
A Cryptanalysis of HummingBird-2: The Differential
Sequence Analysis

Qi Chai and Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada
{q3chai, ggong}@uwaterloo.ca

Abstract. Hummingbird-2 is one recent design of lightweight block ciphers targeting constraint
devices, which not only enables a compact hardware implementation and ultra-low power con-
sumption but also meets the stringent response time as specified in ISO18000-6C.

In this paper, we present the first cryptanalytic result on the full version of this cipher using two
pairs of related keys. We discover that the differential sequences for the last invocation of the
round function can be computed by running the full cipher, due to which the search space for the
key can be reduced. Base upon this observation, we propose a probabilistic attack encompassing
two phases, preparation phase and key recovery phase. The preparation phase, requiring 280 effort
in time, aims to reach an internal state, with 0.5 success probability, that satisfies particular
conditions. In the key recovery phase, by attacking the last invocation of the round function of
the encryption (decryption resp.) using the proposed differential sequence analysis (DSA), we are
able to recover 36 bits (another 44 bits resp.) of the 128-bit key. In addition, the rest 48 bits of
the key can be exhaustively searched and the overall time complexity of the key recovery phase
is 248.14.

Note that the proposed attack, though exhibiting an interesting tradeoff between the success
probability and time complexity, is only of a theoretical interest at the moment and does not
affect the security of the Hummingbird-2 in practice.

Keywords: lightweight cryptography, differential cryptanalysis, Hummingbird encryption

1 Introduction

Passive RFID tags and other constraint computing devices are usually characterized by extremely tight
cost and power consumption requirements. The needs of cryptographic primitives on such devices have
been increasing with the growing pervasiveness and mass deployment of these devices. To this end,
considerable lightweight stream/block ciphers are proposed in recent years, targeting very small hard-
ware footprint and reduced power consumption. Typical examples are listed in Table 1. Meanwhile,
cryptanalysis of these lightweight primitives has received considerable attention due to a widely-accept
concern – the pursue of efficiency at the cost of reducing the security margin or applying innovative
but less well understood technologies lead lightweight candidates to be less durable relative to regu-
lar symmetric ciphers. This concern has been further confirmed by the successful cases of attacking
KeeLoq [33], Crypto-I [32], Atmel Cipher [22, 9], PRESENT [13, 11], KTANTAN [7, 3], PRINTCipher [2,
29], reduced KLEIN [1], A2U2 [12] and so on.

II

Table 1. Recent Design/Implementation of Lightweight Ciphers (ordered by gate equivalent (GE))

Key size[bits] Block size[bits] Area[GE] Throughput[Kb/s] Logic process[µm]

PRINTCipher-48 [26] 80 48 402 6.25 0.18
KTANTAN32 [14] 80 32 462 12.5 0.13
PRINTCipher-48 [26] 80 48 503 100 0.18
KTANTAN48 [14] 80 48 571 9.4 0.13
GOST [34] 256 64 651 24.24 0.18
Piccolo-80 [38] 80 64 683 14.8 0.13
KTANTAN64 [14] 80 64 684 8.4 0.13
LED-64 [21] 64 64 688 5.1 0.18
LED-128 [21] 128 64 700 3.4 0.18
PRINTCipher-96 [26] 160 96 726 3.13 0.18
Piccolo-128 [38] 128 64 758 12.1 0.13
KATAN32 [14] 80 32 802 12.5 0.13
KATAN48 [14] 80 48 916 9.4 0.13
PRINTCipher-96 [26] 160 96 967 100 0.18
KATAN64 [14] 80 64 1, 027 8.4 0.13
PRESENT [35] 80 64 1, 075 11.4 0.18
KLEIN-64 [20] 64 64 1, 981 N/A 0.18
KLEIN-80 [20] 80 64 2, 097 N/A 0.18
HummingBird-2 [17] 128 16 2,159 N/A 0.13
KLEIN-96 [20] 96 64 2, 213 N/A 0.18
AES [19] 128 128 3, 400 12.4 0.35

A Brief History of Hummingbird Cipher: Motivated by the design of the well-known Enigma
machine, the first generation of Hummingbird (call it HB-1) was proposed by the engineers in Revere
Security and was further analyzed and published in [16] as an ultra-lightweight cryptographic algorithm
targeting low-cost RFID tags, smart cards, and wireless sensor nodes to meet the stringent response
time and power consumption requirements. Although HB-1, with an innovative hybrid structure of
block cipher and stream cipher, was designed to provide 256-bit security, Saarinen, in FSE’11, showed
a chosen-IV and chosen-message attack [36] that can recover the full secret key with at most 264 off-line
computational effort under two related IVs. Recently, Revere Security published the second generation
of Hummingbird (call it Hummingbird-2 or HB-2) in [17], which inherits the design philosophy from
HB-1, e.g., it has a small block size of 16-bit to adapt the needs of encrypting short messages in RFID
applications and it retains the hybrid structure as a security compensation for the small block size.
High level differences between HB-1 and HB-2 are: (1) key size has been reduced to 128 bits to satisfy
the actual need for constrained devices; (2) size of the internal state has been increased from 80 bits to
128 bits; (3) the nonlinear keyed transformation in HB-2 has four invocations of the S-boxes, compared
to five in HB-1, to further increase the throughput.

In addition, it is claimed in the same paper that HB-2 can withstand differential, linear and algebraic
attacks and the four 4-bit S-Boxes in HB-2 belong to the optimal classes as discussed in [31]. Its
resistance to the side-channel cube attack is recently investigated in [18], where the author applied
cube attack to recover 48 bits of the secret key providing the attacker could access the internal states
of HB-2 during an early stage in the initialization. However, this attack is marginal since it only threats
HB-2 before the finishing of its initialization.

III

Our Contribution: By refining/improving our preliminary results in [10], we present, in this paper,
the first cryptanalytic result on the full version of this cipher using two pairs of related keys. Our attack
makes use of the internal state of such a cipher and our philosophy is general: (1) the outputs of the
encryption/decryption may leak information of the subkeys (under the differential cryptanalysis) as
long as the internal states of the cipher satisfy particular conditions; (2) due to the birthday paradox,
such a condition always happens with 1/2 probability providing 2L/2 attempts are made, where L (in
bit) is the size of the internal state. To be specific, we propose the following attack encompassing two
phases, a probabilistic preparation phase and a key recovery phase.

– To realize the two particular conditions regarding the internal states, the preparation phase spends
280 effort in time to achieve the succeed probability 0.5 (due to the birthday paradox). If succeeds,
one could proceed to the key recovery phase.

– The key recovery phase is basically an instance of a novel cryptanalytic technique – we call it
differential sequence analysis (DSA) – which can be seen as a hybrid of the conventional differential
cryptanalysis and saturation attack. After exhibiting DSA’s definitions and properties, we present
its applications in the attacking scenarios, i.e.,

– by using the encryption of HB-2, DSA recovers 36-bit (out of 128-bit) of the key, if condition
(A) (regarding HB-2’s secret key, input and internal state) holds.

– by using the decryption of HB-2, DSA recovers another recovers another 44-bit of the key, if
condition (B) (regarding HB-2’s secret key, input and internal state) holds.

– the rest 48-bit of the key can be exhaustively searched and the overall time complexity is 248.14.

Success Probability

Time Complexity [Calls of encryption]

0.5

280

1

2128

0.5

2127

An (unknown/nonexistent) ideal attack to succeed with constant effort

Our attack presented in this paper

(Trivial) exhaustive search in F127
2 for the key

(Trivial) exhaustive search in F128
2 for the key

The set of non-trivial attacks

Fig. 1. Tradeoff between Success Probability and Time Complexity when attacking HB-2 (In fact, since one
encryption only provides 16-bit entropy of the key, the exhaustive search needs a bit more than 2128 calls of the
encryption function following the “key testing” procedure as desired in [4], i.e., 2128 + 2112 + 296 + 280 + 264 +
248 + 232 + 216 ≈ 2128.000022 and 8 plaintext-ciphertext pairs to uniquely determine the key with probability 1.)

Note that our results in this paper exhibit an interesting tradeoff between the success probability
and time complexity for HB-2, as shown in Fig. 1, which is analog to the collision attack in the hash
function due to the birthday paradox. Stated in another way, to be successful with probability 0.5, our
attack is faster than the exhaustive search (which is the best known) by a factor of 250. Unfortunately,

IV

to succeed with probability 1, our preparation phase requiring more effort in time than the exhaustive
search, which makes the proposed method only of theoretical interests at the moment, i.e., the attack
presented in this paper does not affect the security of the Hummingbird-2 in practice.

Organization: In Section 2, the specification of HB-2 is presented. Section 3 describes the principle
of our attack at a high level. In Section 4, we devise the DSA technique, discuss its properties and
how to use it to attack parts of HB-2. In Section 5, we show how to achieve the desired conditions. We
conclude the paper in Section 6.

Notations: Throughout the rest of this paper, we make use of the following notation for illustration.

– An hexadecimal number is indicated by a prefix “0x”, e.g., 0x10 = 16.
– Unless otherwise stated, “+” denotes the addition in F2, which can also be vector-wise, e.g.,

(a, b) + (c, d) = (a+ c, b+ d), where a, b, c, d ∈ Fm2 .
– “�” or “�” operator denote addition or subtraction modulo 216.
– The high-bit XOR differential is defined as H =0x8000, a nice property of which is, given x, x′, y ∈

F16
2 and x+ x′ = H, the following holds with probability 1,

(x� y) + (x′ � y) = H, (x� y) + (x′ � y) = H, (y � x) + (y � x′) = H.

That is to say, as pointed out in [36], the differential H behaves the same under “+” and “�/�”.

2 Specification of Hummingbird-2

Hummingbird-2 is a 16-bit block cipher with a 128-bit secret key K = (K1, ...,K8) ∈ (F16
2 , ...,F16

2) = F128
2

and a 64-bit public initialization vector IV = (IV1, ..., IV4) ∈ (F16
2 , ..., F16

2) = F64
2 . As opposed to

conventional block ciphers, it has an 128-bit internal state R = (R1, ..., R8) ∈ (F16
2 , ...,F16

2) = F128
2 ,

which participates in each encryption/decryption and is updated after that.

Building Block: WD16 : {0, 1}16 7→ {0, 1}16 is the fundamental block or round function of HB-2
encryption, which is defined as

WD16(x,Ka,Kb,Kc,Kd) = f(f(f(f(x+Ka) +Kb) +Kc) +Kd),

where x is the varying input, e.g., plaintext, intermediate state, Ka,Kb,Kc,Kd are four 16-bit secret
keys and the nonlinear function f is specified as

S(x) = S1(x1)||S2(x2)||S3(x3)||S4(x4), x = (x1, x2, x3, x4)

L(x) = x+ (x <<< 6) + (x <<< 10)

f(x) = L(S(x)).

Note that the four S-boxes, i.e., S1(xi) to S4(xi), are given in Table 2.
Besides, the inverse of WD16 is employed in the decryption, which is defined as

WD16−1(y,Kd,Kc,Kb,Ka) = f−1(f−1(f−1(f−1(y) +Kd) +Kc) +Kb) +Ka,

V

Table 2. S-boxes in HummingBird-2

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1(x) 7 12 14 9 2 1 5 15 11 6 13 0 4 8 10 3 S−1
1 (x) 11 5 4 15 12 6 9 0 13 3 14 8 1 10 2 7

S2(x) 4 10 1 6 8 15 7 12 3 0 14 13 5 9 11 2 S−1
2 (x) 9 2 15 8 0 12 3 6 4 13 1 14 7 11 10 5

S3(x) 2 15 12 1 5 6 10 13 14 8 3 4 0 11 9 7 S−1
3 (x) 12 3 0 10 11 4 5 15 9 14 6 13 2 7 8 1

S4(x) 15 4 5 8 9 7 2 1 10 3 0 14 6 12 13 1 S−1
4 (x) 10 7 6 9 1 2 12 5 3 4 8 15 13 14 11 0

where y = WD16(x,Ka,Kb,Kc,Kd) and f−1 is the inverse of f . The four S-boxes used in f−1 are
also listed in Table 2.

Initialization: Hummingbird-2 is initialized before use. Let (R
(r)
1 , ...R

(r)
8) ∈ {0, 1}128 denote the in-

ternal state at the rth iteration in the initialization. The initialization can thus be formulated as, for
r = 0, 1, 2, 3,

t1 = WD16(R
(r)
1 � < r >,K1,K2,K3,K4) (1)

t2 = WD16(R
(r)
2 � t1,K5,K6,K7,K8) (2)

t3 = WD16(R
(r)
3 � t2,K1,K2,K3,K4) (3)

t4 = WD16(R
(r)
4 � t3,K5,K6,K7,K8) (4)

R
(r+1)
1 = (R

(r)
1 � t4)≪ 3 (5)

R
(r+1)
2 = (R

(r)
2 � t1)≪ 1 (6)

R
(r+1)
3 = (R

(r)
3 � t2)≪ 8 (7)

R
(r+1)
4 = (R

(r)
4 � t3)≪ 1 (8)

R
(r+1)
5 = R

(r)
5 +R

(r+1)
1 (9)

R
(r+1)
6 = R

(r)
6 +R

(r+1)
2 (10)

R
(r+1)
7 = R

(r)
7 +R

(r+1)
3 (11)

R
(r+1)
8 = R

(r)
8 +R

(r+1)
4 , (12)

where < r > represents a counter and (R
(0)
1 , ..., R

(0)
8) = (IV1, IV2, IV3, IV4, IV1, IV2, IV3, IV4).

Note that R5, R6, R7, R8 do not participate in the randomization, i.e., Eq. (6)-(9), but simply
XOR the historical statuses of R1, R2, R3, R4 respectively (behaving like XOR-MAC). This fact may
nullify their contribution to the overall cryptanalytic strength of HB-2 under a side-channel injection
attack – 64 injections and 64 invocations of HB-2 encryption are needed to recover (R5, R6, R7, R8).
Details are provided in Appendix A.

VI

Encryption: After the initialization, each encryption, by invoking the round function for four times,
transforms a single plaintext word Pi ∈ F16

2 , i = 1, 2, ..., to a corresponding ciphertext word Ci, i.e.,

t1 = WD16(R
(i)
1 � Pi,K1,K2,K3,K4) (13)

t2 = WD16(R
(i)
2 � t1,K5 +R

(i)
5 ,K6 +R

(i)
6 ,K7 +R

(i)
7 ,K8 +R

(i)
8) (14)

t3 = WD16(R
(i)
3 � t2,K1 +R

(i)
5 ,K2 +R

(i)
6 ,K3 +R

(i)
7 ,K4 +R

(i)
8) (15)

Ci = WD16(R
(i)
4 � t3,K5,K6,K7,K8)�R(i)

1 , (16)

where (R
(i)
1 , ..., R

(i)
8) ∈ F128

2 is the internal state during the ith encryption and it is updated, at the
end of the encryption, as follows:

R
(i+1)
1 = R

(i)
1 � t3 (17)

R
(i+1)
2 = R

(i)
2 � t1 (18)

R
(i+1)
3 = R

(i)
3 � t2 (19)

R
(i+1)
4 = R

(i)
4 � t1 �R

(i+1)
1 (20)

R
(i+1)
5 = R

(i)
5 +R

(i+1)
1 (21)

R
(i+1)
6 = R

(i)
6 +R

(i+1)
2 (22)

R
(i+1)
7 = R

(i)
7 +R

(i+1)
3 (23)

R
(i+1)
8 = R

(i)
8 +R

(i+1)
4 (24)

A shorthand of Eq. (13)-(24) is Ci = E(Pi,K) = E(Pi, (K1, ...,K8)).

Decryption: Decryption of a single word Ci ∈ F16
2 , i = 1, 2, ..., followed by the same initialization, is

u3 = WD16−1(Ci �R
(i)
1 ,K8,K7,K6,K5) (25)

u2 = WD16−1(u3 �R
(i)
4 ,K4 +R

(i)
8 ,K3 +R

(i)
7 ,K2 +R

(i)
6 ,K1 +R

(i)
5) (26)

u1 = WD16−1(u2 �R
(i)
3 ,K8 +R

(i)
8 ,K7 +R

(i)
7 ,K6 +R

(i)
6 ,K5 +R

(i)
5) (27)

Pi = WD16−1(u1 �R
(i)
2 ,K4,K3,K2,K1)�R(i)

1 . (28)

After this, the internal states are updated as in the encryption, i.e., using Eq. (17)-(24), where t3 =

u3 �R
(i)
4 , t2 = u2 �R

(i)
3 and t1 = u1 �R

(i)
2 .

