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Abstract

We show that an encryption scheme cannot have a simple decryption circuit and be homo-
morphic at the same time. Specifically, if a scheme can homomorphically evaluate the majority
function, then its decryption circuit cannot be a linear function of the secret key (or even a
succinct polynomial), even if decryption error is allowed.

An immediate corollary is that known schemes that are based on the hardness of decoding
in the presence of noise with low hamming weight cannot be fully homomorphic. This applies
to known schemes such as LPN-based symmetric or public key encryption.

An additional corollary is that the recent candidate fully homomorphic encryption, suggested
by Bogdanov and Lee (ePrint ’11, henceforth BL), is insecure. In fact, we show two attacks on
the BL scheme: One by applying the aforementioned general statement, and another by directly
attacking one of the components of the scheme.

∗Stanford University, zvika@stanford.edu. Supported by a Simons Postdoctoral Fellowship and by DARPA.



1 Introduction

An encryption scheme is called homomorphic if there is an efficient transformation that given
Enc(m) for some message m, and a function f , produces Enc(f(m)) using only public information.
A scheme that is homomorphic w.r.t all efficient f is called fully homomorphic (FHE). Homomorphic
encryption is a useful tool in both theory and practice and is extensively researched in recent years
(see [Vai11] for survey), and a few candidates for full homomorphism are known.

Most of these candidates [Gen09, Gen10, SV10, BV11a, BV11b, GH11, BGV12, GHS12, Bra12]
are based (either explicitly or implicitly) on lattice assumptions (the hardness of approximating
short vectors in certain lattices). In particular, the learning with errors (LWE) assumption proved
to be very useful in the design of such schemes. The one notable exception is [vDGHV10], but even
that could be thought of as working over an appropriately defined lattice over the integers.

An important open problem is, therefore, to diversify and base fully homomorphic encryption
on different assumptions (so as to not put all the eggs in one basket). One appealing direction is to
try to use the learning parity with noise (LPN) problem, which is very similar in syntax to LWE:
Making a vast generalization, LWE can be interpreted as a decoding problem for a linear code,
where the noise comes from a family of low norm vectors. Namely, each coordinate in the code
suffers from noise, but this noise is relatively small (this requires that the code is defined over a
large alphabet). The LPN assumption works over the binary alphabet and requires that the noise
has low hamming weight, namely that only a small number of coordinates are noisy, but in these
coordinates the noise amplitude can be large. While similar in syntax, a direct connection between
these two types of assumptions is not known.

While an LPN based construction is not known, recently Bogdanov and Lee [BL11] presented a
candidate, denoted by BL throughout this manuscript, that is based on a different low-hamming-
weight decoding problem: They consider a carefully crafted code over a large alphabet and assume
that decoding in the presence of low-hamming-weight noise is hard.

In this work we show that not only that BL’s construction is insecure, but rather the entire
approach of constructing code based homomorphic encryption analogously to the LWE construction
cannot work. We stress that we don’t show that FHE cannot be based on LPN (or other code based
assumptions), but rather that the decryption algorithm of such scheme cannot take the näıve form.
(In particular it means that known schemes such as [Ale03, GRS08, ACPS09] cannot be fully
homomorphic as is.)

1.1 Our Results

Our main result shows that encryption schemes with simple decryption circuits cannot be homo-
morphic, even if large decryption error is allowed. In particular, they cannot evaluate the majority
function. The following theorem is proven in Section 3.

Theorem A. An encryption scheme whose decryption circuit can be expressed as a constant degree
polynomial in the elements of the secret key and ciphertext, and whose decryption error is < 1/2−
1/poly(n), cannot homomorphically evaluate the majority function.

As a byproduct we can deduce that known LPN based schemes such as [Ale03, GRS08, ACPS09]
cannot be fully homomorphic unless their decryption circuit is changed. This may not seem obvious
at first: the decryption circuit of the aforementioned schemes is not a constant degree polynomial,
and their decryption error is negligible, so they seem to be out of the scope of our theorem. However,
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looking more closely, the decryption circuits consist of an inner product computation with the
secret key, followed by additional post-processing. One can verify that if the post processing is not
performed, then correct decryption is still achieved with probability > 1/2 + 1/poly. Thus we can
apply our theorem and rule out homomorphism.

