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Abstract. Hummingbird-2 is one recent design of lightweight block ciphers targeting constraint
devices, which not only enables a compact hardware implementation and ultra-low power con-
sumption but also meets the stringent response time as specified in ISO18000-6C.

In this paper, we present the first cryptanalytic result on the full version of this cipher using two
pairs of related keys. We discover that the differential sequences for the last invocation of the
round function can be computed by running the full cipher, due to which the search space for the
key can be reduced. Base upon this observation, we propose a probabilistic attack encompassing
two phases, preparation phase and key recovery phase. The preparation phase, requiring 280 effort
in time, aims to reach an internal state, with 0.5 success probability, that satisfies particular
conditions. In the key recovery phase, by attacking the last invocation of the round function of
the encryption (decryption resp.) using the proposed differential sequence analysis (DSA), we are
able to recover 36 bits (another 44 bits resp.) of the 128-bit key. In addition, the rest 48 bits of
the key can be exhaustively searched and the overall time complexity of the key recovery phase
is 248.14.

Note that the proposed attack, though exhibiting an interesting tradeoff between the success
probability and time complexity, is only of a theoretical interest at the moment and does not
affect the security of the Hummingbird-2 in practice.
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1 Introduction

Passive RFID tags and other constraint computing devices are usually characterized by extremely tight
cost and power consumption requirements. The needs of cryptographic primitives on such devices have
been increasing with the growing pervasiveness and mass deployment of these devices. To this end,
considerable lightweight stream/block ciphers are proposed in recent years, targeting very small hard-
ware footprint and reduced power consumption. Typical examples are listed in Table 1. Meanwhile,
cryptanalysis of these lightweight primitives has received considerable attention due to a widely-accept
concern – the pursue of efficiency at the cost of reducing the security margin or applying innovative
but less well understood technologies lead lightweight candidates to be less durable relative to regu-
lar symmetric ciphers. This concern has been further confirmed by the successful cases of attacking
KeeLoq [33], Crypto-I [32], Atmel Cipher [22, 9], PRESENT [13, 11], KTANTAN [7, 3], PRINTCipher [2,
29], reduced KLEIN [1], A2U2 [12] and so on.
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Table 1. Recent Design/Implementation of Lightweight Ciphers (ordered by gate equivalent (GE))

Key size[bits] Block size[bits] Area[GE] Throughput[Kb/s] Logic process[µm]

PRINTCipher-48 [26] 80 48 402 6.25 0.18
KTANTAN32 [14] 80 32 462 12.5 0.13
PRINTCipher-48 [26] 80 48 503 100 0.18
KTANTAN48 [14] 80 48 571 9.4 0.13
GOST [34] 256 64 651 24.24 0.18
Piccolo-80 [38] 80 64 683 14.8 0.13
KTANTAN64 [14] 80 64 684 8.4 0.13
LED-64 [21] 64 64 688 5.1 0.18
LED-128 [21] 128 64 700 3.4 0.18
PRINTCipher-96 [26] 160 96 726 3.13 0.18
Piccolo-128 [38] 128 64 758 12.1 0.13
KATAN32 [14] 80 32 802 12.5 0.13
KATAN48 [14] 80 48 916 9.4 0.13
PRINTCipher-96 [26] 160 96 967 100 0.18
KATAN64 [14] 80 64 1, 027 8.4 0.13
PRESENT [35] 80 64 1, 075 11.4 0.18
KLEIN-64 [20] 64 64 1, 981 N/A 0.18
KLEIN-80 [20] 80 64 2, 097 N/A 0.18
HummingBird-2 [17] 128 16 2,159 N/A 0.13
KLEIN-96 [20] 96 64 2, 213 N/A 0.18
AES [19] 128 128 3, 400 12.4 0.35

A Brief History of Hummingbird Cipher: Motivated by the design of the well-known Enigma
machine, the first generation of Hummingbird (call it HB-1) was proposed by the engineers in Revere
Security and was further analyzed and published in [16] as an ultra-lightweight cryptographic algorithm
targeting low-cost RFID tags, smart cards, and wireless sensor nodes to meet the stringent response
time and power consumption requirements. Although HB-1, with an innovative hybrid structure of
block cipher and stream cipher, was designed to provide 256-bit security, Saarinen, in FSE’11, showed
a chosen-IV and chosen-message attack [36] that can recover the full secret key with at most 264 off-line
computational effort under two related IVs. Recently, Revere Security published the second generation
of Hummingbird (call it Hummingbird-2 or HB-2) in [17], which inherits the design philosophy from
HB-1, e.g., it has a small block size of 16-bit to adapt the needs of encrypting short messages in RFID
applications and it retains the hybrid structure as a security compensation for the small block size.
High level differences between HB-1 and HB-2 are: (1) key size has been reduced to 128 bits to satisfy
the actual need for constrained devices; (2) size of the internal state has been increased from 80 bits to
128 bits; (3) the nonlinear keyed transformation in HB-2 has four invocations of the S-boxes, compared
to five in HB-1, to further increase the throughput.

In addition, it is claimed in the same paper that HB-2 can withstand differential, linear and algebraic
attacks and the four 4-bit S-Boxes in HB-2 belong to the optimal classes as discussed in [31]. Its
resistance to the side-channel cube attack is recently investigated in [18], where the author applied
cube attack to recover 48 bits of the secret key providing the attacker could access the internal states
of HB-2 during an early stage in the initialization. However, this attack is marginal since it only threats
HB-2 before the finishing of its initialization.
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Our Contribution: By refining/improving our preliminary results in [10], we present, in this paper,
the first cryptanalytic result on the full version of this cipher using two pairs of related keys. Our attack
makes use of the internal state of such a cipher and our philosophy is general: (1) the outputs of the
encryption/decryption may leak information of the subkeys (under the differential cryptanalysis) as
long as the internal states of the cipher satisfy particular conditions; (2) due to the birthday paradox,
such a condition always happens with 1/2 probability providing 2L/2 attempts are made, where L (in
bit) is the size of the internal state. To be specific, we propose the following attack encompassing two
phases, a probabilistic preparation phase and a key recovery phase.

– To realize the two particular conditions regarding the internal states, the preparation phase spends
280 effort in time to achieve the succeed probability 0.5 (due to the birthday paradox). If succeeds,
one could proceed to the key recovery phase.

– The key recovery phase is basically an instance of a novel cryptanalytic technique – we call it
differential sequence analysis (DSA) – which can be seen as a hybrid of the conventional differential
cryptanalysis and saturation attack. After exhibiting DSA’s definitions and properties, we present
its applications in the attacking scenarios, i.e.,

– by using the encryption of HB-2, DSA recovers 36-bit (out of 128-bit) of the key, if condition
(A) (regarding HB-2’s secret key, input and internal state) holds.

– by using the decryption of HB-2, DSA recovers another recovers another 44-bit of the key, if
condition (B) (regarding HB-2’s secret key, input and internal state) holds.

– the rest 48-bit of the key can be exhaustively searched and the overall time complexity is 248.14.

Success Probability

Time Complexity [Calls of encryption]

0.5

280

1

2128

0.5

2127

An (unknown/nonexistent) ideal attack to succeed with constant effort

Our attack presented in this paper

(Trivial) exhaustive search in F127
2 for the key

(Trivial) exhaustive search in F128
2 for the key

The set of non-trivial attacks

Fig. 1. Tradeoff between Success Probability and Time Complexity when attacking HB-2 (In fact, since one
encryption only provides 16-bit entropy of the key, the exhaustive search needs a bit more than 2128 calls of the
encryption function following the “key testing” procedure as desired in [4], i.e., 2128 + 2112 + 296 + 280 + 264 +
248 + 232 + 216 ≈ 2128.000022 and 8 plaintext-ciphertext pairs to uniquely determine the key with probability 1.)

Note that our results in this paper exhibit an interesting tradeoff between the success probability
and time complexity for HB-2, as shown in Fig. 1, which is analog to the collision attack in the hash
function due to the birthday paradox. Stated in another way, to be successful with probability 0.5, our
attack is faster than the exhaustive search (which is the best known) by a factor of 250. Unfortunately,
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to succeed with probability 1, our preparation phase requiring more effort in time than the exhaustive
search, which makes the proposed method only of theoretical interests at the moment, i.e., the attack
presented in this paper does not affect the security of the Hummingbird-2 in practice.

Organization: In Section 2, the specification of HB-2 is presented. Section 3 describes the principle
of our attack at a high level. In Section 4, we devise the DSA technique, discuss its properties and
how to use it to attack parts of HB-2. In Section 5, we show how to achieve the desired conditions. We
conclude the paper in Section 6.

Notations: Throughout the rest of this paper, we make use of the following notation for illustration.