3 Overview of Our Cryptanalytic Method on the Full HB-2

Adversary Model: We consider a scenario that two paralleled executions of encryptions are Ci =

E(Pi,K) and C ′i′ = E(P ′i′ ,K
′), where the internal states are (R

(i)
1 , ..., R

(i)
8) and (R′

(i′)
1 , ..., R′

(i′)
8) re-

spectively, the intermediate values are (t1, t2, t3) and (t′1, t
′
2, t
′
3) respectively, and K and K ′ are related.

(Similar for the decryption). The attacker follows the chosen plaintext/ciphertext model such that the

VII

attacker is free to choose plaintext Pi ∈ F16
2 and P ′i′ ∈ F16

2 , launch encryption without knowing the
related keys, and observe the corresponding Ci ∈ F16

2 and C ′i′ ∈ F16
2 ; or chooses Ci ∈ F16

2 and C ′i′ ∈ F16
2 ,

launches decryption without knowing the related keys, and observes the corresponding Pi ∈ F16
2 and

P ′i′ ∈ F 16
2 .

Attack In A Nutshell: Block ciphers are usually based on iterating a cryptographically weak function
sufficient number of times without disturbing, e.g., modifying, the outputs of intermediate rounds
except whitening them with round-keys. Our attack on the full HB-2 exploits the fact that the internal
states, which, instead of enhancing the overall cryptanalytic strength, give the attacker an opportunity
to create an input differential for the last invocation of WD16 (WD16−1 resp.) in the encryption
(decryption resp.) and to retrieve the corresponding distribution of the output differences (call the
collection of them a differential sequence) caused by the last invocation of the round function, which
is information-rich in (a subset of) (K5, ...,K8) ((K1, ...,K4) resp.). Henceforth, after obtaining such
a template sequence, the attacker, in an off-line environment, could search for the key bits associated,
which usually constitute a subset of entire key bits. In all, our full attack can be divided into two phases:
preparation phase as described in Section 5 and key recovery phase as described in Section 4.

Key Recovery Phase: In the key recovery phase, to remove the undesired interference introduced by
the varying internal states when consecutive words are encrypted/decrypted, our attack here targets
a specific encryption/decryption after the preparation, i.e., ith encryption/decryption for one HB-2
instance and i′th encryption/decryption for the other one. This is because given the key, IV, and the
plaintext chain fed are fixed, the ith internal state and the i′th internal state are fixed as well. Hence-
forth, we omit the superscript/subscript i and i′ of HB-2 variables for convenience when describing
operations in the key recovery phase.

Providing the preparation phase succeeds, the attacker accomplishes the following utilizing the
properties of the differential sequence analysis:

– Step 1. 36 bits of (K5, ...,K8) ∈ F64
2 are recovered using the differential sequence obtained from the

last invocation of WD16 in the encryption if a particular condition meets, as shown in Fig. 2.
– Step 2. 28 bits of (K4, ...,K1) ∈ F64

2 are recovered using the differential sequence obtained from the
last invocation of WD16 in the decryption if another particular condition meets.

– Step 3. the rest 64-bit key are exhaustively searched using either encryption or decryption.

To be specific, the condition needed to launch Step 1 in key recovery phase is:

Condition (A) : ∆K = (K1, ...,K8) + (K ′1, ...,K
′
8) = (H, 0, 0, 0, H, 0, 0, 0)

∆P = P + P ′ = H

∆R = (R1, ..., R8) + (R′1, ..., R
′
8) = (0, 0, 0, 0, H, 0, 0, 0).

The condition needed to launch Step 2 in key recovery phase is:

Condition (B) : ∆K = (K1, ...,K8) + (K ′1, ...,K
′
8) = (0, 0, 0, H, 0, 0, 0, H)

∆C = C + C ′ = H

∆R = (R1, ..., R8) + (R′1, ..., R
′
8) = (0, 0, 0, 0, 0, 0, 0, H).

VIII

WD16

WD16

WD16

WD16

WD16

WD16

WD16

WD16

R5 +R′5 = H

R5 +R′5 = H

Differential Sequence

(K1,K2,K3,K4)

(K5,K6,K7,K8)

(K1,K2,K3,K4)

(K5,K6,K7,K8)

(K1 +H,K2,K3,K4)

(K5 +H,K6,K7,K8)

(K1 +H,K2,K3,K4)

(K5 +H,K6,K7,K8)

P P ′ = P +H

C C′

Fig. 2. Constructing Differential Sequence from Encryption with Condition (A)

To reach ∆P or ∆C in the two conditions above, the adversary model already allows the plaintex-
t/ciphertext to be freely chosen; to reach ∆K, two pair of related-keys have to be used in our attack;
and to reach ∆R, an extra phase, called preparation phase, has to be introduced.

Preparation Phase: As one may expected, preparation phase of our attack copes with the realization
of ∆Rs one at a time. To this end, one obvious way is to mount side-channel injection attack as shown
in Appendix D, which gives the attacker no time/memory penalty, i.e., the overall time/memory
complexity of the attack is dominated by that of the key recovery phase.

However, side-channel injection attack is not considered much in this work. Instead, we realize both
conditions in a probabilistic manner, i.e.,

– (R
(i)
1 , ..., R

(i)
8) and (R

′(i′)
1 , ..., R

′(i′)
8) can be “randomized” by feeding both HB-2 instances with

either different IVs and/or chains of random plaintext words. According to the birthday para-

dox, there is at least 0.5 chance that the randomized (R
(i)
1 , ..., R

(i)
8) ∈ F128

2 and the randomized

(R
′(i′)
1 , ..., R

′(i′)
8) ∈ F128

2 satisfies ∆R in condition (A) (condition (B) resp.) providing 264 attempts
are made.

– Note that, in the previous step, even if ∆R happens, the attacker is usually unaware. To determine,
we improve the mechanism above in light of another characteristic of HB-2, i.e., if condition (A)
(condition (B) resp.) holds at the current round, it also holds for the next round. Hence, the

differential sequences produced at the current round by ((R
(i)
1 , ..., R

(i)
8), (R

′(i′)
1 , ..., R

′(i′)
8)) is exactly

the same as that produced at the next round by ((R
(i+1)
1 , ..., R

(i+1)
8), (R

′(i′+1)
1 , ..., R

′(i′+1)
8)).

– If the above step succeeds, the attacker proceeds to the key recovery phase to attack.

In what follows, we detail each of the above phases and steps.

4 Differentials Sequence Analysis (DSA)

In this section, we present a novel technique called differential sequence analysis (DSA) rooted in
the differential cryptanalysis and the saturation attack. To be specific, we exhibiting its definitions,
properties, and applications to attack one round of the HB-2, that constitutes the key recovery phase
in our whole attack.

IX

4.1 Differential Cryptanalysis and Saturation Attack

Differential cryptanalysis is a method analyzing the effect of particular differences in plaintext pairs
on the differences of the resultant ciphertext pairs, which is based on a crucial observation that for
any particular input differential, not all the output differential are possible, and the possible ones may
not appear uniformly. In the original version of differential cryptanalysis [37], a unique differential is
exploited to recover the subkey used in the last round of a block cipher. This idea has been extended in
several ways: Biham and Shamir themselves further considered in [37] to use a trail of differentials to
attack; Lai in [27] connected differential cryptanalysis with derivative of polynomials and presented a
fine definition of higher order differentials; Knudsen [25] considered to use part of the input and output
that have differential characteristics for the analysis; Biham, Biryukov and Shamir proposed in [5] to
use differentials that happens with probability 0 as distinguishers; and recently, Blondeau and Gérard
demonstrated the multiple differential cryptanalysis in [6], where a set of input/output differentials are
considered together.

Saturation attack [23, 28, 8] exploits the fact that the output set is saturated, i.e., the outputs forms
the whole space of Fm2 , if the input set for the m-bit core injective function is saturated. Since the
saturation of the outputs is observable, this technique usually serves as a distinguisher for the attacker.

At a high level, our differential sequence analysis in this paper can be understood as a hybrid of
the conventional differential cryptanalysis and saturation attack, i.e., the set of the output differentials
(instead of the outputs themselves) with respect to a particular/fixed input differential and a saturated
set of inputs is considered. From another angle, due to the use of output differentials caused by a
saturated set of inputs, our attack is also a special case of multiple differential cryptanalysis [6].

4.2 (First-order) Differential Sequence

Assume we have a keyed permutation h(w,K) mapping w ∈ Fm2 to h(w,K) ∈ Fm2 with respect to the
secret key K, where m is a positive integer. Given a fixed θ ∈ Fm2 , the first-order differential is known
as

∆θ,K(w) = h(w,K) + h(w + θ,K).

The (first-order) differentials sequence of h at θ is basically one row in the differential distribution
table of h with respect to the input differential θ. To discuss its properties, we define it in a more
formal way.

Definition 1. The first-order differential sequence (DS) of h at θ is a non-binary sequence of 2m

entries, i.e.,
∆θ,K = (z0, z1, ..., z2m−1),

where zi denotes the multiplicity (that is, number of occurrences) of i in the set {w ∈ Fm2 |∆θ,K(w)},
i.e.,

zi = |{w ∈ Fm2 | ∆θ,K(w) = i}|.

Note that this definition can be extended to higher orders. In this paper, we constrained ourself to the
first-order case.

For example, the differential sequence is {0, 0, 0, 2, 0, 0, 2, 0, 0, 4, 2, 0, 4, 0, 0, 2} providing {w = F4
2|

∆θ,K(w), } = {12, 10, 3, 9, 6, 9, 15, 12, 12, 10, 3, 9, 6, 9, 15, 12} and θ = 0x08. The length of the differential
sequence is the sum of all its multiplicities (16 in this example).

X

4.3 Properties of the Differential Sequence

The saturated set of inputs brings quite a lot interesting properties to the conventional differential
cryptanalysis. We list the core properties to attack HB-2 here.

Property 1. For a fixed θ ∈ Fm2 , ∆θ,K is constructed by evaluating and counting (h(w,K)+h(w+θ,K))
for every w in Fm2 regardless of the order of w ∈ Fm2 been accessed.

This property follows immediately from Definition 1 and is useful in the sense that even though
h(w,K) is an intermediate round in a cipher (thus, w is an intermediate value), we are able to capture
∆θ,K given that θ can be fixed in a particular way and w traverses the whole space of Fm2 . Stated in
another way, we have the property below.

Property 2. Let perm(w) be a permutation of w in Fm2 , i.e., perm(w) : Fm2 7→ Fm2 . For a fixed θ ∈ Fm2
and every w ∈ Fm2 , ∆θ,K can be obtained either by evaluating and counting (h(w,K) + h(w + θ,K)),
or by evaluating and counting (h(perm(w),K) + h(perm(w) + θ,K)).

In what follows, we use

[h(w,K) + h(w + θ,K)|w ∈ Fm2] = [h(perm(w),K) + h(perm(w) + θ,K)|w ∈ Fm2]

as a symbolic expression for Property 2, where [...] actually defines a multiset and θ is always a fixed
value in Fm2 for the rest of the paper. Henceforth, a straightforward extension of Property 2 can be
derived below.

Property 3. Let permi, i = 1, ..., n, be permutations in Fm2 . We have

[h(w,K) + h(w + θ,K)|w ∈ Fm2]

= [h(permn(...(perm1(w))),K) + h(permn(...(perm1(w))) + θ,K)|w ∈ Fm2].

Proof. permn(...(perm1(w))) can be written as perm(w) in Fm2 . �
As aforementioned, the obtained differential sequence is primarily used to search for the key bits

associated. Henceforth, we are especially interested in the correspondences between the differential
sequence and the K in the underlying function h(w,K), e.g., is the mapping from K to the differential
sequence injective or not? To this end, we start with a special case of Property 2.

Property 4. Providing K = Ka

⋃
Kb, Ka

⋂
Kb = ∅ and h(w,K) = h(w +Ka,Kb), we have

[h(w,K) + h(w + θ,K)|w ∈ Fm2] = [h((w +Ka),Kb) + h((w +Ka) + θ,Kb)|w ∈ Fm2].

Proof. By applying Property 2 and set perm(w) = w +Ka, this property follows immediately. �

From the property above, it is clear that all Ka ∈ F|Ka|
2 produces the same sequence while differ-

ent Kbs may produce different sequences. Therefore, this property in fact implies that the obtained
differential sequence of h at θ can be used to search for (a subset of) the key nonlinearly associated.
Besides, there exists a more complicated correspondence between the key and the differential sequence.
To discuss, we need to investigate the properties of sub-differential sequences.

XI

Property 5. Let Γ be a subset of Fm2 and perm is a permutation in Γ , we have

[h(w,K) + h(w + θ,K)|w ∈ Γ] = [h(perm(w),K) + h(perm(w) + θ,K)|w ∈ Γ].

Proof. This property follows from Definition 1, if and only if perm is a permutation in Γ , i.e., perm(w) :
Γ 7→ Γ . We call [h(w,K) + h(w + θ,K)|w ∈ Γ] or [h(perm(w),K) + h(perm(w) + θ,K)|w ∈ Γ] a
sub-differential sequence of ∆θ,K . �

Due to this, we can actually view a differential sequence obtained in Fm2 as a summation of several
sub-differential sequences obtained in the disjoint subspaces of Fm2 . This intuition can be written as
below.

Property 6. Let Γi, i = 1, ..., q, be q disjoint partitions of Fm2 , i.e.,

Γi ∩ Γj = ∅, 1 ≤ i 6= j ≤ q (29)

∪qi=1Γi = Fm2 (30)

and let the differential sequence obtained by [h(w,K) + h(w + θ,K)|w ∈ Γi] be ∆
{Γi}
θ,K , we thus have,

∆θ,K =

q∑
i=1

∆
{Γi}
θ,K .

Following this reasoning, Property 4 can also be extended as below, which tells us that a differential
sequence in Γ only corresponds to the key nonlinearly (in Γ) associated.

Property 7. Providing K = Ka

⋃
Kb, Ka

⋂
Kb = ∅ and h(w,K) = h(w + Ka,Kb), we have, if Γ is a

subset of Fm2 and (w +Ka) is a permutation in Γ with respect to Ka,

[h(w,K) + h(w + θ,K)|w ∈ Γ] = [h((w +Ka),Kb) + h((w +Ka) + θ,Kb)|w ∈ Γ].

Therefore, if each of the sub-differential sequence stays the same with respect to the keys belonging
to a particular set, denoted as Φ0, the overall differential sequence remain the same under Φ0. We
formalize this correspondence as below.

Property 8. Let Φ0 = ∩qi=1{k|w+ k : Γi 7→ Γi, k, w ∈ Fm2 }, K = Ka

⋃
Kb, Ka

⋂
Kb = ∅ and h(w,K) =

h(w +Ka,Kb), we have

∆θ,K = ∆θ,κ, (31)

where κ = κa
⋃
κb, κa

⋂
κb = ∅, Ka, κa ∈ Φ0 and κb = Kb.

Proof. Let ∆
{Γi}
θ,K be the sub-differential sequence obtained by Property 7. Thanks to Property 6, we

have ∆θ,K =
∑q
i=1∆

{Γi}
θ,K and ∆θ,κ =

∑q
i=1∆

{Γi}
θ,κ . Thanks to Property 7, for each i , ∆

{Γi}
θ,K = ∆

{Γi}
θ,κ

providing Ka, κa ∈ Φ0 and κb = Kb.
As opposed, providing κb 6= Kb while Ka, κa ∈ Φ0, it is quite likely that ∆θ,K 6= ∆θ,κ since

∆
{Γi}
θ,K 6= ∆

{Γi}
θ,κ for each i.

�

XII

4.4 Differential Sequence Analysis against HB-2

In this subsection, we attack the last invocation of WD16 (WD16−1 resp.) in the encryption (decryp-
tion resp.) of HB-2 by exploiting the DSA as presented. To be specific, our Theorem 1 and Theorem
3 give answers to the question “how to obtain the differential sequences” while our Theorem 2 and
Theorem 4 exhibit “how to use the differentials sequences”. Since the HB-2 has a 16-bit block size, we
have m = 16 for the rest.

