A Cryptanalysis of HummingBird-2: The Differential Sequence Analysis

Qi Chai and Guang Gong
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada
\{q3chai, ggong\}@uwaterloo.ca

Abstract

Hummingbird-2 is one recent design of lightweight block ciphers targeting constraint devices, which not only enables a compact hardware implementation and ultra-low power consumption but also meets the stringent response time as specified in ISO18000-6C. In this paper, we present the first cryptanalytic result on the full version of this cipher using two pairs of related keys. We discover that the differential sequences for the last invocation of the round function can be computed by running the full cipher, due to which the search space for the key can be reduced. Base upon this observation, we propose a probabilistic attack encompassing two phases, preparation phase and key recovery phase. The preparation phase, requiring 2^{80} effort in time, aims to reach an internal state, with 0.5 success probability, that satisfies particular conditions. In the key recovery phase, by attacking the last invocation of the round function of the encryption (decryption resp.) using the proposed differential sequence analysis (DSA), we are able to recover 36 bits (another 44 bits resp.) of the 128-bit key. In addition, the rest 48 bits of the key can be exhaustively searched and the overall time complexity of the key recovery phase is $2^{49.63}$. Note that the proposed attack, though exhibiting an interesting tradeoff between the success probability and time complexity, is only of a theoretical interest at the moment and does not affect the security of the Hummingbird-2 in practice.

Keywords: lightweight cryptography, differential cryptanalysis, Hummingbird encryption

1 Introduction

Passive RFID tags and other constraint computing devices are usually characterized by extremely tight cost and power consumption requirements. The needs of cryptographic primitives on such devices have been increasing with the growing pervasiveness and mass deployment of these devices. To this end, considerable lightweight stream/block ciphers are proposed in recent years, targeting very small hardware footprint and reduced power consumption. Typical examples are listed in Table 1. Meanwhile, cryptanalysis of these lightweight primitives has received considerable attention due to a widely-accept concern - the pursue of efficiency at the cost of reducing the security margin or applying innovative but less well understood technologies lead lightweight candidates to be less durable relative to regular symmetric ciphers. This concern has been further confirmed by the successful cases of attacking KeeLoq [32], Crypto-I [31], Atmel Cipher [21, 8], PRESENT [12, 10], KTANTAN [6, 3], PRINTCipher [2, 28], reduced KLEIN [1], A2U2 [11] and so on.

Table 1. Recent Design/Implementation of Lightweight Ciphers (ordered by gate equivalent (GE))

		\|Key size[bits]	Block size[bits]	Area[GE]	Throughput[Kb/s]	Logic process [$\mu \mathrm{m}$]
PRINTCipher-48	[25]	80	48	402	6.25	0.18
KTANTAN32	[13]	80	32	462	12.5	0.13
PRINTCipher-48	[25]	80	48	503	100	0.18
KTANTAN48	[13]	80	48	571	9.4	0.13
GOST	[33]	256	64	651	24.24	0.18
Piccolo-80	[37]	80	64	683	14.8	0.13
KTANTAN64	[13]	80	64	684	8.4	0.13
LED-64	[20]	64	64	688	5.1	0.18
LED-128	[20]	128	64	700	3.4	0.18
PRINTCipher-96	[25]	160	96	726	3.13	0.18
Piccolo-128	[37]	128	64	758	12.1	0.13
KATAN32	[13]	80	32	802	12.5	0.13
KATAN48	[13]	80	48	916	9.4	0.13
PRINTCipher-96	[25]	160	96	967	100	0.18
KATAN64	[13]	80	64	1, 027	8.4	0.13
PRESENT	[34]	80	64	1,075	11.4	0.18
KLEIN-64	[19]	64	64	1,981	N/A	0.18
KLEIN-80	[19]	80	64	2,097	N/A	0.18
HummingBird-2	[16]	128	16	2,159	N/A	0.13
KLEIN-96	[19]	96	64	2, 213	N/A	0.18
AES	[18]	128	128	3, 400	12.4	0.35

A Brief History of Hummingbird Cipher: Motivated by the design of the well-known Enigma machine, the first generation of Hummingbird (call it HB-1) was proposed by the engineers in Revere Security and was further analyzed and published in [15] as an ultra-lightweight cryptographic algorithm targeting low-cost RFID tags, smart cards, and wireless sensor nodes to meet the stringent response time and power consumption requirements. Although HB-1, with an innovative hybrid structure of block cipher and stream cipher, was designed to provide 256 -bit security, Saarinen, in FSE'11, showed a chosen-IV and chosen-message attack [35] that can recover the full secret key with at most 2^{64} off-line computational effort under two related IVs. Recently, Revere Security published the second generation of Hummingbird (call it Hummingbird-2 or HB-2) in [16], which inherits the design philosophy from HB-1, e.g., it has a small block size of 16-bit to adapt the needs of encrypting short messages in RFID applications and it retains the hybrid structure as a security compensation for the small block size. High level differences between HB-1 and HB-2 are: (1) key size has been reduced to 128 bits to satisfy the actual need for constrained devices; (2) size of the internal state has been increased from 80 bits to 128 bits; (3) the nonlinear keyed transformation in HB-2 has four invocations of the S-boxes, compared to five in HB-1, to further increase the throughput.

In addition, it is claimed in the same paper that HB-2 can withstand differential, linear and algebraic attacks and the four 4-bit S-Boxes in HB-2 belong to the optimal classes as discussed in [30]. Its resistance to the side-channel cube attack is recently investigated in [17], where the author applied cube attack to recover 48 bits of the secret key providing the attacker could access the internal states of HB-2 during an early stage in the initialization. However, this attack is marginal since it only threats HB-2 before the finishing of its initialization.

Our Contribution: By refining/improving our preliminary results in [9], we present, in this paper, the first cryptanalytic result on the full version of this cipher using two pairs of related keys. Our attack makes use of the internal state of such a cipher and our philosophy is general: (1) the outputs of the encryption/decryption may leak information of the subkeys (under the differential cryptanalysis) as long as the internal states of the cipher satisfy particular conditions; (2) due to the birthday paradox, such a condition always happens with $1 / 2$ probability providing $2^{L / 2}$ attempts are made, where L (in bit) is the size of the internal state. To be specific, we propose the following attack encompassing two phases, a probabilistic preparation phase and a key recovery phase.

- To realize the two particular conditions regarding the internal states, the preparation phase spends 2^{80} effort in time to achieve the succeed probability 0.5 (due to the birthday paradox). If succeeds, one could proceed to the key recovery phase.
- The key recovery phase is basically an instance of a novel cryptanalytic technique - we call it differential sequence analysis (DSA) - which can be seen as a hybrid of the conventional differential cryptanalysis and saturation attack. After exhibiting DSA's definitions and properties, we present its applications in the attacking scenarios, i.e.,
- by using the encryption of HB-2, DSA recovers 36-bit (out of 128-bit) of the key, if condition (A) (regarding HB-2's secret key, input and internal state) holds.
- by using the decryption of HB-2, DSA recovers another recovers another 44-bit of the key, if condition (B) (regarding HB-2's secret key, input and internal state) holds.
- the rest 48-bit of the key can be exhaustively searched and the overall time complexity is $2^{49.63}$.

Fig. 1. Tradeoff between Success Probability and Time Complexity when Attacking HB-2 (the exhaustive search is slower than 2^{128} by a factor of 8 since one encryption $\mathbb{F}_{2}^{16} \mapsto \mathbb{F}_{2}^{16}$ only provides 16 -bit entropy of the key, $2^{128} \times 8$ calls of encryption could uniquely determine the key with probability 1)

Note that our results in this paper exhibit an interesting tradeoff between the success probability and time complexity for HB-2, as shown in Fig. 1, which is analog to the collision attack in the hash function due to the birthday paradox. Stated in another way, to be successful with probability 0.5 , our attack is faster than the exhaustive search (which is the best known) by a factor of 2^{50}. Unfortunately, to succeed with probability 1 , our preparation phase requiring more effort in time than the exhaustive
search, which makes the proposed method only of theoretical interests at the moment, i.e., the attack presented in this paper does not affect the security of the Hummingbird-2 in practice.

Organization: In Section 2, the specification of HB-2 is presented. Section 3 describes the principle of our attack at a high level. In Section 4, we devise the DSA technique, discuss its properties and how to use it to attack parts of HB-2. In Section 5, we show how to achieve the desired conditions. We conclude the paper in Section 6.

Notations: Throughout the rest of this paper, we make use of the following notation for illustration.

- An hexadecimal number is indicated by a prefix " 0 x ", e.g., $0 \mathrm{x} 10=16$.
- Unless otherwise stated, "+" denotes the addition in \mathbb{F}_{2}, which can also be vector-wise, e.g., $(a, b)+(c, d)=(a+c, b+d)$, where $a, b, c, d \in \mathbb{F}_{2}^{m}$.
- \boxplus / \boxminus operator denotes addition/subtraction modulo 2^{16}.
- The high-bit XOR differential is defined as $H=0 \mathrm{x} 8000$, a nice property of which is, given $x, x^{\prime}, y \in$ \mathbb{F}_{2}^{16} and $x+x^{\prime}=H$, the following holds with probability 1,

$$
(x \boxplus y)+\left(x^{\prime} \boxplus y\right)=H, \quad(x \boxminus y)+\left(x^{\prime} \boxminus y\right)=H, \quad(y \boxminus x)+\left(y \boxminus x^{\prime}\right)=H
$$

That is to say, as also pointed out in [35], the differential H behaves the same under + and \boxplus / \boxminus.

2 Specification of Hummingbird-2

Hummingbird-2 is a 16 -bit block cipher with a 128 -bit secret key $K=\left(K_{1}, \ldots, K_{8}\right) \in\left(\mathbb{F}_{2}^{16}, \ldots, \mathbb{F}_{2}^{16}\right)=\mathbb{F}_{2}^{128}$ and a 64 -bit public initialization vector $I V=\left(I V_{1}, \ldots, I V_{4}\right) \in\left(\mathbb{F}_{2}^{16}, \ldots, \mathbb{F}_{2}^{16}\right)=\mathbb{F}_{2}^{64}$. As opposed to conventional block ciphers, it has an 128 -bit internal state $R=\left(R_{1}, \ldots, R_{8}\right) \in\left(\mathbb{F}_{2}^{16}, \ldots, \mathbb{F}_{2}^{16}\right)=\mathbb{F}_{2}^{128}$, which participates in each encryption/decryption and is updated after that.

Building Block: WD16: $\{0,1\}^{16} \mapsto\{0,1\}^{16}$ is the fundamental block or round function of HB-2 encryption, which is defined as

$$
W D 16\left(x, K_{a}, K_{b}, K_{c}, K_{d}\right)=f\left(f\left(f\left(f\left(x+K_{a}\right)+K_{b}\right)+K_{c}\right)+K_{d}\right)
$$

where x is the varying input, e.g., plaintext, intermediate state, $K_{a}, K_{b}, K_{c}, K_{d}$ are four 16 -bit secret keys and the nonlinear function f is specified as

$$
\begin{aligned}
S(x) & =S_{1}\left(x_{1}\right)\left\|S_{2}\left(x_{2}\right)\right\| S_{3}\left(x_{3}\right) \| S_{4}\left(x_{4}\right), x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
L(x) & =x+(x \lll 6)+(x \lll 10) \\
f(x) & =L(S(x))
\end{aligned}
$$

Note that the four S-boxes, i.e., $S_{1}\left(x_{i}\right)$ to $S_{4}\left(x_{i}\right)$, are given in Table 2.
Besides, the inverse of $W D 16$ is employed in the decryption, which is defined as

$$
W D 16^{-1}\left(y, K_{d}, K_{c}, K_{b}, K_{a}\right)=f^{-1}\left(f^{-1}\left(f^{-1}\left(f^{-1}(y)+K_{d}\right)+K_{c}\right)+K_{b}\right)+K_{a}
$$

Table 2. S-boxes in HummingBird-2

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

where $y=W D 16\left(x, K_{a}, K_{b}, K_{c}, K_{d}\right)$ and f^{-1} is the inverse of f. The four S-boxes used in f^{-1} are also listed in Table 2.

Initialization: Hummingbird-2 is initialized before use. Let $\left(R_{1}^{(r)}, \ldots R_{8}^{(r)}\right) \in\{0,1\}^{128}$ denote the internal state at the r th iteration in the initialization. The initialization can thus be formulated as, for $r=0,1,2,3$,

$$
\begin{align*}
t_{1} & =W D 16\left(R_{1}^{(r)} \boxplus<r>, K_{1}, K_{2}, K_{3}, K_{4}\right) \tag{1}\\
t_{2} & =W D 16\left(R_{2}^{(r)} \boxplus t_{1}, K_{5}, K_{6}, K_{7}, K_{8}\right) \tag{2}\\
t_{3} & =W D 16\left(R_{3}^{(r)} \boxplus t_{2}, K_{1}, K_{2}, K_{3}, K_{4}\right) \tag{3}\\
t_{4} & =W D 16\left(R_{4}^{(r)} \boxplus t_{3}, K_{5}, K_{6}, K_{7}, K_{8}\right) \tag{4}\\
R_{1}^{(r+1)} & =\left(R_{1}^{(r)} \boxplus t_{4}\right) \lll 3 \tag{5}\\
R_{2}^{(r+1)} & =\left(R_{2}^{(r)} \boxplus t_{1}\right) \lll 1 \tag{6}\\
R_{3}^{(r+1)} & =\left(R_{3}^{(r)} \boxplus t_{2}\right) \lll 8 \tag{7}\\
R_{4}^{(r+1)} & =\left(R_{4}^{(r)} \boxplus t_{3}\right) \lll 1 \tag{8}\\
R_{5}^{(r+1)} & =R_{5}^{(r)}+R_{1}^{(r+1)} \tag{9}\\
R_{6}^{(r+1)} & =R_{6}^{(r)}+R_{2}^{(r+1)} \tag{10}\\
R_{7}^{(r+1)} & =R_{7}^{(r)}+R_{3}^{(r+1)} \tag{11}\\
R_{8}^{(r+1)} & =R_{8}^{(r)}+R_{4}^{(r+1)}, \tag{12}
\end{align*}
$$

where $<r>$ represents a counter and $\left(R_{1}^{(0)}, \ldots, R_{8}^{(0)}\right)=\left(I V_{1}, I V_{2}, I V_{3}, I V_{4}, I V_{1}, I V_{2}, I V_{3}, I V_{4}\right)$.
Note that $R_{5}, R_{6}, R_{7}, R_{8}$ do not participate in the randomization, i.e., Eq. (6)-(9), but simply XOR the historical statuses of $R_{1}, R_{2}, R_{3}, R_{4}$ respectively (behaving like XOR-MAC). This fact may nullify their contribution to the overall cryptanalytic strength of HB-2 under a side-channel injection attack - 64 injections and 64 invocations of HB-2 encryption are needed to recover $\left(R_{5}, R_{6}, R_{7}, R_{8}\right)$. Details are provided in Appendix A.

Encryption: After the initialization, each encryption, by invoking the round function for four times, transforms a single plaintext word $P_{i} \in \mathbb{F}_{2}^{16}, i=1,2, \ldots$, to a corresponding ciphertext word C_{i}, i.e.,

$$
\begin{align*}
t_{1} & =W D 16\left(R_{1}^{(i)} \boxplus P_{i}, K_{1}, K_{2}, K_{3}, K_{4}\right) \tag{13}\\
t_{2} & =W D 16\left(R_{2}^{(i)} \boxplus t_{1}, K_{5}+R_{5}^{(i)}, K_{6}+R_{6}^{(i)}, K_{7}+R_{7}^{(i)}, K_{8}+R_{8}^{(i)}\right) \tag{14}\\
t_{3} & =W D 16\left(R_{3}^{(i)} \boxplus t_{2}, K_{1}+R_{5}^{(i)}, K_{2}+R_{6}^{(i)}, K_{3}+R_{7}^{(i)}, K_{4}+R_{8}^{(i)}\right) \tag{15}\\
C_{i} & =W D 16\left(R_{4}^{(i)} \boxplus t_{3}, K_{5}, K_{6}, K_{7}, K_{8}\right) \boxplus R_{1}^{(i)}, \tag{16}
\end{align*}
$$

where $\left(R_{1}^{(i)}, \ldots, R_{8}^{(i)}\right) \in \mathbb{F}_{2}^{128}$ is the internal state during the i th encryption and it is updated, at the end of the encryption, as follows:

$$
\begin{align*}
& R_{1}^{(i+1)}=R_{1}^{(i)} \boxplus t_{3} \tag{17}\\
& R_{2}^{(i+1)}=R_{2}^{(i)} \boxplus t_{1} \tag{18}\\
& R_{3}^{(i+1)}=R_{3}^{(i)} \boxplus t_{2} \tag{19}\\
& R_{4}^{(i+1)}=R_{4}^{(i)} \boxplus t_{1} \boxplus R_{1}^{(i+1)} \tag{20}\\
& R_{5}^{(i+1)}=R_{5}^{(i)}+R_{1}^{(i+1)} \tag{21}\\
& R_{6}^{(i+1)}=R_{6}^{(i)}+R_{2}^{(i+1)} \tag{22}\\
& R_{7}^{(i+1)}=R_{7}^{(i)}+R_{3}^{(i+1)} \tag{23}\\
& R_{8}^{(i+1)}=R_{8}^{(i)}+R_{4}^{(i+1)} \tag{24}
\end{align*}
$$

A shorthand of Eq. (13)-(24) is $C_{i}=E\left(P_{i}, K\right)=E\left(P_{i},\left(K_{1}, \ldots, K_{8}\right)\right)$.
Decryption: Decryption of a single word $C_{i} \in \mathbb{F}_{2}^{16}, i=1,2, \ldots$, followed by the same initialization, is

$$
\begin{align*}
u_{3} & =W D 16^{-1}\left(C_{i} \boxminus R_{1}^{(i)}, K_{8}, K_{7}, K_{6}, K_{5}\right) \tag{25}\\
u_{2} & =W D 16^{-1}\left(u_{3} \boxminus R_{4}^{(i)}, K_{4}+R_{8}^{(i)}, K_{3}+R_{7}^{(i)}, K_{2}+R_{6}^{(i)}, K_{1}+R_{5}^{(i)}\right) \tag{26}\\
u_{1} & =W D 16^{-1}\left(u_{2} \boxminus R_{3}^{(i)}, K_{8}+R_{8}^{(i)}, K_{7}+R_{7}^{(i)}, K_{6}+R_{6}^{(i)}, K_{5}+R_{5}^{(i)}\right) \tag{27}\\
P_{i} & =W D 16^{-1}\left(u_{1} \boxminus R_{2}^{(i)}, K_{4}, K_{3}, K_{2}, K_{1}\right) \boxminus R_{1}^{(i)} . \tag{28}
\end{align*}
$$

After this, the internal states are updated as in the encryption, i.e., using Eq. (17)-(24), where $t_{3}=$ $u_{3} \boxminus R_{4}^{(i)}, t_{2}=u_{2} \boxminus R_{3}^{(i)}$ and $t_{1}=u_{1} \boxminus R_{2}^{(i)}$.