– An hexadecimal number is indicated by a prefix “0x”, e.g., 0x10 = 16.
– Unless otherwise stated, “+” denotes the addition in F2, which can also be vector-wise, e.g.,

(a, b) + (c, d) = (a+ c, b+ d), where a, b, c, d ∈ Fm2 .
– “�” or “�” operator denote addition or subtraction modulo 216.
– The high-bit XOR differential is defined as H =0x8000, a nice property of which is, given x, x′, y ∈

F16
2 and x+ x′ = H, the following holds with probability 1,

(x� y) + (x′ � y) = H, (x� y) + (x′ � y) = H, (y � x) + (y � x′) = H.

That is to say, as pointed out in [36], the differential H behaves the same under “+” and “�/�”.

2 Specification of Hummingbird-2

Hummingbird-2 is a 16-bit block cipher with a 128-bit secret key K = (K1, ...,K8) ∈ (F16
2 , ...,F16

2 ) = F128
2

and a 64-bit public initialization vector IV = (IV1, ..., IV4) ∈ (F16
2 , ..., F16

2 ) = F64
2 . As opposed to

conventional block ciphers, it has an 128-bit internal state R = (R1, ..., R8) ∈ (F16
2 , ...,F16

2 ) = F128
2 ,

which participates in each encryption/decryption and is updated after that.

Building Block: WD16 : {0, 1}16 7→ {0, 1}16 is the fundamental block or round function of HB-2
encryption, which is defined as

WD16(x,Ka,Kb,Kc,Kd) = f(f(f(f(x+Ka) +Kb) +Kc) +Kd),

where x is the varying input, e.g., plaintext, intermediate state, Ka,Kb,Kc,Kd are four 16-bit secret
keys and the nonlinear function f is specified as

S(x) = S1(x1)||S2(x2)||S3(x3)||S4(x4), x = (x1, x2, x3, x4)

L(x) = x+ (x <<< 6) + (x <<< 10)

f(x) = L(S(x)).

Note that the four S-boxes, i.e., S1(xi) to S4(xi), are given in Table 2.
Besides, the inverse of WD16 is employed in the decryption, which is defined as

WD16−1(y,Kd,Kc,Kb,Ka) = f−1(f−1(f−1(f−1(y) +Kd) +Kc) +Kb) +Ka,
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Table 2. S-boxes in HummingBird-2

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1(x) 7 12 14 9 2 1 5 15 11 6 13 0 4 8 10 3 S−1
1 (x) 11 5 4 15 12 6 9 0 13 3 14 8 1 10 2 7

S2(x) 4 10 1 6 8 15 7 12 3 0 14 13 5 9 11 2 S−1
2 (x) 9 2 15 8 0 12 3 6 4 13 1 14 7 11 10 5

S3(x) 2 15 12 1 5 6 10 13 14 8 3 4 0 11 9 7 S−1
3 (x) 12 3 0 10 11 4 5 15 9 14 6 13 2 7 8 1

S4(x) 15 4 5 8 9 7 2 1 10 3 0 14 6 12 13 1 S−1
4 (x) 10 7 6 9 1 2 12 5 3 4 8 15 13 14 11 0

where y = WD16(x,Ka,Kb,Kc,Kd) and f−1 is the inverse of f . The four S-boxes used in f−1 are
also listed in Table 2.

Initialization: Hummingbird-2 is initialized before use. Let (R
(r)
1 , ...R

(r)
8 ) ∈ {0, 1}128 denote the in-

ternal state at the rth iteration in the initialization. The initialization can thus be formulated as, for
r = 0, 1, 2, 3,

t1 = WD16(R
(r)
1 � < r >,K1,K2,K3,K4) (1)

t2 = WD16(R
(r)
2 � t1,K5,K6,K7,K8) (2)

t3 = WD16(R
(r)
3 � t2,K1,K2,K3,K4) (3)

t4 = WD16(R
(r)
4 � t3,K5,K6,K7,K8) (4)

R
(r+1)
1 = (R

(r)
1 � t4)≪ 3 (5)

R
(r+1)
2 = (R

(r)
2 � t1)≪ 1 (6)

R
(r+1)
3 = (R

(r)
3 � t2)≪ 8 (7)

R
(r+1)
4 = (R

(r)
4 � t3)≪ 1 (8)

R
(r+1)
5 = R

(r)
5 +R

(r+1)
1 (9)

R
(r+1)
6 = R

(r)
6 +R

(r+1)
2 (10)

R
(r+1)
7 = R

(r)
7 +R

(r+1)
3 (11)

R
(r+1)
8 = R

(r)
8 +R

(r+1)
4 , (12)

where < r > represents a counter and (R
(0)
1 , ..., R

(0)
8 ) = (IV1, IV2, IV3, IV4, IV1, IV2, IV3, IV4).

Note that R5, R6, R7, R8 do not participate in the randomization, i.e., Eq. (6)-(9), but simply
XOR the historical statuses of R1, R2, R3, R4 respectively (behaving like XOR-MAC). This fact may
nullify their contribution to the overall cryptanalytic strength of HB-2 under a side-channel injection
attack – 64 injections and 64 invocations of HB-2 encryption are needed to recover (R5, R6, R7, R8).
Details are provided in Appendix A.
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Encryption: After the initialization, each encryption, by invoking the round function for four times,
transforms a single plaintext word Pi ∈ F16

2 , i = 1, 2, ..., to a corresponding ciphertext word Ci, i.e.,

t1 = WD16(R
(i)
1 � Pi,K1,K2,K3,K4) (13)

t2 = WD16(R
(i)
2 � t1,K5 +R

(i)
5 ,K6 +R

(i)
6 ,K7 +R

(i)
7 ,K8 +R

(i)
8 ) (14)

t3 = WD16(R
(i)
3 � t2,K1 +R

(i)
5 ,K2 +R

(i)
6 ,K3 +R

(i)
7 ,K4 +R

(i)
8 ) (15)

Ci = WD16(R
(i)
4 � t3,K5,K6,K7,K8)�R(i)

1 , (16)

where (R
(i)
1 , ..., R

(i)
8 ) ∈ F128

2 is the internal state during the ith encryption and it is updated, at the
end of the encryption, as follows:

R
(i+1)
1 = R

(i)
1 � t3 (17)

R
(i+1)
2 = R

(i)
2 � t1 (18)

R
(i+1)
3 = R

(i)
3 � t2 (19)

R
(i+1)
4 = R

(i)
4 � t1 �R

(i+1)
1 (20)

R
(i+1)
5 = R

(i)
5 +R

(i+1)
1 (21)

R
(i+1)
6 = R

(i)
6 +R

(i+1)
2 (22)

R
(i+1)
7 = R

(i)
7 +R

(i+1)
3 (23)

R
(i+1)
8 = R

(i)
8 +R

(i+1)
4 (24)

A shorthand of Eq. (13)-(24) is Ci = E(Pi,K) = E(Pi, (K1, ...,K8)).

Decryption: Decryption of a single word Ci ∈ F16
2 , i = 1, 2, ..., followed by the same initialization, is

u3 = WD16−1(Ci �R
(i)
1 ,K8,K7,K6,K5) (25)

u2 = WD16−1(u3 �R
(i)
4 ,K4 +R

(i)
8 ,K3 +R

(i)
7 ,K2 +R

(i)
6 ,K1 +R

(i)
5 ) (26)

u1 = WD16−1(u2 �R
(i)
3 ,K8 +R

(i)
8 ,K7 +R

(i)
7 ,K6 +R

(i)
6 ,K5 +R

(i)
5 ) (27)

Pi = WD16−1(u1 �R
(i)
2 ,K4,K3,K2,K1)�R(i)

1 . (28)

After this, the internal states are updated as in the encryption, i.e., using Eq. (17)-(24), where t3 =

u3 �R
(i)
4 , t2 = u2 �R

(i)
3 and t1 = u1 �R

(i)
2 .

3 Overview of Our Cryptanalytic Method on the Full HB-2

Adversary Model: We consider a scenario that two paralleled executions of encryptions are Ci =

E(Pi,K) and C ′i′ = E(P ′i′ ,K
′), where the internal states are (R

(i)
1 , ..., R

(i)
8 ) and (R′

(i′)
1 , ..., R′

(i′)
8 ) re-

spectively, the intermediate values are (t1, t2, t3) and (t′1, t
′
2, t
′
3) respectively, and K and K ′ are related.

(Similar for the decryption). The attacker follows the chosen plaintext/ciphertext model such that the
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attacker is free to choose plaintext Pi ∈ F16
2 and P ′i′ ∈ F16

2 , launch encryption without knowing the
related keys, and observe the corresponding Ci ∈ F16

2 and C ′i′ ∈ F16
2 ; or chooses Ci ∈ F16

2 and C ′i′ ∈ F16
2 ,

launches decryption without knowing the related keys, and observes the corresponding Pi ∈ F16
2 and

P ′i′ ∈ F 16
2 .