Attacking WD16 in Encryption: To show our idea in a concise way, we assume that R1 and R′1
are known (in fact, as they are identified by our algorithms in the preparation phase). In addition, let
h in Definition 1 be the last invocation of WD16, i.e., Eq. (16), in the encryption. We thus have the
following theorems.

Theorem 1. When condition (A) meets, the differential sequence of the last WD16 in the encryption
at θ = H can be extracted from executing the entire encryption.

Proof: First of all, when condition (A) holds, we have,

t′1 = WD16(R′1 � P
′,K ′1,K

′
2,K

′
3,K

′
4)

= WD16(R1 � (P +H), (K1 +H),K2,K3,K4) = t1

t′2 = WD16(R′2 � t
′
1,K

′
5 +R′5,K

′
6 +R′6,K

′
7 +R′7,K

′
8 +R′8)

= WD16(R2 � t1, (K5 +H) + (R5 +H),K6 +R6,K7 +R7,

K8 +R8) = t2

t′3 = WD16(R′3 � t
′
2,K

′
1 +R′5,K

′
2 +R′6,K

′
3 +R′7,K

′
4 +R′8)

= WD16(R3 � t2, (K1 +H) + (R5 +H),K2 +R6,K3 +R7,

K4 +R8) = t3

Next, ∆H,(K5,K6,K7,K8) = [z0, z1, ..., z216−1] can be extracted, where

zi = |{t3 ∈ F16
2 | (WD16(R4 � t3,K5,K6,K7,K8) +WD16(R′4 � t

′
3,K

′
5,K

′
6,K

′
7,K

′
8)) = i}|

= |{t3 ∈ F16
2 | (WD16(R4 � t3,K5,K6,K7,K8) +WD16(R4 � t3, (K5 +H),K6,K7,K8)) = i}|

= |{t3 ∈ F16
2 | (WD16(R4 � t3,K5,K6,K7,K8) +WD16((R4 +H)� t3,K5,K6,K7,K8)) = i}|

= |{P ∈ F16
2 , P

′ = P +H| (C �R1) + (C ′ �R1) = i}|.

The second last equality comes from the fact

(R4 � t3) + (K5 +H) = ((R4 +H)� t3) +K5,

which can be easily verified by the computer simulation.
Note that condition (A) is essentially a necessary condition for the following condition:

∆K = (K1, ...,K8) + (K ′1, ...,K
′
8) = (0, 0, 0, 0, 0, 0, 0, 0)

∆P = P1 + P ′i′ = 0

∆R = (R1, ..., R8) + (R′1, ..., R
′
8) = (0, 0, 0, H, 0, 0, 0, 0),

XIII

such that both of them produce the same differential sequence of WD16. However, we use condition (A)
through the rest of the paper because it has an additional property that keeps the attacker informed
once ∆R happens (see Section 5.2). �

This theorem suggests that, after querying the encryption with every P ∈ F16
2 and obtaining the

resultant output differentials, the attacker could have a template sequence ∆H,(K5,K6,K7,K8) to search
for parts of (K5,K6,K7,K8). The next theorem discloses the correspondence between ∆H,(K5,K6,K7,K8)

and (K5,K6,K7,K8).

Theorem 2. Let ∆H,(K5,K6,K7,K8) be obtained from Theorem 1. For κ5 ∈ F16
2 and κ6 ∈ F16

2 , we have

∆H,(K5,K6,K7,K8) = ∆H,(κ5,κ6,K7,K8),

where K6 and κ6 belong to the same set Φi = Φ0 + i, 0 ≤ i ≤ 15, and Φ0, of cardinality 212, is tabulated
in Appendix C.

Proof: To prove, we discuss the correspondence between K5,K6,K7,K8 and the template sequence
in a respective way.
Correspondence Between K5 and DS: For the time being, let us consider h(w,K) = f(f(w+K5)+
K6) (a simplified WD16), where f : F16

2 7→ F16
2 (as described in Section 2) is an injective function, we

thus have, by letting w = R4 � t3 and θ = H,

[h(w,K) + h(w + θ,K)|w ∈ F16
2]

= [f(f(w +K5) +K6) + f(f(w +K5 + θ) +K6)|w ∈ F16
2]

= [f(f(perm1(w)) +K6) + f(f(perm1(w) + θ) +K6)|w ∈ F16
2]

It is clear from the context that perm1(w) = w+K5 is a permutation in Fm2 , and, due to Property
4, ∆H,(K5,K6,K7,K8) does not dependent on K5.
Correspondence Between K6 and DS: First of all, we define the following auxiliary variables for
convenience:

– λi, i = 1, ..., q, are q possible output differences of f , given the input difference is θ.
– Γi = {f(w)|f(w) + f(w + θ) = λi, w ∈ F16

2 }, i = 1, ..., q, are q disjoint partitions of F16
2 such that:

(1) Eq. (29) holds, otherwise there is a w ∈ (Γi ∩ Γj), 1 ≤ i 6= j ≤ q, such that f(w) + f(w + θ)
produces output differences λi and λj , λi 6= λj , which is impossible; (2) Eq. (30) holds, otherwise
there is a w ∈ (F16

2 −∪
q
i=1Γi), that produces an output difference /∈ {λ1, ..., λq}, which contradicts

our definition.
– Φ0 = ∩qi=1{k|f(w) + k : Γi 7→ Γi, k ∈ F16

2 }. Intuitively, Φ0 encompasses all possible keys, which
make f(w) + k a permutation in Γi, i = 1, ..., q.

Furthermore, let us consider two cases: (1) K6 ∈ Φ0; and (2) K6 ∈ a coset of Φ0.
For case (1), i.e., K6 ∈ Φ0, the above equations can be further written as, by setting perm2(w) =

f(perm1(w)) +K6,

[f(f(perm1(w)) +K6) + f(f(perm1(w) + θ) +K6)|w ∈ F16
2]

= [f(f(perm1(w)) +K6) + f(f(perm1(w)) + λi +K6)|w ∈ Γi] for i = 1, ..., q

= [f(f(perm1(w)) +K6) + f(f(perm1(w)) +K6 + λi)|w ∈ Γi] for i = 1, ..., q

= [f(perm2(w)) + f(perm2(w) + λi)|w ∈ Γi] for i = 1, ..., q

= [f(w) + f(w + λi)|w ∈ Γi] for i = 1, ..., q

XIV

The above equation holds because of Property 8, e.g., for K6 ∈ Φ0, every [f(w) + f(w+λi)|w ∈ Γi]
produces the same sub-differential sequence. Therefore, the overall differential sequence stays the same
for everyK6 ∈ Φ0. Stating in another way, providingK6 and κ6 are both in Φ0,∆H,(K5,K6) = ∆H,(κ5,κ6).

The above derivation is further confirmed through extensive experiments, where we found

(λ1, ..., λ6) = (0x30cc, 0x6198, 0x9264, 0xa2a8, 0xc330, 0xf3fc),

(Γ1, ...Γ6), and Φ0 as tabulated in Appendix C, which is of cardinality 212.

In what follows, we prove case (2), i.e., the above equations are true for K6 ∈ Φi = Φ0 + i. This is
because, by letting K6 = .K6 + /K6 such that .K6 ∈ Φ0,

[f(f(perm1(w)) +K6) + f(f(perm1(w)) +K6 + λi)|w ∈ Γi] for i = 1, ..., q

= [f(f(perm1(w)) + .K6 + /K6) + f(f(perm1(w)) + .K6 + /K6 + λi)|w ∈ Γi] for i = 1, ..., q

= [f(perm3(w) + /K6) + f(perm3(w) + /K6 + λi)|w ∈ Γi] for i = 1, ..., q

= [f(w + /K6) + f(w + /K6 + λi)|w ∈ Γi] for i = 1, ..., q

The second last equation holds because of our proof of case (1) (by letting perm3(w) = f(perm1(w))+
.K6).

In addition, it is clear that:

– the sub-differential sequence [f(w + /K6) + f(w + /K6 + λi)|w ∈ Γi], is different from [f(w +
f(w + λi)|w ∈ Γi] as long as /K6 6= 0. So is the overall differential sequence with overwhelming
probability.

– for K6 = .K6 + /K6, κ6 = .κ6 + /κ6, K6 6= κ6, the sub-differential sequence [f(w+ /K6) + f(w+
/K6 + λi)|w ∈ Γi], is the same as [f(w + /κ6) + f(w + /κ6 + λi)|w ∈ Γi] as long as /K6 = /κ6.
This is due to the possibility that .K6, .κ6 ∈ Φ0, .K6 6= .κ6 could yield /K6 = /κ6.

From the accusation above and our extensive experiments, it can be concluded that the key space
of K6 ∈ F16

2 has been divided into 16 cosets, i.e., Φ0, ..., Φ15, and each is of cardinality 212.

Correspondence Between (K7,K8) and DS: We carry on all the notations above for K7 except
setting h(w,K) = f(f(f(f(w +K5) +K6) +K7) +K8). We found that, for K7, Φ0 is always a empty
set because too many λi divides F16

2 into numerous tiny subspaces Γi, for which there is no K7 could
make f(w) +K7 a permutation in every Γi, i = 1, ..., q. Same phenomenon happens to K8. In all, each
choice of (K7,K8) produces a different differential sequence, which is further confirmed empirically. �

Attacking WD16−1 in Decryption: Similar attack can be performed against the decryption. By
assuming R1 and R′1 are known and letting h in Definition 1 be the last invocation of WD16−1, i.e.,
Eq. (28), we have the following results for our attack.

Theorem 3. With the condition (B), the differential sequence of the last WD16−1 in the decryption
at θ = H can be extracted from executing the entire decryption.

XV

Proof: First of all, when condition (B) holds, we have,

u3 = WD16−1(C �R1,K8,K7,K6,K5)

= WD16−1((C +H)�R′1, (K8 +H),K ′7,K
′
6,K

′
5) = u′3

u2 = WD16−1(u3 �R4,K4 +R8,K3 +R7,K2 +R6,K1 +R5)

= WD16−1(u′3 �R
′
4, (K4 +H) + (R8 +H),K ′3 +R′7,K

′
2 +R′6,K

′
1 +R′5) = u′2

u1 = WD16−1(u2 �R3,K8 +R8,K7 +R7,K6 +R6,K5 +R5)

= WD16−1(u′2 �R
′
3, (K8 +H) + (R8 +H),K ′7 +R′7,K

′
6 +R′6,K

′
5 +R′5) = u′1

Next, ∆H,(K4,K3,K2,K1) = [z0, z1, ..., z216−1] can be extracted, where,

zi = |{u1 ∈ F16
2 | (WD16−1(u1 �R2,K4,K3,K2,K1) +WD16−1(u′1 �R

′
2,K

′
4,K

′
3,K

′
2,K

′
1)) = i}|

= |{u1 ∈ F16
2 | (WD16−1(u1 �R2,K4,K3,K2,K1) +WD16−1(u′1 �R

′
2,K4 +H,K3,K2,K1)) = i}|

= |{C ∈ F16
2 , C

′ = C +H| (P �R1) + (P ′ �R1) = i}|.

�
A similar theorem describes the correspondence between ∆H,(K4,K3,K2,K1) and (K4,K3,K2,K1).

Theorem 4. Let ∆H,(K4,K3,K2,K1) be obtained from Theorem 3. For κ1 ∈ F16
2 and κ4 ∈ F16

2 ,

∆H,(K4,K3,K2,K1) = ∆H,(κ4,K3,K2,κ1),

where K4 and κ4 belong to the same set Φi = Φ0+i, 0 ≤ i ≤ 212−1, and Φ0 = {0x0000, 0x0010, ..., 0x00f0}.

Proof: Similar as Theorem 2, except that we could easily observe from the experimental data that
Φ0 = {0x0000, 0x0010, 0x0020, ..., 0x00f0}. �

Visualization of Differential Sequences From HB-2: Here we provide several examples of the
differential sequences used in our experiments. Fig. 4 to Fig. 6 in Appendix B are the ones obtained
from the last invocation of WD16 in the encryption with IV = (0, 0, 0, 0) and different keys randomly
selected. Fig. 7 to Fig. 9 in Appendix B are the ones obtained from the last invocation of WD16−1

in the decryption with IV = (0, 0, 0, 0) and different keys randomly selected. All of the sequences are
substantially different from each other, which exhibits their correlations to the underlying keys in an
intuitive way.

4.5 Local Search in DSA

After the template sequence is captured, the attacker could, in an off-line environment, launches
h(w,K) = WD16(.) (h(w,K) = WD16−1(.) resp.) to search for parts of (K5,K6,K7,K8) ((K1,K2,K3,K4

resp.), which is called the local search in DSA. Through the local search, the attacker recovers 36-bit
(44-bit resp.) information regarding the key.

A naive way to search locally is to produce a complete local differential sequence from [h(w,K) +
h(w+H,K)|w ∈ F16

2] with a random K at first, comparing each entry of which with the corresponding
entry of the template sequence. The cost per key trial is 216 executions of h(w,K)s and 216 comparisons.

XVI

The efficiency of this method can be substantially improved if the early-abort strategy [30] is
adapted, i.e., given the ith entry in the local differential sequence is greater than the ith entry in the
template sequence, one could assert that the trial key is incorrect and terminate the search in advance.
We present this improved local search algorithm below.

1: let TDS be the template sequence obtained
2: initiate the local differential sequence LDS as a list of 216 “0”s
3: for w from 0 to 216 − 1 do
4: randomly choose K
5: diff ← h(w +K) + h(w +H +K)
6: LDS[diff]← LDS[diff] + 1
7: if LDS[diff] > TDS[diff] then
8: return NULL
9: end if

10: end for
11: if LDS[w] = TDS[w] for w = 0, 1, ..., 216 − 1 then
12: return K
13: end if

The theoretical derivation of the time complexity of the above algorithm could be quite cumbersome.
Instead, we recorded the number of the for-loops that are actually executed, denoted as l, during the
search. Through repeated testings, we found that, in average, 1.640 < l < 1.660 for-loops are spent per
key trial for both local searches using WD16(.) and WD16−1(.). Thus, we conclude the cost per key
trial of our local search algorithm is 1.65 executions of (a pair of) h(w,K)s .

4.6 Differential Sequence Analysis (DSA) Against HB-2 and Its Time Complexity

We are ready to list out the steps performed by the attacker during the key recovery phase, as below.

1. When condition (A) holds, the attacker extracts the template sequence ∆H,(K5,K6,K7,K8) using
((C �R1) + (C ′ �R1)), where C and C ′ can be obtained by querying the encryption with P and
P ′ = P + H, and R1 and R′1 are obtained in the preparation phase. Then, the attacker locally
searches 36-bit of (K5,K6,K7,K8) using the proposed local search algorithm.

2. Similarly, utilizing the decryption, when condition (B) holds, the attacker extracts another tem-
plate sequence ∆H,(K4,K3,K2,K1) using (P � R1) + (P ′ � R1), and guesses to determine 44-bit of
(K4,K3,K2,K1) using the proposed local search algorithm.

3. After that, the attacker searches the remaining 48-bit of the key using 248 trial encryptions1.

The overall complexity of the above steps is

236 × 1.65︸ ︷︷ ︸
determine 36-bit of (K5, ...,K8)

+ 244 × 1.65︸ ︷︷ ︸
determine 44-bit of (K1, ...,K4)

+ 248︸︷︷︸
determine the rest

≈ 248.14,

where negligible memory is required by each steps.

1 In fact, 248 + 232 + 216 = 248.00002201 trial encryptions and three plaintext-ciphertext pairs are required.

XVII

5 A Probabilistic Realization of Conditions (A) and (B)

The attacks in the last section solely depends on the occurrences of conditions (A) and (B), to reach
∆Rs in which sounds unpractical at the first glance as the initialization of HB-2 makes the internal
states unpredictable. In this section, we show a probabilistic approach to realize these conditions –
when the internal states of two HB-2 instances are respectively random, there is a certain chance
that the attacker could get the desired differentials in the internal states. To this end, we study how to
randomize the internal states of HB-2 at first, and, how to determine whether the desired ∆Rs happen.

