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Abstract. The Ring-LWE problem, introduced by Lyubashevsky, Peik-
ert, and Regev (Eurocrypt 2010), has been steadily finding many uses
in numerous cryptographic applications. Still, the Ring-LWE problem
defined in [LPR10] involves the fractional ideal R∨, the dual of the ring
R, which is the source of many theoretical and implementation techni-
calities. Until now, getting rid of R∨, required some relatively complex
transformation that substantially increase the magnitude of the error
polynomial and the practical complexity to sample it. It is only for rings
R = Z[X]/(Xn + 1) where n a power of 2, that this transformation is
simple and benign.
In this work we show that by applying a different, and much simpler
transformation, one can transfer the results from [LPR10] into an “easy-
to-use” Ring-LWE setting (i.e. without the dual ring R∨), with only a
very slight increase in the magnitude of the noise coefficients. Addition-
ally, we show that creating the correct noise distribution can also be
simplified by generating a Gaussian distribution over a particular exten-
sion ring of R, and then performing a reduction modulo f(X). In essence,
our results show that one does not need to resort to using any algebraic
structure that is more complicated than polynomial rings in order to
fully utilize the hardness of the Ring-LWE problem as a building block
for cryptographic applications.

1 Introduction

Since its recent introduction, the Ring-LWE problem [LPR10] has already been
used as a building block for numerous cryptographic applications. In addi-
tion to its original functionality as the basis of efficient lattice-based cryp-
tosystems [LPR10], it has since been used as a hardness assumption in the
constructions of efficient signature schemes [MP11,Lyu11], fully-homomorphic
encryption schemes [BV11b,BV11a,BGV11,GHS11], pseudo-random functions
[BPR11], protocols for doing secure multi-party computation [DPSZ11,LATV11],
and also gives an explanation for the hardness of the NTRU cryptosystem [SS11].

A very natural way in which one would like to be able to define the (deci-
sional) Ring-LWE problem is as follows: for a polynomial ringRq = Zq[X]/(f(X))
and a random polynomial w ∈ Rq, it is computationally hard to distinguish the
uniform distribution over Rq ×Rq from ordered pairs of the form (ai, aiw+ ei),
where ai are uniformly distributed in Rq and ei are polynomials in R whose coef-
ficients are independently distributed Gaussians. Unfortunately, the results from



[LPR10] do not directly imply that the above problem is hard based on the worst-
case hardness of lattice problems, except in the one case when f(X) = Xn+1 for
n a power of 2, and thus most papers that use the Ring-LWE problem only use
this one specific ring. The reason for this limitation is that the problem statement
in [LPR10] requires w to be in the dual ring of R (which is a fractional ideal)
and for the distribution of the noise to be a spherical Gaussian in the embedding
representation of R. And it is only in the case that R = Z[X]/(Xn + 1) that the
dual ring is simply a scaling of R (thus, one can simply multiply by the scaling
and end up in R) and the embedding is just a rigid rotation and a scaling (thus
the spherical Gaussian distribution is not affected by the transformation). For
all other cyclotomic polynomials, while it is possible to transform the problem
that was proved hard in [LPR10] to the one described above, the transformation
between the polynomial and embedding representations involves multiplication
by a skewed matrix, and the dual of R is a (possibly very) skewed fractional
ideal of R. Therefore there is no obvious way to generate the noise directly in
the ring R, nor work entirely in the ring R without utilizing a transformation
that can substantially increase the magnitude of the error polynomials.

A natural question to ask at this point is whether there is ever a reason to
use a ring other than Rq = Zq[X]/(Xn + 1). While it’s true that this ring has
some very nice features, and we believe that it should be used whenever possi-
ble, there are situations where an alternative may be preferable. Since Xn + 1
is only irreducible when n is a power of 2, these polynomials are scarce. Thus
it is conceivable that to achieve a certain security level, it may be advantageous
to try to find a polynomial of some particular degree rather than round up to
the next power of 2. A different, and a probably even stronger reason to use a
different ring, is that other cyclotomic polynomials may have a more desirable
structure for the task at hand. An example of this is the recent result of Gen-
try, Halevi, and Smart [GHS11] who show that there are particular cyclotomic
polynomials that allow for much faster (at least asymptotically) instantiations
of fully-homomorphic encryption. Their hardness assumption is that the Ring-
LWE problem, instantiated with polynomial rings as in our description above,
is a difficult problem. Using the result of our current paper, it can actually be
shown that their scheme has tight connections to worst-case lattice problems
(modulo a small change in the way the errors are generated, but this can be
easily remedied).

1.1 Our Results

Our main result (Theorem. 2) essentially shows that for any cyclotomic poly-
nomial Φm(X), one can work entirely in the ring Z[X]/(Φm), and generate the
noise distribution without resorting to complex embeddings.

Our analysis (Sect. 5) shows that for primes m (and even wider class) our
simplification comes at almost no cost in term of algorithmic simplicity, tightness
and efficiency compared to the scarce class of m that are powers of 2 as used for
practical application in [LPR10]; thus increasing the density of usable m < M
from O(log(M)/M) to O(1/log(M)).



Sampling : Q[X]/(Θm)

Canonical Embedding : H
σ−1◦T-

�
T−1◦σ

T−1◦σ◦β

�
Q[X]/(Φm) ∼= Q(ζm)

β : x 7→ x mod Φm

-

Fig. 1. Mappings Between Different Representations (see Sect. f 2 or formal definitions.
The polynomial Θm is defined to be Xm−1 if m is odd, and Xm/2 +1 when m is even.

Our main result is a consequence of two theorems with surprisingly elemen-
tary proofs. The first theorem (see Section 4) states that every cyclotomic ring
of integers R = Z[X]/(Φm) ∼= Z[ζm] contains mR∨, where R∨ is its dual (if
m is even, it actually contains m

2 R
∨). What this means is that one can scale

everything that is in R∨ by a factor of m (or m/2) and end up in the ring
R. Similarly, if something were uniform, either statistically or computationally,
modulo R∨, then m times it will be uniform modulo mR∨ and thus uniform
modulo R, since mR∨ is an additive subgroup of R. This transformation is not
completely tight (except in the case that Φm(X) = Xm/2 + 1) because we end
up with something that is uniform modulo a subgroup of R, whereas we only
use the randomness modulo R. This loss of tightness, however, is very small,
resulting in the noise being at most

√
m/φ(m) “larger than necessary” (see the

discussion after Theorem 2).

Our second theorem (see Section 5) deals with the noise generation. In the
Ring-LWE definition of [LPR10], the noise needs to be a spherical Gaussian in the
canonical embedding representation of the ring Q[X]/(Φm) (see Figure 1), and to
convert it to the polynomial representation, one needs to perform transformation
σ−1◦T , where σ−1 is the multiplication by the inverse of a complex Vandermonde
matrix (and T is a multiplication by a very simple matrix). Ideally, one would
like to avoid working with the complex numbers and generate the noise by simply
drawing it from the ring Q[X]/(Φm); but unfortunately this method does not lead
to the correct distribution in the embedding representation. What we show is
that an almost equally simple way of generating the noise does lead to the correct
distribution. We consider the ring Q[X]/(Θm), where Θm(X) = Xm − 1 if m is
odd, and Xm/2 +1 if m is even (notice that Φm is a factor of Θm). We then show
that the transformation denoted by T−1 ◦ γ from Q[X]/(Θm) to the embedding
representation actually preserves the spherical Gaussian distribution! This means
that one can sample in Q[X]/(Θm) by picking each coefficient independently
from a continuous Gaussian distribution (rounded to Q, see details in 2), and it
will be the correct distribution required by [LPR10]. Then to move the noise from
Q[X]/(Θm) to Q[X]/(Φm), one simply performs the transformation β, which is
just a reduction modulo Φm.