Furthermore, the same logic rules out the homomorphism of the BL candidate FHE. This
contradiction implies that the BL scheme is insecure.

Theorem B. There is a successful polynomial time CPA attack on the BL scheme.

We further present a different attack on the BL scheme, targeting one of its building block.
This allows us to not only distinguish between two messages like the successful CPA attack above,
but rather decrypt any ciphertext with probability 1− o(1).

Theorem C. There is a polynomial time algorithm that decrypts the BL scheme.

The BL scheme and the two breaking algorithms are presented in Section 4.

1.2 Our Techniques

Consider a simplified variant of Theorem A, where we require that the decryption function is
an inner product between the ciphertext and the secret key (both represented as n dimensional
vectors over some field), and we assume that the decryption error is at most, say, 1/(100n). Then
the proof seems trivial: Sample O(n) encryptions of 0. With good probability, all ciphertext decrypt
correctly (using the union bound) and therefore we get O(n) linear equations on the secret key.
Using Gaussian elimination, the key can be reconstructed and the scheme is broken. (In fact, a
somewhat more complicated argument is needed in case the O(n) equations that we get are not
linearly independent.) Note that we did not use the homomorphism of the scheme at all, indeed
this simplified version is universally true even without assuming homomorphism.

The next step is to still consider linear decryption, but allow decryption error 1/2− ε. Now we
will need to use the homomorphism property. The idea is to use the homomorphism in order to
reduce the decryption error and get back to the previous case. Consider a scheme that encrypts
each message many times (say k), and then applies homomorphic majority on the ciphertexts.
The security of this scheme directly reduces to that of the original scheme, and it has the same
decryption function, however now the decryption error drops exponentially with k. This is because
in order to get an error in the new scheme, at least k/2 out of the k encryptions need to have
errors. Since the expected number is (1/2− ε)k, the Chernoff bound implies the result. Choosing
k appropriately will bring us back to the previous case.

Finally, to generalize the result beyond linear functions, we notice that we can represent a
succinct polynomial (i.e. one that only has polynomially many terms) as an inner product between
two generalized vectors. For example, the polynomial x1x2y

2
1 + x1y2 + 3x2y1y2, can be expressed

as 〈(x1x2, x1, 3x2), (y2
1, y2, y1y2)〉. This simple observation concludes the proof.

While Theorem B follows immediately, as we explain above, for Theorem C we need to work
a little harder. We notice that BL use homomorphic majority evaluation in one of the lower
abstraction levels of their scheme. This allows us to break this abstraction level using similar
reasoning to Theorem A. A complete break of BL follows.
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1.3 Other Related Work

An independent work by Gauthier, Otmani and Tillich [GOT12] shows an interesting direct attack
on BL’s hardness assumption (we refer to it as the “GOT attack”). Their attack is very different
from ours and takes advantage of the resemblance of BL’s codes and Reed-Solomon codes as we
explain below.

BL’s construction relies on a special type of error correcting code. Essentially, they start with
a Reed-Solomon code, and replace a small fraction of the columns of the generating matrix with a
special structure. The homomorphic properties are only due to this small fraction of “significant”
columns, and the secret key is chosen so as to nullify the effect of the other columns.

The GOT attack uses the fact that under some transformation (component-wise multiplication),
the dimension of Reed-Solomon codes can grow by at most a factor of two. However, if a code
contains “significant” columns, then the dimension can grow further. This allows to measure the
number of significant columns in a given code. One can thus identify the significant columns by
trying to remove one column at a time from the code and checking if the dimension drops. If yes
then that column is significant. Once all significant columns have been identified, the secret key
can be retrieved in a straightforward manner.

However, it is fairly easy to immunize BL’s scheme against the GOT attack. As we explained
above, the neutral columns do not change the properties of the encryption scheme, so they may
as well be replaced by random columns. Since the dimension of random codes grows very rapidly
under the GOT transformation, their attack will not work in such case.