5.1 Randomize the Internal States

There are two ways for the adversary to affect the internal states of HB-2:

– Providing the key is fixed, it is suffice, from Eq. (1)-(12), that (IV1, ..., IV4) 7→ (R1, ..., R4) is
an injective mapping and so is (IV1, ..., IV4) 7→ (R5, ..., R8). Therefore, the attacker could easily
generate 264 (out of 2128) different internal states by choosing different IVs and launching the
initialization.

– For a fixed key and a particular IV, the attacker could choose plaintext P1 to feed HB-2 at first.
If a state transition graph is drawn, we can see that the starting state, i.e., R(1), transits to 216

neighboring states while each P1 ∈ F16
2 is encrypted. Next, if another encryption is performed, e.g.,

encrypting P2, each of these “neighboring states” again transits to another 216 states providing
P2 takes every value in F16

2 . By continuing this process, we would have all 2128 states covered in
this graph. Therefore, to produce a set of random internal states, i.e., {R(1), R(2), ...}, we could,
as shown in Fig. 3, feed the encryptions with a plaintext chain where Pi is selected uniformly at
random in F16

2 for i = 1, 2, Similarly, a ciphertext chain could be fed to the decryption oracle to
generate a set of random internal states as well. Note that feeding HB-2 encryption with a chain
of N random inputs is equivalent to perform an N -step 216-dimensional random walk in its state
transition graph. Therefore, |{R(1), R(2), ...}| ≈ N ifN � 2128 [15].

IV EK EK EK EK
...

Internal States R(1) R(2) R(3) R(4) ...

Plaintext Chain P1 P2 P3 P4
...

Fig. 3. Feeding HB-2 Encryption with a Plaintext Chain

Therefore, the algorithm below provides, to the later steps, the randomized internal states of t-
wo running HB-2 instances through an effort-saving way – one instance initializes a random IV and
encrypts one random plaintext, while the other one, besides initializes a random IV, encrypts N ran-
dom plaintexts consecutively. Since {R(1), R(2), ..., R(N)} is a set of random variables as analyzed,
{R(1) +R′(1), R(2) +R′(1), ..., R(N) +R′(1)} must also be a set of random variables.

XVIII

1: Let R(i) ⇐ E(Pi,K) be the internal state R(i) after encrypting P1, ..., Pi

2: Randomly choose IV ′ and P ′1, R′(1) ⇐ E(P ′1,K)
3: Randomly choose IV
4: for i from 1 to N do
5: Randomly choose Pi, R

(i) ⇐ E(Pi,K)
6: if R′(1) +R(i) = ∆R then
7: return “∆R happens”
8: end if
9: end for

Note that, currently, the given algorithm is only a skeleton for our attack, which is discussed in
more detail in the next subsections and the full-fledged version is given at last. Nevertheless, we can
already sense an interesting property from this skeleton algorithm.

Property 9. In the algorithm above, a certain ∆R happens with 0.5 probability when N = 264.

Proof. This property holds due to the birthday paradox. �

5.2 Determine while Guessing

To inform the attacker during the attempting, as long as condition (A) (condition (B) resp.) happens,
we use one unusual differential characteristic in the encryption (decryption resp.), as first pointed out
by HB-2’s designers, such that the differentials in the internal states, secret keys and the inputs can
be maintained and entered into the next round, i.e., for a positive integer i,

(∆Pi, ∆K,∆R
(i)) = (∆Pi+1, ∆K,∆R

(i+1)).

Therefore, the following theorem holds.

Theorem 5. Let ∆
(i′)
H,(K5,K6,K7,K8)

(∆
(i′)
H,(K4,K3,K2,K1)

resp.) be the differential sequence produced by the

two encryption instances (two decryption instances resp.) with internal states R(1) and R′(i
′) and let

∆
(i′+1)
H,(K5,K6,K7,K8)

(∆
(i′+1)
H,(K4,K3,K2,K1)

resp.) be the differential sequence produced by the two encryption

instances (two decryption instances resp.) with internal states R(2) and R′(i
′+1) (call ∆

(i′)
H,K and ∆

(i′+1)
H,K

neighboring template sequences). Therefore,

- If condition (A) happens during encryption, the adversary observes two identical neighboring tem-
plate sequences, i.e.,

∆
(i′)
H,(K5,K6,K7,K8)

= ∆
(i′+1)
H,(K5,K6,K7,K8)

;

otherwise, the above equation holds with negligible probability.
- If condition (B) happens during decryption, the adversary observes two identical neighboring tem-

plate sequences, i.e.,

∆
(i′)
H,(K4,K3,K2,K1)

= ∆
(i′+1)
H,(K4,K3,K2,K1)

;

otherwise, the above equation hold with negligible probability.

XIX

Proof: It follows from Definition 1 and Property 1. �
Therefore, the above theorem can serve as an algorithm to determine the occurrences of condition

(A) or condition (B), i.e., it returns either (Success,∆
(i′)
H,K , R

(1)
1 , R

(2)
1) or (False,NULL,NULL,NULL)

to the key recovery phase. Unfortunately, in this algorithm, the correct template sequences can only

be extracted with the correct R
(1)
1 and R

(2)
1 due to Theorem 1 and Theorem 3. For instance, using the

encryption, the two neighboring sequences are

∆(i′) = (z
(i′)
0 , z

(i′)
1 , ..., z

(i′)
65535) (32)

∆(i′+1) = (z
(i′+1)
0 , z

(i′+1)
1 , ..., z

(i′+1)
65535) (33)

where

z
(i′)
j = |{P1 ∈ F16

2 , P
′
i′ = P1 +H| (C1 �R

(1)
1) + (C ′i′ �R

′(i′)
1) = j}| and

z
(i′+1)
j = |{P2 ∈ F16

2 , P
′
i′+1 = P2 +H| (C2 �R

(2)
1) + (C ′i′+1 �R

′(i′+1)
1) = j}|

Henceforth, it is true that by guessing R
(1)
1 and R

(2)
1 , the theorem/algorihtm above would cost 232

encryptions/decryptions per execution.
To improve its efficiency, we make use of the following fact: as the modulo addition is only first-

order correlation-immune, the two identical neighboring sequences obfuscated by modulo additions of
different R1s may have an apparent correlation, while two distinct neighboring sequences may not.
This intuition is further verified by our extensive experiments. In parallel with Eq. (32) and Eq. (33),
let us define the raw neighboring sequences as:

∆(i′) = (z
(i′)
0 , z

(i′)
1 , ..., z

(i′)
65535)

∆(i′+1) = (z
(i′+1)
0 , z

(i′+1)
1 , ..., z

(i′+1)
65535)

where

z
(i′)
j = |{P1 ∈ F16

2 , P
′
i′ = P1 +H| C1 + C ′i′ = j}| and

z
(i′+1)
j = |{P2 ∈ F16

2 , P
′
i′+1 = P2 +H| C2 + C ′i′+1 = j}|.

We found that, for the identical neighboring sequences, the corresponding two raw neighboring
sequences always have more than 30000 (out of 65536) identical entries, i.e.,

Corr(∆(i′), ∆(i′+1)) = |{z(i
′)

j = z
(i′+1)
j , j = 0, 1, ..., 65535}| > 30000, iff ∆(i′) = ∆(i′+1),

where Corr(., .) is the non-normalized correlation.
On the contrary, for the distinct neighboring sequences, the corresponding two raw neighboring

sequences always have less than 19000 (out of 65536) identical entries, i.e.,

Corr(∆(i′), ∆(i′+1)) = |{z(i
′)

j = z
(i′+1)
j , j = 0, 1, ..., 65535}| < 19000, iff ∆(i′) 6= ∆(i′+1).

By treating the correlation of the raw neighboring sequences as a criterion, Theorem 5 is now able to
return whether ∆(i′) equals ∆(i′+1) with 216 time complexity. Once the identical neighboring sequences

are identified, the adversary is able to guess to recover R
(1)
1 and R

(2)
1 with 232 effort in time.

XX

5.3 Preparation Phase and Its Time Complexity

We recap the whole process in the preparation phase for the encryption as shown below, which is an
extension of the skeleton algorithm we shown before. Note that the preparation using the decryption
is similar and omitted here.

1: randomly choose IV ′ and P ′1, R′(1) ⇐ E(P ′1,K)
2: randomly choose IV
3: randomly choose a constant P ′2
4: for i from 1 to N = 264 do
5: randomly choose Pi, R

(i) ⇐ E(Pi,K)
6: generate ∆(i) using R′(1) and R(i)

7: R′(2) ⇐ E(P ′2,K)
8: R(i+1) ⇐ E(Pi+1,K) where Pi+1 = P ′2 +H
9: generate ∆(i+1) using R′(2) and R(i+1)

10: if Corr(∆(i),∆(i+1)) > 30000 then

11: guess to determine R
(1)
1 and R

(2)
1

12: recover ∆
(i′)
H,K from the raw neighboring sequences

13: return (Success,∆
(i′)
H,K , R

(1)
1 , R

(2)
1), keep current states and enter the key recovery phase

14: end if
15: decrypt using C′2 and Ci+1 to roll back HB-2’s states to R′(1) and R(i)

16: end for
17: return (False,NULL,NULL,NULL)

Using the encryption (decryption resp.) only, the attacker has 0.5 probability to reach condition (A)
(condition (B) resp.) with 264× 216 = 280 time complexity. After that, he is able to guess to determine

R
(1)
1 and R

(2)
1 with additional 232 effort in time. In all, the time complexity of the preparation phase is

264 × 216︸ ︷︷ ︸
test whether the condition happens

+ 232︸︷︷︸
guess to determine R1s

+ 216︸︷︷︸
recover the template seuqnece

≈ 280.

It is worthy to mention that to succeed with probability 1, the preparation phase requires 2128+16 =
2144 effort in time, which is slower than the exhaustive search.

6 Concluding Remarks

In this paper, we present a novel cryptanalytic technique called differential sequence analysis (DSA),
which is especially effective if the differential sequence reflecting parts of a cipher associated with
parts of the key can be obtained. In addition, we demonstrate the application of this technique, that
constitutes the key recovery of the lightweight block cipher Hummingbird-2 with 248.14 time complexity,
given particular conditions hold in its internal states, secret keys and the inputs. Furthermore, we
investigate how to reach these conditions in our preparation phase with 0.5 chance and 280 effort in
time. To the best of our knowledge, this is the first cryptanalytic result of the full Hummingbird-2.

XXI

The attack presented against Hummingbird-2 is a special case of the general DSA, to build the
theoretic framework of which is part of our future work. In addition, it will be evaluated in the
recent future: (1) whether the generalized DSA provides even better results against Hummingbird-2
and other potentially vulnerable ciphers, especially the ones with small block size and with internal
states, e.g., stateful block ciphers [24]; (2) the possibility that the generalized DSA can work with other
cryptanalysis technologies, e.g., meet-in-the-middle.

References

1. J.P. Aumasson, M. Naya-Plasencia and M.J.O. Saarinen, Practical attack on 8 rounds of the lightweight
block cipher KLEIN, to appear in Proceedings of INDOCRYPT’11, pp.1–13, 2011.

2. M. Abdelraheem, G. Leander and E. Zenner, Differential cryptanalysis of round-reduced PRINTcipher:
computing roots of permutations, Fast Software Encryption, FSE’11, LNCS 6733, pp. 1–17, 2011.

3. M. Ågren, Some instant-and practical-time related-key attacks on KTANTAN32/48/64, to appear in Pro-
ceedings of Selected Areas in Cryptography, SAC’11, pp. 1–17, 2011.

4. A. Bogdanov and C. Rechberger, A 3-subset meet-in-the-middle attack: cryptanalysis of the lightweight
block cipher KTANTAN, Selected Areas in Cryptography, LNCS 6544, pp. 229–240, 2011.

5. E. Biham, A. Biryukov and A. Shamir, Cryptanalysis of Skipjack reduced to 31 rounds using impossible
differentials, Journal Of Cryptology, vol. 18, no. 4, pp. 291–311, 1999.

6. C. Blondeau and B. Gérard, Multiple differential cryptanalysis: theory and practice, Fast Software Encryp-
tion, FSE’11, LNCS 6733, pp. 35-54, 2011.

7. A. Bogdanov and C. Rechberger, A 3-subset meet-in-the-middle attack: cryptanalysis of the lightweight
block cipher KTANTAN, Selected Areas in Cryptography, SAC’10, LNCS 6544, pp. 229–240, 2010.

8. A. Biryukov and A. Shamir, Structural cryptanalysis of SASAS, Journal of cryptology, vol. 23, no. 4, pp.
505–518, 2010.

9. A. Biryukov, I. Kizhvatov and B. Zhang, Cryptanalysis of the Atmel cipher in SecureMemory, CryptoMemory
and CryptoRF, Applied Cryptography and Network Security, ACNS’11, LNCS 6715, pp. 91–109, 2011.

10. Q. Chai, Design and analysis of security schemes for low-cost RFID systems, PhD Thesis, University of
Waterloo, 2012.

11. J. Cho, Linear cryptanalysis of reduced-round PRESENT, The Cryptographers’ Track at the RSA Confer-
ence, CT-RSA’10, LNCS 5985, pp. 302–317, 2010.

12. Q. Chai, X. Fan and G.Gong, An ultra-efficient key recovery attack on the lightweight stream cipher A2U2,
Cryptology ePrint Archive: Report 2011/247, pp. 1–4, 2011.

13. B. Collard and F.X. Standaert, A statistical saturation attack against the block cipher PRESENT, The
Cryptographers’ Track at the RSA Conference, CT-RSA’09, LNCS 5473, pp. 195–210, 2009.

14. C. De Canniere, O. Dunkelman and M. Knežević, KATAN and KTANTAN – a family of small and efficient
hardware-oriented block ciphers, Cryptographic Hardware and Embedded Systems, CHES’09, LNCS 5747,
pp. 272–288, 2009.

15. A. Dvoretzky and P. Erdos, Some problems on random walk in space, In Proceedings of Second Berkeley
Symposium on Mathematical Statistics and Probability, vol. 353, pp. 353–367, 1951.

16. D. Engels, X. Fan, G. Gong, H. Hu and E. Smith, Hummingbird: ultra-lightweight cryptography for
resource-constrained devices, Financial Cryptography and Data Security, FC’10, pp. 3–18, 2010.

17. D. Engels, M.J.O. Saarinen and E. Smith, The Hummingbird-2 lightweight authenticated encryption algo-
rithm, to appear in Proceedings of Workshop on RFID Security, RFIDSec’11, pp. 1-14, 2011.

18. X. Fan and G. Gong, On the security of Hummingbird-2 against side-channel Cube attacks, Western
European Workshop on Research in Cryptology, WEWoRC’11, pp. 100–104, 2011.

19. M. Feldhofer, J. Wolkerstorfer and V. Rijmen, AES implementation on a grain of sand, Information Secu-
rity, IEE Proceedings, vol. 152, no. 1, pp. 13-20, 2005.

XXII

20. Z. Gong, S. Nikova and Y.W. Law, Klein: a new family of lightweight block ciphers, to appear in Proceedings
of Workshop on RFID Security, RFIDSec’11, pp.1–18, 2011.

21. J. Guo, T. Peyrin, A. Poschmann and M.Robshaw, The LED block cipher, Cryptographic Hardware and
Embedded Systems, CHES’11, LNCS 6917, pp. 326–341, 2011.

22. F.D. Garcia, P. van Rossum, R. Verdult and R.W. Schreur, Dismantling SecureMemory, CryptoMemory
and CryptoRF. In Proceedings of the 17th ACM Conference on Computer and Communications Security,
CCS’10, pp. 250-259, 2010.

23. K. Hwang, W. Lee, S. Lee, S. Lee and J. Lim, Saturation attacks on reduced round Skipjack, Fast Software
Encryption, FSE’02, pp. 15–23, 2002.

24. A. Kiayias and M. Yung, cryptographic hardness based on the decoding of Reed-Solomon codes, Automata,
Languages and Programming, pp. 783–783, 2002.

25. L. Knudsen, Truncated and higher order differentials, Fast Software Encryption. FSE’95, LNCS 1008, pp.
196–211, 1995.