Similar technique were independently developed in the work of Gentry, Halevi
and Smart, but used for different purpose. Precisely they also use lifting to
the the ring extension Z[X]/Θm(X) during their decryption procedure [GHS11,



Lemma 12]; and the considered polynomial Gm can implicitly be seen in our
proof of Theorem 3. In some sense, our work show that such a lifting is also
natural during the encryption to obtain tighter security reduction.

In addition to making our noise generation much simpler to implement, the
reduction modulo Φm is also simpler to analyze than σ−1 ◦ T . This allows
us to make several improvements in constructions that use rings other than
Z[X]/(Xn + 1) (for rings Z[X]/(Xn + 1), the mapping β is just the identity,
and so there is nothing to analyze). As realized in previous works that used
ideal lattices (e.g. [LM06,Gen10,GHS11]), multiplication in polynomial rings in-
creases the size of the coefficients by a factor that depends on the size of the
coefficients in the multiplicands, and also on the ring itself, and the ring in which
the coefficients grow the least is Zq[X]/(Xn + 1). As a consequence, if one were
to, for example, implement the encryption scheme from [LPR10] in the ring
Z[X]/(Φ2kp) for some prime p, we observe in Section 5 that the noise grows by a

factor of approximately
√

2 larger than in the ring Z[X]/(Xn + 1), and a factor
at most 2p in the ring Z[X]/(Φ2kpq) for two primes p < q.

Last, we show that by analyzing the shape of the noise in the ring Q[X]/(Φp),
one can actually remove some of the noise that is introduced by the reduction
modulo Φp; it seems that our strategy makes the coefficients grow only (1+o(1))
times as much (see Section 6).

2 Preliminaries

Cyclotomic Ring Let ζm be a primitive mth root of unity and the cyclotomic
polynomial Φm(X) ∈ Q[X] be its minimal monic polynomial. Thus m is the
smallest integer for which ζmm = 1 and Φm is the rational polynomial with the
smallest degree of which ζm is a root. It is known that Φm ∈ Z[X] and the other
roots of Φm (the conjugates of ζm) are the elements of the set {ζkm|k ∈ Z∗m}.
Thus, Φm has degree φ(m), the totient of m. So, the number field Q(ζm), which
we will call the mth cyclotomic field, has degree φ(m) and its power basis is{

1, ζm, · · · , ζφ(m)−1
m

}
.

Extension of the Cyclotomic Ring For a given each integer m we define the
polynomial Θm(X) as Xm−1 if m is odd, and Xm/2+1 when m is even. It gives a
natural ring extension Z[X]/(Θm) of the cyclotomic ring Z[X]/(Φm): as Φm is a
factor of Θm, the reduction modulo Φm, noted β is a ring morphism (it preserve
both sum and product). The power basis of Z[X]/(Θm) is

{
1, ζm, · · · , ζm−1m

}
when m is odd and

{
1, ζm, · · · , ζ

m
2 −1
m

}
when m is even.

Ring of integers The ring of integers of Q(ζm) is Z[ζm] ∼= Z[X]/(Φm). Accord-
ing to the following theorem from [Con09, Theorem 3.7], the dual (or co-different
ideal) of Z[ζm], denoted by Z[ζm]∨, is the fractional ideal 1

Φ′m(ζm)Z[ζm], where

Φ′m is the derivative of Φm. While the dual has many nice properties and is



extensively used in the proof of the hardness of Ring-LWE in [LPR10], in the
current paper we only need its definition.

Embeddings of cyclotomic fields The field Q(ζm) ' Q[X]/(Φm) has exactly
φ(m) embeddings (σk)k∈Z∗m , defined by σk : x 7→ x(ζkm), for k ∈ Z∗m. The

canonical embedding σ : Q(ζm) → Cφ(m) is defined as the direct sum of all the
embeddings : σ(x) =

⊕
k∈Z∗m

σk(x). Note that that for each k ∈ Z∗m and any

x ∈ Q(ζm), we have σ−k(x) = σk(x). Thus for a proper indexation of Z∗m the
image H of σ is the Q vector space generated by the columns of

√
2 · T where :

T =
1√
2

(
Idφ(m)/2 i Idφ(m)/2

Idφ(m)/2 −i Idφ(m)/2

)
with i =

√
−1

In other words, for any element x ∈ Q(ζm), there exists a vector v ∈ Qφ(m) such
that σ(x) =

√
2Tv, and vice versa. For the rest of the paper, we will consider

the column vectors of T as the canonical basis for the embedding space H.

Gaussian Distributions By ψs we denote the Gaussian distribution with mean
0 and standard deviation s over R; and by ψds the spherical Gaussian distribution
over Rd of the vector (v1, . . . , vd) where each coordinate is drawn independently
from ψs.

For our purpose, one would like the Gaussian distributions to be defined over

Q rather than R, so that an element drawn from ψ
φ(m)
s may be seen as element

of the field Q(ζm). The theoretical solution to that issues is to work with the
tensor product Q(ζm)⊗Q R as done in [LPR10].

However, in practice elements needs to be represented finitely, typically us-
ing floating points numbers of a fixed mantissa. For simplicity we choose this
solution: we consider that output of Gaussian distribution ψds are rounded off
to rational numbers using a fine enough grid so that all our results go through
except with a negligibly small probability.

3 The Main Result

In this section we give the main result of this paper. We describe a distribution
over Rq × Rq, where Rq = Zq[X]/(Φm) which is computationally indistinguish-
able from the uniform distribution over Rq×Rq based on the worst-case hardness
of the approximate shortest vector problem in ideal lattices. The proof of our
theorem will use results that we later prove in Sections 4 and 5 that will aid
us in transforming the hard Ring-LWE problem defined in [LPR10] into one in
which all operations are performed in polynomial rings.

Theorem 1 ([LPR10]). Let m be integer, and q be a prime congruent to 1
modulo m. Let denote K be the number field Q(ζm), R = Z[ζm] be its ring
of integers, R∨ be the fractional ideal 1

Φ′m(ζm)Z[ζm], q be a prime congruent to



1(modm). Also, let k be any positive integer and α ∈ (0, 1) be a real number
such that αq > ω

(√
logm

)
. If there exists an algorithm that can solve the deci-

sional Ring-LWE problem, that is distinguish (with some advantage 1/poly(m))
between k uniformly random samples drawn from R/qR×K/R∨ and k samples
(ai,

aiw
q + ei) ∈ R/qR ×K/R∨ where ai are chosen uniformly at random from

R/qR, w is chosen uniformly at random from R∨/qR∨, and the ei are sampled

in the embedding space H from the distribution ψ
φ(m)
s for s = α ·

(
φ(m)k

log(φ(m)k)

)1/4
,

then there exists a quantum algorithm that runs in time O(q ·poly(m)) that solves
the approximate Shortest Vector Problem to within a factor Õ(

√
m/α) in any

ideal of the ring Z[ζm].