Our attack, on the other hand, relies on the functional properties that BL use to make their
scheme homomorphic. Thus a change in the scheme that preserves the homomorphic properties
cannot help to overcome our attack. In light of our attack, it is interesting to investigate whether
the GOT attack can be extended to the more general case.

2 Preliminaries

We denote scalars using plain lowercase (x), vectors using bold lowercase (x for column vector, xT

for row vector), and matrices using bold uppercase (X). We let 1 denote the all-one vector (the
dimension will be clear from the context). We let Fq denote a finite field of cardinality q ∈ N, with
efficient operations (we usually don’t care about any other property of the field).

2.1 Properties of Encryption Schemes

A public key encryption scheme is a tuple of algorithms (Gen,Enc,Dec), such that: Gen(1n) is the
key generation algorithm that produces a pair of public and secret keys (pk, sk); Encpk(m) is a
randomized encryption function that takes a message m and produces a ciphertext. In the context
of this work, messages will only come from some predefined field F; Decsk(c) is the decryption
function that decrypts a ciphertext c and produces the message. Optimally, Decsk(Encpk(·)) is the
identity function, but in some schemes there are decryption errors.

The probability of decryption error is taken over the randomness used to generate the keys for
the scheme and over the randomness used in the encryption function (we assume the decryption is
deterministic). In this paper, our focus is on the error induced by the randomness of the encryption.
We therefore allow a small fraction of the keys (one percent, for the sake of convenience) to have
arbitrarily large decryption error, and define the decryption error ε to be the maximal error over
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the 99% best keys. This definition is not equivalent to other definitions of decryption error, and in
fact our results can be generalized to other definitions (e.g. an additional parameter δ instead of
1%). However we feel that the improvement in the results does not justify the added complication.
Our definition, therefore, is as follows.

Definition 2.1. An encryption scheme is said to have decryption error < ε if with probability at
least 0.99 over the key generation it holds that

max
m
{Pr[Decsk(Encpk(m)) 6= m]} < ε ,

where the probability is taken over the random coins of the encryption function.

We use the standard definition of security against chosen plaintext attacks (CPA): The attacker
receives a public key and chooses two values m0,m1. The attacker then receives a ciphertext
c = Encpk(mb), where b ∈ {0, 1} is a random bit that is unknown to the attacker. The attacker
needs to decide on a guess b′ ∈ {0, 1} as to the value of b. We say that the scheme is broken if
there is a polynomial time attacker for which Pr[b′ = b] ≥ 1/2 + 1/poly(n) (where n is the security
parameter). Recall that this notion is equivalent to the notion of semantic security [GM82].

In addition, we will say that a scheme is completely broken if there exists an adversary that
upon receiving the public key and Encpk(m) for arbitrary value of m, returns m with probability
1− o(1).

In this work, we consider schemes with linear decryption circuits, as defined below.

Definition 2.2. An encryption scheme is n-linearly decryptable if its secret key is of the form
sk = s ∈ Fn, for some field F, and its decryption function is

Decsk(c) = 〈s, c〉 .

We discuss the homomorphic properties of encryption schemes. However the only notion of
homomorphism that we use is w.r.t the majority function. We define the notion of k-majority-
homomorphism below.

Definition 2.3. A public-key encryption scheme is k-majority-homomorphic (where k is a function
of the security parameter) if there exists a function MajEval such that with probability 0.99 over the
key generation, the following holds: For any sequence of ciphertexts output by Encpk(·): c1, . . . , ck,
it holds that

Decsk(MajEvalpk(c1, . . . , ck)) = Majority(Decsk(c1), . . . ,Decsk(ck)) .

Again we allow some “slackness” by allowing some of the keys to not abide the homomorphism.
We note that Definition 2.3 above is a fairly strong notion of homomorphism in two aspects:

First, it requires that homomorphism holds even for ciphertexts with decryption error. Second,
we do not allow MajEval to introduce error for “good” key pairs. Indeed, known homomorphic
encryption schemes have these properties, but it is interesting to try to bypass our negative results
by finding schemes that do not have them.
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2.2 Spanning Distributions over Low Dimensional Spaces

We will use a lemma that shows that any distribution over a low dimensional space is easy to
span in the following sense: Given sufficiently many samples from the distribution (a little more
than the dimension of the support), we are guaranteed that any new vector falls in the span of
previous samples. This lemma will allow us to derive a very general result that only depends on
the decryption function, irrespective to the way encryption is performed.