26. L. Knudsen, G. Leander, A. Poschmann and M. Robshaw, PRINTcipher: a block cipher for IC-printing,
Cryptographic Hardware and Embedded Systems, CHES’10, LNCS 6225, pp.16–32, 2011.

27. X. Lai, Higher order derivatives and differential cryptanalysis, Kluwer International Series in Engineering
and Computer Science, pp. 227–227, 1994.

28. S. Lucks, The saturation attack: a bait for Twofish, Fast Software Encryption, FSE’02, pp. 187–205, 2002.
29. G. Leander, M.A. Abdelraheem, H. AlKhzaimi and E. Zenner, A cryptanalysis of PRINTcipher: the in-

variant subspace attack. Advances in Cryptology, CRYPTO’11, LNCS 6841, pp. 206-221, 2011.
30. J. Lu, J. Kim, N. Keller and O. Dunkelman, Improving the efficiency of impossible differential cryptanalysis

of reduced Camellia and MISTY1, The Cryptographers’ Track at the RSA Conference, CT-RSA’08, LNCS
4964, pp. 370–386, 2008.

31. G. Leander and A. Poschmann On the classification of 4 bit s-boxes, Arithmetic of Finite Fields, LNCS
4547, pp. 159-176, 2007.

32. K. Nohl, D. Evans, S. Starbug and H. Plötz, Reverse-engineering a cryptographic RFID tag, In Proceedings
of the 17th conference on Security symposium, USENIX’08, pp. 185–193, 2008.

33. N. Courtois, G. Bard and D. Wagner, Algebraic and slide attacks on KeeLoq, Fast Software Encryption,
FSE’08, LNCS 5086, pp. 97-115, 2008.

34. A. Poschmann, S. Ling and H. Wang, 256 bit standardized crypto for 650 GE–GOST revisited, Crypto-
graphic Hardware and Embedded Systems, CHES’10, LNCS 6225, pp. 219–233, 2011.

35. C. Rolfes, A. Poschmann, G. Leander and C. Paar, Ultra-lightweight implementations for smart devices–
security for 1000 gate equivalents. In Proceedings of the 8th IFIP WG 8.8/11.2 International Conference on
Smart Card Research and Advanced Applications, CARDIS’08, LNCS 5189, pp. 89–103, 2008.

36. M.J.O. Saarinen, Cryptanalysis of Hummingbird-1, Fast Software Encryption, FSE’11, LNCS 6733, pp.
328–341, 2011.

37. A. Shamir and E. Biham, Differential cryptanalysis of DES-like cryptosystems, Advances in Cryptology,
CRYPTO’90, LNCS 537, pp. 2-21, 1990.

38. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita and T. Shirai, Piccolo: an ultra-lightweight
blockcipher, Cryptographic Hardware and Embedded Systems, CHES’11, LNCS 6917, pp. 342–357, 2011.

XXIII

A Side-channel Injection Attack to Recover (R5, R6, R7, R8)

As can be seen from Eq. (6)-(9), R5, R6, R7, R8 do not participate in the randomization process but
simply record (by Xoring) the historical statuses of R1, R2, R3, R4 respectively. Therefore, following
steps allow a side-channel attacker, who is able to inject “1” to a certain bit of the register storing Rj ,
5 ≤ j ≤ 8, to recover (R5, R6, R7, R8):

1. The attacker encrypts with a known IV and the target key to get a plaintext/cipher pair (P,C),
where P ∈ F16

2 , C ∈ F16
2 ;

2. He resets HB-2 and initializes HB-2 with the same IV and key. At any time during this initialization,
he injects “1” to the qth bit, 0 ≤ q ≤ 15, of the register which stores R5. He then encrypts P and
gets C ′. If C = C ′ (which implies the injection does not change the internal states of HB-2), the
attacker in fact learns that the qth bit of R5 is 1; otherwise it is 0. He repeats this step for every
q in {0, 1, ..., 15} to recover R5;

3. Step (2) can be repeated to recover R6, R7 and R8;

The cost of this injection attack to recover (R5, R6, R7, R8) is 64 injections and 64 invocations of
HB-2 encryption. In addition, since the attacker has a large time window to perform the injection to
the qth bit of Rj (any time during the rth iteration of the initialization), this side-channel attack seems
quite practical.

XXIV

B Visualization of Differential Sequences

Fig. 4 to Fig. 6 are the ones obtained from the last invocation of WD16 in the encryption with
IV = (0, 0, 0, 0) and different keys randomly selected. Fig. 7 to Fig. 9 are the ones obtained from the
last invocation of WD16−1 in the decryption with IV = (0, 0, 0, 0) and different keys randomly selected.
All of the sequences looks substantially different from each other, which exhibits their correlations to
the underlying keys in an intuitive way.

Fig. 4. DS from Enc. using (K5,K6,K7,K8) = (0xf1e3,0x524a,0xb28a,0xc987)

Fig. 5. DS from Enc. using (K5,K6,K7,K8) = (0x7c9f,0x0784,0x1c96,0xbcb4)

Fig. 6. DS from Enc. using (K5,K6,K7,K8) = (0x6b03,0xcf0c,0x1ba2,0xdc27)

XXV

Fig. 7. DS from Dec. using (K1,K2,K3,K4) = (0x5d67,0xd0ef,0x8cec,0xa33a)

Fig. 8. DS from Dec. using (K1,K2,K3,K4) = (0x6601,0x0bd8,0xa6fa,0xcede)

Fig. 9. DS from Dec. using (K1,K2,K3,K4) = (0x28dc,0xbde1,0x6e3d,0xa56d)