Before stating our main theorem, we believe that it would be helpful to
first understand why everything turns out to be so simple and convenient when
working with the ring of integers Z[ζm] when m is a power of 2 (and not so
convenient otherwise). If m is a power of 2, then Φm = xn + 1, where n = m/2,
and therefore Φ′ = nXn−1, and so Φ′(ζm) = nζn−1m . The last equation implies
that nζn−1m R∨ = R (and since ζjmR = R for any integer j, we have nR∨ = R),
which gives us a very simple way to remove the ring R∨ and work entirely
in the ring R. When given a sample (ai,

aiw
q + ei) ∈ R/qR × K/R∨, we can

simply multiply the second element of the ordered pair by n and get (ai,
aiwn
q +

ein) ∈ R/qR × K/nR∨. Now we observe that since the ei were chosen from

the distribution ψ
φ(m)
s , the nei are distributed according to ψ

φ(m)
ns . And since w

was chosen uniformly at random from R∨/qR∨, we have that nw is uniformly
random in R/qR. Thus the problem of distinguishing uniformly random samples

in R/qR×K/R from samples (ai,
aiw
′

q +e′i) ∈ R/qR×K/R where ai and w′ are

drawn uniformly from R/(q) and the e′i are drawn according to the distribution

ψ
φ(m)
ns is exactly equivalent to the problem from Theorem 1. We now turn to

how one would generate the errors e′i directly in the ζm power basis, without
first generating them in the embedding space and then doing the transformation.
The main observation here is that the linear transformation σ−1 ◦ T (see Figure
1) from the embedding space H to the power basis representation turns out to be
a multiplication by a scaled orthogonal matrix. Therefore, the spherical Gaussian
distribution in H remains a spherical Gaussian distribution in the power basis
representation, and can therefore be sampled directly in the latter domain.

On the other hand, if ζm is a primitive root of unity for any other m except
a power of 2, then neither of the above-described conditions hold. It is still
possible to multiply elements in R∨ by Φ′(ζm) in order to take them into R, but
this transformation does not result in “nice” distributions in the power basis of
R. It is known that there exist cyclotomic polynomials Φm whose coefficients
are of the order of mlogm, and thus Φ′m also has coefficients of that magnitude.
Therefore when multiplying an element by Φ′(ζm), the coefficients of the product
in the power basis will also very likely have such large coefficients, and thus the
noise will increase by a super-polynomial factor. And even for simple cyclotomic
polynomials such as Φp for some prime p, its derivative will have Ω(p) coefficients



of size Ω(p), and so the multiplication by Φ′p could increase the coefficients by a
factor of p2. Additionally, if ζm is a primitive root of unity and m is not a power
of 2, then the mapping σ−1 ◦ T from the embedding space H to the power basis
representation is no longer an orthogonal linear map, and thus the spherical
Gaussian distribution is no longer preserved.

Theorem 2 (Main Theorem). Let m be an integer, and let Rq be the ring
Zq[X]/(Φm) where q is a prime congruent to 1 modulo m. Also, let k be any
positive integer, α ∈ (0, 1) be a real number such that αq > ω

(√
logm

)
, and

define m′ to be equal to m if m is odd and m/2 if m is even. If there is an
algorithm that can solve the Ring-LWE problem, that is distinguish (with some
advantage 1/poly(m)) between k uniformly random samples drawn from Rq×Rq
and k samples (ai, aiw+ ei) ∈ Rq ×Rq, where ai and w are chosen uniformly at
random from Rq and ei = de′i mod Φmc with e′i ∈ Q[X]/(Θm) is distributed as

ψm
′

s for s =
√
m′αq

(
φ(m)k

log(φ(m)k)

)1/4
; then there exists a quantum algorithm that

runs in time O(q ·poly(m)) that solves the approximate Shortest Vector Problem
to within a factor Õ(

√
m/α) in any ideal of the ring Z[ζm].

Before we give the proof of this theorem (which uses results from Sections 4
and 5), we would like to draw the reader’s attention to several things.

First, we emphasize that the error distribution is generated by sampling a
polynomial g0 + g1X+ . . .+ gd−1X

m′−1 ∈ Q[X]/(Θm) where gi simply are inde-
pendants Gaussian variables, then reducing modulo Φm, and only then rounding
each coefficient to the nearest integer. While it would have been slightly more
convenient to be able to round and then do a reduction modulo Φm, the two
distributions are not equivalent.

Secondly, we point out that by using a Lemma similar to [ACPS09, Lemma
2], it can be shown that instead of choosing the secret w uniformly from Rq,
it can be drawn from the same distribution as the error vectors ei. The only
consequence of this is that the value of k in the theorem increases by one.

A third comment is that just as in Theorem 1, the
(

φ(m)k
log(φ(m)k)

)1/4
term

in the standard deviation of the error is a consequence of converting elliptic
distributions into spherical ones in [LPR10]. It is unclear whether having this
term is actually necessary for hardness or whether the elliptical distributions
in [LPR10] are an artifact of the proof, and so in practice it may be enough
to just sample with standard deviation

√
m′αq. Fortunately, most constructions

involving Ring-LWE only require a small (usually a constant or a logarithmic)
number of samples, and so for theoretical applications when one does not care
too much about small polynomial factors, this term does not cause too much
trouble.

The final comment that we would like to make is about the “tightness” of our
reduction. It is natural to wonder whether our transformation from Ring-LWE
in the domain in Theorem 1 to the one in the domain in Theorem 2 is tight,
in the sense that one did not need to add more noise than necessary in order
to obtain pseudo-randomness in Rq ×Rq. We now give an intuition for why the



transformation is actually rather tight. Ignoring the
(

φ(m)k
log(φ(m)k)

)1/4
term, which

is a possibly removable artifact carried over from Theorem 1, the required noise in
our new theorem is

√
m′αq, where there is a requirement that αq > ω(

√
logm).

Thus the noise must have standard deviation at least ω(
√
m′ logm). This is

almost tight because by the result of Arora and Ge [AG11], if the standard
deviation were o(

√
φ(m)), then the Ring-LWE problem could be solved in sub-

exponential time 2o(φ(m)), which would them imply that the Shortest Vector
Problem could be solved in sub-exponential time as well. And since

√
m′/φ(m) =

O(
√

log logm), this is essentially the maximum tightness factor that we lose
during our reduction.

Proof of Theorem 2 To prove the theorem, we will show how one can transform
the samples from Theorem 1 into samples from the ring Rq×Rq. Given samples
of the form (ai, aiw/q + ei) ∈ Rq × Q(ζm)/R∨ where ai are chosen uniformly
at random from Rq, w is chosen uniformly at random from R∨q , and the ei

are sampled from the distribution ψ
φ(m)
s in the embedding space H, we scale

the second element of each ordered pair by a factor of m′q to obtain elements
(ai, aiwm

′+qm′ei) = (ai, aiw
′+e′i) ∈ Rq×Q(ζm)/qm′R∨ where w′ is distributed

uniformly at random in m′R∨/m′qR∨, and e′i are sampled from the distribution

ψ
φ(m)
sm′q . Since we did nothing but scaling at this point, it is clear that distinguish-

ing these ordered pairs from uniform ones in Rq × Q(ζm)/qm′R∨ is as hard as
the original problem from Theorem 1. We now apply Theorem 3 which states
that m′R∨ ⊆ R to conclude that if we reduce the second entry of the ordered
pairs modulo qR to obtain elements (ai, aiw

′ + e′i) ∈ Rq × Q(ζm)/qR where w′

is distributed uniformly at random in m′R∨/qR, and e′i are sampled from the

distribution ψ
φ(m)
sm′q , the distinguishing problem is at least as difficult as before.

