T2Y10 + TeY11 + T7Y1s
T1 + T4)y15 + TaY11 + TsY14 + TYio

T2 + 3)yY13 + T2Y9 + Teyi2 + T7Y16
T1 + X4)Y14 + T4Y10 + Ts5Y15 + TsY11

(
(
(
(
(
(
(
(

)
)
)
T2 + x3)y16 + T2y12 + TeyYo + T7Y13
)
)
)

T2 + X3)Y15 + T2Y11 + TeYi0 + T7Y14
(1 4+ z4)y16 + Tay12 + T5Y13 + T8Yo
Yoyis + Yioyie + Y1113 + Y12Y14

1+ x4)Te + 25 + (T2 + x3)xs + TaT7

(
(

Y1 + ya)y13 + YaYo + Ysyie + Ysy12
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229 = (Y2 + y3)y14 + Y2y10 + Yey11 + yryis

230 = (Y1 + y4)y15 + Yay11 + ysy14 + Ysyio

231 = (Y2 + ¥3)y16 + Y2y12 + Yeyo + y7y13

232 = (Y2 + ¥3)y13 + Y2Yo + Yey12 + YrYi6

233 = (Y1 + Ya)y14 + Yayio + ysy1s + ysyi1

234 = (Y2 +¥3)y15 + Y2y11 + YsY10 + Yry14

z35 = (Y1 + ya)y16 + Yay12 + yYsy13 + ysyo

z36 = (Y1 + ya)ys + Yous + (Y2 + y3)ys + yayr

z37 = (T1 + T4)y21 + Tay17 + TsY24 + T8Y20

z38 = (T2 + z3)y1s + x3Y22 + (6 + T7)y10 + TeY23
z39 = (T1 + T4)y23 + TaY10 + T5Y22 + T8Y1s

z40 = (T2 + 23)y20 + T3Y24 + (6 + T7)y17 + TeY21
za1 = (z2 + 23)y21 + T2y17 + Tey20 + T7Y24

za2 = (1 + z4)y1s + x1y22 + (5 + T8)y19 + TsY23
za3 = (T2 + 23)y23 + T2y19 + Tey1s + T7Y22

244 = (1 4+ T4)y20 + T1Y24 + (5 + T8)y17 + TsY21
z45 = Y17Y23 + Y18Y24 + Y19Y21 + Y20Y22

246 1+ z4)x7 + x126 + (T2 + 3)T5 + T3T8

T
Za7 Ty + T12)Y13 + T12Ye + T13Y16 + T16Y12

248 Z10 + Z11)Y14 + Tioy10 + T14y11 + T15Y15
249 o + x12)Y15 + Ti2y11 + T13Y14 + T16Y10
250 Z10 + Z11)Y16 + Ti0Y12 + T14Yo + T15Y13
251 Z10 + Z11)Y13 + T1i0Ye + T14Y12 + T15Y16
252 o + x12)Y14 + T12Y10 + T13Y15 + T16Y11

253 Z10 + Z11)Y15 + TioY11 + T1aYio + T15Y14

o + x12)T14 + 10213 + (T10 + T11)T16 + T12T15

256 T17 + X20)Y21 + T20Y17 + T21Y24 + T24Y20

257 Z18 + Z19)Y18 + Tioy22 + (T22 + T23)Y19 + T22Y23

258 T17 + X20)Y23 + T20Y19 + T21Y22 + T24Y18

259 Z18 + 19)Y20 + T1oy2a + (T22 + T23)y17 + T22y21

260 T18 + T19)Y21 + T18Y17 + T22Y20 + T23Y24

261 17 + X20)Y18 + T17y22 + (T21 + T24) Y19 + T24Y23

T18 + T19)Y23 + T18Y19 + T22Y18 + T23Y22

=(
=(
=(
=(
=(
=(
=(
=(
254 = (T9 + T12)y16 + T12Y12 + T13Y13 + T16Yo
=(
=(
=(
=(
=(
=(
=(
262 = (
=(

)
)
)
)
)
)
)
)

263 17 + 20)Y20 + T17Y24 + (T21 + T24) Y17 + T24Y21

z64 = T17x22 + (T17 + T20)T23 + (T18 + T19)T21 + T19T24

265 = (T9 + T12)y20 + T12Y25 + T13Y32 + T16Y28
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z66 = (10 + T11)y30 + T11Y26 + (T14 + 15)y27 + T15Y31

ze7 = (T9 + T12)y31 + T12Y27 + T13Y30 + T16Y26
zes = (T10 + T11)y32 + T11Y28 + (T14 + X15)Y25 + T15Y29
269 = (T10 + T11)y209 + T10Y25 + T14Y28 + T15Y32

z70 = (T9 + T12)y30 + Toy2e + (T13 + T16)Y27 + T13Y31

z71 = (T10 + T11)Y31 + T10Y27 + T14Y26 + T15Y30
272 (z9 + z12)y32 + xoy2s + (z13 + T16)y25 + T13Y29
273 = Y25Y31 + Y26Y32 + Y27Y29 + Y28Y30

z7a = (Tg + T12)T14 + Tox15 + (T10 + T11)T16 + T11213

Let 3 be the matrix describing the quadratic form of the central polynomial
2, i.e. zi(x) = 73V with  := (21, ... , T24, Y15 - - - ,Ys2)- Dueto P =ToFolS,
we know that every public polynomial p(*) is of the form

74
B = g7 Ztiﬁ(j) S.
i=1

-3

For arbitrary chosen T' the matrix 3 is of form given in figure 12. All the white
values denote coefficients that are systematical zero and thus can be used to
recover S without recovering T' at the same time.

resp.