Attack In A Nutshell: Block ciphers are usually based on iterating a cryptographically weak function
sufficient number of times without disturbing, e.g., modifying, the outputs of intermediate rounds
except whitening them with round-keys. Our attack on the full HB-2 exploits the fact that the internal
states, which, instead of enhancing the overall cryptanalytic strength, give the attacker an opportunity
to create an input differential for the last invocation of WD16 (WD16−1 resp.) in the encryption
(decryption resp.) and to retrieve the corresponding distribution of the output differences (call the
collection of them a differential sequence) caused by the last invocation of the round function, which
is information-rich in (a subset of) (K5, ...,K8) ((K1, ...,K4) resp.). Henceforth, after obtaining such
a template sequence, the attacker, in an off-line environment, could search for the key bits associated,
which usually constitute a subset of entire key bits. In all, our full attack can be divided into two phases:
preparation phase as described in Section 5 and key recovery phase as described in Section 4.

Key Recovery Phase: In the key recovery phase, to remove the undesired interference introduced by
the varying internal states when consecutive words are encrypted/decrypted, our attack here targets
a specific encryption/decryption after the preparation, i.e., ith encryption/decryption for one HB-2
instance and i′th encryption/decryption for the other one. This is because given the key, IV, and the
plaintext chain fed are fixed, the ith internal state and the i′th internal state are fixed as well. Hence-
forth, we omit the superscript/subscript i and i′ of HB-2 variables for convenience when describing
operations in the key recovery phase.

Providing the preparation phase succeeds, the attacker accomplishes the following utilizing the
properties of the differential sequence analysis:

– Step 1. 36 bits of (K5, ...,K8) ∈ F64
2 are recovered using the differential sequence obtained from the

last invocation of WD16 in the encryption if a particular condition meets, as shown in Fig. 2.
– Step 2. 28 bits of (K4, ...,K1) ∈ F64

2 are recovered using the differential sequence obtained from the
last invocation of WD16 in the decryption if another particular condition meets.

– Step 3. the rest 64-bit key are exhaustively searched using either encryption or decryption.

To be specific, the condition needed to launch Step 1 in key recovery phase is:

Condition (A) : ∆K = (K1, ...,K8) + (K ′1, ...,K
′
8) = (H, 0, 0, 0, H, 0, 0, 0)

∆P = P + P ′ = H

∆R = (R1, ..., R8) + (R′1, ..., R
′
8) = (0, 0, 0, 0, H, 0, 0, 0).

The condition needed to launch Step 2 in key recovery phase is:

Condition (B) : ∆K = (K1, ...,K8) + (K ′1, ...,K
′
8) = (0, 0, 0, H, 0, 0, 0, H)

∆C = C + C ′ = H

∆R = (R1, ..., R8) + (R′1, ..., R
′
8) = (0, 0, 0, 0, 0, 0, 0, H).
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WD16

WD16

WD16

WD16

WD16

WD16

WD16

WD16

R5 +R′5 = H

R5 +R′5 = H

Differential Sequence

(K1,K2,K3,K4)

(K5,K6,K7,K8)

(K1,K2,K3,K4)

(K5,K6,K7,K8)

(K1 +H,K2,K3,K4)

(K5 +H,K6,K7,K8)

(K1 +H,K2,K3,K4)

(K5 +H,K6,K7,K8)

P P ′ = P +H

C C′

Fig. 2. Constructing Differential Sequence from Encryption with Condition (A)

To reach ∆P or ∆C in the two conditions above, the adversary model already allows the plaintex-
t/ciphertext to be freely chosen; to reach ∆K, two pair of related-keys have to be used in our attack;
and to reach ∆R, an extra phase, called preparation phase, has to be introduced.

Preparation Phase: As one may expected, preparation phase of our attack copes with the realization
of ∆Rs one at a time. To this end, one obvious way is to mount side-channel injection attack as shown
in Appendix D, which gives the attacker no time/memory penalty, i.e., the overall time/memory
complexity of the attack is dominated by that of the key recovery phase.

However, side-channel injection attack is not considered much in this work. Instead, we realize both
conditions in a probabilistic manner, i.e.,

– (R
(i)
1 , ..., R

(i)
8 ) and (R

′(i′)
1 , ..., R

′(i′)
8 ) can be “randomized” by feeding both HB-2 instances with

either different IVs and/or chains of random plaintext words. According to the birthday para-

dox, there is at least 0.5 chance that the randomized (R
(i)
1 , ..., R

(i)
8 ) ∈ F128

2 and the randomized

(R
′(i′)
1 , ..., R

′(i′)
8 ) ∈ F128

2 satisfies ∆R in condition (A) (condition (B) resp.) providing 264 attempts
are made.

– Note that, in the previous step, even if ∆R happens, the attacker is usually unaware. To determine,
we improve the mechanism above in light of another characteristic of HB-2, i.e., if condition (A)
(condition (B) resp.) holds at the current round, it also holds for the next round. Hence, the

differential sequences produced at the current round by ((R
(i)
1 , ..., R

(i)
8 ), (R

′(i′)
1 , ..., R

′(i′)
8 )) is exactly

the same as that produced at the next round by ((R
(i+1)
1 , ..., R

(i+1)
8 ), (R

′(i′+1)
1 , ..., R

′(i′+1)
8 )).

– If the above step succeeds, the attacker proceeds to the key recovery phase to attack.

In what follows, we detail each of the above phases and steps.

4 Differentials Sequence Analysis (DSA)

In this section, we present a novel technique called differential sequence analysis (DSA) rooted in
the differential cryptanalysis and the saturation attack. To be specific, we exhibiting its definitions,
properties, and applications to attack one round of the HB-2, that constitutes the key recovery phase
in our whole attack.
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4.1 Differential Cryptanalysis and Saturation Attack

Differential cryptanalysis is a method analyzing the effect of particular differences in plaintext pairs
on the differences of the resultant ciphertext pairs, which is based on a crucial observation that for
any particular input differential, not all the output differential are possible, and the possible ones may
not appear uniformly. In the original version of differential cryptanalysis [37], a unique differential is
exploited to recover the subkey used in the last round of a block cipher. This idea has been extended in
several ways: Biham and Shamir themselves further considered in [37] to use a trail of differentials to
attack; Lai in [27] connected differential cryptanalysis with derivative of polynomials and presented a
fine definition of higher order differentials; Knudsen [25] considered to use part of the input and output
that have differential characteristics for the analysis; Biham, Biryukov and Shamir proposed in [5] to
use differentials that happens with probability 0 as distinguishers; and recently, Blondeau and Gérard
demonstrated the multiple differential cryptanalysis in [6], where a set of input/output differentials are
considered together.

Saturation attack [23, 28, 8] exploits the fact that the output set is saturated, i.e., the outputs forms
the whole space of Fm2 , if the input set for the m-bit core injective function is saturated. Since the
saturation of the outputs is observable, this technique usually serves as a distinguisher for the attacker.

At a high level, our differential sequence analysis in this paper can be understood as a hybrid of
the conventional differential cryptanalysis and saturation attack, i.e., the set of the output differentials
(instead of the outputs themselves) with respect to a particular/fixed input differential and a saturated
set of inputs is considered. From another angle, due to the use of output differentials caused by a
saturated set of inputs, our attack is also a special case of multiple differential cryptanalysis [6].

4.2 (First-order) Differential Sequence

Assume we have a keyed permutation h(w,K) mapping w ∈ Fm2 to h(w,K) ∈ Fm2 with respect to the
secret key K, where m is a positive integer. Given a fixed θ ∈ Fm2 , the first-order differential is known
as

∆θ,K(w) = h(w,K) + h(w + θ,K).

The (first-order) differentials sequence of h at θ is basically one row in the differential distribution
table of h with respect to the input differential θ. To discuss its properties, we define it in a more
formal way.

Definition 1. The first-order differential sequence (DS) of h at θ is a non-binary sequence of 2m

entries, i.e.,
∆θ,K = (z0, z1, ..., z2m−1),

where zi denotes the multiplicity (that is, number of occurrences) of i in the set {w ∈ Fm2 |∆θ,K(w)},
i.e.,

zi = |{w ∈ Fm2 | ∆θ,K(w) = i}|.

Note that this definition can be extended to higher orders. In this paper, we constrained ourself to the
first-order case.

For example, the differential sequence is {0, 0, 0, 2, 0, 0, 2, 0, 0, 4, 2, 0, 4, 0, 0, 2} providing {w = F4
2|

∆θ,K(w), } = {12, 10, 3, 9, 6, 9, 15, 12, 12, 10, 3, 9, 6, 9, 15, 12} and θ = 0x08. The length of the differential
sequence is the sum of all its multiplicities (16 in this example).
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4.3 Properties of the Differential Sequence

The saturated set of inputs brings quite a lot interesting properties to the conventional differential
cryptanalysis. We list the core properties to attack HB-2 here.