We now make the observation that instead of choosing w′ uniformly at ran-
dom from m′R∨/qR, we can choose it from R/qR without making the problem
any easier. The reason is that given a pair (ai, aiw

′ + e′i), we can choose a uni-
formly random w′′ ∈ R/qR and output (ai, aiw

′+aiw
′′+e′i) = (ai, ai(w

′+w′′)+
e′i), and the secret w′ + w′′ is uniform in R/qR. We can also observe that if we
consider the element aiw

′+ e′i in the power-basis representation and round each
coefficient to the nearest integer, it is equivalent to only rounding the error term
e′i to the nearest integer because the product aiw

′ already has integer coefficients.
Thus the problem of distinguishing rounded elements (ai, ais+ de′ic) ∈ Rq ×Rq
from random elements in Rq × Rq is at least as difficult as the problem from
Theorem 1. The last thing we need to address is the noise generation. Currently,

the e′i are generated from the distribution ψ
φ(m)
sm′q in the embedding space H.

Theorem 5 states that to obtain such a distribution, it is equivalent to sample
the distribution g0 + g1X + . . .+ gm′−1X

m′−1 ∈ Q[X]/(Θm) where each gi is a
normally distributed random variable with mean 0 and standard deviation that
is
√
m′ times smaller than that required in the distribution in the embedding

space H. And this is exactly the distribution from which the errors come from
in the statement of our Theorem. ut



4 Mapping Z[ζm]∨ to Z[ζm]

In this section we prove that the element m′

Φ′m(ζm) , for m′ = m when m is odd

and m/2 when it is even, is an element of the ring Z[ζm], which implies that the
ring Z[ζm] contains m′Z[ζm]∨.

Theorem 3. For R = Z[ζm], we have m′R∨ ⊆ R, where m′ = m if m is odd
and m/2 if m is even.

Proof: Let Θm(X) be the polynomial Xm − 1, if m is odd, and Xm/2 + 1 if m
is even. Then it is easily seen that Φm(X) is a factor of Θm(X), and we can
write Θm(X) = Φm(X)g(X) for some polynomial g(X) ∈ Z[X]. By taking the
derivative of both sides, we obtain the equation

m′Xm′−1 = Φ′m(X)g(X) + Φm(X)g′(X),

or equivalently,

m′Xm′ = XΦ′m(X)g(X) +XΦm(X)g′(X).

Evaluating both sides at ζm, we obtain

±m′ = ζmΦ
′
m(ζm)g(ζm) + ζmΦm(ζm)g′(ζm) = ζmΦ

′
m(ζm)g(ζm)

since ζm
′

m = 1 when m′ = m and −1 when m′ = m/2, and Φm(ζm) = 0. Now,
using the definition that R∨ = 1

Φ′m(ζm)R, we obtain

m′R∨ =
m′

Φ′m(ζm)
R = ±ζmg(ζm)R ⊆ R,

where the last inclusion is true because g(X) ∈ Z[X], and so g(ζm) ∈ R. ut

We get that if we multiply the different ideal by m′, we find a set included
in the ring of integer. In fact, we prove in Appendix A that m′ is the smallest
integer which verifies this property. It essencially comes from the fact that m′

is the radical of the finite group R∨/R, namely the least common multiple of
orders of the elements in this group. As proved in App.A we get this following
characterization:

Theorem 4. A integer k is such that kR∨ ⊂ R if and only if m′ divides k.

5 Geometry and Error Sampling

For the rest of the paper, let m′ ∈ Z denote m/2 if m is even, and m if m is
odd. All the proofs of this sections are given in App. B.

To obtain the correct distribution of the error polynomials in the Ring-LWE
problem in Theorem 1, we want the noise distribution over Q[X]/(Φm) to map



to a spherical Gaussian in the embedding space H. This is not a problem if the
map T−1 ◦ σ is a scaled-orthonormal map, which is the case when m is a power
of two. For a general m, a natural solution would be to generate the noise in
the space H and then map it to Q[X]/(Φm), however this requires dealing with
the inverse Vandermonde matrix of σ−1, making the noise generation much less
efficient.

To overcome this technical issue, we use the ring extension Q[X]/(Θm) and
show that it is a the natural ring for the error generation. First unlike Q[X]/(Φm)
the canonical embedding from this ring preserves sphericity of Gaussian distri-
butions: thus one just needs to sample a spherical Gaussian in this extension
then reduce modulo φm.

Theorem 5 (Geometry of T−1 ◦ σ ◦ β). Let v ∈ Q[X]/(Θm) be a random
variable distributed as ψm

′

s in the power basis. Then the distribution of (T−1 ◦
σ ◦ β)(v), seen in the canonical basis of H is the spherical Gaussian ψ

φ(m)

s
√
m′

.

Secondly, for a large class of integers m the reduction modulo Φm has a very
simple and sparse matrix representation in the power basis. The knowledge of
this matrix representation simplifies the geometric analysis of the error and prod-
ucts of errors, leading to some better theoretical bounds for correct decryption
(see lemma 7), detailed below.

5.1 Analysis of β, the reduction modulo Φm

First, if B is very sparse and structured, this reduction can be implemented in a
very simple ad-hoc way, while having better practical running time than general
quasi-linear reduction algorithms. We will show that it is the case when m = 2kp
for a any prime p, and also when m = 2kp′p if p′ is a small prime.

Secondly, error distributions in the Q[X]/(Φm) representation depend on
the geometry of B, and thus the norms of B have an impact on the relation
between m, s and q : the smaller the norms are, the smaller q one may choose
while ensuring correct decryption. In particular, for any e ∈ Q[X]/(Θm) we
have : ‖β(e)‖∞ ≤ ‖B‖1 ‖e‖∞, which is related to the expansion factor inequality
[LM06]. One may indeed only deal only with the expansion factor of Φm, and
bound the error preimage in Q[X]/(Θm). As described later, the main part
of the error that needs to be dealt with for decryption has the form ab + cd
where a, b, c, d are drawn according to β(ψm

′

s ). Considering the tailcut function

E(τ) = τe1/2−τ
2/2 we have the following fact:

Fact 6 (Error Bound in the Extension Ring Q[X]/(Θm)) Let a, b, c, d ∈ Q[X]/(Θm)
be distributed as ψm

′

s . Then, ‖ab+ cd‖∞ ≤
√

2m′ τ τ ′s2 except with probability

less than m′E(τ) + E(τ ′)2m
′
.

Since β is ring morphism, preserving products as well as sums, this translate to
Q[X]/(Φm):

‖β(a)β(b) + β(c)β(d)‖∞ = ‖β(ab+ cd)‖∞ ≤ ‖B‖1
√

2m′ τ τ ′s2.



However, the exact knowledge of B, together with the knowledge of the error
distribution may lead to better bounds. While there is no simple explicit formula
for B in general, some specific values of m makes B very simple. Obviously, when
m is a power of two, B is the identity since Θm = Φm. When m = 2kp we have:

B =

 -1

Idp−1
...
-1

 if k = 0; B =


-1

1

Idp−1
...
-1

1

⊗ Id2k−1 otherwise

In that case, a better bound can be proved, replacing the constant ‖B‖1 = 2 by

‖B‖2 =
√

2.

Fact 7 (Error Bound for m = 2kp) Let p be a prime number, k a positive
integer and assume m = 2kp. Let a, b, c, d ∈ Q[X]/(Θm) be distributed as ψm

′

s .

Then, ‖β(ab+ cd)‖∞ ≤ 2
√
m′ ττ ′s2, except with probability less than m′

(
E(τ) + 3 E(τ ′)2bm

′/3c
)

.

This statement raises the interesting question of whether it can be generalized
to other values m, i.e. can we replace ‖B‖1 by ‖B‖2 (while keeping the exponent
of E(τ ′) big enough) ? While such constant ‖B‖2 applies to Gaussian errors, its
not clear if it applies in general for products of Gaussians.