Fig. 12. Matrix 5, where gray parts denote arbitrary values of the corresponding co-
efficients and white parts denote zeros, respectively. The left matrix is a generalized
version of the detailed right matrix.

At this stage an algebraic key recovery attack fails due to the large number of
variables s;;. To be precise, we derive 74 - 15 - 8% = 71040 quadratic equations
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in 6-7-8% = 2688 variables s;;. The complexity of solving a generic system
of this size using F4 or XL would be 2320 and thus infeasible. To reduce this
complexity we have to use the special structure of the central polynomials z;
and find good keys minimizing the number of variables while maximizing the
preserved structure of the central map. The first observation is that variables
Y25, Y28, Y29, Y32 only occur in the six polynomials 27, zg5, 268, 269, 272, 273- Thus,
with high probability, there exist a linear combination

6
B+ Zam(i) — g7 ths(j) S
i=1

JerI

with T := {1,...,74}\{7,65,68,69,72,73}. Now we can use a linear transfor-
mation (2 that maps every variable except ys2 to every of the other variables.
We obtain the good key S’ shown in figure 13. Furthermore {2 preserves all zero
coefficients of monomials z;y32 and y;yss.

S/

Fig. 13. Good Key S’ for MFE based on Diophantine equations, where white parts
denote zeros, gray parts denote arbitrary values and ones at the diagonal.

We end up with 55 bihomogeneous quadratic (from x;ys2 and y;yse with i # 32)
and one cubic equation (from ysoys2) in 52 variables s;; and 6 variables ¢;. Un-
fortunately the number of bihomogeneous equations is less than the number of
variables and thus we cannot directly apply the results of [FDS11]. But after
guessing 3 variables ¢; we can use their formula and obtain a attack complexity
of ¢* (59:4)2 ~ 286, Well this already beats the claimed security of 2!'3, but we
can do even better.

A first simple optimization is to use 4 instead of 1 rows of T" and thus ob-
tain 4 central polynomials with the structure described above. We end up with
4 - 55 = 220 bihomogeneous quadratic and 4 cubic equations in 52 +4 -6 = 76
variables. As it is an oben problem to determine the complexity of solving such
block-wise bihomogeneous equations we only can assume generic equations and
thus obtain a very bad upper bound of 27! to solve the system using Fy.

But we can do even better by ignoring the transformation 7" and just using the
structure given in figure 12.
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Let J := {x14, Z16, T21, ¥23, Y6, Y13, Y14, Y15, Y165 Y18, Y20, Y21, Y235 Y29, Y30, Y31, Y32 }
and K :={x1,...,224,¥1,---,Yy36}\J. The crucial observation is that non of the
central polynomials z; contains monomials J x J. In order to preserve the zero
coefficient of y3, we are thus allowed to map every variable to variables of J and
every variable except y3o to variables of K. Let us label columns and rows of S
by (z1,...,%24,Y1,...,Y32), i-€ Sgyys, 1S the element of S in the 2nd row and
56th column. The good key S, which only preserves the zero coefficients of y3,
only consists of 56 — 17 = 39 variables s; 4,, for i € K in the last column. We
omit a formal proof, as it is the same like for lemma 1 and 2. In total we ob-
tain 74 quadratic equations (the coefficient of y3, has to be zero in every public
polynomial independently of T') in 39 variables s; ,,. Solving this system has
complexity 2°6.

Now we can repeat this progress for y3; and obtain s;,,, for i € K with com-
plexity 256 again. At this point we can determine s; ,,, for i € J using that the
coefficients of y31ys2 has to be zero. Solving those 74 equations in 17 variables
has complexity 22°. Next we obtain 3 - 74 equations through vy, ¥30y31, ¥30Y32
and can determine variables s; y,, for i € K and s;,,, for i € J at once. Solv-
ing this system of 222 equations in 56 variables has complexity 2%°. Note that
from now on more and more equations become available in every step, until we
obtained all columns of S labeled by J. To determine the remaining columns of
S, we use that non of the elements of K is connected to more than 9 out of 17
elements of J in all the central equations z;. Thus we obtain at least 8 - 74 equa-
tions to determine the 56 variables of column j € K of S. This has complexity
230, Note that if we proceed sequential we can also use zero coefficients of K x K
and thus obtain much more equations. As soon as all the columns of S labeled
with all the monomials occurring in z; are determined we obtain the i-th row of
the secret key T' through linear equations.

To summarize, a key recovery attack on MFE based on Diophantine equations
has complexity 2 - 256 = 257,
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