3 Overview of Our Cryptanalytic Method on the Full HB-2

Adversary Model: We consider a scenario that two paralleled executions of encryptions are $C_{i}=$ $E\left(P_{i}, K\right)$ and $C_{i^{\prime}}^{\prime}=E\left(P_{i^{\prime}}^{\prime}, K^{\prime}\right)$, where the internal states are $\left(R_{1}^{(i)}, \ldots, R_{8}^{(i)}\right)$ and $\left(R_{1}^{\prime\left(i^{\prime}\right)}, \ldots, R_{8}^{\prime\left(i^{\prime}\right)}\right)$ respectively, the intermediate values are $\left(t_{1}, t_{2}, t_{3}\right)$ and $\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}\right)$ respectively, and K and K^{\prime} are related. (Similar for the decryption). The attacker follows the chosen plaintext/ciphertext model such that the
attacker is free to choose plaintext $P_{i} \in \mathbb{F}_{2}^{16}$ and $P_{i^{\prime}}^{\prime} \in \mathbb{F}_{2}^{16}$, launch encryption without knowing the related keys, and observe the corresponding $C_{i} \in \mathbb{F}_{2}^{16}$ and $C_{i^{\prime}}^{\prime} \in \mathbb{F}_{2}^{16}$; or chooses $C_{i} \in \mathbb{F}_{2}^{16}$ and $C_{i^{\prime}}^{\prime} \in \mathbb{F}_{2}^{16}$, launches decryption without knowing the related keys, and observes the corresponding $P_{i} \in \mathbb{F}_{2}^{16}$ and $P_{i^{\prime}}^{\prime} \in F_{2}^{16}$.

Attack In A Nutshell: Block ciphers are usually based on iterating a cryptographically weak function sufficient number of times without disturbing, e.g., modifying, the outputs of intermediate rounds except whitening them with round-keys. Our attack on the full HB-2 exploits the fact that the internal states, which, instead of enhancing the overall cryptanalytic strength, give the attacker an opportunity to create an input differential for the last invocation of $W D 16$ ($W D 16^{-1}$ resp.) in the encryption (decryption resp.) and to retrieve the corresponding distribution of the output differences (call the collection of them a differential sequence) caused by the last invocation of the round function, which is information-rich in (a subset of) $\left(K_{5}, \ldots, K_{8}\right)\left(\left(K_{1}, \ldots, K_{4}\right)\right.$ resp.). Henceforth, after obtaining such a template sequence, the attacker, in an off-line environment, could search for the key bits associated, which usually constitute a subset of entire key bits. In all, our full attack can be divided into two phases: preparation phase as described in Section 5 and key recovery phase as described in Section 4.

Key Recovery Phase: In the key recovery phase, to remove the undesired interference introduced by the varying internal states when consecutive words of input is encrypted/decrypted, our attack here targets a specific encryption/decryption after the preparation, i.e., i th encryption/decryption for one HB-2 instance and i^{\prime} th encryption/decryption for the other one. This is because given the key, IV, and the plaintext chain fed are fixed, the i th internal state and the i^{\prime} th internal state are fixed as well. Henceforth, we omit the superscript/subscript i and i^{\prime} of HB-2 variables for convenience when describing operations in the key recovery phase.

Providing the preparation phase succeeds, the attacker accomplishes the following utilizing the properties of the differential sequence analysis:

- Step 1.36 bits of $\left(K_{5}, \ldots, K_{8}\right) \in \mathbb{F}_{2}^{64}$ are recovered using the differential sequence obtained from the last invocation of $W D 16$ in the encryption if a particular condition meets, as shown in Fig. 2.
- Step 2.28 bits of $\left(K_{4}, \ldots, K_{1}\right) \in \mathbb{F}_{2}^{64}$ are recovered using the differential sequence obtained from the last invocation of $W D 16$ in the decryption if another particular condition meets.
- Step 3. the rest 64-bit key are exhaustively searched using either encryption or decryption.

To be specific, the condition needed to launch Step 1 in key recovery phase is:

$$
\text { Condition (A): } \quad \begin{aligned}
\Delta K & =\left(K_{1}, \ldots, K_{8}\right)+\left(K_{1}^{\prime}, \ldots, K_{8}^{\prime}\right)=(H, 0,0,0, H, 0,0,0) \\
\Delta P & =P+P^{\prime}=H \\
\Delta R & =\left(R_{1}, \ldots, R_{8}\right)+\left(R_{1}^{\prime}, \ldots, R_{8}^{\prime}\right)=(0,0,0,0, H, 0,0,0)
\end{aligned}
$$

The condition needed to launch Step 2 in key recovery phase is:

$$
\text { Condition (B): } \quad \begin{aligned}
\Delta K & =\left(K_{1}, \ldots, K_{8}\right)+\left(K_{1}^{\prime}, \ldots, K_{8}^{\prime}\right)=(0,0,0, H, 0,0,0, H) \\
\Delta C & =C+C^{\prime}=H \\
\Delta R & =\left(R_{1}, \ldots, R_{8}\right)+\left(R_{1}^{\prime}, \ldots, R_{8}^{\prime}\right)=(0,0,0,0,0,0,0, H)
\end{aligned}
$$

Fig. 2. Constructing Differential Sequence from Encryption with Condition (A)

To meet ΔP or ΔC in the two conditions above, the adversary model already allows the plaintex$\mathrm{t} /$ ciphertext to be freely chosen; to meet ΔK, two pair of related-keys have to be used in our attack; and to meet straight conditions in ΔR, an extra phase, called preparation phase, has to be introduced.

Preparation Phase: As one may expected, preparation phase of our attack copes with the realization of ΔR s one at a time. To this end, one obvious way is to mount side-channel injection attack as shown in Appendix D, which gives the attacker no time/memory penalty, i.e., the overall time/memory complexity of the attack is dominated by that of the key recovery phase.

However, side-channel injection attack is not considered much in this work. Instead, we realize both conditions in a probabilistic manner, i.e.,
$-\left(R_{1}^{(i)}, \ldots, R_{8}^{(i)}\right)$ and $\left(R_{1}^{\left(i^{\prime}\right)}, \ldots, R_{8}^{\left(i^{\prime}\right)}\right)$ can be "randomized" by feeding both HB-2 instances with either different IVs and/or chains of random plaintext words. According to the birthday paradox, there is at least 0.5 chance that the randomized $\left(R_{1}^{(i)}, \ldots, R_{8}^{(i)}\right) \in \mathbb{F}_{2}^{128}$ and the randomized $\left(R_{1}^{\prime\left(i^{\prime}\right)}, \ldots, R_{8}^{\prime\left(i^{\prime}\right)}\right) \in \mathbb{F}_{2}^{128}$ satisfies ΔR in condition (A) (condition (B) resp.) providing 2^{64} attempts are made.

- Note that, in the previous step, even if ΔR happens, the attacker is usually unaware. To determine, we improve the mechanism above in light of another characteristic of HB-2, i.e., if condition (A) (condition (B) resp.) holds at the current round, it also holds for the next round. Hence, the differential sequences produced at the current round by $\left(\left(R_{1}^{(i)}, \ldots, R_{8}^{(i)}\right),\left(R_{1}^{\prime\left(i^{\prime}\right)}, \ldots, R_{8}^{\prime\left(i^{\prime}\right)}\right)\right)$ is exactly the same as that produced at the next round by $\left(\left(R_{1}^{(i+1)}, \ldots, R_{8}^{(i+1)}\right),\left(R_{1}^{\prime\left(i^{\prime}+1\right)}, \ldots, R_{8}^{\prime\left(i^{\prime}+1\right)}\right)\right)$.
- If the above step succeeds, the attacker proceeds to the key recovery phase to attack.

In what follows, we detail each of the above phases and steps.

4 Differentials Sequence Attack (DSA)

In this section, we present a novel attack called differential sequence analysis (DSA) rooted in the differential cryptanalysis and saturation attack. To be specific, we exhibiting its definitions, properties, and applications to attack one round of the HB-2 encryption/decryption, which in fact constitutes the key recovery phase in our whole attack.

4.1 Differential Cryptanalysis and Saturation Attack

Differential cryptanalysis is a method analyzing the effect of particular differences in plaintext pairs on the differences of the resultant ciphertext pairs, which is based on a crucial observation that for any particular input differential, not all the output differential are possible, and the possible ones may not appear uniformly. In the original version of differential cryptanalysis [36], a unique differential is exploited to recover the subkey used in the last round of a block cipher. This idea has been extended in several ways: Biham and Shamir themselves further considered in [36] to use a trail of differentials to attack; Lai in [26] connected differential cryptanalysis with derivative of polynomials and presented a fine definition of higher order differentials; Knudsen [24] considered to use part of the input and output that have differential characteristics for the analysis; Biham, Biryukov and Shamir proposed in [4] to use differentials that happens with probability 0 as distinguishers; and recently, Blondeau and Gérard demonstrated the multiple differential cryptanalysis in [5], where a set of input/output differentials are considered together.

Saturation attack $[22,27,7]$ exploits the fact that the output set is saturated, i.e., the outputs forms the whole space of \mathbb{F}_{2}^{m}, if the input set for the m-bit core injective function is saturated. Since the saturation of the outputs is observable, this technique usually serves as a distinguisher for the attacker.

At a high level, our differential sequence analysis in this paper can be understood as a hybrid of the conventional differential cryptanalysis and saturation attack, i.e., the set of the output differentials (instead of the outputs themselves) with respect to a particular/fixed input differential and a saturated set of inputs is considered. From another angle, due to the use of output differentials caused by a saturated set of inputs, our attack is also a special case of multiple differential cryptanalysis [5].

4.2 (First-order) Differential Sequence

Assume we have a keyed permutation $h(w, K)$ mapping $w \in \mathbb{F}_{2}^{m}$ to $h(w, K) \in \mathbb{F}_{2}^{m}$ with respect to the secret key K, where m is a positive integer. Given a fixed $\theta \in \mathbb{F}_{2}^{m}$, the first-order differential is known as

$$
\Delta_{\theta, K}(w)=h(w, K)+h(w+\theta, K)
$$

The (first-order) differentials sequence of h at θ is basically one row in the differential distribution table of h with respect to the input differential θ. To discuss its properties, we define it in a more formal way.

Definition 1. The first-order differential sequence $(D S)$ of h at θ is a non-binary sequence of 2^{m} entries, i.e.,

$$
\Delta_{\theta, K}=\left(z_{0}, z_{1}, \ldots, z_{2^{m}-1}\right)
$$

where z_{i} denotes the multiplicity (that is, number of occurrences) of i in the set $\left\{w \in \mathbb{F}_{2}^{m} \mid \Delta_{\theta, K}(w)\right\}$, i.e.,

$$
z_{i}=\left|\left\{w \in \mathbb{F}_{2}^{m} \mid \Delta_{\theta, K}(w)=i\right\}\right|
$$

Note that this definition can be extended to higher orders. In this paper, we constrained ourself to the first-order case.

For example, the differential sequence is $\{0,0,0,2,0,0,2,0,0,4,2,0,4,0,0,2\}$ providing $\left\{w=\mathbb{F}_{2}^{4} \mid\right.$ $\left.\Delta_{\theta, K}(w),\right\}=\{12,10,3,9,6,9,15,12,12,10,3,9,6,9,15,12\}$ and $\theta=0 \times 08$. The length of the differential sequence is the sum of all its multiplicities (16 in this example).

4.3 Properties of the Differential Sequence

The saturated set of inputs brings quite a lot interesting properties to the conventional differential cryptanalysis. We list the core properties to attack HB-2 here.

Property 1. For a fixed $\theta \in \mathbb{F}_{2}^{m}, \Delta_{\theta, K}$ is constructed by evaluating and counting $(h(w, K)+h(w+\theta, K))$ for every w in \mathbb{F}_{2}^{m} regardless of the order of $w \in \mathbb{F}_{2}^{m}$ been accessed.

This property follows immediately from Definition 1 and is useful in the sense that even though $h(w, K)$ is an intermediate round in a cipher (thus, w is an intermediate value), we are able to capture $\Delta_{\theta, K}$ given that θ can be fixed in a particular way and w traverses the whole space of \mathbb{F}_{2}^{m}. Stated in another way, we have the property below.

Property 2. Let $\operatorname{perm}(w)$ be a permutation of w in \mathbb{F}_{2}^{m}, i.e., $\operatorname{perm}(w): \mathbb{F}_{2}^{m} \mapsto \mathbb{F}_{2}^{m}$. For a fixed $\theta \in \mathbb{F}_{2}^{m}$ and every $w \in \mathbb{F}_{2}^{m}, \Delta_{\theta, K}$ can be obtained either by evaluating and counting $(h(w, K)+h(w+\theta, K))$, or by evaluating and counting $(h(\operatorname{perm}(w), K)+h(\operatorname{perm}(w)+\theta, K))$.

In what follows, we use

$$
\left[h(w, K)+h(w+\theta, K) \mid w \in \mathbb{F}_{2}^{m}\right]=\left[h(\operatorname{perm}(w), K)+h(\operatorname{perm}(w)+\theta, K) \mid w \in \mathbb{F}_{2}^{m}\right]
$$

as a symbolic expression for Property 2, where [...] actually defines a multiset and θ is always a fixed value in \mathbb{F}_{2}^{m} for the rest of the paper. Henceforth, a straightforward extension of Property 2 can be derived below.

Property 3. Let perm${ }_{i}, i=1, \ldots, n$, be permutations in \mathbb{F}_{2}^{m}. We have

$$
\begin{aligned}
& {\left[h(w, K)+h(w+\theta, K) \mid w \in \mathbb{F}_{2}^{m}\right] } \\
= & {\left[h\left(\operatorname{perm}_{n}\left(\ldots\left(\operatorname{perm}_{1}(w)\right)\right), K\right)+h\left(\operatorname{perm}_{n}\left(\ldots\left(\operatorname{perm}_{1}(w)\right)\right)+\theta, K\right) \mid w \in \mathbb{F}_{2}^{m}\right] }
\end{aligned}
$$

Proof. $\operatorname{perm}_{n}\left(\ldots\left(\operatorname{perm}_{1}(w)\right)\right)$ can be written as $\operatorname{perm}(w)$ in \mathbb{F}_{2}^{m}.
As aforementioned, the obtained differential sequence is primarily used to search for the key bits associated. Henceforth, we are especially interested in the correspondences between the differential sequence and the K in the underlying function $h(w, K)$, e.g., is the mapping from K to the differential sequence injective or not? To this end, we start with a special case of Property 2.

Property 4. Providing $K=K_{a} \bigcup K_{b}, K_{a} \bigcap K_{b}=\emptyset$ and $h(w, K)=h\left(w+K_{a}, K_{b}\right)$, we have

$$
\left[h(w, K)+h(w+\theta, K) \mid w \in \mathbb{F}_{2}^{m}\right]=\left[h\left(\left(w+K_{a}\right), K_{b}\right)+h\left(\left(w+K_{a}\right)+\theta, K_{b}\right) \mid w \in \mathbb{F}_{2}^{m}\right]
$$

Proof. By applying Property 2 and set $\operatorname{perm}(w)=w+K_{a}$, this property follows immediately.
From the property above, it is clear that all $K_{a} \in \mathbb{F}_{2}^{\left|K_{a}\right|}$ produces the same sequence while different $K_{b} \mathrm{~S}$ may produce different sequences. Therefore, this property in fact implies that the obtained differential sequence of h at θ can be used to search for (a subset of) the key nonlinearly associated. Besides, there exists a more complicated correspondence between the key and the differential sequence. To discuss, we need to investigate the properties of sub-differential sequences.

Property 5. Let Γ be a subset of \mathbb{F}_{2}^{m} and perm is a permutation in Γ, we have

$$
[h(w, K)+h(w+\theta, K) \mid w \in \Gamma]=[h(\operatorname{perm}(w), K)+h(\operatorname{perm}(w)+\theta, K) \mid w \in \Gamma]
$$

Proof. This property follows from Definition 1, if and only if perm is a permutation in Γ, i.e., $\operatorname{perm}(w)$: $\Gamma \mapsto \Gamma$. We call $[h(w, K)+h(w+\theta, K) \mid w \in \Gamma]$ or $[h(\operatorname{perm}(w), K)+h(\operatorname{perm}(w)+\theta, K) \mid w \in \Gamma]$ a sub-differential sequence of $\Delta_{\theta, K}$.

Due to this, we can actually view a differential sequence obtained in \mathbb{F}_{2}^{m} as a summation of several sub-differential sequences obtained in the disjoint subspaces of \mathbb{F}_{2}^{m}. This intuition can be written as below.

Property 6. Let $\Gamma_{i}, i=1, \ldots, q$, be q disjoint partitions of \mathbb{F}_{2}^{m}, i.e.,

$$
\begin{align*}
& \Gamma_{i} \cap \Gamma_{j}=\emptyset, \quad 1 \leq i \neq j \leq q \tag{29}\\
& \cup_{i=1}^{q} \Gamma_{i}=\mathbb{F}_{2}^{m} \tag{30}
\end{align*}
$$

and let the differential sequence obtained by $\left[h(w, K)+h(w+\theta, K) \mid w \in \Gamma_{i}\right]$ be $\Delta_{\theta, K}^{\left\{\Gamma_{i}\right\}}$, we thus have,

$$
\Delta_{\theta, K}=\sum_{i=1}^{q} \Delta_{\theta, K}^{\left\{\Gamma_{i}\right\}}
$$

Following this reasoning, Property 4 can also be extended as below, which tells us that a differential sequence in Γ only corresponds to the key nonlinearly (in Γ) associated.

Property 7. Providing $K=K_{a} \bigcup K_{b}, K_{a} \bigcap K_{b}=\emptyset$ and $h(w, K)=h\left(w+K_{a}, K_{b}\right)$, we have, if Γ is a subset of \mathbb{F}_{2}^{m} and $\left(w+K_{a}\right)$ is a permutation in Γ with respect to K_{a},

$$
[h(w, K)+h(w+\theta, K) \mid w \in \Gamma]=\left[h\left(\left(w+K_{a}\right), K_{b}\right)+h\left(\left(w+K_{a}\right)+\theta, K_{b}\right) \mid w \in \Gamma\right]
$$

Therefore, if each of the sub-differential sequence stays the same with respect to the keys belonging to a particular set, denoted as Φ_{0}, the overall differential sequence remain the same under Φ_{0}. We formalize this correspondence as below.