Other polynomials Φm For general values of m the coefficients of B may be
much bigger, and can even grow exponentially in m for product of many primes.
Few is known about the behavior of the coefficients of Φm in terms of the prime
decomposition of m, however Lam and Leung proved in [LL96] that Φpq for two
primes p and q have its coefficient in {−1, 0, 1}.

A generalization of their proof gives a more detailed behavior:

Theorem 8. If m is on the form m = 2kpq where p q are two odd primes and
k ∈ N, B has coefficients in {−1, 0, 1} and ‖B‖1 = 2 min(p, q).

Improved Decryption Additionally, the explicit knowledge of B can suggest
strategies to improve the tolerance of the decryption algorithm. Such an idea is
described when m = p is a prime integer in section 6.4. It seems to improve the
tolerance, replacing the ‖B‖2 =

√
2 factor by ≈ 1.16 for dimension m ≈ 500;

and seems to be 1 + o(1) when the dimension grows. With that improvement
the tolerance loss compared to the encryption scheme based on Φ2k can becomes
marginal.

6 Ring-LWE encryption Scheme

In this section we present an application example of our result, that is an adap-
tation of the [LPR10] scheme to general polynomial Φm, and sketch strategies
to improve the decryption rate.



6.1 Definition

We consider m to be our main security parameter, and we assume it grows
in an unbounded set of integer S such that ‖B‖1 is polynomially bounded :
‖B‖1 ≤ O(mb) for some b ≥ 0. For example, we can take b = 0 for the set
S =

{
2kp|k ∈ Z, p is prime

}
, while S =

{
2kpq|k ∈ Z, p, q are prime

}
gives

b = 1/2.
Choose some small ε ∈ (0, 1/4), and set other parameters to grow as follow :

the modulus q = Θ(m2+b+2ε), and the standard deviation s = Θ(m3/4+ε). Our
encryption scheme is as follows :

– Gen(1m) : Sample w, e1 ← ψm
′

s , and a uniformly in Rq. Set w̄ = bβ(w)e
and ē1 = bβ(e1)e The private key w̄ = bβ(w)e ∈ Rq and the public key is
(a, t̄) where t̄ = aw̄ + ē1 mod q ∈ Rq

– Encrypt(t̄ ∈ Rq, µ ∈ {0, 1}φ(m)) : To encrypt the message µ under the

public key t̄, draw r, e2, e3 ← ψm
′

s , and set r̄ = bβ(r)e, ē2 = bβ(e2)e and
ē3 = bβ(e3)e. Output (u, v) ∈ Rq × Rq where u = ar̄ + ē2 mod q and
v = t̄r̄ + ē3 + µbq/2c mod q.

– Decrypt(w̄ ∈ Rq, (u, v) ∈ Rq × Rq) : To decrypt (u, v) with the private
key w̄, compute d = v − uw̄ ∈ Rq, and decrypt the i-th bit µi as 0 if
di ∈ [−q/4; q/4], and as 1 otherwise.

6.2 Security

We prove semantic security based on the hardness of the approximate Shortest
Vector Problem to within a factor Õ(m5/2+b+ε). For any constant number of
samples k set :

α−1 =

√
m′q

s

(
φ(m′)k

log(φ(m′)k)

)1/4

= O(m2+b+ε).

To fulfill the condition of theorem 2, we verify that :

αq = s
log(φ(m)k)1/4
√
m′φ(m)k

1/4
≥ Θ(mε) > ω(

√
logm), since

m

φ(m)
= O(log logm).

Note that we use the main theorem 2 in its modified form that replaces the
uniform distribution of the secret w by the same Gaussian distribution as the
error (see the discussion under the statement of theorem 2).

First, the public key distribution (ā, t̄ = āw̄ + ē1) follows the distribution
defined in theorem 2 relatively to w which is distributed according to a Gaussian
distribution. Thus for k = 2, our theorem states that this public key (ā, t̄) is
indistinguishable from the uniform distribution over Rq ×Rq.

We can now assume that (ā, t̄) is uniformly random, in which case (a, u =
ar̄ + ē2) and (t̄, v′ = t̄r̄ + ē2) are two samples following the distribution of
theorem 2, where r̄ is once again Gaussian. Using theorem 2 with k = 3, we
deduce that (a, u) and (t̄, v′) are also is indistinguishable from random, so is
v = v′ + µbq/2c That concludes the security proof.



6.3 Correctness

During decryption, we get :

d = v − uw̄ = (āw̄ + e1)r̄ + ē3 + µbq/2c − (ār̄ + ē2) mod q

= ē1r̄ + ē3 + ē2w̄ + µbq/2c mod q

Thus, the decryption will be correct if ‖ē‖∞ < q/4 where ē = ē1r̄ + ē3 +
ē2w̄. First, note that the rounding operations have a limited effect on the final
result of the error ē : the difference between that computation with and without
rounding is bounded by Õ(B1m

′s) = Õ(m7/4+b+ε), this negligible compared to
q = Θ(m2+b+2ε). Similarly, one can neglect the contribution of ē3 since ‖ē3‖∞ ≤
Õ(‖B‖1 s) = Õ(m3/4+b+ε).

According to lemma 6, we have that ‖ē‖∞ ≤ Õ(‖B‖1
√
ms2) ≤ Õ(m2+b+ε)

except with negligible probability. On the other hand, q grows as Θ(m2+b+2ε),
thus, decryption is correct with overwhelming probability for large enough values
of m.

6.4 Practical Improvements

For applications, any tricks to decrease the minimal value of q while preserving
correct decryption might be worthwhile. We hereby presents two independent
ideas.

Recovering approximation of the error preimage e′ ∈ Z[X]/(Θm) This
first idea concerns the decryption algorithm. For simplicity, we restrict our at-
tention to m = p a prime. In this case we have for each index i ≤ p − 2 that
ēi = e′i − e′p−1 where e′ = e1r + e3 + e2w ∈ Z[X]/(Θm). Thus if we recover a
good approximation x of e′p−1 we might reduce the error by adding x to each
coordinate. Without warping modulo q, an approximation of e′p−1 may be re-

covered as the average −1
p−1

∑p−2
i=0 ēi; the error should be less than ≈ τs2, using

the heuristic that e′ behave like a spherical Gaussian.
However, we need to consider ēi modulo q/2 to get rid of the message. Our

heuristic algorithm proceeds as follow : for a certain constant α ∈ (0, 1), find (one
of) the smallest interval [a, b] such that for at least α(p− 1) indexes i ∈ [p− 1]
verifies ēi ∈ ([a, b] mod q/2). Consider ai ∈ Z as the unique integer representing
ēi ∈ Zq/2 in [a, b], compute the average x of those ai, and output the smallest
representative of −bxe modulo q/2 as an approximation of e′p−1. Note that this
algorithm can be implemented in quasi-linear time, by sorting the values ei.

Our experiments indicates that such a strategy decrease the
√

2 ≈ 1.41 factor
to ≈ 1.16 for m = 503 and α = 0.9, and keeps decreasing when the dimension
grows. We conjecture that it asymptotically decrease as 1 + o(1). Similar idea
should apply to m = 2kp. While this suggest that the quality loss compared to
cryptosystem based on the Φ2k polynomial can be almost reduced to nothing,
implementing such a error recovery strategy would require more study.