We speculate that this lemma is already known, since it is fairly general and very robust to the
definition of dimension (e.g. it also applies to non-linear spaces).

Lemma 2.1. Let S be a distribution over a linear space S of dimension s. For all k, define

δk , Pr
v1,...,vk

$←S
[vk 6∈ Span {v1, . . . ,vk−1}] .

Then δk ≤ s/k.

Proof. Notice that by symmetry δi ≥ δi+1 for all i. Let Di denote the (random variable) dimension
of Span {v1, . . . ,vi}. Note that always Di ≤ s.

Let Ei denote the event vi 6∈ Span {v1, . . . ,vi−1}, note that δi = Pr[Ei]. By definition,

Dk =

k∑
i=1

1Ei .

Therefore

s ≥ E[Dk] = E

[
k∑
i=1

1Ei

]
=

k∑
i=1

Pr[Ei] =
k∑
i=1

δi ≥ k · δk ,

and the lemma follows.

3 Homomorphism is a Liability When Decryption is Simple

This section shows our main result. We show that schemes with simple decryption circuits are very
limited in terms of their correctness probability and their homomorphic properties. We start by
showing that a scheme with linear decryption cannot have decryption error smaller than Ω(1/n) and
be secure (regardless of homomorphism). We then show that if the scheme can homomorphically
evaluate the majority function, then the above amplifies dramatically and security can not be
guaranteed for any reasonable decryption error: We rule out 1/2− ε error for any noticeable ε. The
latter is then extended to non-linear decryption functions such as low-degree polynomials.

For the sake of simplicity, we only focus on the public key case. However, we note that our
proofs easily extend also to symmetric encryption, since our attacks only use the public key in order
to generate ciphertexts for known messages.

3.1 Linear Decryption without Homomorphism

We start by showing that an n-linearly decryptable scheme has to have decryption error Ω(1/n),
otherwise it is insecure. The basic idea is very simple: Consider a ciphertext that correctly decrypts
to 0. Such ciphertext corresponds to a linear constraint on the secret key, since 〈c, s〉 = 0. Given
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n such constraints, we hope to be able to find s using Gaussian elimination. Therefore, if the
decryption error is under Ω(1/n), then we can get such n equations by just encrypting 0 ourselves n
times. This argument is a little too simplistic since the encryptions of 0 can be linearly dependent.
For example, think of a scheme that encrypts 0 using the zero vector: this scheme is obviously
insecure, but the above method cannot retrieve the secret key. We therefore use Lemma 2.1 to
argue that no matter what distribution the encryption algorithm produces, it can still be learned
using sufficiently many samples in a way that breaks the security of the scheme. A formal statement
and proof follow.

Theorem 3.1. An n-linearly decryptable scheme with decryption error < 1/(36n) is insecure.

Proof. We start by observing that given a key pair, the set of ciphertexts that decrypt to 0 is a
homogenous linear space (the orthogonal space to s). Denote this space by Z ⊆ Fn. The dimension
of Z is at most n (in fact, at most n − 1). The ciphertexts that decrypt to m for some m ∈ F
are a coset of Z, that we denote by Zm. Our proof works by finding an approximate basis for
Z: a set of vectors that with high probability span Z. For a given key pair, we let Z denote the
probability distribution c = Encpk(0)|Decsk(c) = 0. Namely the distribution induced by encrypting
0, conditioned on the ciphertext being correctly decryptable.

We will show a polynomial time CPA attacker that succeeds with probability noticeably higher
than 1/2 to distinguish between encryptions of 0 and encryptions of nonzero as follows: Given
a public key pk, the attacker lets m0 = 0,m1 = 1 (or any other nonzero value). The attacker
generates 6n encryptions of 0, denoted v1, . . . ,v6n, and lets V denote their span. Then, given a
challenge ciphertext c = Encpk(mb), the attacker outputs 0 if and only if c ∈ V .