Property 8. Let $\Phi_{0}=\cap_{i=1}^{q}\left\{k \mid w+k: \Gamma_{i} \mapsto \Gamma_{i}, k, w \in \mathbb{F}_{2}^{m}\right\}, K=K_{a} \bigcup K_{b}, K_{a} \bigcap K_{b}=\emptyset$ and $h(w, K)=$ $h\left(w+K_{a}, K_{b}\right)$, we have

$$
\begin{equation*}
\Delta_{\theta, K}=\Delta_{\theta, \kappa} \tag{31}
\end{equation*}
$$

where $\kappa=\kappa_{a} \bigcup \kappa_{b}, \kappa_{a} \bigcap \kappa_{b}=\emptyset, K_{a} \in \Phi_{0}$ and $\kappa_{b}=K_{b}$.
Proof. Let $\Delta_{\theta, K}^{\left\{\Gamma_{i}\right\}}$ be the sub-differential sequence obtained by Property 7. Thanks to Property 6, we have $\Delta_{\theta, K}=\sum_{i=1}^{q} \Delta_{\theta, K}^{\left\{\Gamma_{i}\right\}}$ and $\Delta_{\theta, \kappa}=\sum_{i=1}^{q} \Delta_{\theta, \kappa}^{\left\{\Gamma_{i}\right\}}$. Thanks to Property 7, for each $i, \Delta_{\theta, K}^{\left\{\Gamma_{i}\right\}}=\Delta_{\theta, \kappa}^{\left\{\Gamma_{i}\right\}}$ providing $\kappa_{b}=K_{b}$ and $K_{a}, \kappa_{a} \in \Phi_{0}$.

As opposed, providing $\kappa_{b} \neq K_{b}$ while $K_{a}, \kappa_{a} \in \Phi_{0}$, it is quite likely that $\Delta_{\theta, K} \neq \Delta_{\theta, \kappa}$ since $\Delta_{\theta, K}^{\left\{\Gamma_{i}\right\}} \neq \Delta_{\theta, \kappa}^{\left\{\Gamma_{i}\right\}}$ for each i.

4.4 Differential Sequence Analysis against HB-2

In this subsection, we attack the last invocation of $W D 16$ ($W D 16^{-1}$ resp.) in the encryption (decryption resp.) of HB-2 by exploiting the DSA as presented. To be specific, our Theorem 1 and Theorem 3 give answers to the question "how to obtain the differential sequences" while our Theorem 2 and Theorem 4 exhibit "how to use the differentials sequences". Since the HB-2 has a 16-bit block size, we have $m=16$ for the rest.

Attacking $W D 16$ in Encryption: To show our idea in a concise way, we assume that R_{1} and R_{1}^{\prime} are known (in fact, as they are identified by our algorithms in the preparation phase). In addition, let h in Definition 1 be the last invocation of $W D 16$, i.e., Eq. (16), in the encryption. We thus have the following theorems.

Theorem 1. When condition (A) meets, the differential sequence of the last WD16 in the encryption at $\theta=H$ can be extracted from executing the entire encryption.

Proof: First of all, when condition (A) holds, we have,

$$
\begin{aligned}
t_{1}^{\prime}= & W D 16\left(R_{1}^{\prime} \boxplus P^{\prime}, K_{1}^{\prime}, K_{2}^{\prime}, K_{3}^{\prime}, K_{4}^{\prime}\right) \\
= & W D 16\left(R_{1} \boxplus(P+H),\left(K_{1}+H\right), K_{2}, K_{3}, K_{4}\right)=t_{1} \\
t_{2}^{\prime}= & W D 16\left(R_{2}^{\prime} \boxplus t_{1}^{\prime}, K_{5}^{\prime}+R_{5}^{\prime}, K_{6}^{\prime}+R_{6}^{\prime}, K_{7}^{\prime}+R_{7}^{\prime}, K_{8}^{\prime}+R_{8}^{\prime}\right) \\
= & W D 16\left(R_{2} \boxplus t_{1},\left(K_{5}+H\right)+\left(R_{5}+H\right), K_{6}+R_{6}, K_{7}+R_{7},\right. \\
& \left.K_{8}+R_{8}\right)=t_{2} \\
t_{3}^{\prime}= & W D 16\left(R_{3}^{\prime} \boxplus t_{2}^{\prime}, K_{1}^{\prime}+R_{5}^{\prime}, K_{2}^{\prime}+R_{6}^{\prime}, K_{3}^{\prime}+R_{7}^{\prime}, K_{4}^{\prime}+R_{8}^{\prime}\right) \\
= & W D 16\left(R_{3} \boxplus t_{2},\left(K_{1}+H\right)+\left(R_{5}+H\right), K_{2}+R_{6}, K_{3}+R_{7},\right. \\
& \left.K_{4}+R_{8}\right)=t_{3}
\end{aligned}
$$

Next, $\Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}=\left[z_{0}, z_{1}, \ldots, z_{2^{16}-1}\right]$ can be extracted, where

$$
\begin{aligned}
z_{i} & =\left|\left\{t_{3} \in \mathbb{F}_{2}^{16} \mid\left(W D 16\left(R_{4} \boxplus t_{3}, K_{5}, K_{6}, K_{7}, K_{8}\right)+W D 16\left(R_{4}^{\prime} \boxplus t_{3}^{\prime}, K_{5}^{\prime}, K_{6}^{\prime}, K_{7}^{\prime}, K_{8}^{\prime}\right)\right)=i\right\}\right| \\
& =\left|\left\{t_{3} \in \mathbb{F}_{2}^{16} \mid\left(W D 16\left(R_{4} \boxplus t_{3}, K_{5}, K_{6}, K_{7}, K_{8}\right)+W D 16\left(R_{4} \boxplus t_{3},\left(K_{5}+H\right), K_{6}, K_{7}, K_{8}\right)\right)=i\right\}\right| \\
& =\left|\left\{t_{3} \in \mathbb{F}_{2}^{16} \mid\left(W D 16\left(R_{4} \boxplus t_{3}, K_{5}, K_{6}, K_{7}, K_{8}\right)+W D 16\left(\left(R_{4}+H\right) \boxplus t_{3}, K_{5}, K_{6}, K_{7}, K_{8}\right)\right)=i\right\}\right| \\
& =\left|\left\{P \in \mathbb{F}_{2}^{16}, P^{\prime}=P+H \mid\left(C \boxminus R_{1}\right)+\left(C^{\prime} \boxminus R_{1}\right)=i\right\}\right| .
\end{aligned}
$$

The second last equality comes from the fact

$$
\left(R_{4} \boxplus t_{3}\right)+\left(K_{5}+H\right)=\left(\left(R_{4}+H\right) \boxplus t_{3}\right)+K_{5}
$$

which can be easily verified by the computer simulation.
Note that condition (A) is essentially a necessary condition for the following condition:

$$
\begin{aligned}
\Delta K & =\left(K_{1}, \ldots, K_{8}\right)+\left(K_{1}^{\prime}, \ldots, K_{8}^{\prime}\right)=(0,0,0,0,0,0,0,0) \\
\Delta P & =P_{1}+P_{i^{\prime}}^{\prime}=0 \\
\Delta R & =\left(R_{1}, \ldots, R_{8}\right)+\left(R_{1}^{\prime}, \ldots, R_{8}^{\prime}\right)=(0,0,0, H, 0,0,0,0)
\end{aligned}
$$

such that both of them produce the same differential sequence of $W D 16$. However, we use condition (A) through the rest of the paper because it has an additional property that keeps the attacker informed once ΔR happens (see Section 5.2).

This theorem suggests that, after querying the encryption with every $P \in \mathbb{F}_{2}^{16}$ and obtaining the resultant output differentials, the attacker could have a template sequence $\Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}$ to search for parts of $\left(K_{5}, K_{6}, K_{7}, K_{8}\right)$. The next theorem discloses the correspondence between $\Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}$ and $\left(K_{5}, K_{6}, K_{7}, K_{8}\right)$.
Theorem 2. Let $\Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}$ be obtained from Theorem 1. For $\kappa_{5} \in \mathbb{F}_{2}^{16}$ and $\kappa_{6} \in \mathbb{F}_{2}^{16}$, we have

$$
\Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}=\Delta_{H,\left(\kappa_{5}, \kappa_{6}, K_{7}, K_{8}\right)}
$$

where K_{6} and κ_{6} belong to the same set $\Phi_{i}=\Phi_{0}+i, 0 \leq i \leq 15$, and Φ_{0}, of cardinality 2^{12}, is tabulated in Appendix C.

Proof: To prove, we discuss the correspondence between $K_{5}, K_{6}, K_{7}, K_{8}$ and the template sequence in a respective way.
Correspondence Between K_{5} and DS: For the time being, let us consider $h(w, K)=f\left(f\left(w+K_{5}\right)+\right.$ K_{6}) (a simplified $W D 16$), where $f: \mathbb{F}_{2}^{16} \mapsto \mathbb{F}_{2}^{16}$ (as described in Section 2) is an injective function, we thus have, by letting $w=R_{4} \boxplus t_{3}$ and $\theta=H$,

$$
\begin{aligned}
& {\left[h(w, K)+h(w+\theta, K) \mid w \in \mathbb{F}_{2}^{16}\right] } \\
= & {\left[f\left(f\left(w+K_{5}\right)+K_{6}\right)+f\left(f\left(w+K_{5}+\theta\right)+K_{6}\right) \mid w \in \mathbb{F}_{2}^{16}\right] } \\
= & {\left[f\left(f\left(\operatorname{perm}_{1}(w)\right)+K_{6}\right)+f\left(f\left(\operatorname{perm}_{1}(w)+\theta\right)+K_{6}\right) \mid w \in \mathbb{F}_{2}^{16}\right] }
\end{aligned}
$$

It is clear from the context that $\operatorname{perm}_{1}(w)=w+K_{5}$ is a permutation in \mathbb{F}_{2}^{m}, and, due to Property $4, \Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}$ does not dependent on K_{5}.
Correspondence Between K_{6} and DS: First of all, we define the following auxiliary variables for convenience:

- $\lambda_{i}, i=1, \ldots, q$, are q possible output differences of f, given the input difference is θ.
$-\Gamma_{i}=\left\{f(w) \mid f(w)+f(w+\theta)=\lambda_{i}, w \in \mathbb{F}_{2}^{16}\right\}, i=1, \ldots, q$, are q disjoint partitions of \mathbb{F}_{2}^{16} such that: (1) Eq. (29) holds, otherwise there is a $w \in\left(\Gamma_{i} \cap \Gamma_{j}\right), 1 \leq i \neq j \leq q$, such that $f(w)+f(w+\theta)$ produces output differences λ_{i} and $\lambda_{j}, \lambda_{i} \neq \lambda_{j}$, which is impossible; (2) Eq. (30) holds, otherwise there is a $w \in\left(\mathbb{F}_{2}^{16}-\cup_{i=1}^{q} \Gamma_{i}\right)$, that produces an output difference $\notin\left\{\lambda_{1}, \ldots, \lambda_{q}\right\}$, which contradicts our definition.
$-\Phi_{0}=\cap_{i=1}^{q}\left\{k \mid f(w)+k: \Gamma_{i} \mapsto \Gamma_{i}, k \in \mathbb{F}_{2}^{16}\right\}$. Intuitively, Φ_{0} encompasses all possible keys, which make $f(w)+k$ a permutation in $\Gamma_{i}, i=1, \ldots, q$.

Furthermore, let us consider two cases: (1) $K_{6} \in \Phi_{0}$; and (2) $K_{6} \in$ a coset of Φ_{0}.
For case (1), i.e., $K_{6} \in \Phi_{0}$, the above equations can be further written as, by setting $\operatorname{perm}_{2}(w)=$ $f\left(\operatorname{perm}_{1}(w)\right)+K_{6}$,

$$
\begin{array}{rlrl}
& {\left[f\left(f\left(\operatorname{perm}_{1}(w)\right)+K_{6}\right)+f\left(f\left(\operatorname{perm}_{1}(w)+\theta\right)+K_{6}\right) \mid w \in \mathbb{F}_{2}^{16}\right]} & & \\
= & {\left[f\left(f\left(\operatorname{perm}_{1}(w)\right)+K_{6}\right)+f\left(f\left(\operatorname{perm}_{1}(w)\right)+\lambda_{i}+K_{6}\right) \mid w \in \Gamma_{i}\right]} & \text { for } i=1, \ldots, q \\
= & {\left[f\left(f\left(\operatorname{perm}_{1}(w)\right)+K_{6}\right)+f\left(f\left(\operatorname{perm}_{1}(w)\right)+K_{6}+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]} & \text { for } i=1, \ldots, q \\
= & {\left[f\left(\operatorname{perm}_{2}(w)\right)+f\left(\operatorname{perm}_{2}(w)+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]} & \text { for } i=1, \ldots, q \\
= & {\left[f(w)+f\left(w+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]} & & \text { for } i=1, \ldots, q
\end{array}
$$

The above equation holds because of Property 8, e.g., for $K_{6} \in \Phi_{0}$, every $\left[f(w)+f\left(w+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]$ produces the same sub-differential sequence. Therefore, the overall differential sequence stays the same for every $K_{6} \in \Phi_{0}$. Stating in another way, providing K_{6} and κ_{6} are both in $\Phi_{0}, \Delta_{H,\left(K_{5}, K_{6}\right)}=\Delta_{H,\left(\kappa_{5}, \kappa_{6}\right)}$.

The above derivation is further confirmed through extensive experiments, where we found

$$
\left(\lambda_{1}, \ldots, \lambda_{6}\right)=(0 \mathrm{x} 30 \mathrm{cc}, 0 \mathrm{x} 6198,0 \mathrm{x} 9264,0 \mathrm{xa} 2 \mathrm{a} 8,0 \mathrm{xc} 330,0 \mathrm{xf} 3 \mathrm{fc}),
$$

$\left(\Gamma_{1}, \ldots \Gamma_{6}\right)$, and Φ_{0} as tabulated in Appendix C, which is of cardinality 2^{12}.
In what follows, we prove case (2), i.e., the above equations are true for $K_{6} \in \Phi_{i}=\Phi_{0}+i$. This is because, by letting $K_{6}=\triangleright K_{6}+\triangleleft K_{6}$ such that $\triangleright K_{6} \in \Phi_{0}$,

$$
\begin{array}{rlrl}
& {\left[f\left(f\left(\operatorname{perm}_{1}(w)\right)+K_{6}\right)+f\left(f\left(\operatorname{perm}_{1}(w)\right)+K_{6}+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]} & \text { for } i=1, \ldots, q \\
= & {\left[f\left(f\left(\operatorname{perm}_{1}(w)\right)+\triangleright K_{6}+\triangleleft K_{6}\right)+f\left(f\left(\operatorname{perm}_{1}(w)\right)+\triangleright K_{6}+\triangleleft K_{6}+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]} & & \text { for } i=1, \ldots, q \\
= & {\left[f\left(\operatorname{perm}_{3}(w)+\triangleleft K_{6}\right)+f\left(\operatorname{perm}_{3}(w)+\triangleleft K_{6}+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]} & & \text { for } i=1, \ldots, q \\
= & {\left[f\left(w+\triangleleft K_{6}\right)+f\left(w+\triangleleft K_{6}+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]} & & \text { for } i=1, \ldots, q
\end{array}
$$

The second last equation holds because of our proof of case (1) (by letting $\operatorname{perm}_{3}(w)=f\left(\operatorname{perm}_{1}(w)\right)+$ $\triangleright K_{6}$).

In addition, it is clear that:

- the sub-differential sequence $\left[f\left(w+\triangleleft K_{6}\right)+f\left(w+\triangleleft K_{6}+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]$, is different from $[f(w+$ $\left.f\left(w+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]$ as long as $\triangleleft K_{6} \neq 0$. So is the overall differential sequence with overwhelming probability.
- for $K_{6}=\triangleright K_{6}+\triangleleft K_{6}, \kappa_{6}=\triangleright \kappa_{6}+\triangleleft \kappa_{6}, K_{6} \neq \kappa_{6}$, the sub-differential sequence $\left[f\left(w+\triangleleft K_{6}\right)+f(w+\right.$ $\left.\left.\triangleleft K_{6}+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]$, is the same as $\left[f\left(w+\triangleleft \kappa_{6}\right)+f\left(w+\triangleleft \kappa_{6}+\lambda_{i}\right) \mid w \in \Gamma_{i}\right]$ as long as $\triangleleft K_{6}=\triangleleft \kappa_{6}$. This is due to the possibility that $\triangleright K_{6}, \triangleright \kappa_{6} \in \Phi_{0}, \triangleright K_{6} \neq \triangleright \kappa_{6}$ could yield $\triangleleft K_{6}=\triangleleft \kappa_{6}$.

From the accusation above and our extensive experiments, it can be concluded that the key space of $K_{6} \in \mathbb{F}_{2}^{16}$ has been divided into 16 cosets, i.e., $\Phi_{0}, \ldots, \Phi_{15}$, and each is of cardinality 2^{12}.
Correspondence Between $\left(K_{7}, K_{8}\right)$ and DS: We carry on all the notations above for K_{7} except setting $h(w, K)=f\left(f\left(f\left(f\left(w+K_{5}\right)+K_{6}\right)+K_{7}\right)+K_{8}\right)$. We found that, for K_{7}, Φ_{0} is always a empty set because too many λ_{i} divides \mathbb{F}_{2}^{16} into numerous tiny subspaces Γ_{i}, for which there is no K_{7} could make $f(w)+K_{7}$ a permutation in every $\Gamma_{i}, i=1, \ldots, q$. Same phenomenon happens to K_{8}. In all, each choice of $\left(K_{7}, K_{8}\right)$ produces a different differential sequence, which is further confirmed empirically.

Attacking $W D 16^{-1}$ in Decryption: Similar attack can be performed against the decryption. By assuming R_{1} and R_{1}^{\prime} are known and letting h in Definition 1 be the last invocation of $W D 16^{-1}$, i.e., Eq. (28), we have the following results for our attack.

Theorem 3. With the condition (B), the differential sequence of the last WD16 ${ }^{-1}$ in the decryption at $\theta=H$ can be extracted from executing the entire decryption.