Property 1. For a fixed θ ∈ Fm2 , ∆θ,K is constructed by evaluating and counting (h(w,K)+h(w+θ,K))
for every w in Fm2 regardless of the order of w ∈ Fm2 been accessed.

This property follows immediately from Definition 1 and is useful in the sense that even though
h(w,K) is an intermediate round in a cipher (thus, w is an intermediate value), we are able to capture
∆θ,K given that θ can be fixed in a particular way and w traverses the whole space of Fm2 . Stated in
another way, we have the property below.

Property 2. Let perm(w) be a permutation of w in Fm2 , i.e., perm(w) : Fm2 7→ Fm2 . For a fixed θ ∈ Fm2
and every w ∈ Fm2 , ∆θ,K can be obtained either by evaluating and counting (h(w,K) + h(w + θ,K)),
or by evaluating and counting (h(perm(w),K) + h(perm(w) + θ,K)).

In what follows, we use

[h(w,K) + h(w + θ,K)|w ∈ Fm2 ] = [h(perm(w),K) + h(perm(w) + θ,K)|w ∈ Fm2 ]

as a symbolic expression for Property 2, where [...] actually defines a multiset and θ is always a fixed
value in Fm2 for the rest of the paper. Henceforth, a straightforward extension of Property 2 can be
derived below.

Property 3. Let permi, i = 1, ..., n, be permutations in Fm2 . We have

[h(w,K) + h(w + θ,K)|w ∈ Fm2 ]

= [h(permn(...(perm1(w))),K) + h(permn(...(perm1(w))) + θ,K)|w ∈ Fm2 ].

Proof. permn(...(perm1(w))) can be written as perm(w) in Fm2 . �
As aforementioned, the obtained differential sequence is primarily used to search for the key bits

associated. Henceforth, we are especially interested in the correspondences between the differential
sequence and the K in the underlying function h(w,K), e.g., is the mapping from K to the differential
sequence injective or not? To this end, we start with a special case of Property 2.

Property 4. Providing K = Ka

⋃
Kb, Ka

⋂
Kb = ∅ and h(w,K) = h(w +Ka,Kb), we have

[h(w,K) + h(w + θ,K)|w ∈ Fm2 ] = [h((w +Ka),Kb) + h((w +Ka) + θ,Kb)|w ∈ Fm2 ].

Proof. By applying Property 2 and set perm(w) = w +Ka, this property follows immediately. �

From the property above, it is clear that all Ka ∈ F|Ka|
2 produces the same sequence while differ-

ent Kbs may produce different sequences. Therefore, this property in fact implies that the obtained
differential sequence of h at θ can be used to search for (a subset of) the key nonlinearly associated.
Besides, there exists a more complicated correspondence between the key and the differential sequence.
To discuss, we need to investigate the properties of sub-differential sequences.
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Property 5. Let Γ be a subset of Fm2 and perm is a permutation in Γ , we have

[h(w,K) + h(w + θ,K)|w ∈ Γ ] = [h(perm(w),K) + h(perm(w) + θ,K)|w ∈ Γ ].

Proof. This property follows from Definition 1, if and only if perm is a permutation in Γ , i.e., perm(w) :
Γ 7→ Γ . We call [h(w,K) + h(w + θ,K)|w ∈ Γ ] or [h(perm(w),K) + h(perm(w) + θ,K)|w ∈ Γ ] a
sub-differential sequence of ∆θ,K . �

Due to this, we can actually view a differential sequence obtained in Fm2 as a summation of several
sub-differential sequences obtained in the disjoint subspaces of Fm2 . This intuition can be written as
below.

Property 6. Let Γi, i = 1, ..., q, be q disjoint partitions of Fm2 , i.e.,

Γi ∩ Γj = ∅, 1 ≤ i 6= j ≤ q (29)

∪qi=1Γi = Fm2 (30)

and let the differential sequence obtained by [h(w,K) + h(w + θ,K)|w ∈ Γi] be ∆
{Γi}
θ,K , we thus have,

∆θ,K =

q∑
i=1

∆
{Γi}
θ,K .

Following this reasoning, Property 4 can also be extended as below, which tells us that a differential
sequence in Γ only corresponds to the key nonlinearly (in Γ ) associated.

Property 7. Providing K = Ka

⋃
Kb, Ka

⋂
Kb = ∅ and h(w,K) = h(w + Ka,Kb), we have, if Γ is a

subset of Fm2 and (w +Ka) is a permutation in Γ with respect to Ka,

[h(w,K) + h(w + θ,K)|w ∈ Γ ] = [h((w +Ka),Kb) + h((w +Ka) + θ,Kb)|w ∈ Γ ].

Therefore, if each of the sub-differential sequence stays the same with respect to the keys belonging
to a particular set, denoted as Φ0, the overall differential sequence remain the same under Φ0. We
formalize this correspondence as below.

Property 8. Let Φ0 = ∩qi=1{k|w+ k : Γi 7→ Γi, k, w ∈ Fm2 }, K = Ka

⋃
Kb, Ka

⋂
Kb = ∅ and h(w,K) =

h(w +Ka,Kb), we have

∆θ,K = ∆θ,κ, (31)

where κ = κa
⋃
κb, κa

⋂
κb = ∅, Ka, κa ∈ Φ0 and κb = Kb.

Proof. Let ∆
{Γi}
θ,K be the sub-differential sequence obtained by Property 7. Thanks to Property 6, we

have ∆θ,K =
∑q
i=1∆

{Γi}
θ,K and ∆θ,κ =

∑q
i=1∆

{Γi}
θ,κ . Thanks to Property 7, for each i , ∆

{Γi}
θ,K = ∆

{Γi}
θ,κ

providing Ka, κa ∈ Φ0 and κb = Kb.
As opposed, providing κb 6= Kb while Ka, κa ∈ Φ0, it is quite likely that ∆θ,K 6= ∆θ,κ since

∆
{Γi}
θ,K 6= ∆

{Γi}
θ,κ for each i.

�
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4.4 Differential Sequence Analysis against HB-2

In this subsection, we attack the last invocation of WD16 (WD16−1 resp.) in the encryption (decryp-
tion resp.) of HB-2 by exploiting the DSA as presented. To be specific, our Theorem 1 and Theorem
3 give answers to the question “how to obtain the differential sequences” while our Theorem 2 and
Theorem 4 exhibit “how to use the differentials sequences”. Since the HB-2 has a 16-bit block size, we
have m = 16 for the rest.

Attacking WD16 in Encryption: To show our idea in a concise way, we assume that R1 and R′1
are known (in fact, as they are identified by our algorithms in the preparation phase). In addition, let
h in Definition 1 be the last invocation of WD16, i.e., Eq. (16), in the encryption. We thus have the
following theorems.

Theorem 1. When condition (A) meets, the differential sequence of the last WD16 in the encryption
at θ = H can be extracted from executing the entire encryption.

Proof: First of all, when condition (A) holds, we have,

t′1 = WD16(R′1 � P
′,K ′1,K

′
2,K

′
3,K

′
4)

= WD16(R1 � (P +H), (K1 +H),K2,K3,K4) = t1

t′2 = WD16(R′2 � t
′
1,K

′
5 +R′5,K

′
6 +R′6,K

′
7 +R′7,K

′
8 +R′8)

= WD16(R2 � t1, (K5 +H) + (R5 +H),K6 +R6,K7 +R7,

K8 +R8) = t2

t′3 = WD16(R′3 � t
′
2,K

′
1 +R′5,K

′
2 +R′6,K

′
3 +R′7,K

′
4 +R′8)

= WD16(R3 � t2, (K1 +H) + (R5 +H),K2 +R6,K3 +R7,

K4 +R8) = t3

Next, ∆H,(K5,K6,K7,K8) = [z0, z1, ..., z216−1] can be extracted, where

zi = |{t3 ∈ F16
2 | (WD16(R4 � t3,K5,K6,K7,K8) +WD16(R′4 � t

′
3,K

′
5,K

′
6,K

′
7,K

′
8)) = i}|

= |{t3 ∈ F16
2 | (WD16(R4 � t3,K5,K6,K7,K8) +WD16(R4 � t3, (K5 +H),K6,K7,K8)) = i}|

= |{t3 ∈ F16
2 | (WD16(R4 � t3,K5,K6,K7,K8) +WD16((R4 +H)� t3,K5,K6,K7,K8)) = i}|

= |{P ∈ F16
2 , P

′ = P +H| (C �R1) + (C ′ �R1) = i}|.