We will first analyze the attacker’s success probability on “good” key pairs, ones for which the
decryption error is indeed bounded:

• If b = 0 then c = Encpk(0). With probability (6n + 1)/(36n) it holds that all v1, . . . ,v6n, c
indeed decrypt to 0, in which case we can apply Lemma 2.1 to conclude that c ∈ V with
probability at least (n − 1)/(6n). It follows that in this case b′ = b with probability at least
1− (6n+ 1)/(36n)− (n− 1)/(6n) ≥ 2/3.

• If b = 1 then with probability (6n + 1)/(36n) it holds that all v1, . . . ,v6n indeed decrypt to
0 and c indeed decrypts to 1. In such case it must be that c 6∈ V . It follows that b′ = b with
probability at least 1− (6n+ 1)/(36n) ≥ 2/3.

It follows that for “good” key pairs, the attacker succeeds with probability at least 2/3. Since
the probability of a bad key pair is at most 0.01, the total success probability of the attacker is at
least 2/3− 0.01 > 1/2.

We note that tighter versions of the theorem are possible, and also ones with better advantage
for the attacker, however the above is sufficient for our needs.

3.2 Simple Decryption with Majority Homomorphism

Theorem 3.1 does not seem very restrictive. Specifically, it is not directly applicable to attacking
any known scheme. Indeed, known schemes with linear decryption have sufficiently high decryption
error. In this section, we show that if homomorphism is required as a property of the scheme, then
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no reasonable decryption error can be achieved. Furthermore, we extend the result beyond linear
decryption.

Consider Definition 2.3 for majority homomorphism. The next theorem states that majority-
homomorphic schemes cannot have linear decryption for any reasonable decryption error.

Theorem 3.2. An n-linear decryptable scheme with (1/2−ε) decryption error cannot be O(log n/ε2)-
majority-homomorphic.

Let us first outline the proof before formalizing it. Our goal is the same as in the proof of
Theorem 3.1, to generate O(n) properly decryptable encryptions of 0, which will enable to break
security. However, unlike before, taking O(n) independent encryptions of 0 will surely introduce
decryption errors. We thus use the majority homomorphism: To generate a good encryption of 0,
i.e. one that is decryptable with high probability, we will generate O(log n/ε2) random encryptions
of 0, and apply majority homomorphically. Chernoff bound guarantees that with high probability,
more than half of the ciphertexts are properly decryptable, and therefore the output of the majority
evaluation is with high probability a decryptable encryption of 0. At this point, we can apply the
same argument as in the proof of Theorem 3.1. The formal proof follows.

Proof. Consider an encryption scheme (Gen,Enc,Dec) as in the theorem statement. We will con-
struct a new scheme (Gen′ = Gen,Enc′,Dec′ = Dec) (with the same key generation and decryption
algorithms) whose security relates to that of (Gen,Enc,Dec). Then we will use Theorem 3.1 to
render the latter scheme insecure.

The new encryption algorithm Enc′pk(m) works as follows: To encrypt a message m, invoke the
original encryption Encpk(m) for k = 100(lnn+ 1)/ε2 times, thus generating k ciphertexts. Apply
MajEval to those k ciphertexts and output the resulting ciphertext.

The security of the new scheme is related to that of the original by a straightforward hybrid
argument. We will show that the new scheme has decryption error at most 1/(36n), but in a slightly
weaker sense then Definition 2.1: We will allow 2% of the keys to be “bad” instead of just 1% as
before. However one can easily verify that the proof of Theorem 3.1 works in this case as well.

Our set of good key pairs for Enc′ is those for which Decsk(Encpk(·)) indeed have decryption
error at most 1/2 − ε and in addition MajEval is correct. By the union bound this happens with
probability at least 0.98.

To bound the decryption error of Decsk(Enc
′
pk(·)), assume that we have a good key pair as

described above. We will bound the probability that more than a 1/2 − ε/2 fraction of the k
ciphertexts generated by Enc′ are decrypted incorrectly. Clearly if this bad event does not happen,
then by the correctness of MajEval, the resulting ciphertext will decrypt correctly.