Proof: First of all, when condition (B) holds, we have,

$$
\begin{aligned}
u_{3} & =W D 16^{-1}\left(C \boxminus R_{1}, K_{8}, K_{7}, K_{6}, K_{5}\right) \\
& =W D 16^{-1}\left((C+H) \boxminus R_{1}^{\prime},\left(K_{8}+H\right), K_{7}^{\prime}, K_{6}^{\prime}, K_{5}^{\prime}\right)=u_{3}^{\prime} \\
u_{2} & =W D 16^{-1}\left(u_{3} \boxminus R_{4}, K_{4}+R_{8}, K_{3}+R_{7}, K_{2}+R_{6}, K_{1}+R_{5}\right) \\
& =W D 16^{-1}\left(u_{3}^{\prime} \boxminus R_{4}^{\prime},\left(K_{4}+H\right)+\left(R_{8}+H\right), K_{3}^{\prime}+R_{7}^{\prime}, K_{2}^{\prime}+R_{6}^{\prime}, K_{1}^{\prime}+R_{5}^{\prime}\right)=u_{2}^{\prime} \\
u_{1} & =W D 16^{-1}\left(u_{2} \boxminus R_{3}, K_{8}+R_{8}, K_{7}+R_{7}, K_{6}+R_{6}, K_{5}+R_{5}\right) \\
& =W D 16^{-1}\left(u_{2}^{\prime} \boxminus R_{3}^{\prime},\left(K_{8}+H\right)+\left(R_{8}+H\right), K_{7}^{\prime}+R_{7}^{\prime}, K_{6}^{\prime}+R_{6}^{\prime}, K_{5}^{\prime}+R_{5}^{\prime}\right)=u_{1}^{\prime}
\end{aligned}
$$

Next, $\Delta_{H,\left(K_{4}, K_{3}, K_{2}, K_{1}\right)}=\left[z_{0}, z_{1}, \ldots, z_{2^{16}-1}\right]$ can be extracted, where,

$$
\begin{aligned}
z_{i} & =\left|\left\{u_{1} \in \mathbb{F}_{2}^{16} \mid\left(W D 16^{-1}\left(u_{1} \boxminus R_{2}, K_{4}, K_{3}, K_{2}, K_{1}\right)+W D 16^{-1}\left(u_{1}^{\prime} \boxminus R_{2}^{\prime}, K_{4}^{\prime}, K_{3}^{\prime}, K_{2}^{\prime}, K_{1}^{\prime}\right)\right)=i\right\}\right| \\
& =\left|\left\{u_{1} \in \mathbb{F}_{2}^{16} \mid\left(W D 16^{-1}\left(u_{1} \boxminus R_{2}, K_{4}, K_{3}, K_{2}, K_{1}\right)+W D 16^{-1}\left(u_{1}^{\prime} \boxminus R_{2}^{\prime}, K_{4}+H, K_{3}, K_{2}, K_{1}\right)\right)=i\right\}\right| \\
& =\left|\left\{C \in \mathbb{F}_{2}^{16}, C^{\prime}=C+H \mid\left(P \boxplus R_{1}\right)+\left(P^{\prime} \boxplus R_{1}\right)=i\right\}\right| .
\end{aligned}
$$

A similar theorem describes the correspondence between $\Delta_{H,\left(K_{4}, K_{3}, K_{2}, K_{1}\right)}$ and $\left(K_{4}, K_{3}, K_{2}, K_{1}\right)$.
Theorem 4. Let $\Delta_{H,\left(K_{4}, K_{3}, K_{2}, K_{1}\right)}$ be obtained from Theorem 3. For $\kappa_{1} \in \mathbb{F}_{2}^{16}$ and $\kappa_{4} \in \mathbb{F}_{2}^{16}$,

$$
\Delta_{H,\left(K_{4}, K_{3}, K_{2}, K_{1}\right)}=\Delta_{H,\left(\kappa_{4}, K_{3}, K_{2}, \kappa_{1}\right)}
$$

where K_{4} and κ_{4} belong to the same set $\Phi_{i}=\Phi_{0}+i, 0 \leq i \leq 2^{12}-1$, and $\Phi_{0}=\{0 \mathrm{x} 0000,0 \mathrm{x} 0010, \ldots, 0 \mathrm{x} 00 \mathrm{f} 0\}$.
Proof: Similar as Theorem 2, except that we could easily observe from the experimental data that $\Phi_{0}=\{0 \mathrm{x} 0000,0 \mathrm{x} 0010,0 \mathrm{x} 0020, \ldots, 0 \mathrm{x} 00 \mathrm{f} 0\}$.

Visualization of Differential Sequences From HB-2: Here we provide several examples of the differential sequences used in our experiments. Fig. 4 to Fig. 6 in Appendix B are the ones obtained from the last invocation of $W D 16$ in the encryption with $I V=(0,0,0,0)$ and different keys randomly selected. Fig. 7 to Fig. 9 in Appendix B are the ones obtained from the last invocation of WD16 ${ }^{-1}$ in the decryption with $I V=(0,0,0,0)$ and different keys randomly selected. All of the sequences are substantially different from each other, which exhibits their correlations to the underlying keys in an intuitive way.

4.5 Local Search in DSA

After the template sequence is captured, the attacker could, in an off-line environment, launches $h(w, K)=W D 16().\left(h(w, K)=W D 16^{-1}(\right.$.$\left.) resp. \right)$ to search for parts of $\left(K_{5}, K_{6}, K_{7}, K_{8}\right)\left(\left(K_{1}, K_{2}, K_{3}, K_{4}\right.\right.$ resp.), which is called the local search in DSA. Through the local search, the attacker recovers 36-bit (44-bit resp.) information regarding the key.

A naive way to search locally is to produce a complete local differential sequence from $[h(w, K)+$ $\left.h(w+H, K) \mid w \in \mathbb{F}_{2}^{16}\right]$ with a random K at first, comparing each entry of which with the corresponding entry of the template sequence. The cost per key trial is 2^{16} executions of $h(w, K) \mathrm{s}$ and 2^{16} comparisons.

The efficiency of this method can be substantially improved if the early-abort strategy [29] is adapted, i.e., given the i th entry in the local differential sequence is greater than the i th entry in the template sequence, one could assert that the trial key is incorrect and terminate the search in advance. We present this improved local search algorithm below.

```
let \(T D S\) be the template sequence obtained
initiate the local differential sequence \(L D S\) as a list of \(2^{16}\) " 0 "s
for \(w\) from 0 to \(2^{16}-1\) do
    randomly choose \(K\)
    \(\operatorname{diff} \leftarrow h(w+K)+h(w+H+K)\)
    \(L D S[\) diff \(] \leftarrow L D S[\) diff \(]+1\)
    if \(L D S[d i f f]>T D S[d i f f]\) then
        return NULL
    end if
end for
if \(L D S[w]=T D S[w]\) for \(w=0,1, \ldots, 2^{16}-1\) then
    return \(K\)
end if
```

The theoretical derivation of the time complexity of the above algorithm could be quite cumbersome. Instead, we recorded the number of the for-loops that are actually executed, denoted as l, during the search. Through repeated testings, we found that, in average, $1.640<l<1.660$ for-loops are spent per key trial for both local searches using $W D 16($.$) and W D 16^{-1}($.$) . Thus, we conclude the cost per key$ trial of our local search algorithm is 1.65 executions of (a pair of) $h(w, K) \mathrm{s}$.

4.6 Differential Sequence Analysis (DSA) Against HB-2 and Its Time Complexity

We are ready to list out the steps performed by the attacker during the key recovery phase, as below.

1. When condition (A) holds, the attacker extracts the template sequence $\Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}$ using $\left(\left(C \boxminus R_{1}\right)+\left(C^{\prime} \boxminus R_{1}\right)\right)$, where C and C^{\prime} can be obtained by querying the encryption with P and $P^{\prime}=P+H$, and R_{1} and R_{1}^{\prime} are obtained in the preparation phase. Then, the attacker locally searches 36 -bit of $\left(K_{5}, K_{6}, K_{7}, K_{8}\right)$.
2. Similarly, utilizing the decryption, when condition (B) holds, the attacker extracts another template sequence $\Delta_{H,\left(K_{4}, K_{3}, K_{2}, K_{1}\right)}$ using $\left(P \boxplus R_{1}\right)+\left(P^{\prime} \boxplus R_{1}\right)$, and guesses to determine 44-bit of $\left(K_{4}, K_{3}, K_{2}, K_{1}\right)$ using the proposed local search algorithm.
3. After that, the attacker searches the remaining 48 -bit of the key using $2^{48} \times 3$ trial encryptions.

The overall complexity of the above steps is

$$
\underbrace{2^{36} \times 1.65}+\underbrace{2^{44} \times 1.65}+\underbrace{2^{48} \times 3} \approx 2^{49.63}
$$

determine 36 -bit of $\left(K_{5}, \ldots, K_{8}\right)$ determine 44 -bit of $\left(K_{1}, \ldots, K_{4}\right)$ determine the rest
where negligible memory is required by each steps.

5 A Probabilistic Realization of Conditions (A) and (B)

The attacks in the last section solely depends on the occurrences of conditions (A) and (B), to reach ΔR s in which sounds unpractical at the first glance as the initialization of HB-2 makes the internal states unpredictable. In this section, we show a probabilistic approach to realize these conditions when the internal states of two HB-2 instances are respectively random, there is a certain chance that the attacker could get the desired differentials in the internal states. To this end, we study how to randomize the internal states of HB-2 at first, and, how to determine whether the desired ΔR s happen.

5.1 Randomize the Internal States

There are two ways for the adversary to affect the internal states of HB-2:

- Providing the key is fixed, it is suffice, from Eq. (1)-(12), that $\left(I V_{1}, \ldots, I V_{4}\right) \mapsto\left(R_{1}, \ldots, R_{4}\right)$ is an injective mapping and so is $\left(I V_{1}, \ldots, I V_{4}\right) \mapsto\left(R_{5}, \ldots, R_{8}\right)$. Therefore, the attacker could easily generate 2^{64} (out of 2^{128}) different internal states by choosing different IVs and launching the initialization.
- For a fixed key and a particular IV, the attacker could choose plaintext P_{1} to feed HB-2 at first. If a state transition graph is drawn, we can see that the starting state, i.e., $R^{(1)}$, transits to 2^{16} neighboring states while each $P_{1} \in \mathbb{F}_{2}^{16}$ is encrypted. Next, if another encryption is performed, e.g., encrypting P_{2}, each of these "neighboring states" again transits to another 2^{16} states providing P_{2} takes every value in \mathbb{F}_{2}^{16}. By continuing this process, we would have all 2^{128} states covered in this graph. Therefore, to produce a set of random internal states, i.e., $\left\{R^{(1)}, R^{(2)}, \ldots\right\}$, we could, as shown in Fig. 3, feed the encryptions with a plaintext chain where P_{i} is selected uniformly at random in \mathbb{F}_{2}^{16} for $i=1,2, \ldots$. Similarly, a ciphertext chain could be fed to the decryption oracle to generate a set of random internal states as well. Note that feeding HB-2 encryption with a chain of N random inputs is equivalent to perform an N-step 2^{16}-dimensional random walk in its state transition graph. Therefore, $\left|\left\{R^{(1)}, R^{(2)}, \ldots\right\}\right| \approx N$ if $N \ll 2^{128}[14]$.

Fig. 3. Feeding HB-2 Encryption with a Plaintext Chain

Therefore, the algorithm below provides, to the later steps, the randomized internal states of two running HB-2 instances through an effort-saving way - one instance initializes a random IV and encrypts one random plaintext, while the other one, besides initializes a random IV, encrypts N random plaintexts consecutively. Since $\left\{R^{(1)}, R^{(2)}, \ldots, R^{(N)}\right\}$ is a set of random variables as analyzed, $\left\{R^{(1)}+R^{\prime(1)}, R^{(2)}+R^{\prime(1)}, \ldots, R^{(N)}+R^{\prime(1)}\right\}$ must also be a set of random variables.

```
Let \(R^{(i)} \Leftarrow E\left(P_{i}, K\right)\) be the internal state \(R^{(i)}\) after encrypting \(P_{1}, \ldots, P_{i}\)
Randomly choose \(I V^{\prime}\) and \(P_{1}^{\prime}, R^{\prime(1)} \Leftarrow E\left(P_{1}^{\prime}, K\right)\)
Randomly choose \(I V\)
for \(i\) from 1 to \(N\) do
    Randomly choose \(P_{i}, R^{(i)} \Leftarrow E\left(P_{i}, K\right)\)
    if \(R^{\prime(1)}+R^{(i)}=\Delta R\) then
        return " \(\Delta R\) happens"
    end if
end for
```

Note that, currently, the given algorithm is only a skeleton for our attack, which is discussed in more detail in the next subsections and the full-fledged version is given at last. Nevertheless, we can already sense an interesting property from this skeleton algorithm.

Property 9. In the algorithm above, a certain ΔR happens with 0.5 probability when $N=2^{64}$.
Proof. This property holds due to the birthday paradox.

5.2 Determine while Guessing

To inform the attacker during the attempting, as long as condition (A) (condition (B) resp.) happens, we use one unusual differential characteristic in the encryption (decryption resp.), as first pointed out by HB-2's designers, such that the differentials in the internal states, secret keys and the inputs can be maintained and entered into the next round, i.e., for a positive integer i,

$$
\left(\Delta P_{i}, \Delta K, \Delta R^{(i)}\right)=\left(\Delta P_{i+1}, \Delta K, \Delta R^{(i+1)}\right)
$$

Therefore, the following theorem holds.
Theorem 5. Let $\Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}^{\left(i^{\prime}\right)}\left(\Delta_{H,\left(K_{4}, K_{3}, K_{2}, K_{1}\right)}^{\left(i^{\prime}\right)}\right.$ resp.) be the differential sequence produced by the two encryption instances (two decryption instances resp.) with internal states $R^{(1)}$ and $R^{\prime\left(i^{\prime}\right)}$ and let $\Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}^{\left(i^{\prime}+1\right)}\left(\Delta_{H,\left(K_{4}, K_{3}, K_{2}, K_{1}\right)}^{\left(i^{\prime}+1\right)}\right.$ resp.) be the differential sequence produced by the two encryption instances (two decryption instances resp.) with internal states $R^{(2)}$ and $R^{\left(i^{\prime}+1\right)}\left(\right.$ call $\Delta_{H, K}^{\left(i^{\prime}\right)}$ and $\Delta_{H, K}^{\left(i^{\prime}+1\right)}$ neighboring template sequences). Therefore,

- If condition (A) happens during encryption, the adversary observes two identical neighboring template sequences, i.e.,

$$
\Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}^{\left(i^{\prime}\right)}=\Delta_{H,\left(K_{5}, K_{6}, K_{7}, K_{8}\right)}^{\left(i^{\prime}+1\right)}
$$

otherwise, the above equation holds with negligible probability.

- If condition (B) happens during decryption, the adversary observes two identical neighboring template sequences, i.e.,

$$
\Delta_{H,\left(K_{4}, K_{3}, K_{2}, K_{1}\right)}^{\left(i^{\prime}\right)}=\Delta_{H,\left(K_{4}, K_{3}, K_{2}, K_{1}\right)}^{\left(i^{\prime}+1\right)}
$$

otherwise, the above equation hold with negligible probability.

Proof: It follows from Definition 1 and Property 1.
Therefore, the above theorem can serve as an algorithm to determine the occurrences of condition (A) or condition (B), i.e., it returns either (Success, $\Delta_{H, K}^{\left(i^{\prime}\right)}, R_{1}^{(1)}, R_{1}^{(2)}$) or (False, $\left.N U L L, N U L L, N U L L\right)$ to the key recovery phase. Unfortunately, in this algorithm, the correct template sequences can only be extracted with the correct $R_{1}^{(1)}$ and $R_{1}^{(2)}$ due to Theorem 1 and Theorem 3. For instance, using the encryption, the two neighboring sequences are

$$
\begin{align*}
\Delta^{\left(i^{\prime}\right)} & =\left(z_{0}^{\left(i^{\prime}\right)}, z_{1}^{\left(i^{\prime}\right)}, \ldots, z_{65535}^{\left(i^{\prime}\right)}\right) \tag{32}\\
\Delta^{\left(i^{\prime}+1\right)} & =\left(z_{0}^{\left(i^{\prime}+1\right)}, z_{1}^{\left(i^{\prime}+1\right)}, \ldots, z_{65535}^{\left(i^{\prime}+1\right)}\right) \tag{33}
\end{align*}
$$

where

$$
\begin{aligned}
z_{j}^{\left(i^{\prime}\right)} & =\left|\left\{P_{1} \in \mathbb{F}_{2}^{16}, P_{i^{\prime}}^{\prime}=P_{1}+H \mid\left(C_{1} \boxminus R_{1}^{(1)}\right)+\left(C_{i^{\prime}}^{\prime} \boxminus R_{1}^{\prime\left(i^{\prime}\right)}\right)=j\right\}\right| \quad \text { and } \\
z_{j}^{\left(i^{\prime}+1\right)} & =\left|\left\{P_{2} \in \mathbb{F}_{2}^{16}, P_{i^{\prime}+1}^{\prime}=P_{2}+H \mid\left(C_{2} \boxminus R_{1}^{(2)}\right)+\left(C_{i^{\prime}+1}^{\prime} \boxminus R_{1}^{\left(i^{\prime}+1\right)}\right)=j\right\}\right|
\end{aligned}
$$

Henceforth, it is true that by guessing $R_{1}^{(1)}$ and $R_{1}^{(2)}$, the theorem/algorihtm above would cost 2^{32} encryptions/decryptions per execution.

To improve its efficiency, we make use of the following fact: as the modulo addition is only firstorder correlation-immune, the two identical neighboring sequences obfuscated by modulo additions of different R_{1} s may have an apparent correlation, while two distinct neighboring sequences may not. This intuition is further verified by our extensive experiments. In parallel with Eq. (32) and Eq. (33), let us define the raw neighboring sequences as:

$$
\begin{aligned}
\underline{\Delta^{\left(i^{\prime}\right)}} & =\left(\underline{z_{0}^{\left(i^{\prime}\right)}}, \underline{z_{1}^{\left(i^{\prime}\right)}}, \ldots, \underline{z_{65535}^{\left(i^{\prime}\right)}}\right) \\
\underline{\Delta^{\left(i^{\prime}+1\right)}} & \left.=\underline{\left(z_{0}^{\left(i^{\prime}+1\right)}\right.}, \underline{z_{1}^{\left(i^{\prime}+1\right)}}, \ldots, \underline{z_{65535}^{\left(i^{\prime}+1\right)}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\underline{z_{j}^{\left(i^{\prime}\right)}} & =\left|\left\{P_{1} \in \mathbb{F}_{2}^{16}, P_{i^{\prime}}^{\prime}=P_{1}+H \mid C_{1}+C_{i^{\prime}}^{\prime}=j\right\}\right| \quad \text { and } \\
\underline{z_{j}^{\left(i^{\prime}+1\right)}} & =\left|\left\{P_{2} \in \mathbb{F}_{2}^{16}, P_{i^{\prime}+1}^{\prime}=P_{2}+H \mid C_{2}+C_{i^{\prime}+1}^{\prime}=j\right\}\right|
\end{aligned}
$$

We found that, for the identical neighboring sequences, the corresponding two raw neighboring sequences always have more than 30000 (out of 65536) identical entries, i.e.,

$$
\operatorname{Corr}\left(\underline{\Delta^{\left(i^{\prime}\right)}}, \underline{\Delta^{\left(i^{\prime}+1\right)}}\right)=\left|\left\{\underline{z_{j}^{\left(i^{\prime}\right)}}=\underline{z_{j}^{\left(i^{\prime}+1\right)}}, j=0,1, \ldots, 65535\right\}\right|>30000, \text { iff } \Delta^{\left(i^{\prime}\right)}=\Delta^{\left(i^{\prime}+1\right)},
$$

where $\operatorname{Corr}(.,$.$) is the non-normalized correlation.$
On the contrary, for the distinct neighboring sequences, the corresponding two raw neighboring sequences always have less than 19000 (out of 65536) identical entries, i.e.,

$$
\operatorname{Corr}\left(\underline{\Delta^{\left(i^{\prime}\right)}}, \underline{\Delta^{\left(i^{\prime}+1\right)}}\right)=\left|\left\{\underline{z_{j}^{\left(i^{\prime}\right)}}=\underline{z_{j}^{\left(i^{\prime}+1\right)}}, j=0,1, \ldots, 65535\right\}\right|<19000, \text { iff } \Delta^{\left(i^{\prime}\right)} \neq \Delta^{\left(i^{\prime}+1\right)}
$$

By treating the correlation of the raw neighboring sequences as a criterion, Theorem 5 is now able to return whether $\Delta^{\left(i^{\prime}\right)}$ equals $\Delta^{\left(i^{\prime}+1\right)}$ with 2^{16} time complexity. Once the identical neighboring sequences are identified, the adversary is able to guess to recover $R_{1}^{(1)}$ and $R_{1}^{(2)}$ with 2^{32} effort in time.