XXVI

C The Set Φ0

0x0 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 0x105 0x115 0x125 0x135 0x145
0x155 0x165 0x175 0x185 0x195 0x1a5 0x1b5 0x1c5 0x1d5 0x1e5 0x1f5 0x20a 0x21a 0x22a 0x23a 0x24a 0x25a 0x26a 0x27a 0x28a 0x29a
0x2aa 0x2ba 0x2ca 0x2da 0x2ea 0x2fa 0x30f 0x31f 0x32f 0x33f 0x34f 0x35f 0x36f 0x37f 0x38f 0x39f 0x3af 0x3bf 0x3cf 0x3df 0x3ef
0x3ff 0x401 0x411 0x421 0x431 0x441 0x451 0x461 0x471 0x481 0x491 0x4a1 0x4b1 0x4c1 0x4d1 0x4e1 0x4f1 0x504 0x514 0x524 0x534
0x544 0x554 0x564 0x574 0x584 0x594 0x5a4 0x5b4 0x5c4 0x5d4 0x5e4 0x5f4 0x60b 0x61b 0x62b 0x63b 0x64b 0x65b 0x66b 0x67b 0x68b
0x69b 0x6ab 0x6bb 0x6cb 0x6db 0x6eb 0x6fb 0x70e 0x71e 0x72e 0x73e 0x74e 0x75e 0x76e 0x77e 0x78e 0x79e 0x7ae 0x7be 0x7ce 0x7de
0x7ee 0x7fe 0x802 0x812 0x822 0x832 0x842 0x852 0x862 0x872 0x882 0x892 0x8a2 0x8b2 0x8c2 0x8d2 0x8e2 0x8f2 0x907 0x917 0x927
0x937 0x947 0x957 0x967 0x977 0x987 0x997 0x9a7 0x9b7 0x9c7 0x9d7 0x9e7 0x9f7 0xa08 0xa18 0xa28 0xa38 0xa48 0xa58 0xa68 0xa78
0xa88 0xa98 0xaa8 0xab8 0xac8 0xad8 0xae8 0xaf8 0xb0d 0xb1d 0xb2d 0xb3d 0xb4d 0xb5d 0xb6d 0xb7d 0xb8d 0xb9d 0xbad 0xbbd 0xbcd
0xbdd 0xbed 0xbfd 0xc03 0xc13 0xc23 0xc33 0xc43 0xc53 0xc63 0xc73 0xc83 0xc93 0xca3 0xcb3 0xcc3 0xcd3 0xce3 0xcf3 0xd06 0xd16
0xd26 0xd36 0xd46 0xd56 0xd66 0xd76 0xd86 0xd96 0xda6 0xdb6 0xdc6 0xdd6 0xde6 0xdf6 0xe09 0xe19 0xe29 0xe39 0xe49 0xe59 0xe69
0xe79 0xe89 0xe99 0xea9 0xeb9 0xec9 0xed9 0xee9 0xef9 0xf0c 0xf1c 0xf2c 0xf3c 0xf4c 0xf5c 0xf6c 0xf7c 0xf8c 0xf9c 0xfac 0xfbc
0xfcc 0xfdc 0xfec 0xffc 0x1001 0x1011 0x1021 0x1031 0x1041 0x1051 0x1061 0x1071 0x1081 0x1091 0x10a1 0x10b1 0x10c1 0x10d1 0x10e1 0x10f1 0x1104
0x1114 0x1124 0x1134 0x1144 0x1154 0x1164 0x1174 0x1184 0x1194 0x11a4 0x11b4 0x11c4 0x11d4 0x11e4 0x11f4 0x120b 0x121b 0x122b 0x123b 0x124b 0x125b
0x126b 0x127b 0x128b 0x129b 0x12ab 0x12bb 0x12cb 0x12db 0x12eb 0x12fb 0x130e 0x131e 0x132e 0x133e 0x134e 0x135e 0x136e 0x137e 0x138e 0x139e 0x13ae
0x13be 0x13ce 0x13de 0x13ee 0x13fe 0x1400 0x1410 0x1420 0x1430 0x1440 0x1450 0x1460 0x1470 0x1480 0x1490 0x14a0 0x14b0 0x14c0 0x14d0 0x14e0 0x14f0
0x1505 0x1515 0x1525 0x1535 0x1545 0x1555 0x1565 0x1575 0x1585 0x1595 0x15a5 0x15b5 0x15c5 0x15d5 0x15e5 0x15f5 0x160a 0x161a 0x162a 0x163a 0x164a
0x165a 0x166a 0x167a 0x168a 0x169a 0x16aa 0x16ba 0x16ca 0x16da 0x16ea 0x16fa 0x170f 0x171f 0x172f 0x173f 0x174f 0x175f 0x176f 0x177f 0x178f 0x179f
0x17af 0x17bf 0x17cf 0x17df 0x17ef 0x17ff 0x1803 0x1813 0x1823 0x1833 0x1843 0x1853 0x1863 0x1873 0x1883 0x1893 0x18a3 0x18b3 0x18c3 0x18d3 0x18e3
0x18f3 0x1906 0x1916 0x1926 0x1936 0x1946 0x1956 0x1966 0x1976 0x1986 0x1996 0x19a6 0x19b6 0x19c6 0x19d6 0x19e6 0x19f6 0x1a09 0x1a19 0x1a29 0x1a39
0x1a49 0x1a59 0x1a69 0x1a79 0x1a89 0x1a99 0x1aa9 0x1ab9 0x1ac9 0x1ad9 0x1ae9 0x1af9 0x1b0c 0x1b1c 0x1b2c 0x1b3c 0x1b4c 0x1b5c 0x1b6c 0x1b7c 0x1b8c
0x1b9c 0x1bac 0x1bbc 0x1bcc 0x1bdc 0x1bec 0x1bfc 0x1c02 0x1c12 0x1c22 0x1c32 0x1c42 0x1c52 0x1c62 0x1c72 0x1c82 0x1c92 0x1ca2 0x1cb2 0x1cc2 0x1cd2
0x1ce2 0x1cf2 0x1d07 0x1d17 0x1d27 0x1d37 0x1d47 0x1d57 0x1d67 0x1d77 0x1d87 0x1d97 0x1da7 0x1db7 0x1dc7 0x1dd7 0x1de7 0x1df7 0x1e08 0x1e18 0x1e28
0x1e38 0x1e48 0x1e58 0x1e68 0x1e78 0x1e88 0x1e98 0x1ea8 0x1eb8 0x1ec8 0x1ed8 0x1ee8 0x1ef8 0x1f0d 0x1f1d 0x1f2d 0x1f3d 0x1f4d 0x1f5d 0x1f6d 0x1f7d
0x1f8d 0x1f9d 0x1fad 0x1fbd 0x1fcd 0x1fdd 0x1fed 0x1ffd 0x2002 0x2012 0x2022 0x2032 0x2042 0x2052 0x2062 0x2072 0x2082 0x2092 0x20a2 0x20b2 0x20c2
0x20d2 0x20e2 0x20f2 0x2107 0x2117 0x2127 0x2137 0x2147 0x2157 0x2167 0x2177 0x2187 0x2197 0x21a7 0x21b7 0x21c7 0x21d7 0x21e7 0x21f7 0x2208 0x2218
0x2228 0x2238 0x2248 0x2258 0x2268 0x2278 0x2288 0x2298 0x22a8 0x22b8 0x22c8 0x22d8 0x22e8 0x22f8 0x230d 0x231d 0x232d 0x233d 0x234d 0x235d 0x236d
0x237d 0x238d 0x239d 0x23ad 0x23bd 0x23cd 0x23dd 0x23ed 0x23fd 0x2403 0x2413 0x2423 0x2433 0x2443 0x2453 0x2463 0x2473 0x2483 0x2493 0x24a3 0x24b3
0x24c3 0x24d3 0x24e3 0x24f3 0x2506 0x2516 0x2526 0x2536 0x2546 0x2556 0x2566 0x2576 0x2586 0x2596 0x25a6 0x25b6 0x25c6 0x25d6 0x25e6 0x25f6 0x2609
0x2619 0x2629 0x2639 0x2649 0x2659 0x2669 0x2679 0x2689 0x2699 0x26a9 0x26b9 0x26c9 0x26d9 0x26e9 0x26f9 0x270c 0x271c 0x272c 0x273c 0x274c 0x275c
0x276c 0x277c 0x278c 0x279c 0x27ac 0x27bc 0x27cc 0x27dc 0x27ec 0x27fc 0x2800 0x2810 0x2820 0x2830 0x2840 0x2850 0x2860 0x2870 0x2880 0x2890 0x28a0
0x28b0 0x28c0 0x28d0 0x28e0 0x28f0 0x2905 0x2915 0x2925 0x2935 0x2945 0x2955 0x2965 0x2975 0x2985 0x2995 0x29a5 0x29b5 0x29c5 0x29d5 0x29e5 0x29f5
0x2a0a 0x2a1a 0x2a2a 0x2a3a 0x2a4a 0x2a5a 0x2a6a 0x2a7a 0x2a8a 0x2a9a 0x2aaa 0x2aba 0x2aca 0x2ada 0x2aea 0x2afa 0x2b0f 0x2b1f 0x2b2f 0x2b3f 0x2b4f
0x2b5f 0x2b6f 0x2b7f 0x2b8f 0x2b9f 0x2baf 0x2bbf 0x2bcf 0x2bdf 0x2bef 0x2bff 0x2c01 0x2c11 0x2c21 0x2c31 0x2c41 0x2c51 0x2c61 0x2c71 0x2c81 0x2c91
0x2ca1 0x2cb1 0x2cc1 0x2cd1 0x2ce1 0x2cf1 0x2d04 0x2d14 0x2d24 0x2d34 0x2d44 0x2d54 0x2d64 0x2d74 0x2d84 0x2d94 0x2da4 0x2db4 0x2dc4 0x2dd4 0x2de4
0x2df4 0x2e0b 0x2e1b 0x2e2b 0x2e3b 0x2e4b 0x2e5b 0x2e6b 0x2e7b 0x2e8b 0x2e9b 0x2eab 0x2ebb 0x2ecb 0x2edb 0x2eeb 0x2efb 0x2f0e 0x2f1e 0x2f2e 0x2f3e
0x2f4e 0x2f5e 0x2f6e 0x2f7e 0x2f8e 0x2f9e 0x2fae 0x2fbe 0x2fce 0x2fde 0x2fee 0x2ffe 0x3003 0x3013 0x3023 0x3033 0x3043 0x3053 0x3063 0x3073 0x3083
0x3093 0x30a3 0x30b3 0x30c3 0x30d3 0x30e3 0x30f3 0x3106 0x3116 0x3126 0x3136 0x3146 0x3156 0x3166 0x3176 0x3186 0x3196 0x31a6 0x31b6 0x31c6 0x31d6
0x31e6 0x31f6 0x3209 0x3219 0x3229 0x3239 0x3249 0x3259 0x3269 0x3279 0x3289 0x3299 0x32a9 0x32b9 0x32c9 0x32d9 0x32e9 0x32f9 0x330c 0x331c 0x332c
0x333c 0x334c 0x335c 0x336c 0x337c 0x338c 0x339c 0x33ac 0x33bc 0x33cc 0x33dc 0x33ec 0x33fc 0x3402 0x3412 0x3422 0x3432 0x3442 0x3452 0x3462 0x3472
0x3482 0x3492 0x34a2 0x34b2 0x34c2 0x34d2 0x34e2 0x34f2 0x3507 0x3517 0x3527 0x3537 0x3547 0x3557 0x3567 0x3577 0x3587 0x3597 0x35a7 0x35b7 0x35c7
0x35d7 0x35e7 0x35f7 0x3608 0x3618 0x3628 0x3638 0x3648 0x3658 0x3668 0x3678 0x3688 0x3698 0x36a8 0x36b8 0x36c8 0x36d8 0x36e8 0x36f8 0x370d 0x371d
0x372d 0x373d 0x374d 0x375d 0x376d 0x377d 0x378d 0x379d 0x37ad 0x37bd 0x37cd 0x37dd 0x37ed 0x37fd 0x3801 0x3811 0x3821 0x3831 0x3841 0x3851 0x3861
0x3871 0x3881 0x3891 0x38a1 0x38b1 0x38c1 0x38d1 0x38e1 0x38f1 0x3904 0x3914 0x3924 0x3934 0x3944 0x3954 0x3964 0x3974 0x3984 0x3994 0x39a4 0x39b4
0x39c4 0x39d4 0x39e4 0x39f4 0x3a0b 0x3a1b 0x3a2b 0x3a3b 0x3a4b 0x3a5b 0x3a6b 0x3a7b 0x3a8b 0x3a9b 0x3aab 0x3abb 0x3acb 0x3adb 0x3aeb 0x3afb 0x3b0e
0x3b1e 0x3b2e 0x3b3e 0x3b4e 0x3b5e 0x3b6e 0x3b7e 0x3b8e 0x3b9e 0x3bae 0x3bbe 0x3bce 0x3bde 0x3bee 0x3bfe 0x3c00 0x3c10 0x3c20 0x3c30 0x3c40 0x3c50
0x3c60 0x3c70 0x3c80 0x3c90 0x3ca0 0x3cb0 0x3cc0 0x3cd0 0x3ce0 0x3cf0 0x3d05 0x3d15 0x3d25 0x3d35 0x3d45 0x3d55 0x3d65 0x3d75 0x3d85 0x3d95 0x3da5
0x3db5 0x3dc5 0x3dd5 0x3de5 0x3df5 0x3e0a 0x3e1a 0x3e2a 0x3e3a 0x3e4a 0x3e5a 0x3e6a 0x3e7a 0x3e8a 0x3e9a 0x3eaa 0x3eba 0x3eca 0x3eda 0x3eea 0x3efa
0x3f0f 0x3f1f 0x3f2f 0x3f3f 0x3f4f 0x3f5f 0x3f6f 0x3f7f 0x3f8f 0x3f9f 0x3faf 0x3fbf 0x3fcf 0x3fdf 0x3fef 0x3fff 0x4001 0x4011 0x4021 0x4031 0x4041
0x4051 0x4061 0x4071 0x4081 0x4091 0x40a1 0x40b1 0x40c1 0x40d1 0x40e1 0x40f1 0x4104 0x4114 0x4124 0x4134 0x4144 0x4154 0x4164 0x4174 0x4184 0x4194
0x41a4 0x41b4 0x41c4 0x41d4 0x41e4 0x41f4 0x420b 0x421b 0x422b 0x423b 0x424b 0x425b 0x426b 0x427b 0x428b 0x429b 0x42ab 0x42bb 0x42cb 0x42db 0x42eb
0x42fb 0x430e 0x431e 0x432e 0x433e 0x434e 0x435e 0x436e 0x437e 0x438e 0x439e 0x43ae 0x43be 0x43ce 0x43de 0x43ee 0x43fe 0x4400 0x4410 0x4420 0x4430
0x4440 0x4450 0x4460 0x4470 0x4480 0x4490 0x44a0 0x44b0 0x44c0 0x44d0 0x44e0 0x44f0 0x4505 0x4515 0x4525 0x4535 0x4545 0x4555 0x4565 0x4575 0x4585
0x4595 0x45a5 0x45b5 0x45c5 0x45d5 0x45e5 0x45f5 0x460a 0x461a 0x462a 0x463a 0x464a 0x465a 0x466a 0x467a 0x468a 0x469a 0x46aa 0x46ba 0x46ca 0x46da
0x46ea 0x46fa 0x470f 0x471f 0x472f 0x473f 0x474f 0x475f 0x476f 0x477f 0x478f 0x479f 0x47af 0x47bf 0x47cf 0x47df 0x47ef 0x47ff 0x4803 0x4813 0x4823
0x4833 0x4843 0x4853 0x4863 0x4873 0x4883 0x4893 0x48a3 0x48b3 0x48c3 0x48d3 0x48e3 0x48f3 0x4906 0x4916 0x4926 0x4936 0x4946 0x4956 0x4966 0x4976
0x4986 0x4996 0x49a6 0x49b6 0x49c6 0x49d6 0x49e6 0x49f6 0x4a09 0x4a19 0x4a29 0x4a39 0x4a49 0x4a59 0x4a69 0x4a79 0x4a89 0x4a99 0x4aa9 0x4ab9 0x4ac9
0x4ad9 0x4ae9 0x4af9 0x4b0c 0x4b1c 0x4b2c 0x4b3c 0x4b4c 0x4b5c 0x4b6c 0x4b7c 0x4b8c 0x4b9c 0x4bac 0x4bbc 0x4bcc 0x4bdc 0x4bec 0x4bfc 0x4c02 0x4c12
0x4c22 0x4c32 0x4c42 0x4c52 0x4c62 0x4c72 0x4c82 0x4c92 0x4ca2 0x4cb2 0x4cc2 0x4cd2 0x4ce2 0x4cf2 0x4d07 0x4d17 0x4d27 0x4d37 0x4d47 0x4d57 0x4d67
0x4d77 0x4d87 0x4d97 0x4da7 0x4db7 0x4dc7 0x4dd7 0x4de7 0x4df7 0x4e08 0x4e18 0x4e28 0x4e38 0x4e48 0x4e58 0x4e68 0x4e78 0x4e88 0x4e98 0x4ea8 0x4eb8
0x4ec8 0x4ed8 0x4ee8 0x4ef8 0x4f0d 0x4f1d 0x4f2d 0x4f3d 0x4f4d 0x4f5d 0x4f6d 0x4f7d 0x4f8d 0x4f9d 0x4fad 0x4fbd 0x4fcd 0x4fdd 0x4fed 0x4ffd 0x5000
0x5010 0x5020 0x5030 0x5040 0x5050 0x5060 0x5070 0x5080 0x5090 0x50a0 0x50b0 0x50c0 0x50d0 0x50e0 0x50f0 0x5105 0x5115 0x5125 0x5135 0x5145 0x5155
0x5165 0x5175 0x5185 0x5195 0x51a5 0x51b5 0x51c5 0x51d5 0x51e5 0x51f5 0x520a 0x521a 0x522a 0x523a 0x524a 0x525a 0x526a 0x527a 0x528a 0x529a 0x52aa
0x52ba 0x52ca 0x52da 0x52ea 0x52fa 0x530f 0x531f 0x532f 0x533f 0x534f 0x535f 0x536f 0x537f 0x538f 0x539f 0x53af 0x53bf 0x53cf 0x53df 0x53ef 0x53ff
0x5401 0x5411 0x5421 0x5431 0x5441 0x5451 0x5461 0x5471 0x5481 0x5491 0x54a1 0x54b1 0x54c1 0x54d1 0x54e1 0x54f1 0x5504 0x5514 0x5524 0x5534 0x5544
0x5554 0x5564 0x5574 0x5584 0x5594 0x55a4 0x55b4 0x55c4 0x55d4 0x55e4 0x55f4 0x560b 0x561b 0x562b 0x563b 0x564b 0x565b 0x566b 0x567b 0x568b 0x569b
0x56ab 0x56bb 0x56cb 0x56db 0x56eb 0x56fb 0x570e 0x571e 0x572e 0x573e 0x574e 0x575e 0x576e 0x577e 0x578e 0x579e 0x57ae 0x57be 0x57ce 0x57de 0x57ee
0x57fe 0x5802 0x5812 0x5822 0x5832 0x5842 0x5852 0x5862 0x5872 0x5882 0x5892 0x58a2 0x58b2 0x58c2 0x58d2 0x58e2 0x58f2 0x5907 0x5917 0x5927 0x5937
0x5947 0x5957 0x5967 0x5977 0x5987 0x5997 0x59a7 0x59b7 0x59c7 0x59d7 0x59e7 0x59f7 0x5a08 0x5a18 0x5a28 0x5a38 0x5a48 0x5a58 0x5a68 0x5a78 0x5a88
0x5a98 0x5aa8 0x5ab8 0x5ac8 0x5ad8 0x5ae8 0x5af8 0x5b0d 0x5b1d 0x5b2d 0x5b3d 0x5b4d 0x5b5d 0x5b6d 0x5b7d 0x5b8d 0x5b9d 0x5bad 0x5bbd 0x5bcd 0x5bdd
0x5bed 0x5bfd 0x5c03 0x5c13 0x5c23 0x5c33 0x5c43 0x5c53 0x5c63 0x5c73 0x5c83 0x5c93 0x5ca3 0x5cb3 0x5cc3 0x5cd3 0x5ce3 0x5cf3 0x5d06 0x5d16 0x5d26
0x5d36 0x5d46 0x5d56 0x5d66 0x5d76 0x5d86 0x5d96 0x5da6 0x5db6 0x5dc6 0x5dd6 0x5de6 0x5df6 0x5e09 0x5e19 0x5e29 0x5e39 0x5e49 0x5e59 0x5e69 0x5e79
0x5e89 0x5e99 0x5ea9 0x5eb9 0x5ec9 0x5ed9 0x5ee9 0x5ef9 0x5f0c 0x5f1c 0x5f2c 0x5f3c 0x5f4c 0x5f5c 0x5f6c 0x5f7c 0x5f8c 0x5f9c 0x5fac 0x5fbc 0x5fcc
0x5fdc 0x5fec 0x5ffc 0x6003 0x6013 0x6023 0x6033 0x6043 0x6053 0x6063 0x6073 0x6083 0x6093 0x60a3 0x60b3 0x60c3 0x60d3 0x60e3 0x60f3 0x6106 0x6116
0x6126 0x6136 0x6146 0x6156 0x6166 0x6176 0x6186 0x6196 0x61a6 0x61b6 0x61c6 0x61d6 0x61e6 0x61f6 0x6209 0x6219 0x6229 0x6239 0x6249 0x6259 0x6269
0x6279 0x6289 0x6299 0x62a9 0x62b9 0x62c9 0x62d9 0x62e9 0x62f9 0x630c 0x631c 0x632c 0x633c 0x634c 0x635c 0x636c 0x637c 0x638c 0x639c 0x63ac 0x63bc
0x63cc 0x63dc 0x63ec 0x63fc 0x6402 0x6412 0x6422 0x6432 0x6442 0x6452 0x6462 0x6472 0x6482 0x6492 0x64a2 0x64b2 0x64c2 0x64d2 0x64e2 0x64f2 0x6507
0x6517 0x6527 0x6537 0x6547 0x6557 0x6567 0x6577 0x6587 0x6597 0x65a7 0x65b7 0x65c7 0x65d7 0x65e7 0x65f7 0x6608 0x6618 0x6628 0x6638 0x6648 0x6658
0x6668 0x6678 0x6688 0x6698 0x66a8 0x66b8 0x66c8 0x66d8 0x66e8 0x66f8 0x670d 0x671d 0x672d 0x673d 0x674d 0x675d 0x676d 0x677d 0x678d 0x679d 0x67ad
0x67bd 0x67cd 0x67dd 0x67ed 0x67fd 0x6801 0x6811 0x6821 0x6831 0x6841 0x6851 0x6861 0x6871 0x6881 0x6891 0x68a1 0x68b1 0x68c1 0x68d1 0x68e1 0x68f1
0x6904 0x6914 0x6924 0x6934 0x6944 0x6954 0x6964 0x6974 0x6984 0x6994 0x69a4 0x69b4 0x69c4 0x69d4 0x69e4 0x69f4 0x6a0b 0x6a1b 0x6a2b 0x6a3b 0x6a4b
0x6a5b 0x6a6b 0x6a7b 0x6a8b 0x6a9b 0x6aab 0x6abb 0x6acb 0x6adb 0x6aeb 0x6afb 0x6b0e 0x6b1e 0x6b2e 0x6b3e 0x6b4e 0x6b5e 0x6b6e 0x6b7e 0x6b8e 0x6b9e
0x6bae 0x6bbe 0x6bce 0x6bde 0x6bee 0x6bfe 0x6c00 0x6c10 0x6c20 0x6c30 0x6c40 0x6c50 0x6c60 0x6c70 0x6c80 0x6c90 0x6ca0 0x6cb0 0x6cc0 0x6cd0 0x6ce0
0x6cf0 0x6d05 0x6d15 0x6d25 0x6d35 0x6d45 0x6d55 0x6d65 0x6d75 0x6d85 0x6d95 0x6da5 0x6db5 0x6dc5 0x6dd5 0x6de5 0x6df5 0x6e0a 0x6e1a 0x6e2a 0x6e3a
0x6e4a 0x6e5a 0x6e6a 0x6e7a 0x6e8a 0x6e9a 0x6eaa 0x6eba 0x6eca 0x6eda 0x6eea 0x6efa 0x6f0f 0x6f1f 0x6f2f 0x6f3f 0x6f4f 0x6f5f 0x6f6f 0x6f7f 0x6f8f
0x6f9f 0x6faf 0x6fbf 0x6fcf 0x6fdf 0x6fef 0x6fff 0x7002 0x7012 0x7022 0x7032 0x7042 0x7052 0x7062 0x7072 0x7082 0x7092 0x70a2 0x70b2 0x70c2 0x70d2
0x70e2 0x70f2 0x7107 0x7117 0x7127 0x7137 0x7147 0x7157 0x7167 0x7177 0x7187 0x7197 0x71a7 0x71b7 0x71c7 0x71d7 0x71e7 0x71f7 0x7208 0x7218 0x7228
0x7238 0x7248 0x7258 0x7268 0x7278 0x7288 0x7298 0x72a8 0x72b8 0x72c8 0x72d8 0x72e8 0x72f8 0x730d 0x731d 0x732d 0x733d 0x734d 0x735d 0x736d 0x737d