Recalling that the expected fraction of falsely decrypted ciphertexts is at most 1/2 − ε, the
Chernoff bound implies that the aforementioned bad event happens with probability at most

e−2(ε/2)2k < 1/(36n) ,

and the theorem follows.

From the proof it is obvious that even “approximate-majority homomorphism” is sufficient for
the theorem to hold. Namely, even if MajEval only computes the majority function correctly if the
fraction of identical inputs is more than 1/2 + ε/2.
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Extension to Non-Linear Decryption. We can extend Theorem 3.2 beyond linear decryption
in a straightforward manner: So long as we can interpret the decryption function Decsk(c) as an
inner product between two generalized vectors 〈s̃, c̃〉, where s̃ depends only on sk and c̃ depends
only on c, we can apply Theorem 3.2.

This can obviously be done if the decryption function is a constant degree polynomial in s, c:
each monomial will be translated into a component of s̃ and a component of c̃, and the decryption
value is the inner product between these generalized vectors. The only restriction is that the
dimension of the generalized vectors must remain polynomial in the security parameter.

4 Attacks on the BL Scheme

In this section we use our tools from above to show that the BL scheme (outlines in Section 4.1
below) is broken. We present two attacks: one that follows immediately from Theorem 3.2 (Sec-
tion 4.2); and one that directly attacks one of the subcomponents of the scheme (Section 4.3) and
allows to decrypt any ciphertext. In fact, the latter attack follows the same principles as the former
and exploits a “built-in” evaluation of majority that exists in one of the sub-components of BL.

4.1 Essentials of the BL Scheme

In this section we present the properties of the BL scheme. We only concentrate on the properties
that are required for our break. In fact, for our first break, the last paragraph of this section is all
that is really needed. We refer the reader to [BL11] for further details.

The BL scheme has a number of layers of abstraction, which are all instantiated based on a
global parameter 0 < α < 0.25 as explained below.

The Scheme Kq(n). BL introduce Kq(n), a public-key encryption scheme with imperfect cor-
rectness. For security parameter n, the public key is a matrix P ∈ Fn×rq , where r = n1−α/8, and the

secret key is a vector y ∈ Fnq in the kernel of PT (namely, yT ·P = 0). The keys are generated in
a highly structured manner in order to support homomorphism, but their structure is irrelevant to
us. An encryption of a message m ∈ Fq is a vector c = P ·x+m ·1+e, where x ∈ Frq is some vector,
and where e ∈ Fnq is a low hamming weight vector. Decryption is performed by taking the inner
product 〈y, c〉, and succeeds so long as 〈y, e〉 = 0 (the vector y is chosen such that 〈y,1〉 = 1). It
is shown how the structure of the keys implies that decryption succeeds with probability at least(
1− n−(1−α/2)

)
. Finally, BL show that Kq(n) is homomorphic with respect to a single addition or

multiplication.1

Re-Encryption. In order to enable homomorphism, BL introduce the notion of re-encryption.
Consider an instantiation of Kq(n), with keys (P,y), and an instantiation of Kq(n

′) with keys
(P′,y′), for n′ = n1+α. Let Hn′:n ∈ Fn′×nq be an element-wise encryption of y using the public key

P′.2 Namely Hn′:n = P′ ·X′+ 1 ·yT + E′. Due to the size difference between the schemes, it holds

1Homomorphic operations (addition, multiplication) are performed element-wise on ciphertext vectors, and the
structure of the key guarantees that correctness is preserved.

2A note on notation: In [BL11], the re-encryption parameters are denoted by I (as opposed to our H). We feel
that their notation ignores the important linear algebraic structure of the re-encryption parameters, and therefore
we switched to matrix notation, which also dictated the change of letter.
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that with probability
(
1− n−Ω(1)

)
, all of the columns of Hn′:n are simultaneously decryptable and

indeed y′T ·Hn′:n = yT . In such case, for any ciphertext c of Kq(n), we get 〈y′,Hn′:nc〉 = 〈y, c〉.
The matrix Hn′:n therefore re-encrypts ciphertexts of Kq(n) as ciphertexts of Kq(n

′).
The critical idea for our second break is that a re-encrypted ciphertext always belongs to an

n-dimensional linear subspace (recall that n� n′), namely to the span of Hn′:n.