The second last equality comes from the fact

(R4 � t3) + (K5 +H) = ((R4 +H)� t3) +K5,

which can be easily verified by the computer simulation.
Note that condition (A) is essentially a necessary condition for the following condition:

∆K = (K1, ...,K8) + (K ′1, ...,K
′
8) = (0, 0, 0, 0, 0, 0, 0, 0)

∆P = P1 + P ′i′ = 0

∆R = (R1, ..., R8) + (R′1, ..., R
′
8) = (0, 0, 0, H, 0, 0, 0, 0),
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such that both of them produce the same differential sequence of WD16. However, we use condition (A)
through the rest of the paper because it has an additional property that keeps the attacker informed
once ∆R happens (see Section 5.2). �

This theorem suggests that, after querying the encryption with every P ∈ F16
2 and obtaining the

resultant output differentials, the attacker could have a template sequence ∆H,(K5,K6,K7,K8) to search
for parts of (K5,K6,K7,K8). The next theorem discloses the correspondence between ∆H,(K5,K6,K7,K8)

and (K5,K6,K7,K8).

Theorem 2. Let ∆H,(K5,K6,K7,K8) be obtained from Theorem 1. For κ5 ∈ F16
2 and κ6 ∈ F16

2 , we have

∆H,(K5,K6,K7,K8) = ∆H,(κ5,κ6,K7,K8),

where K6 and κ6 belong to the same set Φi = Φ0 + i, 0 ≤ i ≤ 15, and Φ0, of cardinality 212, is tabulated
in Appendix C.

Proof: To prove, we discuss the correspondence between K5,K6,K7,K8 and the template sequence
in a respective way.
Correspondence Between K5 and DS: For the time being, let us consider h(w,K) = f(f(w+K5)+
K6) (a simplified WD16), where f : F16

2 7→ F16
2 (as described in Section 2) is an injective function, we

thus have, by letting w = R4 � t3 and θ = H,

[h(w,K) + h(w + θ,K)|w ∈ F16
2 ]

= [f(f(w +K5) +K6) + f(f(w +K5 + θ) +K6)|w ∈ F16
2 ]

= [f(f(perm1(w)) +K6) + f(f(perm1(w) + θ) +K6)|w ∈ F16
2 ]

It is clear from the context that perm1(w) = w+K5 is a permutation in Fm2 , and, due to Property
4, ∆H,(K5,K6,K7,K8) does not dependent on K5.
Correspondence Between K6 and DS: First of all, we define the following auxiliary variables for
convenience:

– λi, i = 1, ..., q, are q possible output differences of f , given the input difference is θ.
– Γi = {f(w)|f(w) + f(w + θ) = λi, w ∈ F16

2 }, i = 1, ..., q, are q disjoint partitions of F16
2 such that:

(1) Eq. (29) holds, otherwise there is a w ∈ (Γi ∩ Γj), 1 ≤ i 6= j ≤ q, such that f(w) + f(w + θ)
produces output differences λi and λj , λi 6= λj , which is impossible; (2) Eq. (30) holds, otherwise
there is a w ∈ (F16

2 −∪
q
i=1Γi), that produces an output difference /∈ {λ1, ..., λq}, which contradicts

our definition.
– Φ0 = ∩qi=1{k|f(w) + k : Γi 7→ Γi, k ∈ F16

2 }. Intuitively, Φ0 encompasses all possible keys, which
make f(w) + k a permutation in Γi, i = 1, ..., q.

Furthermore, let us consider two cases: (1) K6 ∈ Φ0; and (2) K6 ∈ a coset of Φ0.
For case (1), i.e., K6 ∈ Φ0, the above equations can be further written as, by setting perm2(w) =

f(perm1(w)) +K6,

[f(f(perm1(w)) +K6) + f(f(perm1(w) + θ) +K6)|w ∈ F16
2 ]

= [f(f(perm1(w)) +K6) + f(f(perm1(w)) + λi +K6)|w ∈ Γi] for i = 1, ..., q

= [f(f(perm1(w)) +K6) + f(f(perm1(w)) +K6 + λi)|w ∈ Γi] for i = 1, ..., q

= [f(perm2(w)) + f(perm2(w) + λi)|w ∈ Γi] for i = 1, ..., q

= [f(w) + f(w + λi)|w ∈ Γi] for i = 1, ..., q
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The above equation holds because of Property 8, e.g., for K6 ∈ Φ0, every [f(w) + f(w+λi)|w ∈ Γi]
produces the same sub-differential sequence. Therefore, the overall differential sequence stays the same
for everyK6 ∈ Φ0. Stating in another way, providingK6 and κ6 are both in Φ0,∆H,(K5,K6) = ∆H,(κ5,κ6).

The above derivation is further confirmed through extensive experiments, where we found

(λ1, ..., λ6) = (0x30cc, 0x6198, 0x9264, 0xa2a8, 0xc330, 0xf3fc),

(Γ1, ...Γ6), and Φ0 as tabulated in Appendix C, which is of cardinality 212.

In what follows, we prove case (2), i.e., the above equations are true for K6 ∈ Φi = Φ0 + i. This is
because, by letting K6 = .K6 + /K6 such that .K6 ∈ Φ0,

[f(f(perm1(w)) +K6) + f(f(perm1(w)) +K6 + λi)|w ∈ Γi] for i = 1, ..., q

= [f(f(perm1(w)) + .K6 + /K6) + f(f(perm1(w)) + .K6 + /K6 + λi)|w ∈ Γi] for i = 1, ..., q

= [f(perm3(w) + /K6) + f(perm3(w) + /K6 + λi)|w ∈ Γi] for i = 1, ..., q

= [f(w + /K6) + f(w + /K6 + λi)|w ∈ Γi] for i = 1, ..., q

The second last equation holds because of our proof of case (1) (by letting perm3(w) = f(perm1(w))+
.K6).

In addition, it is clear that:

– the sub-differential sequence [f(w + /K6) + f(w + /K6 + λi)|w ∈ Γi], is different from [f(w +
f(w + λi)|w ∈ Γi] as long as /K6 6= 0. So is the overall differential sequence with overwhelming
probability.

– for K6 = .K6 + /K6, κ6 = .κ6 + /κ6, K6 6= κ6, the sub-differential sequence [f(w+ /K6) + f(w+
/K6 + λi)|w ∈ Γi], is the same as [f(w + /κ6) + f(w + /κ6 + λi)|w ∈ Γi] as long as /K6 = /κ6.
This is due to the possibility that .K6, .κ6 ∈ Φ0, .K6 6= .κ6 could yield /K6 = /κ6.

From the accusation above and our extensive experiments, it can be concluded that the key space
of K6 ∈ F16

2 has been divided into 16 cosets, i.e., Φ0, ..., Φ15, and each is of cardinality 212.

Correspondence Between (K7,K8) and DS: We carry on all the notations above for K7 except
setting h(w,K) = f(f(f(f(w +K5) +K6) +K7) +K8). We found that, for K7, Φ0 is always a empty
set because too many λi divides F16

2 into numerous tiny subspaces Γi, for which there is no K7 could
make f(w) +K7 a permutation in every Γi, i = 1, ..., q. Same phenomenon happens to K8. In all, each
choice of (K7,K8) produces a different differential sequence, which is further confirmed empirically. �

Attacking WD16−1 in Decryption: Similar attack can be performed against the decryption. By
assuming R1 and R′1 are known and letting h in Definition 1 be the last invocation of WD16−1, i.e.,
Eq. (28), we have the following results for our attack.

Theorem 3. With the condition (B), the differential sequence of the last WD16−1 in the decryption
at θ = H can be extracted from executing the entire decryption.
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Proof: First of all, when condition (B) holds, we have,

u3 = WD16−1(C �R1,K8,K7,K6,K5)

= WD16−1((C +H)�R′1, (K8 +H),K ′7,K
′
6,K

′
5) = u′3

u2 = WD16−1(u3 �R4,K4 +R8,K3 +R7,K2 +R6,K1 +R5)

= WD16−1(u′3 �R
′
4, (K4 +H) + (R8 +H),K ′3 +R′7,K

′
2 +R′6,K

′
1 +R′5) = u′2

u1 = WD16−1(u2 �R3,K8 +R8,K7 +R7,K6 +R6,K5 +R5)

= WD16−1(u′2 �R
′
3, (K8 +H) + (R8 +H),K ′7 +R′7,K

′
6 +R′6,K

′
5 +R′5) = u′1

Next, ∆H,(K4,K3,K2,K1) = [z0, z1, ..., z216−1] can be extracted, where,

zi = |{u1 ∈ F16
2 | (WD16−1(u1 �R2,K4,K3,K2,K1) +WD16−1(u′1 �R

′
2,K

′
4,K

′
3,K

′
2,K

′
1)) = i}|

= |{u1 ∈ F16
2 | (WD16−1(u1 �R2,K4,K3,K2,K1) +WD16−1(u′1 �R

′
2,K4 +H,K3,K2,K1)) = i}|

= |{C ∈ F16
2 , C

′ = C +H| (P �R1) + (P ′ �R1) = i}|.