5.3 Preparation Phase and Its Time Complexity

We recap the whole process in the preparation phase for the encryption as shown below, which is an extension of the skeleton algorithm we shown before. Note that the preparation using the decryption is similar and omitted here.

```
randomly choose \(I V^{\prime}\) and \(P_{1}^{\prime}, R^{\prime(1)} \Leftarrow E\left(P_{1}^{\prime}, K\right)\)
randomly choose \(I V\)
randomly choose a constant \(P_{2}^{\prime}\)
for \(i\) from 1 to \(N=2^{64}\) do
    randomly choose \(P_{i}, R^{(i)} \Leftarrow E\left(P_{i}, K\right)\)
    generate \(\Delta^{(i)}\) using \(R^{(1)}\) and \(R^{(i)}\)
    \(R^{\prime(2)} \Leftarrow E\left(P_{2}^{\prime}, K\right)\)
    \(R^{(i+1)} \Leftarrow E\left(P_{i+1}, K\right)\) where \(P_{i+1}=P_{2}^{\prime}+H\)
    generate \(\Delta^{(i+1)}\) using \(R^{\prime(2)}\) and \(R^{(i+1)}\)
    if \(\operatorname{Corr}\left(\Delta^{(i)}, \Delta^{(i+1)}\right)>30000\) then
        guess to determine \(R_{1}^{(1)}\) and \(R_{1}^{(2)}\)
        recover \(\Delta_{H, K}^{\left(i^{\prime}\right)}\) from the raw neighboring sequences
        return (Success, \(\Delta_{H, K}^{\left(i^{\prime}\right)}, R_{1}^{(1)}, R_{1}^{(2)}\) ), keep current states and enter the key recovery phase
    end if
    decrypt using \(C_{2}^{\prime}\) and \(C_{i+1}\) to roll back HB-2's states to \(R^{(1)}\) and \(R^{(i)}\)
end for
return (False, \(N U L L, N U L L, N U L L)\)
```

Using the encryption (decryption resp.) only, the attacker has 0.5 probability to reach condition (A) (condition (B) resp.) with $2^{64} \times 2^{16}=2^{80}$ time complexity. After that, he is able to guess to determine $R_{1}^{(1)}$ and $R_{1}^{(2)}$ with additional 2^{32} effort in time. In all, the time complexity of the preparation phase is

$$
\underbrace{2^{64} \times 2^{16}}+\underbrace{2^{32}} \quad \underbrace{2^{16}} \quad \approx 2^{80}
$$

test whether the condition happens guess to determine $R_{1} \mathrm{~S}$ recover the template seuqnece
It is worthy to mention that to succeed with probability 1 , the preparation phase requires $2^{128+16}=$ 2^{144} effort in time, which is slower than the exhaustive search.

6 Concluding Remarks

In this paper, we present a novel cryptanalytic technique called differential sequence analysis (DSA), which is especially effective if the differential sequence reflecting parts of a cipher associated with parts of the key can be obtained. In addition, we demonstrate the application of this technique, that constitutes the key recovery of the lightweight block cipher Hummingbird- 2 with $2^{49.63}$ time complexity, given particular conditions hold in its internal states, secret keys and the inputs. Furthermore, we investigate how to reach these conditions in our preparation phase with 0.5 chance and 2^{80} effort in time. To the best of our knowledge, this is the first cryptanalytic result of the full Hummingbird-2.

The attack presented against Hummingbird-2 is a special case of the general DSA, to build the theoretic framework of which is part of our future work. In addition, it will be evaluated in the recent future: (1) whether the generalized DSA provides even better results against Hummingbird-2 and other potentially vulnerable ciphers, especially the ones with small block size and with internal states, e.g., stateful block ciphers [23]; (2) the possibility that the generalized DSA can work with other cryptanalysis technologies, e.g., meet-in-the-middle.

References

1. J.P. Aumasson, M. Naya-Plasencia and M.J.O. Saarinen, Practical attack on 8 rounds of the lightweight block cipher KLEIN, to appear in Proceedings of INDOCRYPT'11, pp.1-13, 2011.
2. M. Abdelraheem, G. Leander and E. Zenner, Differential cryptanalysis of round-reduced PRINTcipher: computing roots of permutations, Fast Software Encryption, FSE'11, LNCS 6733, pp. 1-17, 2011.
3. M. Ågren, Some instant-and practical-time related-key attacks on KTANTAN32/48/64, to appear in Proceedings of Selected Areas in Cryptography, SAC'11, pp. 1-17, 2011.
4. E. Biham, A. Biryukov and A. Shamir, Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials, Journal Of Cryptology, vol. 18, no. 4, pp. 291-311, 1999.
5. C. Blondeau and B. Gérard, Multiple differential cryptanalysis: theory and practice, Fast Software Encryption, FSE'11, LNCS 6733, pp. 35-54, 2011.
6. A. Bogdanov and C. Rechberger, A 3-subset meet-in-the-middle attack: cryptanalysis of the lightweight block cipher KTANTAN, Selected Areas in Cryptography, SAC'10, LNCS 6544, pp. 229-240, 2010.
7. A. Biryukov and A. Shamir, Structural cryptanalysis of SASAS, Journal of cryptology, vol. 23, no. 4, pp. 505-518, 2010.
8. A. Biryukov, I. Kizhvatov and B. Zhang, Cryptanalysis of the Atmel cipher in SecureMemory, CryptoMemory and CryptoRF, Applied Cryptography and Network Security, ACNS'11, LNCS 6715, pp. 91-109, 2011.
9. Q. Chai, Design and analysis of security schemes for low-cost RFID systems, PhD Thesis, University of Waterloo, 2012.
10. J. Cho, Linear cryptanalysis of reduced-round PRESENT, The Cryptographers' Track at the RSA Conference, CT-RSA'10, LNCS 5985, pp. 302-317, 2010.
11. Q. Chai, X. Fan and G.Gong, An ultra-efficient key recovery attack on the lightweight stream cipher A2U2, Cryptology ePrint Archive: Report 2011/247, pp. 1-4, 2011.
12. B. Collard and F.X. Standaert, A statistical saturation attack against the block cipher PRESENT, The Cryptographers' Track at the RSA Conference, CT-RSA'09, LNCS 5473, pp. 195-210, 2009.
13. C. De Canniere, O. Dunkelman and M. Knežević, KATAN and KTANTAN - a family of small and efficient hardware-oriented block ciphers, Cryptographic Hardware and Embedded Systems, CHES'09, LNCS 5747, pp. 272-288, 2009.
14. A. Dvoretzky and P. Erdos, Some problems on random walk in space, In Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability, vol. 353, pp. 353-367, 1951.
15. D. Engels, X. Fan, G. Gong, H. Hu and E. Smith, Hummingbird: ultra-lightweight cryptography for resource-constrained devices, Financial Cryptography and Data Security, FC'10, pp. 3-18, 2010.
16. D. Engels, M.J.O. Saarinen and E. Smith, The Hummingbird-2 lightweight authenticated encryption algorithm, to appear in Proceedings of Workshop on RFID Security, RFIDSec'11, pp. 1-14, 2011.
17. X. Fan and G. Gong, On the security of Hummingbird-2 against side-channel Cube attacks, Western European Workshop on Research in Cryptology, WEWoRC'11, pp. 100-104, 2011.
18. M. Feldhofer, J. Wolkerstorfer and V. Rijmen, AES implementation on a grain of sand, Information Security, IEE Proceedings, vol. 152, no. 1, pp. 13-20, 2005.
19. Z. Gong, S. Nikova and Y.W. Law, Klein: a new family of lightweight block ciphers, to appear in Proceedings of Workshop on RFID Security, RFIDSec'11, pp.1-18, 2011.
20. J. Guo, T. Peyrin, A. Poschmann and M.Robshaw, The LED block cipher, Cryptographic Hardware and Embedded Systems, CHES'11, LNCS 6917, pp. 326-341, 2011.
21. F.D. Garcia, P. van Rossum, R. Verdult and R.W. Schreur, Dismantling SecureMemory, CryptoMemory and CryptoRF. In Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS'10, pp. 250-259, 2010.
22. K. Hwang, W. Lee, S. Lee, S. Lee and J. Lim, Saturation attacks on reduced round Skipjack, Fast Software Encryption, FSE'02, pp. 15-23, 2002.
23. A. Kiayias and M. Yung, cryptographic hardness based on the decoding of Reed-Solomon codes, Automata, Languages and Programming, pp. 783-783, 2002.
24. L. Knudsen, Truncated and higher order differentials, Fast Software Encryption. FSE'95, LNCS 1008, pp. 196-211, 1995.
25. L. Knudsen, G. Leander, A. Poschmann and M. Robshaw, PRINTcipher: a block cipher for IC-printing, Cryptographic Hardware and Embedded Systems, CHES'10, LNCS 6225, pp.16-32, 2011.
26. X. Lai, Higher order derivatives and differential cryptanalysis, Kluwer International Series in Engineering and Computer Science, pp. 227-227, 1994.
27. S. Lucks, The saturation attack: a bait for Twofish, Fast Software Encryption, FSE'02, pp. 187-205, 2002.
28. G. Leander, M.A. Abdelraheem, H. AlKhzaimi and E. Zenner, A cryptanalysis of PRINTcipher: the invariant subspace attack. Advances in Cryptology, CRYPTO'11, LNCS 6841, pp. 206-221, 2011.
29. J. Lu, J. Kim, N. Keller and O. Dunkelman, Improving the efficiency of impossible differential cryptanalysis of reduced Camellia and MISTY1, The Cryptographers' Track at the RSA Conference, CT-RSA'08, LNCS 4964, pp. 370-386, 2008.
30. G. Leander and A. Poschmann On the classification of 4 bit s-boxes, Arithmetic of Finite Fields, LNCS 4547, pp. 159-176, 2007.
31. K. Nohl, D. Evans, S. Starbug and H. Plötz, Reverse-engineering a cryptographic RFID tag, In Proceedings of the 17th conference on Security symposium, USENIX'08, pp. 185-193, 2008.
32. N. Courtois, G. Bard and D. Wagner, Algebraic and slide attacks on KeeLoq, Fast Software Encryption, FSE'08, LNCS 5086, pp. 97-115, 2008.
33. A. Poschmann, S. Ling and H. Wang, 256 bit standardized crypto for 650 GE-GOST revisited, Cryptographic Hardware and Embedded Systems, CHES'10, LNCS 6225, pp. 219-233, 2011.
34. C. Rolfes, A. Poschmann, G. Leander and C. Paar, Ultra-lightweight implementations for smart devicessecurity for 1000 gate equivalents. In Proceedings of the 8th IFIP WG 8.8/11.2 International Conference on Smart Card Research and Advanced Applications, CARDIS'08, LNCS 5189, pp. 89-103, 2008.
35. M.J.O. Saarinen, Cryptanalysis of Hummingbird-1, Fast Software Encryption, FSE'11, LNCS 6733, pp. 328-341, 2011.
36. A. Shamir and E. Biham, Differential cryptanalysis of DES-like cryptosystems, Advances in Cryptology, CRYPTO'90, LNCS 537, pp. 2-21, 1990.
37. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita and T. Shirai, Piccolo: an ultra-lightweight blockcipher, Cryptographic Hardware and Embedded Systems, CHES'11, LNCS 6917, pp. 342-357, 2011.

A Side-channel Injection Attack to Recover $\left(\boldsymbol{R}_{5}, \boldsymbol{R}_{\mathbf{6}}, \boldsymbol{R}_{\mathbf{7}}, \boldsymbol{R}_{\mathbf{8}}\right)$

As can be seen from Eq. (6)-(9), $R_{5}, R_{6}, R_{7}, R_{8}$ do not participate in the randomization process but simply record (by Xoring) the historical statuses of $R_{1}, R_{2}, R_{3}, R_{4}$ respectively. Therefore, following steps allow a side-channel attacker, who is able to inject " 1 " to a certain bit of the register storing R_{j}, $5 \leq j \leq 8$, to recover $\left(R_{5}, R_{6}, R_{7}, R_{8}\right)$:

1. The attacker encrypts with a known IV and the target key to get a plaintext/cipher pair (P, C), where $P \in \mathbb{F}_{2}^{16}, C \in \mathbb{F}_{2}^{16}$;
2. He resets HB-2 and initializes HB-2 with the same IV and key. At any time during this initialization, he injects " 1 " to the q th bit, $0 \leq q \leq 15$, of the register which stores R_{5}. He then encrypts P and gets C^{\prime}. If $C=C^{\prime}$ (which implies the injection does not change the internal states of HB-2), the attacker in fact learns that the q th bit of R_{5} is 1 ; otherwise it is 0 . He repeats this step for every q in $\{0,1, \ldots, 15\}$ to recover R_{5};
3. Step (2) can be repeated to recover R_{6}, R_{7} and R_{8};

The cost of this injection attack to recover $\left(R_{5}, R_{6}, R_{7}, R_{8}\right)$ is 64 injections and 64 invocations of HB-2 encryption. In addition, since the attacker has a large time window to perform the injection to the q th bit of R_{j} (any time during the r th iteration of the initialization), this side-channel attack seems quite practical.

B Visualization of Differential Sequences

Fig. 4 to Fig. 6 are the ones obtained from the last invocation of $W D 16$ in the encryption with $I V=(0,0,0,0)$ and different keys randomly selected. Fig. 7 to Fig. 9 are the ones obtained from the last invocation of $W D 16^{-1}$ in the decryption with $I V=(0,0,0,0)$ and different keys randomly selected. All of the sequences looks substantially different from each other, which exhibits their correlations to the underlying keys in an intuitive way.

Fig. 4. DS from Enc. using $\left(K_{5}, K_{6}, K_{7}, K_{8}\right)=(0 x f 1 e 3,0 x 524 a, 0 x b 28 \mathrm{a}, 0 \mathrm{xc} 987)$

Fig. 5. DS from Enc. using $\left(K_{5}, K_{6}, K_{7}, K_{8}\right)=(0 x 7 c 9 f, 0 x 0784,0 \mathrm{x} 1 \mathrm{c} 96,0 \mathrm{xbcb} 4)$

Fig. 6. DS from Enc. using $\left(K_{5}, K_{6}, K_{7}, K_{8}\right)=(0 x 6 \mathrm{~b} 03,0 \mathrm{xcf0c}, 0 \mathrm{x} 1 \mathrm{ba} 2,0 \mathrm{xdc} 27)$

Fig. 7. DS from Dec. using $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)=(0 x 5 d 67,0 x d 0 e f, 0 x 8 c e c, 0 x a 33 a)$

Fig. 8. DS from Dec. using $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)=(0 x 6601,0 x 0 \mathrm{bd} 8,0 \mathrm{xa} 6 \mathrm{fa}, 0 \mathrm{xcede})$

Fig. 9. DS from Dec. using $\left(K_{1}, K_{2}, K_{3}, K_{4}\right)=(0 x 28 d c, 0 x b d e 1,0 x 6 e 3 d, 0 x a 56 \mathrm{~d})$