Rejection during Key Generation The second idea consist of modifying the
key generation algorithm Gen so that the couple (s, e1) is rejected whenever
‖(s|e1)‖ ≥

√
2m′τ ′′s, where τ ′′ is chosen such that E(τ ′′)2n ≤ 1/2; only half of

them are rejected, thus the advantage of the adversary is no more than doubled.
For m′ ≥ 500 this improves our bound by τ ′/τ ′′ ≈ 1.4/1.05. The same idea
applies when using the tight bound of lemma 7 by rejecting (s̄, ē1) depending on

‖B · Circ(s̄)‖2 + ‖B · Circ(ē1)‖2.
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A Proof of Theorem 4

First of all, we remind some facts about free abelian groups of finite rank directly
apply to Z[X]/(Φm) and its different ideal. For conciseness, we will note R for
the ring Z[X]/(Φm) ∼= Z[ζm] in all this section.

Definition 9. Let G be a group and I a set. We says that a family of element
(ei)i∈I of G is a basis of G is every element of G can be written uniquely as a
finite linear combination with integer coefficients of elements of this family. If I
is finite, this cardinal is called the rank of G.

Notations For two integers k and n, the predicate k|n denotes that k divides
n. Also, let n be an integer and p a prime numbers. We define the order of n at
p, denoted by ordp(n), as the positive integer α such that pα|n and pα+1 does
not divide n. It is the exponent of p in the prime decomposition of n if p|n, and
0 otherwise.

Fact 10 There exists a basis (ei)1≤i≤φ(m) for R∨ and φ(m) positive integer
(bi)1≤i≤φ(m) such that (biei)1≤i≤φ(m) is a basis for R. Moreover, ∀i ≤ φ(m) −
1, bi|bi+1.

Proof: All elements of R can be uniquely written as a linear combination with
integer coefficients of (ζim)0≤i≤φ(m)−1, as this family is rationally independent.
In a similar way, we have that all elements of R∨ can be uniquely written as

a linear combination with integer coefficients of (
ζim

Φ′n(ζm) )0≤i≤φ(m)−1. Since R ⊂
R∨, we can write for all i, ζim in the latter family : ∀i ∈ [|0, φ(m) − 1|], ζim =∑φ(m)−1
j=0 ai,j

ζjm
Φ′m(ζm) . We end up with a square matrix A = (ai,j)0≤i,j≤φ(m)−1

of dimension φ(m) with integer coefficients. And we consider its Smith normal
form (Proposition 2.1.5 in [Ste05]): namely, there exists two matrix U and V
with integer coefficients of dimension φ(m), unimodular, such that UAV = D,
where D is a diagonal matrix with positive integer coefficients on the form :

b1 0 · · · 0

0
. . .

br
... 0

. . .

0 · · · 0





Such that bi|bi+1 for any i < r.
Besides, in our case, r = φ(m) and ∀i < r, bi 6= 0. Indeed, let’s notice that A

is a change-of-basis matrix for two Q-basis of Q(ζm), then invertible, and then
its determinant is non-zero. But det(D) = det(UAV ) = det(U) det(A) det(V ) =
det(A), because U and V are unimodular, and thus have their determinant equal
to ±1.

This decomposition of A gives us a basis (ei)1≤i≤φ(m) for R∨ and φ(m)
integer (bi)1≤i≤φ(m) such that (biei)1≤i≤φ(m) is a basis for R, where bi|bi+1 for
any i ≤ φ(m)− 1. ut

Thanks to this result, we can state two immediate consequences.

Fact 11 With the notation of Fact 10, an integer k is such that kR∨ ⊂ R if and
only if bφ(m)|k. Therefore, bφ(m)|m′. Moreover we have the following equality:

φ(m)∏
i=1

bi = mφ(m)

/ ∏
p/m

p prime number

pφ(m)/(p−1)

Proof: First, an integer k is such that kR∨ ⊂ R if and only if

∀i ≤ φ(m) kei ∈ R (1)

or equivalently, if and only if for all i, there exist ci ∈ N such that kei = aibiei.
This can be rewritten as

∀i, bi|k.

By Fact 10, all the bi’s divides bφ(m), so condition (1) is equivalent to: bφ(m)|k.
The Fact 10 gives us the cardinality of the finite group R∨/R, called the

index of R in R∨ and denoted [R∨ : R] : [R∨ : R] =
∏φ(m)
i=1 bi.

Yet, this index is known to be the absolute value of the discriminant of the
cyclotomic field (Theorem 4.6 in [Con09]), for which we know an exact expression
(Proposition 2.7 of [Was97]):

disc(Q(ζm)) = (−1)
φ(m)

2 mφ(m)

/ ∏
p/m

p prime number

pφ(m)/(p−1)

ut

Using previous facts, we may now prove our main results:

Theorem 12. With the notation above, bφ(m) = m′ and a integer k is such that
kR∨ ⊂ R if and only if m′|k.

Proof: First, we prove that m′|bφ(m). To prove this, we work on the prime factors
of m′. More precisely, we show that for all prime p|m′, ordp(m

′) ≤ ordp(bφ(m)),
it immediately follows that m′|bφ(m) . Let p a prime factor of m′ different from
2. Then by definition of m′, ordp(m

′) = ordp(m).



We proceed by assuming that ordp(m) > ordp(bφ(m)), and show that it is
absurd. From Fact 10 we have bi|bi+1 for all i < φ(m). Thus: ordp(m) − 1 ≥
ordp(bi) and summing over all i we get:

(ordp(m)− 1)φ(m) ≥
φ(m)∑
i=1

ordp(bi). (2)

Fact 11 tells us that:

φ(m)∏
i=1

bi = mφ(m)

/ ∏
p/m

p prime number

pφ(m)/(p−1)

and therefore

ordp

φ(m)∏
i=1

bi

 = ordp(m)φ(m)− φ(m)

p− 1

φ(m)∑
i=1

ordp(bi) = φ(m) ·
(

ordp(m)− 1

p− 1

)
Combining with the inequality (2) we deduce:

(ordp(m)− 1)φ(m) ≥ φ(m)(ordp(m)− 1

p− 1
)

which is absurd since p > 2. We actually get that ordp(m
′) ≤ ordp(bφ(m)), if p

is prime factor of m′ different from 2.
If 2 is a prime factor ofm′, the same reasoning applies, starting with ord2(m′) =

ord2(m)− 1.
Thereforem′|bφ(m). And the Theorem 3 with the Fact 11 tell us that bφ(m)|m′.

Thus m′ = bφ(m). And by the Fact 11 again, a integer k is such that kR∨ ⊂ R
if and only if m′|k. ut

B Proofs of Section 5

B.1 Proof of Theorem 5

Proof of Theorem 5 We proceed by considering G ∈ Cφ(m)×m′ , the matrix rep-
resenting the linear map γ from the power basis of Z[X]/(Θm) to the canonical
basis of Cφ(m) and will show GGt = m′Idφ(m). Also note that T−1 is hermitian,

that is T−1 = T
t
, and T−1 ◦ γ is a real linear map. Thus E = T−1G = E so

EEt = EE
t

= T−1GG
t
T = m′ Idφ(m).

This last equation implies that if a random variable v ∈ Q[X]/(Θm) has

covariance s2 ·Idm′ then the covariance of (T−1◦γ)(v) is s·E ·Idm′ ·E
t

= s2m′ ·Idn
: the distribution of (T−1 ◦ γ)(v) is the spherical Gaussian ψ

φ(m)

s
√
m′

.