The Scheme BASIC. Using re-encryption, BL construct a ladder of schemes of increasing
lengths that allow for homomorphic evaluation. They define the scheme BASIC which has an
additional depth parameter d = O(1) (BL suggest to use d = 8, but our attack works for any

d > 1). They consider instantiations of Kq(ni), where ni = n(1+α)−(d−i)
, for i = 0, . . . , d, so nd = n.

They generate all re-encryption matrices Hni+1:ni (with success probability
(
1− n−Ω(1)

)
) and can

thus homomorphically evaluate depth d circuits.
The homomorphic evaluation works by performing a homomorphic operation at level i of the

evaluated circuit (with i going from 0 to d − 1), and then using re-encryption with Hni+1:ni to
obtain a fresh ciphertext for the next level.

For the purposes of our (second) break, we notice that in the last step of this evaluation is
re-encryption using Hnd:nd−1

. This means that homomorphically evaluated ciphertexts all come

from a linear subspace of dimension nd−1 = n1/(1+α).

Error Correction and the Matrix Hn:n. The scheme BASIC only allows homomorphism at
the expense of increasing the instance size (namely n). BL show next that it is possible to use
BASIC to generate a re-encryption matrix without a size increase.

They generate an instance of BASIC, with public keys P0, . . . ,Pd, secret key yd = y∗, and
re-encryption matrices Hni+1:ni . An additional independent instance of Kq(n) is generated, whose
keys we denote by (P,y). Then, a large number of encryptions of the elements of y under public
key P0 are generated.3 While some of these ciphertexts may have encryption error, BL show that
homomorphically evaluating a depth-d correction circuit (CORR in their notation), one can obtain
a matrix Hn:n, whose columns are encryptions of y∗ that are decryptable under y without error.
This process succeeds with probability

(
1− n−Ω(1)

)
.

The resemblance to the proof of our Theorem 3.2 is apparent. In a sense, the public key of
BASIC is ready-for-use attacker.

To conclude this part, BL generate a re-encryption matrix Hn:n that takes ciphertexts under y
and produces ciphertexts under y∗. Since Hn:n is produced using homomorphic evaluation, its rank
is at most nd−1 = n1/(1+α). We will capitalize on the fact that re-encryption using Hn:n produces
ciphertexts that all reside in a low-dimensional space.

Achieving Full Homomorphism – The Scheme HOM. The basic idea is to generate a
sequence of matrices Hn:n, thus creating a chaining of the respective secret keys that will allow
homomorphism of any depth. However, generating an arbitrarily large number of such re-encryption
matrices will eventually cause an error somewhere down the line. Therefore, a more sophisticated
solution is required. BL suggest to encrypt each message a large number of times, and generate a
large number of re-encryption matrices per level. Then, since the vast majority of matrices per level

3To be absolutely precise, BL encrypt a bit decomposition of y∗, but this is immaterial to us.
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are guaranteed to be correct, one can use shallow approximate majority computation to guarantee
that the fraction of erroneous ciphertexts per level does not increase with homomorphic evaluation.

Decryption is performed as follows: Each ciphertext is a set of ciphertexts c1, . . . , ck of Kq(n)
(all with the same secret key). The decryption process first uses the Kq(n) key to decrypt the
individual ciphertexts and obtain m1, . . . ,mk, and then outputs the majority between the values
mi. BL show that a majority of the ciphertexts (say more than 0.6 fraction) are indeed correct,
which guarantees correct decryption.

BL can thus achieve a (leveled) fully homomorphic scheme which they denote by HOM, which
completes their construction.

4.2 A Generic Attack on BL

We can use Theorem 3.2 to break BL as stated below.

Theorem 4.1. There is a polynomial time CPA attack on BL.