C The Set Φ_{0}

						0x60	0x70	0x80	0x90	$0 \times a 0$	$0 \times b 0$	$0 \times c 0$	$0 \times d 0$	$\overline{0 x e 0}$		0×105	$\overline{0 \times 115}$	0×125	0×135	
0x155	0	0×175	0x185	0x195	$0 \times 1 a 5$	0×165	$0 \times 1 c 5$	$0 \times 1 d 5$	$0 \times 1 e 5$	$0 \times 1 f 5$	0x20a	$0 \times 21 a$	0x22a	$0 \times 23 a$	0x24a	0x25a	$0 \times 26 a$	$0 \times 27 a$	$0 \times 28 a$	a
$0 \times 2 a a$	$0 \times$	$0 \times 2 c a$	$0 \times 2 d a$	0	$0 \times 2 f a$	$0 \times$	$0 \times$	f	0x33f		0x35 f	6	$0 \times 37 f$	0x 38 f	0x39f	0x3af	$0 \times 3 b f$	$0 \times 3 c f$	df	
0×3 ff	$0 \times$		$0 \times$	0x471						$0 \times$	0	$0 \times 4 f$	0x504	0	24	4				
0x544	0x554	0x564	0x574	0x584	0x594	0x5a4	0×564	$0 \times$	$0 \times 5 d 4$	$0 \times$	$0 \times 5 f 4$	$0 \times$	0x66	$7 b$	0x68b					
0x69b	$0 \times 6 a b$	$0 \times 6 \mathrm{bb}$	$0 \times 6 \mathrm{cb}$	$0 \times 6 d b$	$0 \times 6 e b$	$0 \times 6 \mathrm{fb}$	0x70e	0x71e	0x72e	0x73e	0x74e	0x75e	0x76	$0 \times$	0×78	0x79	0x7	0x7be	0x7ce	0×7 de
0x7ee	$0 \times 7 f e$	0x802	0x812	0x822	0x832	0x842	0x852	0x862	0x872	0x882	0x892	$0 \times 8 a 2$	0x8b2	$0 \times 8 c 2$	$0 \times 8 d 2$	0x8e2	0 x 8 f 2	0x907	0x917	0x927
0x937	0x947	0x957	0x967	0x977	0x987	0x997	$0 \times 9 a 7$	$0 \times 9 b 7$	0x9c7	$0 \times 9 d 7$	0x9e7	$0 \times 9 f 7$	0xa08	0×18	$0 \times a 28$	0xa38	0xa48	0xa58	0xa68	0×178
$0 \times \mathrm{a} 88$	0xa98	0xaa8	0xab8	$0 \times a c 8$	$0 \mathrm{xad8}$	0xae8	$0 \times a f 8$	0xb0d	$0 \times b 1 d$	0xb2d	$0 \times 63 d$	$0 \times 64 d$	0xb5d	$0 \times 66 d$	$0 \times b 7 d$	$0 \times 68 d$	0xb9d	0xbad	$0 \times b b d$	$0 \times b c d$
$0 \times b d d$	Oxbed	$0 \times b f d$	0xc03	$0 \times \mathrm{c} 13$	$0 \times c 23$	0xc33	$0 \times c 43$	0xc53	0xc63	0xc73	$0 \times c 83$	0xc93	$0 \times c a 3$	$0 \times c b 3$	0xcc3	$0 \times c d 3$	$0 \times c e 3$	0xcf 3	$0 \times d 06$	$0 \times d 16$
$0 \times d 2$	$0 \mathrm{x} d 36$	0xd46	$0 \times d 56$	0xd66	$0 \times d 76$	0xd86	$0 \times d 96$	$0 \mathrm{x} d a 6$	$0 \times d b 6$	$0 \times d c 6$	$0 \mathrm{x} d d 6$	0xde6	$0 x d f 6$	0xe09	Oxe19	0xe29	0xe39	0xe49	0xe59	69
Oxe	0xe89	0xe99	0xea 9	0xeb9	$0 \times$	Oxed9	0xee9	0xef9	$0 \times f 0 c$	$0 \times f 1 c$	$0 \times f 2 c$	$0 \times f 3 c$	$0 \times f 4 c$	$0 \times f 5 c$	$0 \times f 6 c$	$0 \times f 7 c$	$0 \times f 8 c$	$0 \times f 9 c$	$0 \times f a c$	$0 \times f b c$
Ox	$0 \times f d c$	0x f	$0 \times f f c$	0x1001	x10	0x1021	0x1031	0x1041	0x1051	0x1061	0x1071	0×1081	0x1091	$0 \times 10 a 1$	$0 \times 10 \mathrm{~b} 1$	$0 \times 10 c 1$	0x10d1	0x10e1	$0 \times 10 f 1$	$0 \times$
0x1	0x1124	0x1134	0x1144	1154	0x1164	$\times 11$	0x1184	0x1194	0x11a4	$0 \times 11 b 4$	$0 \times$	$0 \times 11 d 4$	$0 \times 11 e 4$	0x11	$0 \times 120 b$	$0 \times 121 b$	$0 \times 122 b$	0x123b	$0 \times 124 b$	0x125b
$0 \times$	0x127	0x12	0x1	0	b	0x	$0 \times 12 d b$	0x	0x	$0 \times 130 e$	0x131e	$0 \times$	$0 \times$	0×13	0x135e	e	0x137e	0x138e	0x139e	Ox13ae
$0 \times$	0	0	0	$0 \times$	0x1400	$0 \times$	0×1420	0x1430	0x1440	0×1450	0x1460	0	0x1480	0x1490	0x14a0	0x14b0	0x14c0	0	0x14e 0	
$0 \times$	0x15	0x1525	$0 \times$	0	0x1555	0x1	0x1575	0x1585	0			0x			$0 \times 15 f 5$					
0x165a	$0 \times 166 a$	0×167	0x168c	0x169a	0×16	$0 \times 16 b a$	0x16	$0 \times 16 d a$	0	0x	$0 \times 170 f$	0x	$0 \times 172 f$	$0 \times$	0x174	f	$0 \times 176 f$	0x177f	f	
$0 \times 17 a f$	$0 \times 17 b f$	$0 \times 17 c f$	$0 \times 17 d f$	$0 \times 17 e f$	$0 \times 17 f f$	0x1803	0×1813	0×1823	0x1833	0×1843	0×1853	0x1863	0x1873	0x188	0x1893	$0 \times 18 a 3$	0x	0×1	$0 \times 18 d 3$	$0 \times 18 e 3$
$0 \times 18 f 3$	0x1906	0x1916	0x1926	0x1936	0x1946	0x1956	0x1966	0x1976	0x1986	0x1996	$0 \times 19 a 6$	0×1	0x	0x1	0x19e6	0x19f6	$0 \times$	0x	Ox	0x1a39
0x1a49	$0 \times 1 a 59$	$0 \times 1 a$	0x1	0x1	$0 \times$	0x1	0x1	0×1	$0 \times 1 a d 9$	$0 \times 1 a e 9$	0x1af9	0x1b	0x	0x1	$0 \times 1 b 3 c$	$0 \times 1 b 4 c$	0x	0×1	$0 \times 1 b 7 c$	$0 \times$
$0 \times 1 b 9 c$	$0 \times 1 b a c$	$0 \times 1 b b c$	$0 \times 1 b c c$	$0 \times 1 b d c$	$0 \times 1 b e c$	$0 \times 1 b f c$	0x1c02	$0 \times 1 \mathrm{c} 12$	$0 \times 1 c 22$	0x1c32	0x1c42	$0 \times 1 c 52$	0x1c62	0x1c72	$0 \times 1 \mathrm{c} 82$	$0 \times 1 \mathrm{c} 92$	$0 \times 1 c a$	$0 \times 1 \mathrm{~b} 2$	$0 \times 1 c c 2$	$0 \times 1 c d 2$
$0 \times 1 \mathrm{ce} 2$	$0 \times 1 c f 2$	$0 \times 1 d 07$	$0 \times 1 d 17$	$0 \times 1 d 27$	0x1d37	$0 \times 1 d 47$	$0 \times 1 d 57$	$0 \times 1 d 67$	$0 \times 1 d 77$	$0 \times 1 d 87$	$0 \times 1 d 97$	$0 \times 1 d a 7$	$0 \times 1 d b 7$	$0 \times 1 d c 7$	$0 \times 1 d d 7$	0x1de7	$0 \times 1 d f 7$	0x1e08	$0 \times$	0x1e28
$0 \times 1 e 38$	$0 \times 1 e 48$	0x1e58	0x1e68	0x1e78	0x1e88	0x1e98	0x1ea8	$0 \times 1 e b 8$	0x1ec8	$0 \times 1 e d 8$	$0 \times 1 e e 8$	0x1ef8	0x1fod	$0 \times 1 f 1 d$	$0 \times 1 f 2 d$	$0 \times 1 f 3 d$	$0 \times 1 f 4 d$	$0 \times 1 f 5 d$	$0 \times 1 f 6 d$	0x1f7d
$0 \times 1 f 8 d$	$0 \times 1 f 9 d$	0×1 fad	$0 \times 1 f b d$	$0 \times 1 f c d$	$0 \times 1 f d d$	0×1 fed	$0 \times 1 f f d$	0x2002	0×2012	0x2022	0×2032	0x2042	0x2052	0x2062	0×2072	0x2082	0x2092	0x20a2	0x20b2	$0 \times 20 c 2$
$0 \times 20 d 2$	$0 \times 20 e 2$	$0 \times 20 f 2$	0×2107	0×2117	0×2127	0×2137	0×2147	0×2157	0x2167	0x2177	0×2187	0x2197	$0 \times 21 a 7$	0×2167	$0 \times 21 c 7$	$0 \times 21 d 7$	$0 \times 21 e 7$	$0 \times 21 f 7$	$\times 2208$	8
0x2228	0x2238	0x2248	0x2258	0x2268	0×2278	0x2288	0×2298	$0 \times 22 a 8$	0×2268	$0 \times 22 c 8$	$0 \times 22 d 8$	0x22e8	$0 \times 22 f 8$	0x230d	0x231d	0x232d	0x233d	$0 \times 234 d$	- 2351	d
0×237	$0 \times 238 d$	0×239 d	0x23a	$0 \times 23 b d$	$0 \times 23 c d$	$0 \times 23 d d$	0x23ed	0×23 fd	0×2403	0x2413	0×2423	0x2433	0×2443	0x2453	0x2463	0x2473	0x2483	0x2493	$0 \times 24 a 3$	3
0×2	$0 \times 24 d 3$	$0 \times 24 e 3$	$0 \times 24 f 3$	0x2506	0x2516	0x2526	0x2536	0x2546	0x2556	0x2566	0x2576	0×2586	0x2596	$0 \times 25 a 6$	0×2566	$0 \times 25 c 6$	$0 \times 25 d 6$	$0 \times 25 e 6$	$0 \times 25 f 6$	9
$0 \times$	0×2629	0x2639	0x2649	0x2659	0x2669	0×2679	0x2689	0x2699	$0 \times 26 a 9$	$0 \times 26 b 9$	$0 \times 26 c 9$	$0 \times 26 d 9$	$0 \times 26 e 9$	$0 \times 26 f 9$	$0 \times 270 c$	$0 \times 271 c$	0x272	0x273c	$0 \times 274 c$	$0 \times 275 c$
$0 \times$	0x27	$0 \times 278 c$	9 c	0×27	$0 \times$	0	$0 \times 27 d c$	0x	$0 \times$	0x2800	0x2810	0x2820	0x2830	0x2840	0x2850	0x2860	0x2870	0x2880	890	0
0x2	0x2	0x28d0	$0 \times 28 e 0$	0x28f0	0x2905	0×2915	5	0×2935	0x2945	5	5	0x	85	$0 \times$	$0 \times$	0x29b5		0	$0 \times 29 e 5$	
0×2	0	0	$0 \times 2 a 3 a$	0	$0 \times$	$0 \times 2 a 6 a$	$0 \times 2 a 7 a$	$0 \times 2 a 8 a$	$0 \times 2 a 9 a$	$0 \times 2 a a a$	$0 \times 2 a b a$	0	$0 \times 2 a d a$	$0 \times$	$0 \times$	$0 \times 2 b 0 f$	$0 \times$	$0 \times 2 b 2$		
$0 \times 2 b 5 f$	$0 \times 2 b 6 f$	$0 \times 2 b 7 f$	$0 \times 2 b 8 f$	$0 \times 2 b 9 f$	$0 \times 2 b a f$	$0 \times 2 b b f$	$0 \times 2 b c f$	$0 \times 2 b d f$	0x	$0 \times 2 b f$	$0 \times 2 c 01$	$0 \times 2 c 11$	$0 \times 2 c 21$	$0 \times 2 c 31$	0x	$0 \times$	0x	$0 \times$	$0 \times$	
$0 \times$	0x2	$0 \times$	$0 \times 2 c d 1$	0×2	$0 \times 2 c f$	$0 \times$	0	$0 \times 2 d 24$	$0 \times 2 d 34$	$0 \times 2 d 44$	0x2d54	$0 \times 2 d 64$	$0 \times 2 d 74$	$0 \times 2 d 84$	$0 \times 2 d 94$	0x2da 4	$0 \times 2 d b 4$	$0 \times 2 d c 4$	$0 \times 2 d d 4$	$0 \times 2 d e 4$
$0 \times 2 d f$	$0 \times 2 e 0 b$	0×2	0	0	$0 \times$	$0 \times$	0	$0 \times 2 e 7 b$	$0 \times$	$0 \times 2 e 9 b$	$0 \times 2 e a b$	$0 \times 2 e b b$	$0 \times 2 e c b$	$0 \times 2 \mathrm{edb}$	0×2	$0 \times 2 e f$	0x2f	0x2f	0x2	$0 \times 2 f 3 e$
$0 \times$	$0 \times 2 f$	$0 \times 2 f 6 e$	$0 \times 2 f$	$0 \times 2 f 8 e$	0x2	$0 \times 2 f$	0x2	0x2	$0 \times 2 f d$	0x2	0x2f	0	0×3013	0x3023	0x3033	-	0x	0x	0x3073	
$0 \times$	$0 \times 30 a 3$	0x30b3	$0 \times 30 \mathrm{c} 3$	$0 \times 30 d 3$	$0 \times 30 e 3$	0×30 f3	0×3106	0×3116	0×3126	0x3136	0×3146	0x3156	0x3166	0x31	0x3186	0x3196	0x31a6	0x31b6	$0 \times 31 c 6$	6
0x31e6	$0 \times 31 f 6$	0x3209	0x3219	0×3229	0x3239	0x3249	0x3259	0x3269	0x3279	0x3289	0x3299	0x32a9	0x32b9	0x32c9	$0 \times 32 d 9$	0x32e9	$0 \times 32 f 9$	0x330c	0x	c
0x333c	0x334c	0x335c	$0 \times 336 c$	$0 \times 337 c$	0x338c	0x339c	0x33ac	$0 \times 33 b c$	$0 \times 33 c c$	$0 \times 33 d c$	$0 \times 33 e c$	$0 \times 33 \mathrm{fc}$	0x3402	0x3412	0x3422	0x3432	0x3442	0x3452	0x3462	0x3472
0x3482	0x3492	0x34a2	$0 \times 34 b 2$	$0 \times 34 c 2$	$0 \times 34 d 2$	$0 \times 34 e 2$	$0 \times 34 f 2$	0×3507	0×3517	0x3527	0×3537	0x3547	0x3557	0x3567	0x3577	0x3587	0x3597	$0 \times 35 a 7$	$0 \times 35 b 7$	7
$0 \times 35 d 7$	$0 \times 35 e 7$	$0 \times 35 f 7$	0x3608	0x3618	0x3628	0x3638	0x3648	0x3658	0x3668	0x3678	0x3688	0x3698	0x36a8	0x36b8	$0 \times 36 c 8$	0x36d8	0x36e8	0x36f8	0x370d	0x371d
0x372d	$0 \times 373 d$	0x374d	0x375d	0x376d	0x377d	$0 \times 378 d$	0x379d	$0 \times 37 a d$	$0 \times 37 b d$	$0 \times 37 c d$	$0 \times 37 d d$	0x37ed	$0 \times 37 f d$	0x3801	0x3811	0x3821	0x3831	0x3841	0x3851	0x3861
0x38	0×3	0x3891	$0 \times 38 a 1$	$0 \times 38 b 1$	$0 \times 38 \mathrm{c} 1$	$0 \times 38 d 1$	$0 \times 38 e 1$	$0 \times 38 f 1$	0×3904	0×3914	0×3924	0x3934	0x3944	0x3954	0x3964	0x3974	0x3984	0x3994	$0 \times 39 a 4$	4
0x3	0×3	$0 \times 39 e 4$	$0 \times 39 f 4$	$0 \times 3 a 0 b$	$0 \times 3 a 1 b$	$0 \times 3 a 2 b$	$0 \times 3 a 3 b$	$0 \times 3 a 4 b$	$0 \times 3 a 5 b$	$0 \times 3 a 6 b$	$0 \times 3 a 7 b$	$0 \times 3 a 8 b$	$0 \times 3 a 9 b$	$0 \times 3 a a b$	$0 \times 3 a b b$	$0 \times 3 a c b$	$0 \times 3 \mathrm{adb}$	$0 \times 3 a e b$	$0 \times 3 a f b$	$0 \times 360 e$
0x3	0x3	$0 \times 3 b 3 e$	0×364	$0 \times 365 e$	$0 \times 366 e$	$0 \times 3 b 7 e$	$0 \times 368 e$	$0 \times 369 e$	$0 \times 3 b a e$	$0 \times 3 b b e$	$0 \times 3 b c e$	$0 \times 3 b d e$	$0 \times 3 b e e$	$0 \times 3 b f$	$0 \times 3 c 00$	$0 \times 3 \mathrm{c} 10$	$0 \times 3 c 20$	0x3c30	$0 \times 3 \mathrm{c} 40$	0