Now we show that GGt = m′Idφ(m) : let gi,j for (i, j) ∈ [m′] × Z∗m denotes
the coefficients of G, that is gi,j = σj(X

i) = ζijm. Let ci,j for i, j ∈ Z∗m denote

the coefficients of C = G ·Gt. For all i, j ∈ Z∗m we have:

ci,j =
∑
k∈[m′]

ζikm ζ
jk
m =

∑
k∈[m′]

(
ζi−jm

)k
=

m′ if i = j , since ζi−jm = 1
0 otherwise, since ζi−jm 6= 1 is a m-th root of unity

(or an m′-th root when m is even)

ut

B.2 Proofs of error bounds

We start with usefull facts for our proofs.

Tailcut We first recall a standard fact to tailcut Gaussian distribution, that will
be required for our proofs.

Fact 13 (Tailcut of Gaussian distribution) Let n be an integer, and let x
be distributed according to a Spherical Gaussian distribution over Rn of width
s. For any τ > 1 the probability that ‖x‖ > τ

√
ns is less than E(τ)n where

E(τ) = τe
1
2−

τ2

2 .

Note that when n is large, having τ = 2 guarantees the bound ‖x‖ ≤
√
nτs

with overwhelming probability (more than 1−2−n). In dimension n = 1, τ = 12
guarantees the bound except with probability ≈ 2−100.

Products in Z[X]/(Θm) Additionally, we will use the following properties of
products in the ring Z[X]/(Θm).

Let a, b ∈ Z[X]/(Θm) be polynomials, and c = ab ∈ Z[X]/(Θm). Seeing a, b, c
as column vectors in the power basis, we have : c = Circ(a) · b if m is odd and
c = Acirc(a) · b if m is even; where Circ(a) (resp. Acirc(a)) is the circulant (resp.
anti-circulant) matrix whose first column forms the coefficients of a. Note that
for any polynomials a, ‖Circ(a)‖ = ‖Acirc(a)‖ = ‖a‖, since each row of Circ(a)
and Acirc(a) have the same coefficient as a up to sign and permutation.

Proof of Lemma 6 Since a, b, c, d are polynomial over Z[X]/(Θm(X)), e = ab+cd
can be written as :

e = (Circ(a) · b+ Circ(c) · d) = (Circ(a)|Circ(c)) ·
(
b
d

)
Each row of (Circ(a)|Circ(c)) has norm ‖(a|c)‖. Knowing a and c, the marginal
distribution of ei is a Gaussian distribution of standard deviation s ‖(a|c)‖. Thus,
each coefficient ei verifies |ei| ≤ ‖(a|c)‖ τs except with probability E(τ). The
vector (a|c) is distributed according to ψ2m′

s thus, except with probability E(τ ′)2n

we have ‖(a|c)‖ ≤
√

2m′τ ′s. We conclude by the union bound. ut



Proof of Lemma 7 For simplicity, we only present the proof for case where k = 0,
that is when m = p is a prime integer. We start by rewriting e = β(ab+ cd) as :

e = B · (Circ(a) · b+ Circ(c) · d) = (B · Circ(a)|B · Circ(c)) ·
(
b
d

)
and considering the form of B, we have :

B · Circ(a) =

 -1

Idp−1
...
-1

 ·


a0 ap−1 · · · a2 a1

a1
. . . a2

...
. . .

...
ap−2 · · · · · · a0 ap−1
ap−1 ap−2 · · · a1 a0

 = C(a)

where C(a) is (p − 1) × p matrix with coefficients [C(a)]i,j = ai−j mod p −
a1−j mod p. We show that for each row r of C ′(a) (let say, the i-th row where
i ∈ {0 . . . p − 2}), there exist a partition J0 ] J1 ] J2 = [p] such that each ak
appears at most once as a term of rj = ai−j mod p− a1−j mod p at most once in
each sub-vector rJ0 , rJ1 , rJ2 , and where #J0,#J1,#J2 ≥ bp/3c.

For that, consider the graph Gi whose vertices set is [p] and with edges
between k and l if rk and rl contains a shared term aj . There is such an edge
exactly when |k − l| = i+ 1 mod p. Since i+ 1 ∈ {1 . . . p− 1}, i+ 1 is coprime
with p, Gi is isomorphic to the cyclic graph Cp which has [p] as set of vertices
and connects k to l if and only if |k − l| = 1 mod p. It remains to describe a
balanced 3-coloring for the cyclic graph Cp : for each k ∈ [3bp/3c] put the vertex
k in the bucket Jk mod 3. If p = 3 we are done; if p = 1 mod 3, puts p − 1 in
J2; last if p = 2 mod 3 puts p− 2 in J1 and p− 1 in J2.

Using that index partition, one may break each row of (B ·Circ(a)|B ·Circ(c))
into three vectors r1, r2, r3 of dimension at least 2bp/3c, and the coefficient of
each of them are independant Gaussian variable of variance

√
2s. Thus, except,

with a probability less than 3p E(τ ′)2bp/3c all rows r verifies ‖r‖ ≤ τ ′s
√

2p. The
rest of the proof is then similar to the proof of lemma 6. ut

B.3 Proof of Theorem 8

As discussed in the section 5, the simpler the matrix B, the more efficient the
reduction modulo Φm. Also, it turns out that for m product of two different
primes and a power of 2, the matrix B besides to be very sparse, has its coefficient
in {−1, 0, 1}. Before beginning the main real proof, we state a lemma which will
be useful.

Lemma 14. Let p and q two different odd primes, with p < q, for all k ∈ [0, p−2]
there exists (r, s) ∈ N2 such that:

– φ(pq) + k = rp+ sq
– 0 ≤ r ≤ q − 2 and 0 ≤ s ≤ p− 2



Proof: First we prove that for k ∈ [0, p − 2], there exist two integers u and v
such that k + 1 = up+ vq, |u| < q and |v| < p.

As p and q are coprime, by the Chinese Remainder theorem, there exist two
integers ũ and ṽ such that k + 1 = ũp + ṽq. Let’s make the division of ũ by q:
ũ = aq + u with |u| < q. And let’s set v = ṽ + a. Then k + 1 = up+ vq, and as
|u| < q, it remains to prove that |v| < q.

Indeed v = k+1−up
q , so |v| ≤ |k+1

q |+|
up
q |. But as v is an integer, and |k+1

q | < 1,

|v| ≤ |upq |. To finish we use that |uq | < 1, and then |v| < q.

Besides, as k ∈ [0, p − 2], and p, q are positive, necessarily the sign of u is
the opposite of the one of v. And, as k + 1 is non-zero and is not divided by
p and q, u and v are non zero. So, we have two cases: either u ∈ [1, q − 1] and
v ∈ [−p + 1,−1] or u ∈ [−q + 1,−1] and v ∈ [1, p − 1]. Suppose that we are in
the first case,

φ(pq) + k = pq − p− q + 1 + k

= pq − p− q + up+ vq

= (u− 1)p+ (p+ v − 1)q

Then r = u− 1 and s = p+ v − 1 fit.
The second case is dealt in the same way. ut

We see in a first time a first version of the theorem for m = pq,

Theorem 15. If m is on the form m = pq where p, q are two odd primes with
p < q, then ‖B‖1 = 2p. And more exactly we know the form of B:

B =

 Idφ(pq)−1 A1

M
...
M

−Idq−p+1

A2

 where M =


−Idq−p+1

0 · · · 0
...

...
0 · · · 0

Zq×(q−p+1))

where A1 and A2 are two matrix of dimension (φ(pq) − 1) × (p − 1) with
coefficient in {−1, 0, 1}. Moreover, the first line of A1 have its coefficients equals
to -1 and the first line of A2 have its coefficients equals to 1.