Proof. The scheme HOM is fully homomorphic so it can evaluate any function, in particular
majority. However, it is not linearly decryptable.4 We thus consider a related decryption procedure
for HOM, one which is linear but has decryption error: Recalling the decryption of HOM described
above, if instead of decrypting all of the ci’s and taking majority, we will just decrypt c1 (this is
Kq(n) decryption and thus linear). This simple (and linear) decryption will produce the correct
response with probability at least 0.6 (for all but negligibly few key pairs). This is sufficient for
Theorem 3.2 to render the scheme insecure.

4.3 A Specific Attack on BL

We noticed that the scheme BASIC which is a component of HOM contains by design homomor-
phic evaluation of majority: this is how the matrix Hn:n is generated. We thus present an attack
that only uses the matrix Hn:n and allows to completely decrypt BL ciphertexts with probabil-
ity 1 − n−Ω(1). We recall that an attack completely breaks a scheme if it can decrypt any given
ciphertext with probability 1− o(1).

Theorem 4.2. There exists a polynomial time attack that completely breaks BASIC, and thus
also BL.

Proof. We consider the re-encryption matrix H = Hn:n ∈ Fn×nq described in Section 4.1, which
re-encrypts ciphertexts under y into ciphertexts under y∗. The probability that H was successfully
generated is at least 1− n−Ω(1), in which case it holds that

y∗T ·H = yT .

In addition, as we explained in Section 4.1, the rank of H is at most h = n1/(1+α).
Our breaker will be given H and the public key P that corresponds to y, and will be able to

decrypt any vector c = EncP(m) with high probability, namely compute 〈y, c〉.
4Note that HOM has negligible decryption error, so if it was linearly decryptable it would have been trivial to

break.
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Breaker Code. As explained above, the input to the breaker is H,P and challenge c = EncP(m).
The breaker will execute as follows:

1. Generate k = h1+ε encryptions of 0, denoted v1, . . . ,vk, for ε = α(1−α)
4 (any positive number

smaller than α(1−α)
2 will do).

Note that this means that with probability 1−n−Ω(1), all vi are decryptable encryptions of 0.
Intuitively, these vectors, once projected through H, will span all decryptable encryptions
of 0.

2. For all i = 1, . . . , k, compute v∗i = H · vi (the projections of the ciphertexts above through
H). Also compute o∗ = H · 1 (the projection of the all-one vector).

3. Find a vector ỹ∗ ∈ Fnq such that 〈ỹ∗,v∗i 〉 = 0 for all i, and such that 〈ỹ∗,o∗〉 = 1. Such a
vector necessarily exists if all vi’s are decryptable, since y∗ is an example of such a vector.

4. Given a challenge ciphertext c, compute c∗ = H · c and output m = 〈ỹ∗, c∗〉 (namely,
m = ỹ∗T ·H · c).

Correctness. To analyze the correctness of the breaker, we first notice that the space of cipher-
texts that decrypt to 0 under y is linear (this is exactly the orthogonal space to y). We denote
this space by Z. Since 1 6∈ Z, we can define the cosets Zm = Z + m · 1. We note that all legal
encryptions of m using P reside in Zm.

We let Z∗ denote the space H ·Z (all vectors of the form H ·z such that z ∈ Z). This is a linear
space with dimension at most h. Similarly, define Z∗m = Z∗ +m · o∗.

Consider the challenge ciphertext c = EncP(m). We can think of c as an encryption of 0
with an added term m · 1. We therefore denote c = c0 + m · 1. Again this yields a c∗0 such that
c∗ = c∗0 +m · o∗.

Now consider the distribution Z over Z, which is the distribution of decryptable encryptions
of 0 (i.e. the distribution c = EncP(0), conditioned on 〈y, c〉 = 0). The distribution Z∗ is defined
by projecting Z through H. With probability

(
1− n−Ω(1)

)
, it holds that v∗1, . . . ,v

∗
k, and c∗0 are

uniform samples from Z∗.
By Lemma 2.1 below, it holds that c∗0 ∈ Span {v∗1, . . . ,v∗k}, with probability

(
1− n−Ω(1)

)
. In

such case
〈ỹ∗, c∗〉 = 〈ỹ∗, c∗0〉+m · 〈ỹ∗,o∗〉 = m .

We conclude that with probability 1−n−Ω(1), our breaker correctly decrypts c as required.
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