XXVII

0x738d 0x739d 0x73ad 0x73bd 0x73cd 0x73dd 0x73ed 0x73fd 0x7403 0x7413 0x7423 0x7433 0x7443 0x7453 0x7463 0x7473 0x7483 0x7493 0x74a3 0x74b3 0x74c3
0x74d3 0x74e3 0x74f3 0x7506 0x7516 0x7526 0x7536 0x7546 0x7556 0x7566 0x7576 0x7586 0x7596 0x75a6 0x75b6 0x75c6 0x75d6 0x75e6 0x75f6 0x7609 0x7619
0x7629 0x7639 0x7649 0x7659 0x7669 0x7679 0x7689 0x7699 0x76a9 0x76b9 0x76c9 0x76d9 0x76e9 0x76f9 0x770c 0x771c 0x772c 0x773c 0x774c 0x775c 0x776c
0x777c 0x778c 0x779c 0x77ac 0x77bc 0x77cc 0x77dc 0x77ec 0x77fc 0x7800 0x7810 0x7820 0x7830 0x7840 0x7850 0x7860 0x7870 0x7880 0x7890 0x78a0 0x78b0
0x78c0 0x78d0 0x78e0 0x78f0 0x7905 0x7915 0x7925 0x7935 0x7945 0x7955 0x7965 0x7975 0x7985 0x7995 0x79a5 0x79b5 0x79c5 0x79d5 0x79e5 0x79f5 0x7a0a
0x7a1a 0x7a2a 0x7a3a 0x7a4a 0x7a5a 0x7a6a 0x7a7a 0x7a8a 0x7a9a 0x7aaa 0x7aba 0x7aca 0x7ada 0x7aea 0x7afa 0x7b0f 0x7b1f 0x7b2f 0x7b3f 0x7b4f 0x7b5f
0x7b6f 0x7b7f 0x7b8f 0x7b9f 0x7baf 0x7bbf 0x7bcf 0x7bdf 0x7bef 0x7bff 0x7c01 0x7c11 0x7c21 0x7c31 0x7c41 0x7c51 0x7c61 0x7c71 0x7c81 0x7c91 0x7ca1
0x7cb1 0x7cc1 0x7cd1 0x7ce1 0x7cf1 0x7d04 0x7d14 0x7d24 0x7d34 0x7d44 0x7d54 0x7d64 0x7d74 0x7d84 0x7d94 0x7da4 0x7db4 0x7dc4 0x7dd4 0x7de4 0x7df4
0x7e0b 0x7e1b 0x7e2b 0x7e3b 0x7e4b 0x7e5b 0x7e6b 0x7e7b 0x7e8b 0x7e9b 0x7eab 0x7ebb 0x7ecb 0x7edb 0x7eeb 0x7efb 0x7f0e 0x7f1e 0x7f2e 0x7f3e 0x7f4e
0x7f5e 0x7f6e 0x7f7e 0x7f8e 0x7f9e 0x7fae 0x7fbe 0x7fce 0x7fde 0x7fee 0x7ffe 0x8002 0x8012 0x8022 0x8032 0x8042 0x8052 0x8062 0x8072 0x8082 0x8092
0x80a2 0x80b2 0x80c2 0x80d2 0x80e2 0x80f2 0x8107 0x8117 0x8127 0x8137 0x8147 0x8157 0x8167 0x8177 0x8187 0x8197 0x81a7 0x81b7 0x81c7 0x81d7 0x81e7
0x81f7 0x8208 0x8218 0x8228 0x8238 0x8248 0x8258 0x8268 0x8278 0x8288 0x8298 0x82a8 0x82b8 0x82c8 0x82d8 0x82e8 0x82f8 0x830d 0x831d 0x832d 0x833d
0x834d 0x835d 0x836d 0x837d 0x838d 0x839d 0x83ad 0x83bd 0x83cd 0x83dd 0x83ed 0x83fd 0x8403 0x8413 0x8423 0x8433 0x8443 0x8453 0x8463 0x8473 0x8483
0x8493 0x84a3 0x84b3 0x84c3 0x84d3 0x84e3 0x84f3 0x8506 0x8516 0x8526 0x8536 0x8546 0x8556 0x8566 0x8576 0x8586 0x8596 0x85a6 0x85b6 0x85c6 0x85d6
0x85e6 0x85f6 0x8609 0x8619 0x8629 0x8639 0x8649 0x8659 0x8669 0x8679 0x8689 0x8699 0x86a9 0x86b9 0x86c9 0x86d9 0x86e9 0x86f9 0x870c 0x871c 0x872c
0x873c 0x874c 0x875c 0x876c 0x877c 0x878c 0x879c 0x87ac 0x87bc 0x87cc 0x87dc 0x87ec 0x87fc 0x8800 0x8810 0x8820 0x8830 0x8840 0x8850 0x8860 0x8870
0x8880 0x8890 0x88a0 0x88b0 0x88c0 0x88d0 0x88e0 0x88f0 0x8905 0x8915 0x8925 0x8935 0x8945 0x8955 0x8965 0x8975 0x8985 0x8995 0x89a5 0x89b5 0x89c5
0x89d5 0x89e5 0x89f5 0x8a0a 0x8a1a 0x8a2a 0x8a3a 0x8a4a 0x8a5a 0x8a6a 0x8a7a 0x8a8a 0x8a9a 0x8aaa 0x8aba 0x8aca 0x8ada 0x8aea 0x8afa 0x8b0f 0x8b1f
0x8b2f 0x8b3f 0x8b4f 0x8b5f 0x8b6f 0x8b7f 0x8b8f 0x8b9f 0x8baf 0x8bbf 0x8bcf 0x8bdf 0x8bef 0x8bff 0x8c01 0x8c11 0x8c21 0x8c31 0x8c41 0x8c51 0x8c61
0x8c71 0x8c81 0x8c91 0x8ca1 0x8cb1 0x8cc1 0x8cd1 0x8ce1 0x8cf1 0x8d04 0x8d14 0x8d24 0x8d34 0x8d44 0x8d54 0x8d64 0x8d74 0x8d84 0x8d94 0x8da4 0x8db4
0x8dc4 0x8dd4 0x8de4 0x8df4 0x8e0b 0x8e1b 0x8e2b 0x8e3b 0x8e4b 0x8e5b 0x8e6b 0x8e7b 0x8e8b 0x8e9b 0x8eab 0x8ebb 0x8ecb 0x8edb 0x8eeb 0x8efb 0x8f0e
0x8f1e 0x8f2e 0x8f3e 0x8f4e 0x8f5e 0x8f6e 0x8f7e 0x8f8e 0x8f9e 0x8fae 0x8fbe 0x8fce 0x8fde 0x8fee 0x8ffe 0x9003 0x9013 0x9023 0x9033 0x9043 0x9053
0x9063 0x9073 0x9083 0x9093 0x90a3 0x90b3 0x90c3 0x90d3 0x90e3 0x90f3 0x9106 0x9116 0x9126 0x9136 0x9146 0x9156 0x9166 0x9176 0x9186 0x9196 0x91a6
0x91b6 0x91c6 0x91d6 0x91e6 0x91f6 0x9209 0x9219 0x9229 0x9239 0x9249 0x9259 0x9269 0x9279 0x9289 0x9299 0x92a9 0x92b9 0x92c9 0x92d9 0x92e9 0x92f9
0x930c 0x931c 0x932c 0x933c 0x934c 0x935c 0x936c 0x937c 0x938c 0x939c 0x93ac 0x93bc 0x93cc 0x93dc 0x93ec 0x93fc 0x9402 0x9412 0x9422 0x9432 0x9442
0x9452 0x9462 0x9472 0x9482 0x9492 0x94a2 0x94b2 0x94c2 0x94d2 0x94e2 0x94f2 0x9507 0x9517 0x9527 0x9537 0x9547 0x9557 0x9567 0x9577 0x9587 0x9597
0x95a7 0x95b7 0x95c7 0x95d7 0x95e7 0x95f7 0x9608 0x9618 0x9628 0x9638 0x9648 0x9658 0x9668 0x9678 0x9688 0x9698 0x96a8 0x96b8 0x96c8 0x96d8 0x96e8
0x96f8 0x970d 0x971d 0x972d 0x973d 0x974d 0x975d 0x976d 0x977d 0x978d 0x979d 0x97ad 0x97bd 0x97cd 0x97dd 0x97ed 0x97fd 0x9801 0x9811 0x9821 0x9831
0x9841 0x9851 0x9861 0x9871 0x9881 0x9891 0x98a1 0x98b1 0x98c1 0x98d1 0x98e1 0x98f1 0x9904 0x9914 0x9924 0x9934 0x9944 0x9954 0x9964 0x9974 0x9984
0x9994 0x99a4 0x99b4 0x99c4 0x99d4 0x99e4 0x99f4 0x9a0b 0x9a1b 0x9a2b 0x9a3b 0x9a4b 0x9a5b 0x9a6b 0x9a7b 0x9a8b 0x9a9b 0x9aab 0x9abb 0x9acb 0x9adb
0x9aeb 0x9afb 0x9b0e 0x9b1e 0x9b2e 0x9b3e 0x9b4e 0x9b5e 0x9b6e 0x9b7e 0x9b8e 0x9b9e 0x9bae 0x9bbe 0x9bce 0x9bde 0x9bee 0x9bfe 0x9c00 0x9c10 0x9c20
0x9c30 0x9c40 0x9c50 0x9c60 0x9c70 0x9c80 0x9c90 0x9ca0 0x9cb0 0x9cc0 0x9cd0 0x9ce0 0x9cf0 0x9d05 0x9d15 0x9d25 0x9d35 0x9d45 0x9d55 0x9d65 0x9d75
0x9d85 0x9d95 0x9da5 0x9db5 0x9dc5 0x9dd5 0x9de5 0x9df5 0x9e0a 0x9e1a 0x9e2a 0x9e3a 0x9e4a 0x9e5a 0x9e6a 0x9e7a 0x9e8a 0x9e9a 0x9eaa 0x9eba 0x9eca
0x9eda 0x9eea 0x9efa 0x9f0f 0x9f1f 0x9f2f 0x9f3f 0x9f4f 0x9f5f 0x9f6f 0x9f7f 0x9f8f 0x9f9f 0x9faf 0x9fbf 0x9fcf 0x9fdf 0x9fef 0x9fff 0xa000 0xa010
0xa020 0xa030 0xa040 0xa050 0xa060 0xa070 0xa080 0xa090 0xa0a0 0xa0b0 0xa0c0 0xa0d0 0xa0e0 0xa0f0 0xa105 0xa115 0xa125 0xa135 0xa145 0xa155 0xa165
0xa175 0xa185 0xa195 0xa1a5 0xa1b5 0xa1c5 0xa1d5 0xa1e5 0xa1f5 0xa20a 0xa21a 0xa22a 0xa23a 0xa24a 0xa25a 0xa26a 0xa27a 0xa28a 0xa29a 0xa2aa 0xa2ba
0xa2ca 0xa2da 0xa2ea 0xa2fa 0xa30f 0xa31f 0xa32f 0xa33f 0xa34f 0xa35f 0xa36f 0xa37f 0xa38f 0xa39f 0xa3af 0xa3bf 0xa3cf 0xa3df 0xa3ef 0xa3ff 0xa401
0xa411 0xa421 0xa431 0xa441 0xa451 0xa461 0xa471 0xa481 0xa491 0xa4a1 0xa4b1 0xa4c1 0xa4d1 0xa4e1 0xa4f1 0xa504 0xa514 0xa524 0xa534 0xa544 0xa554
0xa564 0xa574 0xa584 0xa594 0xa5a4 0xa5b4 0xa5c4 0xa5d4 0xa5e4 0xa5f4 0xa60b 0xa61b 0xa62b 0xa63b 0xa64b 0xa65b 0xa66b 0xa67b 0xa68b 0xa69b 0xa6ab
0xa6bb 0xa6cb 0xa6db 0xa6eb 0xa6fb 0xa70e 0xa71e 0xa72e 0xa73e 0xa74e 0xa75e 0xa76e 0xa77e 0xa78e 0xa79e 0xa7ae 0xa7be 0xa7ce 0xa7de 0xa7ee 0xa7fe
0xa802 0xa812 0xa822 0xa832 0xa842 0xa852 0xa862 0xa872 0xa882 0xa892 0xa8a2 0xa8b2 0xa8c2 0xa8d2 0xa8e2 0xa8f2 0xa907 0xa917 0xa927 0xa937 0xa947
0xa957 0xa967 0xa977 0xa987 0xa997 0xa9a7 0xa9b7 0xa9c7 0xa9d7 0xa9e7 0xa9f7 0xaa08 0xaa18 0xaa28 0xaa38 0xaa48 0xaa58 0xaa68 0xaa78 0xaa88 0xaa98
0xaaa8 0xaab8 0xaac8 0xaad8 0xaae8 0xaaf8 0xab0d 0xab1d 0xab2d 0xab3d 0xab4d 0xab5d 0xab6d 0xab7d 0xab8d 0xab9d 0xabad 0xabbd 0xabcd 0xabdd 0xabed
0xabfd 0xac03 0xac13 0xac23 0xac33 0xac43 0xac53 0xac63 0xac73 0xac83 0xac93 0xaca3 0xacb3 0xacc3 0xacd3 0xace3 0xacf3 0xad06 0xad16 0xad26 0xad36
0xad46 0xad56 0xad66 0xad76 0xad86 0xad96 0xada6 0xadb6 0xadc6 0xadd6 0xade6 0xadf6 0xae09 0xae19 0xae29 0xae39 0xae49 0xae59 0xae69 0xae79 0xae89
0xae99 0xaea9 0xaeb9 0xaec9 0xaed9 0xaee9 0xaef9 0xaf0c 0xaf1c 0xaf2c 0xaf3c 0xaf4c 0xaf5c 0xaf6c 0xaf7c 0xaf8c 0xaf9c 0xafac 0xafbc 0xafcc 0xafdc
0xafec 0xaffc 0xb001 0xb011 0xb021 0xb031 0xb041 0xb051 0xb061 0xb071 0xb081 0xb091 0xb0a1 0xb0b1 0xb0c1 0xb0d1 0xb0e1 0xb0f1 0xb104 0xb114 0xb124
0xb134 0xb144 0xb154 0xb164 0xb174 0xb184 0xb194 0xb1a4 0xb1b4 0xb1c4 0xb1d4 0xb1e4 0xb1f4 0xb20b 0xb21b 0xb22b 0xb23b 0xb24b 0xb25b 0xb26b 0xb27b
0xb28b 0xb29b 0xb2ab 0xb2bb 0xb2cb 0xb2db 0xb2eb 0xb2fb 0xb30e 0xb31e 0xb32e 0xb33e 0xb34e 0xb35e 0xb36e 0xb37e 0xb38e 0xb39e 0xb3ae 0xb3be 0xb3ce
0xb3de 0xb3ee 0xb3fe 0xb400 0xb410 0xb420 0xb430 0xb440 0xb450 0xb460 0xb470 0xb480 0xb490 0xb4a0 0xb4b0 0xb4c0 0xb4d0 0xb4e0 0xb4f0 0xb505 0xb515
0xb525 0xb535 0xb545 0xb555 0xb565 0xb575 0xb585 0xb595 0xb5a5 0xb5b5 0xb5c5 0xb5d5 0xb5e5 0xb5f5 0xb60a 0xb61a 0xb62a 0xb63a 0xb64a 0xb65a 0xb66a
0xb67a 0xb68a 0xb69a 0xb6aa 0xb6ba 0xb6ca 0xb6da 0xb6ea 0xb6fa 0xb70f 0xb71f 0xb72f 0xb73f 0xb74f 0xb75f 0xb76f 0xb77f 0xb78f 0xb79f 0xb7af 0xb7bf
0xb7cf 0xb7df 0xb7ef 0xb7ff 0xb803 0xb813 0xb823 0xb833 0xb843 0xb853 0xb863 0xb873 0xb883 0xb893 0xb8a3 0xb8b3 0xb8c3 0xb8d3 0xb8e3 0xb8f3 0xb906
0xb916 0xb926 0xb936 0xb946 0xb956 0xb966 0xb976 0xb986 0xb996 0xb9a6 0xb9b6 0xb9c6 0xb9d6 0xb9e6 0xb9f6 0xba09 0xba19 0xba29 0xba39 0xba49 0xba59
0xba69 0xba79 0xba89 0xba99 0xbaa9 0xbab9 0xbac9 0xbad9 0xbae9 0xbaf9 0xbb0c 0xbb1c 0xbb2c 0xbb3c 0xbb4c 0xbb5c 0xbb6c 0xbb7c 0xbb8c 0xbb9c 0xbbac
0xbbbc 0xbbcc 0xbbdc 0xbbec 0xbbfc 0xbc02 0xbc12 0xbc22 0xbc32 0xbc42 0xbc52 0xbc62 0xbc72 0xbc82 0xbc92 0xbca2 0xbcb2 0xbcc2 0xbcd2 0xbce2 0xbcf2
0xbd07 0xbd17 0xbd27 0xbd37 0xbd47 0xbd57 0xbd67 0xbd77 0xbd87 0xbd97 0xbda7 0xbdb7 0xbdc7 0xbdd7 0xbde7 0xbdf7 0xbe08 0xbe18 0xbe28 0xbe38 0xbe48