�
A similar theorem describes the correspondence between ∆H,(K4,K3,K2,K1) and (K4,K3,K2,K1).

Theorem 4. Let ∆H,(K4,K3,K2,K1) be obtained from Theorem 3. For κ1 ∈ F16
2 and κ4 ∈ F16

2 ,

∆H,(K4,K3,K2,K1) = ∆H,(κ4,K3,K2,κ1),

where K4 and κ4 belong to the same set Φi = Φ0+i, 0 ≤ i ≤ 212−1, and Φ0 = {0x0000, 0x0010, ..., 0x00f0}.

Proof: Similar as Theorem 2, except that we could easily observe from the experimental data that
Φ0 = {0x0000, 0x0010, 0x0020, ..., 0x00f0}. �

Visualization of Differential Sequences From HB-2: Here we provide several examples of the
differential sequences used in our experiments. Fig. 4 to Fig. 6 in Appendix B are the ones obtained
from the last invocation of WD16 in the encryption with IV = (0, 0, 0, 0) and different keys randomly
selected. Fig. 7 to Fig. 9 in Appendix B are the ones obtained from the last invocation of WD16−1

in the decryption with IV = (0, 0, 0, 0) and different keys randomly selected. All of the sequences are
substantially different from each other, which exhibits their correlations to the underlying keys in an
intuitive way.

4.5 Local Search in DSA

After the template sequence is captured, the attacker could, in an off-line environment, launches
h(w,K) = WD16(.) (h(w,K) = WD16−1(.) resp.) to search for parts of (K5,K6,K7,K8) ((K1,K2,K3,K4

resp.), which is called the local search in DSA. Through the local search, the attacker recovers 36-bit
(44-bit resp.) information regarding the key.

A naive way to search locally is to produce a complete local differential sequence from [h(w,K) +
h(w+H,K)|w ∈ F16

2 ] with a random K at first, comparing each entry of which with the corresponding
entry of the template sequence. The cost per key trial is 216 executions of h(w,K)s and 216 comparisons.
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The efficiency of this method can be substantially improved if the early-abort strategy [30] is
adapted, i.e., given the ith entry in the local differential sequence is greater than the ith entry in the
template sequence, one could assert that the trial key is incorrect and terminate the search in advance.
We present this improved local search algorithm below.

1: let TDS be the template sequence obtained
2: initiate the local differential sequence LDS as a list of 216 “0”s
3: for w from 0 to 216 − 1 do
4: randomly choose K
5: diff ← h(w +K) + h(w +H +K)
6: LDS[diff ]← LDS[diff ] + 1
7: if LDS[diff ] > TDS[diff ] then
8: return NULL
9: end if

10: end for
11: if LDS[w] = TDS[w] for w = 0, 1, ..., 216 − 1 then
12: return K
13: end if

The theoretical derivation of the time complexity of the above algorithm could be quite cumbersome.
Instead, we recorded the number of the for-loops that are actually executed, denoted as l, during the
search. Through repeated testings, we found that, in average, 1.640 < l < 1.660 for-loops are spent per
key trial for both local searches using WD16(.) and WD16−1(.). Thus, we conclude the cost per key
trial of our local search algorithm is 1.65 executions of (a pair of) h(w,K)s .

4.6 Differential Sequence Analysis (DSA) Against HB-2 and Its Time Complexity

We are ready to list out the steps performed by the attacker during the key recovery phase, as below.

1. When condition (A) holds, the attacker extracts the template sequence ∆H,(K5,K6,K7,K8) using
((C �R1) + (C ′ �R1)), where C and C ′ can be obtained by querying the encryption with P and
P ′ = P + H, and R1 and R′1 are obtained in the preparation phase. Then, the attacker locally
searches 36-bit of (K5,K6,K7,K8) using the proposed local search algorithm.

2. Similarly, utilizing the decryption, when condition (B) holds, the attacker extracts another tem-
plate sequence ∆H,(K4,K3,K2,K1) using (P � R1) + (P ′ � R1), and guesses to determine 44-bit of
(K4,K3,K2,K1) using the proposed local search algorithm.

3. After that, the attacker searches the remaining 48-bit of the key using 248 trial encryptions1.

The overall complexity of the above steps is

236 × 1.65︸ ︷︷ ︸
determine 36-bit of (K5, ...,K8)

+ 244 × 1.65︸ ︷︷ ︸
determine 44-bit of (K1, ...,K4)

+ 248︸︷︷︸
determine the rest

≈ 248.14,

where negligible memory is required by each steps.

1 In fact, 248 + 232 + 216 = 248.00002201 trial encryptions and three plaintext-ciphertext pairs are required.



XVII

5 A Probabilistic Realization of Conditions (A) and (B)

The attacks in the last section solely depends on the occurrences of conditions (A) and (B), to reach
∆Rs in which sounds unpractical at the first glance as the initialization of HB-2 makes the internal
states unpredictable. In this section, we show a probabilistic approach to realize these conditions –
when the internal states of two HB-2 instances are respectively random, there is a certain chance
that the attacker could get the desired differentials in the internal states. To this end, we study how to
randomize the internal states of HB-2 at first, and, how to determine whether the desired ∆Rs happen.

5.1 Randomize the Internal States

There are two ways for the adversary to affect the internal states of HB-2:

– Providing the key is fixed, it is suffice, from Eq. (1)-(12), that (IV1, ..., IV4) 7→ (R1, ..., R4) is
an injective mapping and so is (IV1, ..., IV4) 7→ (R5, ..., R8). Therefore, the attacker could easily
generate 264 (out of 2128) different internal states by choosing different IVs and launching the
initialization.

– For a fixed key and a particular IV, the attacker could choose plaintext P1 to feed HB-2 at first.
If a state transition graph is drawn, we can see that the starting state, i.e., R(1), transits to 216

neighboring states while each P1 ∈ F16
2 is encrypted. Next, if another encryption is performed, e.g.,

encrypting P2, each of these “neighboring states” again transits to another 216 states providing
P2 takes every value in F16

2 . By continuing this process, we would have all 2128 states covered in
this graph. Therefore, to produce a set of random internal states, i.e., {R(1), R(2), ...}, we could,
as shown in Fig. 3, feed the encryptions with a plaintext chain where Pi is selected uniformly at
random in F16

2 for i = 1, 2, .... Similarly, a ciphertext chain could be fed to the decryption oracle to
generate a set of random internal states as well. Note that feeding HB-2 encryption with a chain
of N random inputs is equivalent to perform an N -step 216-dimensional random walk in its state
transition graph. Therefore, |{R(1), R(2), ...}| ≈ N ifN � 2128 [15].

IV EK EK EK EK
...

Internal States R(1) R(2) R(3) R(4) ...

Plaintext Chain P1 P2 P3 P4
...

Fig. 3. Feeding HB-2 Encryption with a Plaintext Chain

Therefore, the algorithm below provides, to the later steps, the randomized internal states of t-
wo running HB-2 instances through an effort-saving way – one instance initializes a random IV and
encrypts one random plaintext, while the other one, besides initializes a random IV, encrypts N ran-
dom plaintexts consecutively. Since {R(1), R(2), ..., R(N)} is a set of random variables as analyzed,
{R(1) +R′(1), R(2) +R′(1), ..., R(N) +R′(1)} must also be a set of random variables.
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1: Let R(i) ⇐ E(Pi,K) be the internal state R(i) after encrypting P1, ..., Pi

2: Randomly choose IV ′ and P ′1, R′(1) ⇐ E(P ′1,K)
3: Randomly choose IV
4: for i from 1 to N do
5: Randomly choose Pi, R

(i) ⇐ E(Pi,K)
6: if R′(1) +R(i) = ∆R then
7: return “∆R happens”
8: end if
9: end for

Note that, currently, the given algorithm is only a skeleton for our attack, which is discussed in
more detail in the next subsections and the full-fledged version is given at last. Nevertheless, we can
already sense an interesting property from this skeleton algorithm.

Property 9. In the algorithm above, a certain ∆R happens with 0.5 probability when N = 264.

Proof. This property holds due to the birthday paradox. �

5.2 Determine while Guessing

To inform the attacker during the attempting, as long as condition (A) (condition (B) resp.) happens,
we use one unusual differential characteristic in the encryption (decryption resp.), as first pointed out
by HB-2’s designers, such that the differentials in the internal states, secret keys and the inputs can
be maintained and entered into the next round, i.e., for a positive integer i,

(∆Pi, ∆K,∆R
(i)) = (∆Pi+1, ∆K,∆R

(i+1)).

Therefore, the following theorem holds.