Proof: For l ∈ [0, pq − 1],the lth column of B is the decomposition of ζlpq in the

power basis {ζjpq | j ∈ [0, φ(pq)− 1]}. We divide the analysis of these columns in
four blocks.

1. First block: l ∈ [0, φ(pq)− 1]
The decomposition is obvious, which give the first block.

2. Second Block: l ∈ [φ(pq), q(p− 1)− 1]
In a second time, we are going to find the claimed matrix A1. Let l ∈

[φ(pq), q(p − 1) − 1], namely l = φ(pq) + k for k ∈ [0, p − 2]. There exists by



the lemma 14 r, s such that φ(pq) + k = rq + sp, r ∈ [0, q − 2] and s ∈ [0, p− 2].
As ζqpq is a primitive pth root of unity, and ζppq is a primitive qth root of unity,
we have the following expression:

Φp(ζ
q
pq) = 0∑p−1

i=0 (ζqpq)
i = 0∑s

i=0(ζqpq)
i = −

∑p−1
i=s+1(ζqpq)

i

Φq(ζ
p
pq) = 0∑q−1

j=0(ζppq)
j = 0∑r

j=0(ζppq)
j = −

∑q−1
j=r+1(ζppq)

j

If we multiply the two latter, and reminding that φ(pq) +k = rq+ sp we get:

0 =

s∑
i=0

r∑
j=0

(ζppq)
j(ζqpq)

i −
p−1∑
i=s+1

q−1∑
j=r+1

(ζppq)
j(ζqpq)

i (3)

ζφ(pq)+kpq =

p−1∑
i=s+1

q−1∑
j=r+1

(ζppq)
j(ζqpq)

i

︸ ︷︷ ︸
S1

−
s−1∑
i=0

r∑
j=0

(ζppq)
j(ζqpq)

i − (ζqpq)
s
r−1∑
j=0

(ζppq)
j(ζqpq)

i

︸ ︷︷ ︸
S2

(4)

We use here the convention that
∑b
i=a = 0 if a > b.

We check easily that all the exponents in S2 are between 0 and φ(pq) − 1.
The problem is the exponents of S1 is greater than pq, but ζpqpq = 1. Thus,

ζφ(pq)+kpq =
1

ζpqpq

p−1∑
i=s+1

q−1∑
j=r+1

(ζppq)
j(ζqpq)

i

︸ ︷︷ ︸
S1

−
s−1∑
i=0

r∑
j=0

(ζppq)
j(ζqpq)

i − (ζqpq)
s
r−1∑
j=0

(ζppq)
j(ζqpq)

i

︸ ︷︷ ︸
S2

(5)

Here is the decomposition of ζ
φ(pq)+k
pq in the power basis: all the exponents in

S1 and S2 are now between 0 and φ(pq) − 1. Finally, it remains to check the
expected form of A1, namely that the coefficient in the decomposition 5 are −1, 0
or 1, and 1 appears in this decomposition with coefficient −1. The latter point is
clear because 1 appears in S2 for i = 0, j = 0. For the former point, let’s notice
that all the exponent in the decomposition 5 are different. Clearly the exponents
inside each sums S1 and S2 are different, but also the exponents between both:
indeed, assume that there is an exponent appearing in both, and without loss of
generality we have s ≤ r, then there would exist four integers i, j, q, b such that:

s+ 1 ≤ i ≤ p− 1, r + 1 ≤ j ≤ q − 1, 0 ≤ a ≤ s− 1, 0 ≤ b ≤ r

and

iq + jp− qp = aq + bp

(i− a)q + (j − b)p = pq

pq > pq



which is absurd. The case r ≤ s leads to the same conclusion.

3. Third Block: l ∈ [q(p− 1), p(q − 1)]

We have already seen
∑p−1
i=0 (ζqpq)

i = 0 then:

ζq(p−1)pq = −
p−2∑
i=0

(ζqpq)
i (6)

Now let l ∈ [q(p− 1), p(q − 1)], so l = (p− 1)q + k with k ∈ [0, q − p]. Thus

ζlpq = ζkpq(ζ
(p−1)q
pq ), and with the equality 6 we obtain the decomposition of ζlpq:

ζlpq = −
p−2∑
i=0

ζiq+kpq

Indeed, all the exponents are different and between 0 and φ(pq)− 1. So, we
have found the third block of B.

4. fourth Block: l ∈ [p(q − 1) + 1, pq − 1]
The family (ζlpq)l∈[p(q−1)+1,pq−1] matches with the family (ζ−k−1pq )k∈[0,p−1].

And to get the decomposition of this family, for k ∈ [0, p − 1], we use the
expression 3 found for the second block, which we multiply by ζ−k−1pq . So

ζ−k−1pq =
1

ζpq+k+1
pq

p−1∑
i=s+1

q−1∑
j=r+1

(ζppq)
j(ζqpq)

i − 1

ζk+1
pq

 s∑
i=1

r∑
j=0

(ζppq)
j(ζqpq)

i +

r∑
j=1

(ζppq)
j(ζqpq)

i


(7)

And, the analysis of this decomposition is similar to the one for the second
block. That’s why A1 and A2 have the same form. ut

We can finally prove the theorem 8, which we recall and complete:

Theorem 16. If m is on the form m = 2kpq where p q are two odd primes with
p < q, and k ∈ N, B has coefficients in {−1, 0, 1} and ‖B‖1 = 2p. And more
precisely we have:

|B| = |Bpq| ⊗ Id2k−1

where we denote for a matrix M , |M | the matrix whose the coefficients are the
absolute value of the one of M . And Bpq is the matrix of β for m = pq.

Proof: The fact that B is so related to Bpq comes from the following equalities,
we are going to often use next:

ζ2
k−1

2kpq = −1 (8)

ζ2kpq = ζt2kζ
w
pq where t and w are integers such that t(pq) + 2k−1w = 1 (9)



We proceed as the last proof, by finding the decomposition of ζf
2kpq

for

f ∈ [0, 2k−1pq − 1] in the power basis {ζj
2kpq

| j ∈ [0, 2k−1φ(pq) − 1]}. The

decomposition is not obvious for f ∈ [2k−1φ(pq), 2k−1pq − 1], namely f =
2k−1φ(pq) + u2k−1 + v for u ∈ [0, pq − φ(pq) − 1] and v ∈ [0, 2k−1]. Using 8
and 9, we have for such f, u, v:

ζf
2kpq

= ζ
2k−1(φ(pq)+u)+v

2kpq

= ±ζv2kpqζ
2k−1w(φ(pq)+u)
pq

= ±ζv2kpq ζ̃pq
φ(pq)+u

where ζ̃pq = ζ2
k−1w
pq are a primitive pqth root of unity since 2k−1w and pq are

coprime. We can use the theorem 15, to find a decomposition of ζ̃pq
φ(pq)+u

with coefficient (aui )i∈[0,φ(pq)−1] in {−1, 0, 1} relatively to the basis {ζ̃pq
j
| j ∈

[0, φ(pq)− 1]}:

ζf
2kpq

= ±ζv2kpq
φ(pq)−1∑
i=0

aui ζ̃pq
i

= ±ζv2kpq
φ(pq)−1∑
i=0

aui (ζ2
k−1w
pq )i

Thanks to 8, for each i ∈ [0, φ(pq)− 1], ζ2
k−1ti

2k = ±1, and 9 leads to:

ζf
2kpq

=

φ(pq)−1∑
i=0

±aui ζ2
k−1i+v

2kpq

which finally gives us that: |B| = |Bpq| ⊗ Id2k−1 . ut