0xbe58 0xbe68 0xbe78 0xbe88 0xbe98 0xbea8 0xbeb8 0xbec8 0xbed8 0xbee8 0xbef8 0xbf0d 0xbf1d 0xbf2d 0xbf3d 0xbf4d 0xbf5d 0xbf6d 0xbf7d 0xbf8d 0xbf9d
0xbfad 0xbfbd 0xbfcd 0xbfdd 0xbfed 0xbffd 0xc003 0xc013 0xc023 0xc033 0xc043 0xc053 0xc063 0xc073 0xc083 0xc093 0xc0a3 0xc0b3 0xc0c3 0xc0d3 0xc0e3
0xc0f3 0xc106 0xc116 0xc126 0xc136 0xc146 0xc156 0xc166 0xc176 0xc186 0xc196 0xc1a6 0xc1b6 0xc1c6 0xc1d6 0xc1e6 0xc1f6 0xc209 0xc219 0xc229 0xc239
0xc249 0xc259 0xc269 0xc279 0xc289 0xc299 0xc2a9 0xc2b9 0xc2c9 0xc2d9 0xc2e9 0xc2f9 0xc30c 0xc31c 0xc32c 0xc33c 0xc34c 0xc35c 0xc36c 0xc37c 0xc38c
0xc39c 0xc3ac 0xc3bc 0xc3cc 0xc3dc 0xc3ec 0xc3fc 0xc402 0xc412 0xc422 0xc432 0xc442 0xc452 0xc462 0xc472 0xc482 0xc492 0xc4a2 0xc4b2 0xc4c2 0xc4d2
0xc4e2 0xc4f2 0xc507 0xc517 0xc527 0xc537 0xc547 0xc557 0xc567 0xc577 0xc587 0xc597 0xc5a7 0xc5b7 0xc5c7 0xc5d7 0xc5e7 0xc5f7 0xc608 0xc618 0xc628
0xc638 0xc648 0xc658 0xc668 0xc678 0xc688 0xc698 0xc6a8 0xc6b8 0xc6c8 0xc6d8 0xc6e8 0xc6f8 0xc70d 0xc71d 0xc72d 0xc73d 0xc74d 0xc75d 0xc76d 0xc77d
0xc78d 0xc79d 0xc7ad 0xc7bd 0xc7cd 0xc7dd 0xc7ed 0xc7fd 0xc801 0xc811 0xc821 0xc831 0xc841 0xc851 0xc861 0xc871 0xc881 0xc891 0xc8a1 0xc8b1 0xc8c1
0xc8d1 0xc8e1 0xc8f1 0xc904 0xc914 0xc924 0xc934 0xc944 0xc954 0xc964 0xc974 0xc984 0xc994 0xc9a4 0xc9b4 0xc9c4 0xc9d4 0xc9e4 0xc9f4 0xca0b 0xca1b
0xca2b 0xca3b 0xca4b 0xca5b 0xca6b 0xca7b 0xca8b 0xca9b 0xcaab 0xcabb 0xcacb 0xcadb 0xcaeb 0xcafb 0xcb0e 0xcb1e 0xcb2e 0xcb3e 0xcb4e 0xcb5e 0xcb6e
0xcb7e 0xcb8e 0xcb9e 0xcbae 0xcbbe 0xcbce 0xcbde 0xcbee 0xcbfe 0xcc00 0xcc10 0xcc20 0xcc30 0xcc40 0xcc50 0xcc60 0xcc70 0xcc80 0xcc90 0xcca0 0xccb0
0xccc0 0xccd0 0xcce0 0xccf0 0xcd05 0xcd15 0xcd25 0xcd35 0xcd45 0xcd55 0xcd65 0xcd75 0xcd85 0xcd95 0xcda5 0xcdb5 0xcdc5 0xcdd5 0xcde5 0xcdf5 0xce0a
0xce1a 0xce2a 0xce3a 0xce4a 0xce5a 0xce6a 0xce7a 0xce8a 0xce9a 0xceaa 0xceba 0xceca 0xceda 0xceea 0xcefa 0xcf0f 0xcf1f 0xcf2f 0xcf3f 0xcf4f 0xcf5f
0xcf6f 0xcf7f 0xcf8f 0xcf9f 0xcfaf 0xcfbf 0xcfcf 0xcfdf 0xcfef 0xcfff 0xd002 0xd012 0xd022 0xd032 0xd042 0xd052 0xd062 0xd072 0xd082 0xd092 0xd0a2
0xd0b2 0xd0c2 0xd0d2 0xd0e2 0xd0f2 0xd107 0xd117 0xd127 0xd137 0xd147 0xd157 0xd167 0xd177 0xd187 0xd197 0xd1a7 0xd1b7 0xd1c7 0xd1d7 0xd1e7 0xd1f7
0xd208 0xd218 0xd228 0xd238 0xd248 0xd258 0xd268 0xd278 0xd288 0xd298 0xd2a8 0xd2b8 0xd2c8 0xd2d8 0xd2e8 0xd2f8 0xd30d 0xd31d 0xd32d 0xd33d 0xd34d
0xd35d 0xd36d 0xd37d 0xd38d 0xd39d 0xd3ad 0xd3bd 0xd3cd 0xd3dd 0xd3ed 0xd3fd 0xd403 0xd413 0xd423 0xd433 0xd443 0xd453 0xd463 0xd473 0xd483 0xd493
0xd4a3 0xd4b3 0xd4c3 0xd4d3 0xd4e3 0xd4f3 0xd506 0xd516 0xd526 0xd536 0xd546 0xd556 0xd566 0xd576 0xd586 0xd596 0xd5a6 0xd5b6 0xd5c6 0xd5d6 0xd5e6
0xd5f6 0xd609 0xd619 0xd629 0xd639 0xd649 0xd659 0xd669 0xd679 0xd689 0xd699 0xd6a9 0xd6b9 0xd6c9 0xd6d9 0xd6e9 0xd6f9 0xd70c 0xd71c 0xd72c 0xd73c
0xd74c 0xd75c 0xd76c 0xd77c 0xd78c 0xd79c 0xd7ac 0xd7bc 0xd7cc 0xd7dc 0xd7ec 0xd7fc 0xd800 0xd810 0xd820 0xd830 0xd840 0xd850 0xd860 0xd870 0xd880
0xd890 0xd8a0 0xd8b0 0xd8c0 0xd8d0 0xd8e0 0xd8f0 0xd905 0xd915 0xd925 0xd935 0xd945 0xd955 0xd965 0xd975 0xd985 0xd995 0xd9a5 0xd9b5 0xd9c5 0xd9d5
0xd9e5 0xd9f5 0xda0a 0xda1a 0xda2a 0xda3a 0xda4a 0xda5a 0xda6a 0xda7a 0xda8a 0xda9a 0xdaaa 0xdaba 0xdaca 0xdada 0xdaea 0xdafa 0xdb0f 0xdb1f 0xdb2f
0xdb3f 0xdb4f 0xdb5f 0xdb6f 0xdb7f 0xdb8f 0xdb9f 0xdbaf 0xdbbf 0xdbcf 0xdbdf 0xdbef 0xdbff 0xdc01 0xdc11 0xdc21 0xdc31 0xdc41 0xdc51 0xdc61 0xdc71
0xdc81 0xdc91 0xdca1 0xdcb1 0xdcc1 0xdcd1 0xdce1 0xdcf1 0xdd04 0xdd14 0xdd24 0xdd34 0xdd44 0xdd54 0xdd64 0xdd74 0xdd84 0xdd94 0xdda4 0xddb4 0xddc4
0xddd4 0xdde4 0xddf4 0xde0b 0xde1b 0xde2b 0xde3b 0xde4b 0xde5b 0xde6b 0xde7b 0xde8b 0xde9b 0xdeab 0xdebb 0xdecb 0xdedb 0xdeeb 0xdefb 0xdf0e 0xdf1e
0xdf2e 0xdf3e 0xdf4e 0xdf5e 0xdf6e 0xdf7e 0xdf8e 0xdf9e 0xdfae 0xdfbe 0xdfce 0xdfde 0xdfee 0xdffe 0xe001 0xe011 0xe021 0xe031 0xe041 0xe051 0xe061
0xe071 0xe081 0xe091 0xe0a1 0xe0b1 0xe0c1 0xe0d1 0xe0e1 0xe0f1 0xe104 0xe114 0xe124 0xe134 0xe144 0xe154 0xe164 0xe174 0xe184 0xe194 0xe1a4 0xe1b4
0xe1c4 0xe1d4 0xe1e4 0xe1f4 0xe20b 0xe21b 0xe22b 0xe23b 0xe24b 0xe25b 0xe26b 0xe27b 0xe28b 0xe29b 0xe2ab 0xe2bb 0xe2cb 0xe2db 0xe2eb 0xe2fb 0xe30e
0xe31e 0xe32e 0xe33e 0xe34e 0xe35e 0xe36e 0xe37e 0xe38e 0xe39e 0xe3ae 0xe3be 0xe3ce 0xe3de 0xe3ee 0xe3fe 0xe400 0xe410 0xe420 0xe430 0xe440 0xe450
0xe460 0xe470 0xe480 0xe490 0xe4a0 0xe4b0 0xe4c0 0xe4d0 0xe4e0 0xe4f0 0xe505 0xe515 0xe525 0xe535 0xe545 0xe555 0xe565 0xe575 0xe585 0xe595 0xe5a5
0xe5b5 0xe5c5 0xe5d5 0xe5e5 0xe5f5 0xe60a 0xe61a 0xe62a 0xe63a 0xe64a 0xe65a 0xe66a 0xe67a 0xe68a 0xe69a 0xe6aa 0xe6ba 0xe6ca 0xe6da 0xe6ea 0xe6fa
0xe70f 0xe71f 0xe72f 0xe73f 0xe74f 0xe75f 0xe76f 0xe77f 0xe78f 0xe79f 0xe7af 0xe7bf 0xe7cf 0xe7df 0xe7ef 0xe7ff 0xe803 0xe813 0xe823 0xe833 0xe843
0xe853 0xe863 0xe873 0xe883 0xe893 0xe8a3 0xe8b3 0xe8c3 0xe8d3 0xe8e3 0xe8f3 0xe906 0xe916 0xe926 0xe936 0xe946 0xe956 0xe966 0xe976 0xe986 0xe996
0xe9a6 0xe9b6 0xe9c6 0xe9d6 0xe9e6 0xe9f6 0xea09 0xea19 0xea29 0xea39 0xea49 0xea59 0xea69 0xea79 0xea89 0xea99 0xeaa9 0xeab9 0xeac9 0xead9 0xeae9
0xeaf9 0xeb0c 0xeb1c 0xeb2c 0xeb3c 0xeb4c 0xeb5c 0xeb6c 0xeb7c 0xeb8c 0xeb9c 0xebac 0xebbc 0xebcc 0xebdc 0xebec 0xebfc 0xec02 0xec12 0xec22 0xec32
0xec42 0xec52 0xec62 0xec72 0xec82 0xec92 0xeca2 0xecb2 0xecc2 0xecd2 0xece2 0xecf2 0xed07 0xed17 0xed27 0xed37 0xed47 0xed57 0xed67 0xed77 0xed87
0xed97 0xeda7 0xedb7 0xedc7 0xedd7 0xede7 0xedf7 0xee08 0xee18 0xee28 0xee38 0xee48 0xee58 0xee68 0xee78 0xee88 0xee98 0xeea8 0xeeb8 0xeec8 0xeed8
0xeee8 0xeef8 0xef0d 0xef1d 0xef2d 0xef3d 0xef4d 0xef5d 0xef6d 0xef7d 0xef8d 0xef9d 0xefad 0xefbd 0xefcd 0xefdd 0xefed 0xeffd 0xf000 0xf010 0xf020
0xf030 0xf040 0xf050 0xf060 0xf070 0xf080 0xf090 0xf0a0 0xf0b0 0xf0c0 0xf0d0 0xf0e0 0xf0f0 0xf105 0xf115 0xf125 0xf135 0xf145 0xf155 0xf165 0xf175
0xf185 0xf195 0xf1a5 0xf1b5 0xf1c5 0xf1d5 0xf1e5 0xf1f5 0xf20a 0xf21a 0xf22a 0xf23a 0xf24a 0xf25a 0xf26a 0xf27a 0xf28a 0xf29a 0xf2aa 0xf2ba 0xf2ca
0xf2da 0xf2ea 0xf2fa 0xf30f 0xf31f 0xf32f 0xf33f 0xf34f 0xf35f 0xf36f 0xf37f 0xf38f 0xf39f 0xf3af 0xf3bf 0xf3cf 0xf3df 0xf3ef 0xf3ff 0xf401 0xf411
0xf421 0xf431 0xf441 0xf451 0xf461 0xf471 0xf481 0xf491 0xf4a1 0xf4b1 0xf4c1 0xf4d1 0xf4e1 0xf4f1 0xf504 0xf514 0xf524 0xf534 0xf544 0xf554 0xf564
0xf574 0xf584 0xf594 0xf5a4 0xf5b4 0xf5c4 0xf5d4 0xf5e4 0xf5f4 0xf60b 0xf61b 0xf62b 0xf63b 0xf64b 0xf65b 0xf66b 0xf67b 0xf68b 0xf69b 0xf6ab 0xf6bb
0xf6cb 0xf6db 0xf6eb 0xf6fb 0xf70e 0xf71e 0xf72e 0xf73e 0xf74e 0xf75e 0xf76e 0xf77e 0xf78e 0xf79e 0xf7ae 0xf7be 0xf7ce 0xf7de 0xf7ee 0xf7fe 0xf802
0xf812 0xf822 0xf832 0xf842 0xf852 0xf862 0xf872 0xf882 0xf892 0xf8a2 0xf8b2 0xf8c2 0xf8d2 0xf8e2 0xf8f2 0xf907 0xf917 0xf927 0xf937 0xf947 0xf957
0xf967 0xf977 0xf987 0xf997 0xf9a7 0xf9b7 0xf9c7 0xf9d7 0xf9e7 0xf9f7 0xfa08 0xfa18 0xfa28 0xfa38 0xfa48 0xfa58 0xfa68 0xfa78 0xfa88 0xfa98 0xfaa8
0xfab8 0xfac8 0xfad8 0xfae8 0xfaf8 0xfb0d 0xfb1d 0xfb2d 0xfb3d 0xfb4d 0xfb5d 0xfb6d 0xfb7d 0xfb8d 0xfb9d 0xfbad 0xfbbd 0xfbcd 0xfbdd 0xfbed 0xfbfd
0xfc03 0xfc13 0xfc23 0xfc33 0xfc43 0xfc53 0xfc63 0xfc73 0xfc83 0xfc93 0xfca3 0xfcb3 0xfcc3 0xfcd3 0xfce3 0xfcf3 0xfd06 0xfd16 0xfd26 0xfd36 0xfd46
0xfd56 0xfd66 0xfd76 0xfd86 0xfd96 0xfda6 0xfdb6 0xfdc6 0xfdd6 0xfde6 0xfdf6 0xfe09 0xfe19 0xfe29 0xfe39 0xfe49 0xfe59 0xfe69 0xfe79 0xfe89 0xfe99
0xfea9 0xfeb9 0xfec9 0xfed9 0xfee9 0xfef9 0xff0c 0xff1c 0xff2c 0xff3c 0xff4c 0xff5c 0xff6c 0xff7c 0xff8c 0xff9c 0xffac 0xffbc 0xffcc 0xffdc 0xffec
0xfffc

XXVIII

D Side-channel Injection Attack to Realize ∆R

As mentioned in the Proof of Theorem 1, condition (A) gives us the same differential sequence as the
following condition does,

∆K = (K1, ...,K8) + (K ′1, ...,K
′
8) = (0, 0, 0, 0, 0, 0, 0, 0)

∆P = P1 + P ′i′ = 0

∆R = (R1, ..., R8) + (R′1, ..., R
′
8) = (0, 0, 0, H, 0, 0, 0, 0),

Therefore, to create the difference between R4 and R′4 (or between f−1(R2�u1) and f−1(R′2�u
′
1)),

one obvious way is to start with two instances initialized with the same IVs and keys and then mount
side-channel injection attack, where the attacker simply injects H to the victim register, e.g., R4 or
f−1(R2�u1), of one instance any time before the execution of the last round of encryption/decryption.
Note that the preparation through injection gives the attacker no time/memory penalty, i.e., the overall
time/memory complexity of the attack is dominated by that of the key recovery phase.