0x3	0x3	$0 \times 3 c 80$	0x3c90	$0 \times$	0×3 cb0	$0 \times$	$0 \times 3 c d 0$	$0 \times$	$0 \times 3 c f 0$	0x3d05	$0 \times 3 d 15$	$0 \times 3 d 25$	$0 \times 3 d 35$	0x3	0x3d55	0x3d65	0x	0x3d85	0x	0x3da 5
$0 \times$	0x3	0x3	$0 \times$	0×3	$0 \times$	$0 \times 3 e 1 a$	O	$0 \times$	$0 \times$	0x	0x	0x	0x	$0 \times$	0x	$0 \times 3 e b a$	0×3 eca	$0 \times$	0x	
0x3f0	$0 \times 3 f 1 f$	$0 \times 3 f 2 f$	$0 \times 3 f 3 f$	$0 \times 3 f 4 f$	$0 \times 3 f 5$	$0 \times 3 f 6 f$	$0 \times 3 f 7 f$	$0 \times 3 f 8 f$	$0 \times 3 f 9$	$0 \times 3 f a$	$0 \times 3 \mathrm{fbf}$	$0 \times 3 \mathrm{fc}$	$0 \times 3 f d f$	$0 \times 3 f$	$0 \times 3 f f$	0×4001	0x4011	0x4021	0x4031	0x4041
0x4051	0x4061	0x4071	0x4081	0x4091	$0 \times 40 a 1$	$0 \times 40 b 1$	$0 \times 40 c 1$	$0 \times 40 d 1$	$0 \times 40 e$	$0 \times 40 f$	0x4104	0×411	0×4124	0x413	0x414	0x4154	$0 \times$	0x417	4	0x4194
0x41a	0x41b4	0x41c	$0 \times 41 d 4$	0x41e4	$0 \times 41 f 4$	0	0x421b	0x422b	0x423b	0x424	0x425b	0	$0 \times$	0x	0x	$0 \times 42 a b$	0x42bb	$0 \times$	$0 \times 42 d b$	$0 \times 42 e b$
$0 \times 42 \mathrm{fb}$	$0 \times 430 e$	0x431e	0x432e	0x433e	0x434e	0x435e	0x436e	0x437e	0x438e	0x439e	0x43a	0x43be	0×43	0x4	Ox	$0 \times 43 f$	0x4400	0x4410	0x4420	0x4430
0x4	0x4450	0x4460	0x4470	0x4480	0x4490	0x44a0	0x44b0	0x44c0	0x44d 0	0x44e 0	$0 \times 44 f 0$	0x4505	0x4515	0x4525	0x4535	0x4545	0x4555	0x4565	0x4575	0x4585
0x45	$0 \times 45 a 5$	0x45b5	0x45c5	$0 \times 45 d 5$	0x45e5	0x45f5	0x460a	0x461a	0x462a	0x463a	0x464a	0x465a	0x466a	0x467a	0x468a	0x469a	0x46aa	0x46ba	0x46ca	0x46da
0x46	$0 \times 46 \mathrm{fa}$	$0 \times 470 f$	$0 \times 471 f$	$0 \times 472 f$	$0 \times 473 f$	$0 \times 474 f$	$0 \times 475 f$	$0 \times 476 f$	$0 \times 477 f$	$0 \times 478 f$	$0 \times 479 f$	$0 \times 47 a f$	$0 \times 47 b f$	$0 \times 47 c f$	$0 \times 47 d f$	$0 \times 47 e f$	$0 \times 47 f f$	0x4803	0x4813	0x4823
0x48	0x4843	0x4853	0x4863	0x4873	0x4883	0x4893	0x48a3	$0 \times 48 b 3$	$0 \times 48 c 3$	$0 \times 48 d 3$	$0 \times 48 e 3$	$0 \times 48 f 3$	0x4906	0x4916	0x4926	0x4936	0x4946	0x4956	0x4966	0x4976
$0 \times$	0x4996	0x49a6	0x49b6	0x49c6	0x49d6	0x49e6	$0 \times 49 f 6$	0x4a09	0x4a19	0x4a29	0x4a39	0x4a49	0x4a59	0x4a69	0x4a79	0x4a89	0x4a99	0x4aa 9	$0 \times 4 a b 9$	0x4ac9
0x4ad9	0x4ae9	0x4af9	$0 \times 4 b 0 c$	$0 \times 4 b 1 c$	$0 \times 4 b 2 c$	$0 \times 4 b 3 c$	$0 \times 4 b 4 c$	$0 \times 4 b 5 c$	$0 \times 4 b 6 c$	0x4b7c	$0 \times 4 b 8 c$	0x4b9c	0x4bac	$0 \times 4 b b c$	$0 \times 4 b c c$	$0 \times 4 b d c$	0x4bec	$0 \times 4 b f c$	$0 \times 4 c 02$	0x4c12
$0 \times 4 c 22$	$0 \times 4 c 32$	0x4c42	0x4c52	$0 \times 4 c 62$	$0 \times 4 c 72$	$0 \times 4 \mathrm{c} 82$	0x4c92	$0 \times 4 c a 2$	$0 \times 4 c b 2$	$0 \times 4 c c 2$	$0 \times 4 c d 2$	$0 \times 4 c e 2$	$0 \times 4 c f 2$	$0 \times 4 d 07$	$0 \times 4 d 17$	$0 \times 4 d 27$	$0 \times 4 d 37$	$0 \times 4 d 47$	$0 \times 4 d 57$	$0 \times 4 d 67$
0x4	$0 \times 4 d 87$	0x4d97	$0 \times 4 d a 7$	$0 \times 4 d b 7$	$0 \times 4 d c 7$	$0 \times 4 d d 7$	$0 \times 4 d e 7$	$0 \times 4 d f 7$	0x4e08	0x4e18	0x4e28	0x4e38	0x4e48	0x4e58	0x4e68	0x4e78	0x4e88	0x4e98	0x4ea8	0x4eb8
0x4	$0 \times 4 e d 8$	0x4ee8	$0 \times 4 e f 8$	$0 \times 4 f 0 d$	$0 \times 4 f 1 d$	0x4f2d	$0 \times 4 f 3 d$	$0 \times 4 f 4 d$	$0 \times 4 f 5 d$	$0 \times 4 f 6 d$	$0 \times 4 f 7 d$	$0 \times 4 f 8 d$	$0 \times 4 f 9 d$	0x4fad	$0 \times 4 f b d$	$0 \times 4 f c d$	$0 \times 4 f d d$	0×4 fed	$0 \times 4 f f d$	0×5000
0x5	0x5020	0x5030	0x5040	0x5050	0x5060	0x5070	0x5080	0x5090	0x50a0	0x50b0	$0 \times 50 c 0$	0x50d0	0x50e0	0×50 f0	0×5105	0x5115	0x5125	0x5135	0x5145	0×5155
0x5165	0×5175	0x5185	0x5195	0x5	0x51b5	0x5	$0 \times 51 d 5$	$0 \times 51 e 5$	0x51f	0x520a	0x5	0x522	0x523	Ox52	0×525	0x526	0×527	0x528a	0x529a	Ox 5
0x52b	$0 \times 52 c a$	0x52da	0x52	0x52fa	$0 \times 530 f$	0x531f	$0 \times 532 f$	$0 \times 533 f$	$0 \times 534 f$	$0 \times 535 f$	0x536f	0x537f	$0 \times 538 f$	$0 \times 539 f$	0x53af	$0 \times 53 b f$	0x53c	$0 \times 53 d f$	$0 \times 53 e f$	$0 \times 53 f f$
Ox540	0×5411	0×5421	0×5431	0x5441	0x5451	0x5461	0x5471	0×5481	0×5491	$0 \times 54 a 1$	$0 \times 54 b 1$	$0 \times 54 c 1$	$0 \times 54 d 1$	0x54	$0 \times 54 f 1$	0x5504	0x55	0x5524	0x5534	0x5544
0x555	0x5564	0×5574	0×5584	0x5594	0x55a4	0×5564	$0 \times 55 c 4$	$0 \times 55 d 4$	0x55e4	$0 \times 55 f 4$	0x560	0x5	0x562	0x5	0x564	0x565	0x5	0x567b	0x568b	0x569b
0x56a	$0 \times 56 b b$	0x56cb	$0 \times 56 d b$	$0 \times 56 e b$	0x56fb	$0 \times 570 e$	0x571e	$0 \times 572 e$	0x573e	0x574e	0x575e	0x576e	$0 \times 577 e$	0x578	0x579	0x57ae	$0 \times 57 b e$	$0 \times 57 c e$	0x57de	0x57ee
$0 \times 57 \mathrm{fe}$	0x5802	0×5812	0x5822	0x5832	0x5842	0x5852	0x5862	0×5872	0x5882	0×5892	0x58a2	$0 \times 58 b 2$	$0 \times 58 c 2$	$0 \times 58 d 2$	$0 \times 58 e 2$	0x58f2	0×5907	0x5917	0x5927	0x5937
0×5947	0×5957	0×5967	0x5977	0x5987	0x5997	$0 \times 59 a 7$	$0 \times 59 b 7$	$0 \times 59 \mathrm{c} 7$	$0 \times 59 d 7$	$0 \times 59 \mathrm{e} 7$	$0 \times 59 f 7$	0x5a08	0x5a18	0x5a28	0x5a38	0x5a48	0x5a58	0x5a68	0x5a78	$0 \times 5 a 88$
0x5a9	$0 \times 5 a a 8$	$0 \times 5 a b 8$	0x5ac8	$0 \times 5 a d 8$	0x5ae8	$0 \times 5 a f 8$	$0 \times 560 d$	$0 \times 561 d$	$0 \times 5 b 2 d$	$0 \times 563 d$	$0 \times 5 b 4 d$	$0 \times 5 b 5 d$	$0 \times 566 d$	$0 \times 567 d$	$0 \times 568 d$	$0 \times 569 d$	0x5bad	$0 \times 5 b b d$	$0 \times 5 b c d$	$0 \times 5 b d d$
0×5 bed	$0 \times 5 b f d$	$0 \times 5 \mathrm{c} 03$	$0 \times 5 c 13$	$0 \times 5 c 23$	$0 \times 5 \mathrm{c} 33$	$0 \times 5 \mathrm{c} 43$	$0 \times 5 c 53$	$0 \times 5 c 63$	$0 \times 5 c 73$	$0 \times 5 c 83$	$0 \times 5 c 93$	$0 \times 5 \mathrm{ca3}$	$0 \times 5 \mathrm{cb3}$	$0 \times 5 c c 3$	$0 \times 5 c d 3$	0x5ce3	$0 \times 5 c f 3$	0x5d06	$0 \times 5 d 16$	$0 \times 5 d 26$
$0 \times 5 d 36$	$0 \times 5 d 46$	$0 \times 5 d 56$	0x5d66	$0 \times 5 d 76$	$0 \times 5 d 86$	0x5d96	$0 \times 5 d a 6$	$0 \times 5 d b 6$	$0 \times 5 d c 6$	$0 \times 5 d d 6$	0×5 de6	$0 \times 5 d f 6$	0x5e09	0x5e19	0×5 e29	0x5e39	$0 \times 5 e 49$	0x5e59	0x5e69	0×5 e79
$0 \times 5 e 89$	$0 \times 5 e 99$	0x5ea 9	$0 \times 5 e b 9$	$0 \times 5 e c 9$	$0 \times 5 e d 9$	$0 \times 5 e e 9$	0x5ef9	$0 \times 5 f 0 c$	$0 \times 5 f 1 c$	$0 \times 5 f 2 c$	$0 \times 5 f 3 c$	$0 \times 5 f 4 c$	$0 \times 5 f 5 c$	$0 \times 5 f 6 c$	$0 \times 5 f 7 c$	$0 \times 5 f 8 c$	$0 \times 5 f 9 c$	$0 \times 5 f a c$	$0 \times 5 f b c$	$0 \times 5 f c c$
$0 \times 5 f d c$	$0 \times 5 f e c$	$0 \times 5 f f c$	0x6003	0x6013	0x6023	0x6033	0x6043	0x6053	0x6063	0x6073	0x6083	0x6093	0x60a3	$0 \times 60 b 3$	$0 \times 60 c 3$	0x60d3	0x60e3	0x60f3	0x6106	0x6116
0×6126	0x6136	0x6146	0x6156	0x6166	0x6176	0x6186	0x6196	0x61a6	$0 \times 61 b 6$	0x61c6	$0 \times 61 d 6$	0x61e6	$0 \times 61 f 6$	0x6209	0x6219	0x6229	0x6239	0x6249	0x6259	0x6269
0x6279	0x6289	0x6299	0x62a9	0x62b9	0x62c9	0x62d9	0x62e9	$0 \times 62 f 9$	$0 \times 630 c$	0x631c	0x632c	0x633c	0x634c	0x635c	0x636c	0x637c	0x638c	0x639 c	0x63ac	0x63bc
0x63cc	$0 \times 63 d c$	0x63ec	0×63 fc	0x6402	0x6412	0×6422	0x6432	0×6442	0x6452	0x6462	0×6472	0x6482	0x6492	0x64a2	$0 \times 64 b 2$	0x64c2	0x64d2	0x64e2	0x64f2	0x6507
0x6517	0×6527	0x6537	0x6547	0x6557	0x6567	0x6577	0x6587	0×6597	$0 \times 65 a 7$	0x65b7	$0 \times 65 c 7$	$0 \times 65 d 7$	$0 \times 65 e 7$	0x65f7	0x6608	0x6618	0x6628	0x6638	0x6648	0x6658
0x6668	0x6678	0x6688	0x6698	0x66a8	0x66b8	0x66c8	0x66d8	0x66e8	$0 \times 66 f 8$	0x670d	$0 \times 671 d$	0x672d	0x673d	0x674d	$0 \times 675 d$	0x676d	$0 \times 677 d$	0x678d	0x679d	0x67ad
0x67b	$0 \times 67 c d$	$0 \times 67 d d$	0x67ed	$0 \times 67 f d$	0x6801	0x6811	0x6821	0x6831	0x6841	0x6851	0x6861	0x6871	0x6881	0×6891	0x68a	$0 \times 68 b 1$	0x68c	$0 \times 68 d 1$	0x68e1	$0 \times 68 f 1$
0x69	0x6914	0x6924	0x6934	0x6944	0x6954	0x6964	0x6974	0x6984	0x6994	0x69a	0x69b4	0x69c	0x69d4	0x69e	$0 \times 69 f$	$0 \times 6 a 0 b$	0x6a1	$0 \times 6 a 2 b$	$0 \times 6 a 3 b$	$0 \times 6 a 4 b$
0x6	$0 \times 6 a 6 b$	$0 \times 6 a 7 b$	$0 \times 6 a 8 b$	$0 \times 6 a 9 b$	$0 \times 6 a a b$	$0 \times 6 a b b$	0x6acb	$0 \times 6 a d b$	$0 \times 6 a e b$	$0 \times 6 a f b$	0x6b0e	0x6b1	$0 \times 6 b 2 e$	0x6b3	0x6b4	0×665	0x6b6	0x6b7e	$0 \times 6 b 8 e$	0x6
0x6	0x6bbe	0x6bce	$0 \times 6 b d e$	0x6bee	$0 \times 6 \mathrm{ffe}$	$0 \times 6 c 00$	$0 \times 6 c 10$	$0 \times 6 c 20$	$0 \times 6 \mathrm{c} 30$	$0 \times 6 c 40$	$0 \times 6 c 50$	$0 \times 6 c 60$	$0 \times 6 c 70$	$0 \times 6 c 80$	0x6c90	0x6ca0	$0 \times 6 \mathrm{cb} 0$	$0 \times 6 c c 0$	$0 \times 6 c d 0$	0x6ce0
$0 \times 6 c f 0$	0x6d05	$0 \times 6 \mathrm{~d} 15$	$0 \times 6 d 25$	0x6d35	0x6d45	$0 \times 6 d 55$	0x6d65	$0 \times 6 d 75$	0x6d85	0x6d95	$0 \times 6 d a 5$	$0 \times 6 d b 5$	$0 \times 6 d c 5$	$0 \times 6 d d 5$	0x6de5	$0 \times 6 d f 5$	0x6e0a	$0 \times 6 e 1 a$	$0 \times 6 e 2 a$	$0 \times 6 e 3 a$
Ox6e4	$0 \times 6 e 5 a$	0x6e6a	$0 \times 6 e 7 a$	$0 \times 6 e 8 a$	0x6e9a	0x6eaa	$0 \times 6 e b a$	$0 \times 6 e c a$	$0 \times 6 e d a$	0x6eea	0x6efa	$0 \times 6 f 0 f$	$0 \times 6 f 1 f$	$0 \times 6 f 2 f$	$0 \times 6 f 3 f$	$0 \times 6 f 4 f$	$0 \times 6 f 5 f$	$0 \times 6 f 6 f$	$0 \times 6 f 7 f$	$0 \times 6 f 8 f$
$0 \times 6 f 9 f$	$0 \times 6 \mathrm{faf}$	$0 \times 6 \mathrm{fbf}$	$0 \times 6 f c f$	$0 \times 6 f d f$	$0 \times 6 \mathrm{fef}$	$0 \times 6 f f f$	0x7002	0×7012	0×7022	0x7032	0×7042	0x7052	0x7062	0x7072	0x7082	0x7092	$0 \times 70 a 2$	0x70b2	$0 \times 70 c 2$	$0 \times 70 d 2$
$0 \times 70 e 2$	$0 \times 70 f 2$	0×7107	0×7117	0×7127	0×7137	0×7147	0×7157	0×7167	0x7177	0x7187	0×7197	$0 \times 71 a 7$	$0 \times 71 b 7$	$0 \times 71 c 7$	$0 \times 71 d 7$	$0 \times 71 e 7$	$0 \times 71 f 7$	0x7208	0x7218	0x7228
0×7238	0×7248	0x7258	0x7268	0x7278	0x7288	0x7298	$0 \times 72 a 8$	$0 \times 72 b 8$	0x72c8	$0 \times 72 d 8$	0x72e8	$0 \times 72 f 8$	0x730d	0x731d	0x732d	0x733d	0x734d	0x735d	0x736d	0x737d