Theorem 5. Let ∆
(i′)
H,(K5,K6,K7,K8)

(∆
(i′)
H,(K4,K3,K2,K1)

resp.) be the differential sequence produced by the

two encryption instances (two decryption instances resp.) with internal states R(1) and R′(i
′) and let

∆
(i′+1)
H,(K5,K6,K7,K8)

(∆
(i′+1)
H,(K4,K3,K2,K1)

resp.) be the differential sequence produced by the two encryption

instances (two decryption instances resp.) with internal states R(2) and R′(i
′+1) (call ∆

(i′)
H,K and ∆

(i′+1)
H,K

neighboring template sequences). Therefore,

- If condition (A) happens during encryption, the adversary observes two identical neighboring tem-
plate sequences, i.e.,

∆
(i′)
H,(K5,K6,K7,K8)

= ∆
(i′+1)
H,(K5,K6,K7,K8)

;

otherwise, the above equation holds with negligible probability.
- If condition (B) happens during decryption, the adversary observes two identical neighboring tem-

plate sequences, i.e.,

∆
(i′)
H,(K4,K3,K2,K1)

= ∆
(i′+1)
H,(K4,K3,K2,K1)

;

otherwise, the above equation hold with negligible probability.
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Proof: It follows from Definition 1 and Property 1. �
Therefore, the above theorem can serve as an algorithm to determine the occurrences of condition

(A) or condition (B), i.e., it returns either (Success,∆
(i′)
H,K , R

(1)
1 , R

(2)
1 ) or (False,NULL,NULL,NULL)

to the key recovery phase. Unfortunately, in this algorithm, the correct template sequences can only

be extracted with the correct R
(1)
1 and R

(2)
1 due to Theorem 1 and Theorem 3. For instance, using the

encryption, the two neighboring sequences are

∆(i′) = (z
(i′)
0 , z

(i′)
1 , ..., z

(i′)
65535) (32)

∆(i′+1) = (z
(i′+1)
0 , z

(i′+1)
1 , ..., z

(i′+1)
65535 ) (33)

where

z
(i′)
j = |{P1 ∈ F16

2 , P
′
i′ = P1 +H| (C1 �R

(1)
1 ) + (C ′i′ �R

′(i′)
1 ) = j}| and

z
(i′+1)
j = |{P2 ∈ F16

2 , P
′
i′+1 = P2 +H| (C2 �R

(2)
1 ) + (C ′i′+1 �R

′(i′+1)
1 ) = j}|

Henceforth, it is true that by guessing R
(1)
1 and R

(2)
1 , the theorem/algorihtm above would cost 232

encryptions/decryptions per execution.
To improve its efficiency, we make use of the following fact: as the modulo addition is only first-

order correlation-immune, the two identical neighboring sequences obfuscated by modulo additions of
different R1s may have an apparent correlation, while two distinct neighboring sequences may not.
This intuition is further verified by our extensive experiments. In parallel with Eq. (32) and Eq. (33),
let us define the raw neighboring sequences as:

∆(i′) = (z
(i′)
0 , z

(i′)
1 , ..., z

(i′)
65535)

∆(i′+1) = (z
(i′+1)
0 , z

(i′+1)
1 , ..., z

(i′+1)
65535 )

where

z
(i′)
j = |{P1 ∈ F16

2 , P
′
i′ = P1 +H| C1 + C ′i′ = j}| and

z
(i′+1)
j = |{P2 ∈ F16

2 , P
′
i′+1 = P2 +H| C2 + C ′i′+1 = j}|.

We found that, for the identical neighboring sequences, the corresponding two raw neighboring
sequences always have more than 30000 (out of 65536) identical entries, i.e.,

Corr(∆(i′), ∆(i′+1)) = |{z(i
′)

j = z
(i′+1)
j , j = 0, 1, ..., 65535}| > 30000, iff ∆(i′) = ∆(i′+1),

where Corr(., .) is the non-normalized correlation.
On the contrary, for the distinct neighboring sequences, the corresponding two raw neighboring

sequences always have less than 19000 (out of 65536) identical entries, i.e.,

Corr(∆(i′), ∆(i′+1)) = |{z(i
′)

j = z
(i′+1)
j , j = 0, 1, ..., 65535}| < 19000, iff ∆(i′) 6= ∆(i′+1).

By treating the correlation of the raw neighboring sequences as a criterion, Theorem 5 is now able to
return whether ∆(i′) equals ∆(i′+1) with 216 time complexity. Once the identical neighboring sequences

are identified, the adversary is able to guess to recover R
(1)
1 and R

(2)
1 with 232 effort in time.
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5.3 Preparation Phase and Its Time Complexity

We recap the whole process in the preparation phase for the encryption as shown below, which is an
extension of the skeleton algorithm we shown before. Note that the preparation using the decryption
is similar and omitted here.

1: randomly choose IV ′ and P ′1, R′(1) ⇐ E(P ′1,K)
2: randomly choose IV
3: randomly choose a constant P ′2
4: for i from 1 to N = 264 do
5: randomly choose Pi, R

(i) ⇐ E(Pi,K)
6: generate ∆(i) using R′(1) and R(i)

7: R′(2) ⇐ E(P ′2,K)
8: R(i+1) ⇐ E(Pi+1,K) where Pi+1 = P ′2 +H
9: generate ∆(i+1) using R′(2) and R(i+1)

10: if Corr(∆(i),∆(i+1)) > 30000 then

11: guess to determine R
(1)
1 and R

(2)
1

12: recover ∆
(i′)
H,K from the raw neighboring sequences

13: return (Success,∆
(i′)
H,K , R

(1)
1 , R

(2)
1 ), keep current states and enter the key recovery phase

14: end if
15: decrypt using C′2 and Ci+1 to roll back HB-2’s states to R′(1) and R(i)

16: end for
17: return (False,NULL,NULL,NULL)

Using the encryption (decryption resp.) only, the attacker has 0.5 probability to reach condition (A)
(condition (B) resp.) with 264× 216 = 280 time complexity. After that, he is able to guess to determine

R
(1)
1 and R

(2)
1 with additional 232 effort in time. In all, the time complexity of the preparation phase is

264 × 216︸ ︷︷ ︸
test whether the condition happens

+ 232︸︷︷︸
guess to determine R1s

+ 216︸︷︷︸
recover the template seuqnece

≈ 280.

It is worthy to mention that to succeed with probability 1, the preparation phase requires 2128+16 =
2144 effort in time, which is slower than the exhaustive search.

6 Concluding Remarks

In this paper, we present a novel cryptanalytic technique called differential sequence analysis (DSA),
which is especially effective if the differential sequence reflecting parts of a cipher associated with
parts of the key can be obtained. In addition, we demonstrate the application of this technique, that
constitutes the key recovery of the lightweight block cipher Hummingbird-2 with 248.14 time complexity,
given particular conditions hold in its internal states, secret keys and the inputs. Furthermore, we
investigate how to reach these conditions in our preparation phase with 0.5 chance and 280 effort in
time. To the best of our knowledge, this is the first cryptanalytic result of the full Hummingbird-2.
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The attack presented against Hummingbird-2 is a special case of the general DSA, to build the
theoretic framework of which is part of our future work. In addition, it will be evaluated in the
recent future: (1) whether the generalized DSA provides even better results against Hummingbird-2
and other potentially vulnerable ciphers, especially the ones with small block size and with internal
states, e.g., stateful block ciphers [24]; (2) the possibility that the generalized DSA can work with other
cryptanalysis technologies, e.g., meet-in-the-middle.
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A Side-channel Injection Attack to Recover (R5, R6, R7, R8)

As can be seen from Eq. (6)-(9), R5, R6, R7, R8 do not participate in the randomization process but
simply record (by Xoring) the historical statuses of R1, R2, R3, R4 respectively. Therefore, following
steps allow a side-channel attacker, who is able to inject “1” to a certain bit of the register storing Rj ,
5 ≤ j ≤ 8, to recover (R5, R6, R7, R8):

1. The attacker encrypts with a known IV and the target key to get a plaintext/cipher pair (P,C),
where P ∈ F16

2 , C ∈ F16
2 ;

2. He resets HB-2 and initializes HB-2 with the same IV and key. At any time during this initialization,
he injects “1” to the qth bit, 0 ≤ q ≤ 15, of the register which stores R5. He then encrypts P and
gets C ′. If C = C ′ (which implies the injection does not change the internal states of HB-2), the
attacker in fact learns that the qth bit of R5 is 1; otherwise it is 0. He repeats this step for every
q in {0, 1, ..., 15} to recover R5;

3. Step (2) can be repeated to recover R6, R7 and R8;

The cost of this injection attack to recover (R5, R6, R7, R8) is 64 injections and 64 invocations of
HB-2 encryption. In addition, since the attacker has a large time window to perform the injection to
the qth bit of Rj (any time during the rth iteration of the initialization), this side-channel attack seems
quite practical.
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B Visualization of Differential Sequences

Fig. 4 to Fig. 6 are the ones obtained from the last invocation of WD16 in the encryption with
IV = (0, 0, 0, 0) and different keys randomly selected. Fig. 7 to Fig. 9 are the ones obtained from the
last invocation of WD16−1 in the decryption with IV = (0, 0, 0, 0) and different keys randomly selected.
All of the sequences looks substantially different from each other, which exhibits their correlations to
the underlying keys in an intuitive way.