XXVII

	0x7	0x74	0x7	0x7	0x	0x		0x		0x		0x7596	$0 \times$	$0 \times 75 b 6$	0x75c6	$0 \times 75 d 6$	$0 \times$	0×75 f6	0x7609	
<7629	0×7	0x7	0x 7																	
-x7	$0 \times 78 d 0$	0x78	$0 \times 78 f 0$	0x7905	0x7	0x7925	0x7													
0x7	0x7a	0x7	0x7	0x			0x								0x	0x	$0 \times 7 b 2 f$	$0 \times 7 b 3 f$	0x7b4f	
															0x			$0 \times 7 \mathrm{c} 81$	0x7c91	
-x	0x7	$0 \times 7 c d 1$	0x7	$0 \times 7 c f 1$	0x7d04	0x	$0 \times 7 d 24$	0x7												
	0x																			
	0x	0x		0x	0x	0×7														
	0x80b2	$0 \times 80 c 2$	0x80d2	$0 \times 80 e 2$	$0 \times 80 f 2$	0×8107	0x8117	0×8127	0x8137	0x814	0x815	0x816	0x817	0x818	0×819	0x81	0x81b7	$0 \times 81 c 7$	0x81d	$0 \times$
	0x8208	$0 \times$	0x8228	0x8238	0x8248	0x8258	0x8268		0x								$0 \times$			
	0x83	0x83	0x83	0x83	0x839	0x83	0×83	0×83	0x83	0×8	0×83						0x8	0x84		
0x8493	0x84a3	0x84b3	0x84c3	0x84d3	0x84e3	0x84f3	0x8506	0x8516	0x8526	0x853	0x854	0x855	0x856	0x857	0x8586	0x85	0x85a6	0×8566	0x8	
	$0 \times 85 f 6$	0x8609	0x8619	0x8629	0x8639	0x8649	0x8659	0x8669	0x867	0x	0x869	$0 \times$	$0 \times$		0x	0x	0x86			
	0x8	0x87	0x8	0x877	0x8	0x8	0x87	0x8	0x8	0x8		0x87			0x			0x88	0x	
0x8880	0x8890	0x88a0	0x88b0	0x88c0	$0 \times 88 d 0$	0×88	$0 \times 88 f 0$	0x890	0×8915	0x892	0x893	0x894	0x895	0x8	0x	0x	0x	0x89a5	0x89b5	
		0x89f5	0	0	0x8a2a	$0 \times$	0	$0 \times$	0x	0x		$0 \times$							$0 \times 8 b 0 f$	
	$0 \times 863 f$	$0 \times 864 f$	0x8b5	$0 \times 866 f$	0×867	0×868	0x8b9f	$0 \times 8 b$	$0 \times 8 b b$	0x8b	$0 \times 8 b$	0x8b	0x8b	$0 \times 8 \mathrm{c} 01$	0x8c	$0 \times 8 c$	$0 \times 8 \mathrm{c} 31$	0x8c41	$0 \times 8 c 51$	
0x8c71	0x8c81	0x8c91	$0 \times 8 c a 1$	$0 \times 8 c b 1$	$0 \times 8 c c 1$	$0 \times 8 \mathrm{~cd} 1$	0x8ce 1	$0 \times 8 c f 1$	$0 \times 8 d 04$	0x8d14	$0 \times 8 d 2$	$0 \times 8 d 3$	0x8d	$0 \times 8 d 54$	$0 \times 8 d$	0x8d	0x8d84	$0 \times 8 d 94$	0x8da 4	$0 \times 8 d b 4$
	$0 \times 8 d d 4$	0×8 de 4	$0 \times 8 d f 4$	$0 \times 8 e 0 b$	$0 \times 8 e 1 b$	0×8	$0 \times 8 e 3 b$	0	$0 \times 8 e 5 b$		0		0							
	$0 \times 8 f$	$0 \times 8 f$	$0 \times 8 f 4$	$0 \times 8 f 5$	$0 \times 8 f$	0x8f	$0 \times 8 f$	0x90	0x90	0x902	0x903									
0x9063	0x9073	0x9083	0x9093	0x90a3	0x90b3	0x90c	0x90d3	0x90e3	0x90f3	0x9106	0x911	0x9126	0x913	0x914	0x915	0x916	0x917	0x9186	0x9196	0x9
	0x91c6	0x91d	0x91e6	0x91f	0x9209	0x921	0x9229	0x9239	0x9249	0x9259	0x926	0x927	0x928	0x929	0x92	0x92	0x92		$0 \times$	
	0x93	0x932	0x933	0x934	0x935	0x93	0x937	0x93	0x939	0x93	0x93	0x93	0x93	0x93	0x93	0x940	0x9412	0x9422	0x943	
	0x946	0x947	0x948	0x9492	0x94d	0x94	0x94	0x94d	0x94	0x94	0x95	0×9577	0x9587	0x						
	0	0	95	0x	0x95	0x9	0x9	0x962										0x96		
0x96f8	0x970	0x971d	0x972d	0x973d	0x974	0x97	0x976d	0x97	0x978	0x979	0x97	0x97b	0x97	0x97	0x97	0x97fd	0x9801	0x9811	0x9821	0x9
	0x985	0x98	0x9871	0x9881	0x9891	0x98	0x98b1	0x98	0x98	0x98	0x98	0x990	0x99	0x992	0x9	0x9944	0x9	0x99	0x997	0x9
	0x99	0	0	0x99	0x99	0x99	0x9	0x9	0x9	0x9		0x9a		0x9		0x9				
0x9aeb	$0 \times 9 a f$	0x9b	0x9b1	0x9b2	0x9b3	0x9b	0x9c00	0x9	0x											
	0x9c40	0x9c	0x9c	0x9c	0x	0	$0 \times$	0x	0x9cc0	-x	$0 \times$	0x9	0x9	$0 \times$	0x	0x	0x	0x9d55	$0 \times$	
	0	0x9	0x9	0x9	0x9d	0x9d	0x9d	0x9e		-x9e			0x9				0x9e			
	0x9	0x9	$0 \times 9 f 0 f$	$0 \times 9 f 1$	$0 \times 9 f 2 f$	0x9f	0x9f4f	0x9f5	0x9f	0x9f	0x9f	$0 \times 9 f 9$	0x9f	$0 \times 9 \mathrm{fb}$	0x9f	$0 \times 9 f$	0x9f	$0 \times$		
	0xa0	0xa04	0xa050	0xa060	0xa070	0xa08	0xa090	0x	0	0xa0c0	0x	$0 \times$	$0 \times$	0x	0x	0x	0xa135		0xa155	
	0	$0 \times$	0x	0xa	0xa	0xa	-xa	0×1	0xa			$0 \times$						$0 \times a 2$		
	0xa 2	0xa	0xa	0xa30	0xa31	0xa32	0xa33f	0xa	0xa	0xa	$0 \times$	$0 \times$	0x		0x	0x	0x	$0 \times$	0x	
	0xa42	0	0xa44	0xa451	0xa461	$0 \times a 471$	1	a 49	0xa4a1	$0 \times a 4 b 1$	0xa4			$0 \times$						
	0xa 5	0xa 5	0xa	0×15	0xa	0×1	0xa5	0×1	0xa5	0xa	0xa	0xa6	0xa	0xa 6	0xa	0xa	0xa6	0xa	0x	
	0xa	0xa	0xa	$0 \times a 6$	0xa70	0xa	0xa7	$0 \times a 7$	0xa74	0xa	0xa7	$0 \times a 7$	0xa7	0xa7	0xa7	0xa7		$0 \times a 7$		
			0xa832	0xa84	a85		0xa872	0xa882	0xa892	0xa8a2	Ox							0x	0xa937	
	0xa	0xa9	0xa98	0xas	0xa9	0xa9	0xa	0xa9d7	0×1	0xa9			0xac			$0 \times$		0x		
	0xa	0xaa	0xaad	0xaa	0xaa	$0 \times a b$	0xab	0xab2d	0xab	0xab	0xa	0x	0xab	0xa	0xa					
	0xad	0xad	0xa	0xa	0xad	0xad	0xadb 6	0xa	0xad	0xa	0xa	0xae	0xae	0xae	0xa	0xae49	0xae			
	0xa	0xa	0xa	0xa		0xae	0xa	0xa	0xa	0xa		0xaf			0xaf8c					
							$0 \times b$				$0 \times b 0$	$0 \times b 0$		$0 \times b 0$	$0 \times b 1$					
	$0 \times b 14$	$0 \times b 15$	0×616	$0 \times b 17$	0xb18	$0 \times b 19$	$0 \times b 1$	$0 \times b 1 b$	0xb1	$0 \times b 1$	$0 \times b 1$	$0 \times b 1$	$0 \times b 2$	$0 \times b 2$	$0 \times b 2$	$0 \times b 23$	$0 \times b 2$	$0 \times b 2$	$0 \times b 2$	$0 \times$
	0xb29	$0 \times b 2$	$0 \times b 2 b$	0xb2	$0 \times b 2 d$	0×6	0xb2	0xb3	0xb	Oxb3	0×63									
		$0 \times b 3 f e$	位	$0 \times b 410$		$0 \times b$	$0 \times$	$0 \times$	0×6	0x	0xb4	0xb	0xb4					0xb4	0xb505	
	0	$0 \times b$	0xb55	0xb5	$0 \times b 5$	$0 \times b 5$	0xb5	$0 \times b 5$	$0 \times b$	$0 \times b 5$	$0 \times b 5$	0×65	0×65	0xb60	0xb6	0xb6	0xb6	0xb6	0xb65a	
	0×66	0×66	$0 \times b 6$	0xb6	0×66	0×66	0xb 6	$0 \times b 6 f$	$0 \times b 70$	0xb7	$0 \times b 7$	$0 \times b 7$	$0 \times b 7$	0xb75	0xb	0x	0	$0 \times b 79 f$		
	0xb7	0×6	$0 \times b 7$	0xb	0×1	0×6	0×6	$0 \times b$	0×1		0xb	0xb							x	
	0xb9	$0 \times b$	0xb9	$0 \times b$	0xb	0×6	$0 \times b 9$	0×1	$0 \times b$	$0 \times b$	0xb	Oxb								
	0	0	0x	0x	0x	$0 \times$	0	$0 \times$	0x	0x	$0 \times$	0x	0x	$0 \times b b$	0x	0x	0x	$0 \times b b 8 c$	$0 \times b b 9 c$	
	$0 \times b$	$0 \times b$	0xbb	$0 \times b b$	$0 \times b c$	$0 \times b c$	$0 \times b c 2$	0xbc	$0 \times b c$	$0 \times b c$	0xbc	0xbc	$0 \times b$	0xb	$0 \times b$	0x	0x	$0 \times b$	0xb	
	0xb	$0 \times b$	$0 \times b d$	$0 \times b d$	$0 \times b d 5$	$0 \times b d$	$0 \times b d 7$	$0 \times b d$	0xbd	$0 \times b d$	$0 \times b$	0xbd	$0 \times b d$	0xb	0x					
						-	0xbec8					0x								
	$0 \times b f b$	$0 \times b f c$	$0 \times b f d d$	$0 \times b f e$	$0 \times b f f$	0xc00	0xc01	$0 \times \mathrm{c} 02$	0xc03	0×1	0xc0	0xc0	0xc0	Oxc0	0xc09	$0 \times c 0 a 3$	0xc0b3	$0 \times c 0 c 3$	$0 \times c 0 d 3$	
	0xc10	0xc11	0xc126	0xc136	0xc146	0xc15	0xc166	0xc176	0xc18	0xc1	0xc1					0xc1				
			0x 27	0xc2	0xc29	0xc2	0xc2b9	-	$0 \times c 2 d 9$	0xc2e9	$0 \mathrm{x} c 2 f 9$	0xc30c	0xc31c				0xc35c			
	0xc 3	0xc	0x	0xc3	0xc3	$0 \times c 3$	0xc	0xc 4	0xc	0xc		0xc4	0xc4	0xc4	0xc4	0x	$0 \times c 4 a 2$			
	0xc4	0xc 5	0xc5	0xc5	0xc5	0xc5	0xc5					0xc5								
						0xc698	0xc6a8													
	0xc	0xc7	$0 \times c 7 b$	0xc7c	0xc7	0xc7e	$0 \times c 7 f$	0xc	0xc	0xc8	0xc83	0xc841	0xc85	0xc	0xc	0xc	0xc891	$0 \times c 8 a 1$	0xc8b1	
	0×18	0xc8	0xc904	$0 \times c 91$	0xc92	0xc93	0xc944	0xc9		0xc9	0xc9	0xc994	$0 \times c 9$							
	0xc	0xcb	0xcba	$0 \times c b b$	0xcbc	0xcbd	0xcbe	0xcb	0xcco	0xcc	0xcc20	0xcc	Oxcc	0xcc5	0xcc	0xcc	0xcc8	0xcc	0xcca	
	0xc	0xc	0xcc	0xc	0xc	0x	0xc		0x											
	$0 \times c f 7$	0xcf8	$0 \times c f 9$	$0 \times c f a$	Oxcfb	$0 \times c f$	$0 \times c f d f$	$0 \times c f e$	$0 \times c f f$	$0 \times d$	$0 \times d 01$	0×1	$0 \times d 0$	0x	$0 \times$		0 x			
	0 xd 0	0xd0	$0 \mathrm{xd0}$	$0 \mathrm{x} d 0 f$	$0 \times d 10$	0xd11	0xd 12		0xd											
			0	$0 \times d$	$0 \mathrm{x} d$	x d	0xd278	0xd												
	$0 \times d 36$	$0 \times d 37$	0xd38	$0 \times d 39$	$0 \times d 3 a$	$0 \times d 3 b$	$0 \times d 3$	$0 \times d 3 d d$	$0 \times d 3$	$0 \times d 3 f$	$0 \times d 40$	$0 \times d 4$	0xd4	$0 \times d 4$	0xd4	0xd4	0xd4	$0 \times d 473$	0xd483	
						0xd5			$0 \times d 5$											
	0xd 6	0xd	0xd6	0xd6	0xd6	0xd	$0 \times d 6$	$0 \mathrm{x} d 6$	$0 \mathrm{x} d$	$0 \mathrm{x} d$	$0 \times d 6$		$0 \times d 6$	0xd	0xd6	$0 \times d 6 f 9$	0xd70c	0xd7c	oxale	
	0xd75	$0 \times d 7$	$0 \times d 77$	$0 \times d 78$	$0 \times d 79$	$0 \times d 7$	$0 \times d 7 b$	$0 \mathrm{x} d 7$	$0 \times d 7$	$0 \mathrm{x} d 7$	$0 \mathrm{xd7}$	$0 \times d 8$	0xd810	0xd820	0xd830	0xd840	0xd850	0xd860	0xd870	
	$0 \times d 9 f$	$0 \times d a$	$0 \mathrm{x} d$	0xda2a	$0 \times d a$	$0 \times d a$	$0 \times d a 5$	$0 \times d a 6$	$0 \times 1 a$	$0 \times 1 a$	$0 \times d a$	$0 \times d a$	$0 \times d a$	0xda	$0 \times d a$	$0 \times d a$	0 xdafa	$0 \times d b 0 f$	$0 \times d b 1 f$	$0 \times d b 2 f$
	$0 \times d b 4$	$0 \mathrm{x} d 65$	$0 \times d b 6 f$	$0 \times d b 7 f$	$0 \times d b 8 f$	$0 \times d b 9$	0xdba	$0 \times d b b f$	$0 \times d b c$	$0 \times d b d$	$0 \times d b$	$0 \times d b$	0xdco1	$0 \times d c$	$0 \times d c 21$	$0 \times d c 31$	0xdc41	$0 \times d c 51$	$0 \times d c 61$	0xdc71
	0xdd	0xdd	Oxde 0	0xde1b	$0 \times d e 2$	0xde3	0xde	Oxdebb	0xdecb	0xdedb	0xdeeb	0xdefb	$0 \times d f 0 e$	0xd						
	$0 \times d f$	$0 x d f$	$0 x d f 5$	$0 \times d f 6$	$0 \times d f$	$0 x d f$	$0 \times d f$	$0 \times d f$	0xe001	0xe011	0xe021	0xe031	0xe041	0xe051						
	0xe1d	0xele	0xe1f4	0xe20b	0xe21b	0xe22	0xe23b	0xe24b	0xe25	0xe26	0xe27	0xe28b	0xe29b	0xe2a	0xe2bb	0xe2cb	0xe2db	0xe2eb	0 xe 2 fb	0xe30e
	0xe32	0xe3	0xe34e	0×35	0xe36	0xe37	0xe38	0xe39	0xe3	0xe3b	0xe3	0xe3d	0xe3	0xe3	0xe400	0xe41	0xe420	0xe 430	0xe440	
0x	0xe5c	0xe5d	0xe5e5	0xe5f5	0xe60a	0xe61	0xe62a	0xe63a	0xe64a	0xe65	0xe66a	0xe67a	0xe68a	0xe69a	0xe6aa	0xe6ba	0xe6ca	0xe6da	0xe6ea	0xe6fa
$0 x e 70 f$	0xe7	0xe7	0xe73f	0xe74f	0xe75	0xe7	0xe77	0xe78f	0xe79f	0xe7a	$0 \times 17 \mathrm{~b}$	0xe7	0xe7	0xe7e	0xe7f	0xe803		0xe823	0xe833	
0x	0xe9b	0xe9	0xe9d6	0xe9e	0xe9f6	0xea	0xea19	0xea29	0xea39	0xea49	0xea	0xea	0xea7	0xea	0xea	0xeaa9		0xeac9	0xead9	
	0xe	0xe	0xeb	0xeb	0xeb	0xeb	0xe	0xe	0xe	0xe	0x	0x					0xec02			
	0xec	0xe		$0 \times$												0xed 47	0xed57	0xed67		
	0xeda	0xed	0xedc7	0xedd7	0xede	0xed	0xee0	0xee18	0xee28	0xee38	0xee	0xee58	0xee68	0xee7	0xee8	0xee98	0xeed	0xee	0x	
	$0 \times f 040$	$0 \times f 05$	$0 \times f 060$	$0 \times f 070$	$0 \times f 080$	$0 \times f 090$	$0 \times f 0 a 0$	0xfobo	$0 \times f 0 c 0$	$0 \times f 0 d 0$	$0 \mathrm{x} f 0 e 0$	$0 \times f 0 f 0$	$0 \times f 105$	$0 \times f 115$	0xfl25	$0 \times f 135$	0xf145	$0 \times f 155$	$0 \times f 165$	0xf175
	$0 \times f 195$	$0 \times f 1 a$	$0 \times f 1 b 5$	$0 \times f 1 c 5$	$0 \times f 1 d 5$	$0 \times f 1 e 5$	$0 \times f 1 f 5$	$0 \times f 20 a$	$0 \times f 21 a$	$0 \times f 22 a$	$0 \times f 23$	$0 \times f 24 a$	$0 \times f 25$	$0 \times f 26 a$	$0 \times f 27 a$	$0 \times f 28 a$	$0 \times f 29 a$	$0 \times f 2 a a$	$0 \times f 2 b a$	
Oxf	$0 \times f 431$	$0 \times f 441$	$0 \times f 451$	$0 \times f 461$	$0 \times f 471$	$0 \times f 481$	$0 \times f 491$	$0 \times f 4 a 1$	$0 \times f 4 b 1$	$0 \times f 4 c 1$	$0 \times f 4 d 1$	$0 \times f 4 e 1$	$0 \times f 4 f 1$	$0 \times f 504$	$0 \times f 514$	$0 \times f 524$	$0 \times f 534$	$0 \times f 544$	$0 \times f 554$	0xf564
0xf574	$0 \times f 584$	$0 \times f 594$	$0 \times f 5 a 4$	$0 \times f 5 b 4$	$0 \times f 5 c 4$	$0 \times f 5 d 4$	$0 \times f 5 e 4$	$0 \times f 5 f 4$	$0 \times f 60 b$	$0 \times f 61 b$	$0 \times f 62 b$	$0 \times f 63 b$	$0 \times f 64 b$	$0 \times f 65 b$	$0 \times f 66 b$	$0 \times f 67 b$	$0 \times f 68 b$	$0 \times f 69 b$	$0 \times f 6 a b$	
	$0 \times f 822$	0xf832	0xf842	0xf852	0xf862	0xf872	0xf882	0xf 892	$0 \times f 8 a 2$	$0 \times f 8 b 2$	$0 \times f 8 c 2$	$0 \times f 8 d 2$	$0 \times f 8 e 2$	$0 \times f 8 f 2$	0xf907	0xf917	0xf927	$0 \times f 937$	0xf947	0x
	$0 \times f 977$	$0 \times f 98$	0xf997	$0 \times f 9 a 7$	$0 \times f 9 b 7$	$0 \times f 9 c 7$	$0 \times f 9 d 7$	$0 \times f 9 e 7$	$0 \times f 9 f 7$	$0 \times f a 08$	$0 \times f a 18$	$0 \times f a 28$	$0 \times f a 38$	0xfa 48	$0 \times f a 58$	$0 \times f a 68$	$0 \times f a 78$	$0 \times f a 88$	0xfa98	
			0xfae8	$0 \mathrm{x} f$										$0 \times f b 9 d$	0xfbad					
	$0 \times f c 13$	$0 \times f c 23$	$0 \times f c 33$	$0 \times f c 43$	0xfc53	$0 \mathrm{x} f c 63$	$0 \times f c 73$	0xfc83	$0 \mathrm{x} f \mathrm{fc} 93$	$0 \times f c a 3$	$0 \mathrm{x} f c b 3$	$0 \times f c c 3$	$0 \times f c d 3$	0xfce3	$0 \mathrm{x} f c f 3$	0xfd 06	0xfd16	$0 \times f d 26$	0xfd 36	0x
	$0 \times f d 66$	$0 \times f d 76$	$0 \times f d 86$	$0 \times f d 96$	$0 \times f d a 6$	$0 \times f d b 6$	$0 \times f d c 6$	$0 \times f d d 6$	$0 \times f d e 6$	$0 \times f d f 6$	$0 \times f e 09$	0xfe19	0xfe29	0xfe39	$0 \times f e 49$	0xfe59	0xfe69	$0 \times f e 79$	0x	
$f c$							$0 \times f f 1 c$	$0 \times f f 2 c$	$0 \times f f 3 c$	$0 \times f f 4 c$	$0 \times f f 5 c$	$0 \times f f 6 c$	$0 \times f f 7 c$	$0 \mathrm{x} f f 8 \mathrm{c}$	$0 \times f f 9 c$	$0 \times f f a c$	$0 \times f f b c$			

D Side-channel Injection Attack to Realize ΔR

As mentioned in the Proof of Theorem 1, condition (A) gives us the same differential sequence as the following condition does,

$$
\begin{aligned}
\Delta K & =\left(K_{1}, \ldots, K_{8}\right)+\left(K_{1}^{\prime}, \ldots, K_{8}^{\prime}\right)=(0,0,0,0,0,0,0,0) \\
\Delta P & =P_{1}+P_{i^{\prime}}^{\prime}=0 \\
\Delta R & =\left(R_{1}, \ldots, R_{8}\right)+\left(R_{1}^{\prime}, \ldots, R_{8}^{\prime}\right)=(0,0,0, H, 0,0,0,0)
\end{aligned}
$$

Therefore, to create the difference between R_{4} and R_{4}^{\prime} (or between $f^{-1}\left(R_{2} \boxminus u_{1}\right)$ and $f^{-1}\left(R_{2}^{\prime} \boxminus u_{1}^{\prime}\right)$), one obvious way is to start with two instances initialized with the same IVs and keys and then mount side-channel injection attack, where the attacker simply injects H to the victim register, e.g., R_{4} or $f^{-1}\left(R_{2} \boxminus u_{1}\right)$, of one instance any time before the execution of the last round of encryption/decryption. Note that the preparation through injection gives the attacker no time/memory penalty, i.e., the overall time/memory complexity of the attack is dominated by that of the key recovery phase.