Fig. 4. DS from Enc. using (K5,K6,K7,K8) = (0xf1e3,0x524a,0xb28a,0xc987)

Fig. 5. DS from Enc. using (K5,K6,K7,K8) = (0x7c9f,0x0784,0x1c96,0xbcb4)

Fig. 6. DS from Enc. using (K5,K6,K7,K8) = (0x6b03,0xcf0c,0x1ba2,0xdc27)
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Fig. 7. DS from Dec. using (K1,K2,K3,K4) = (0x5d67,0xd0ef,0x8cec,0xa33a)

Fig. 8. DS from Dec. using (K1,K2,K3,K4) = (0x6601,0x0bd8,0xa6fa,0xcede)

Fig. 9. DS from Dec. using (K1,K2,K3,K4) = (0x28dc,0xbde1,0x6e3d,0xa56d)
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C The Set Φ0

0x0 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 0x105 0x115 0x125 0x135 0x145
0x155 0x165 0x175 0x185 0x195 0x1a5 0x1b5 0x1c5 0x1d5 0x1e5 0x1f5 0x20a 0x21a 0x22a 0x23a 0x24a 0x25a 0x26a 0x27a 0x28a 0x29a
0x2aa 0x2ba 0x2ca 0x2da 0x2ea 0x2fa 0x30f 0x31f 0x32f 0x33f 0x34f 0x35f 0x36f 0x37f 0x38f 0x39f 0x3af 0x3bf 0x3cf 0x3df 0x3ef
0x3ff 0x401 0x411 0x421 0x431 0x441 0x451 0x461 0x471 0x481 0x491 0x4a1 0x4b1 0x4c1 0x4d1 0x4e1 0x4f1 0x504 0x514 0x524 0x534
0x544 0x554 0x564 0x574 0x584 0x594 0x5a4 0x5b4 0x5c4 0x5d4 0x5e4 0x5f4 0x60b 0x61b 0x62b 0x63b 0x64b 0x65b 0x66b 0x67b 0x68b
0x69b 0x6ab 0x6bb 0x6cb 0x6db 0x6eb 0x6fb 0x70e 0x71e 0x72e 0x73e 0x74e 0x75e 0x76e 0x77e 0x78e 0x79e 0x7ae 0x7be 0x7ce 0x7de
0x7ee 0x7fe 0x802 0x812 0x822 0x832 0x842 0x852 0x862 0x872 0x882 0x892 0x8a2 0x8b2 0x8c2 0x8d2 0x8e2 0x8f2 0x907 0x917 0x927
0x937 0x947 0x957 0x967 0x977 0x987 0x997 0x9a7 0x9b7 0x9c7 0x9d7 0x9e7 0x9f7 0xa08 0xa18 0xa28 0xa38 0xa48 0xa58 0xa68 0xa78
0xa88 0xa98 0xaa8 0xab8 0xac8 0xad8 0xae8 0xaf8 0xb0d 0xb1d 0xb2d 0xb3d 0xb4d 0xb5d 0xb6d 0xb7d 0xb8d 0xb9d 0xbad 0xbbd 0xbcd
0xbdd 0xbed 0xbfd 0xc03 0xc13 0xc23 0xc33 0xc43 0xc53 0xc63 0xc73 0xc83 0xc93 0xca3 0xcb3 0xcc3 0xcd3 0xce3 0xcf3 0xd06 0xd16
0xd26 0xd36 0xd46 0xd56 0xd66 0xd76 0xd86 0xd96 0xda6 0xdb6 0xdc6 0xdd6 0xde6 0xdf6 0xe09 0xe19 0xe29 0xe39 0xe49 0xe59 0xe69
0xe79 0xe89 0xe99 0xea9 0xeb9 0xec9 0xed9 0xee9 0xef9 0xf0c 0xf1c 0xf2c 0xf3c 0xf4c 0xf5c 0xf6c 0xf7c 0xf8c 0xf9c 0xfac 0xfbc
0xfcc 0xfdc 0xfec 0xffc 0x1001 0x1011 0x1021 0x1031 0x1041 0x1051 0x1061 0x1071 0x1081 0x1091 0x10a1 0x10b1 0x10c1 0x10d1 0x10e1 0x10f1 0x1104
0x1114 0x1124 0x1134 0x1144 0x1154 0x1164 0x1174 0x1184 0x1194 0x11a4 0x11b4 0x11c4 0x11d4 0x11e4 0x11f4 0x120b 0x121b 0x122b 0x123b 0x124b 0x125b
0x126b 0x127b 0x128b 0x129b 0x12ab 0x12bb 0x12cb 0x12db 0x12eb 0x12fb 0x130e 0x131e 0x132e 0x133e 0x134e 0x135e 0x136e 0x137e 0x138e 0x139e 0x13ae
0x13be 0x13ce 0x13de 0x13ee 0x13fe 0x1400 0x1410 0x1420 0x1430 0x1440 0x1450 0x1460 0x1470 0x1480 0x1490 0x14a0 0x14b0 0x14c0 0x14d0 0x14e0 0x14f0
0x1505 0x1515 0x1525 0x1535 0x1545 0x1555 0x1565 0x1575 0x1585 0x1595 0x15a5 0x15b5 0x15c5 0x15d5 0x15e5 0x15f5 0x160a 0x161a 0x162a 0x163a 0x164a
0x165a 0x166a 0x167a 0x168a 0x169a 0x16aa 0x16ba 0x16ca 0x16da 0x16ea 0x16fa 0x170f 0x171f 0x172f 0x173f 0x174f 0x175f 0x176f 0x177f 0x178f 0x179f
0x17af 0x17bf 0x17cf 0x17df 0x17ef 0x17ff 0x1803 0x1813 0x1823 0x1833 0x1843 0x1853 0x1863 0x1873 0x1883 0x1893 0x18a3 0x18b3 0x18c3 0x18d3 0x18e3
0x18f3 0x1906 0x1916 0x1926 0x1936 0x1946 0x1956 0x1966 0x1976 0x1986 0x1996 0x19a6 0x19b6 0x19c6 0x19d6 0x19e6 0x19f6 0x1a09 0x1a19 0x1a29 0x1a39
0x1a49 0x1a59 0x1a69 0x1a79 0x1a89 0x1a99 0x1aa9 0x1ab9 0x1ac9 0x1ad9 0x1ae9 0x1af9 0x1b0c 0x1b1c 0x1b2c 0x1b3c 0x1b4c 0x1b5c 0x1b6c 0x1b7c 0x1b8c
0x1b9c 0x1bac 0x1bbc 0x1bcc 0x1bdc 0x1bec 0x1bfc 0x1c02 0x1c12 0x1c22 0x1c32 0x1c42 0x1c52 0x1c62 0x1c72 0x1c82 0x1c92 0x1ca2 0x1cb2 0x1cc2 0x1cd2
0x1ce2 0x1cf2 0x1d07 0x1d17 0x1d27 0x1d37 0x1d47 0x1d57 0x1d67 0x1d77 0x1d87 0x1d97 0x1da7 0x1db7 0x1dc7 0x1dd7 0x1de7 0x1df7 0x1e08 0x1e18 0x1e28
0x1e38 0x1e48 0x1e58 0x1e68 0x1e78 0x1e88 0x1e98 0x1ea8 0x1eb8 0x1ec8 0x1ed8 0x1ee8 0x1ef8 0x1f0d 0x1f1d 0x1f2d 0x1f3d 0x1f4d 0x1f5d 0x1f6d 0x1f7d
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D Side-channel Injection Attack to Realize ∆R

As mentioned in the Proof of Theorem 1, condition (A) gives us the same differential sequence as the
following condition does,

∆K = (K1, ...,K8) + (K ′1, ...,K
′
8) = (0, 0, 0, 0, 0, 0, 0, 0)

∆P = P1 + P ′i′ = 0

∆R = (R1, ..., R8) + (R′1, ..., R
′
8) = (0, 0, 0, H, 0, 0, 0, 0),

Therefore, to create the difference between R4 and R′4 (or between f−1(R2�u1) and f−1(R′2�u
′
1)),

one obvious way is to start with two instances initialized with the same IVs and keys and then mount
side-channel injection attack, where the attacker simply injects H to the victim register, e.g., R4 or
f−1(R2�u1), of one instance any time before the execution of the last round of encryption/decryption.
Note that the preparation through injection gives the attacker no time/memory penalty, i.e., the overall
time/memory complexity of the attack is dominated by that of the key recovery phase.


