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Abstract

The security of BGV-style homomorphic encryption schemes over polynomial rings relies on rings
of very large dimension. This large dimension is needed because of the large modulus-to-noise ratio in
the key-switching matrices that are used for the top few levels of the evaluated circuit. However, larger
noise (and hence smaller modulus-to-noise ratio) is used in lower levels of the circuit, so from a security
standpoint it is permissible to switch to lower-dimension rings, thus speeding up the homomorphic
operations for the lower levels of the circuit. However, implementing such ring-switching is nontrivial,
since these schemes rely on the ring algebraic structure for their homomorphic properties.

A basic ring-switching operation was used by Brakerski, Gentry and Vaikuntanathan, over polynomial
rings of the form Z[X]/(X2n + 1), in the context of bootstrapping. In this work we generalize and extend
this technique to work over any cyclotomic ring and show how it can be used not only for bootstrapping
but also during the computation itself (in conjunction with the “packed ciphertext” techniques of Gentry,
Halevi and Smart).
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1 Introduction

The last year has seen a rapid advance in the state of fully homomorphic encryption; yet despite these advances
the existing schemes are still too inefficient for most practical purposes. In this paper we make another step
forward in making such schemes more efficient. In particular we present a technique to reduce the dimension
of the ring needed for homomorphic computation of the lower levels of a circuit. Our techniques apply to
homomorphic encryption schemes over polynomial rings, such as the scheme of Brakerski et al. [4, 5, 3], as
well as the variants due to Lòpez-Alt et al. [14] and Brakerski [2].

The most efficient variants of all these schemes work over polynomial rings of the form Z[X]/F (X), and
in all of them the ring dimension (which is the degree of F (X)) must be set high enough to ensure security:
to be able to handle depth-L circuits, these schemes must use key-switching matrices with modulus-to-noise
ratio of 2Ω̃(L·polylog(λ)), hence the ring dimension must also be Ω̃(L · polylog(λ)) (even if we assume that
ring-LWE [15] is hard to within fully exponential factors).1 In practice, the ring dimension for moderately
deep circuits can easily be many thousands. For example, to be able to evaluate AES homomorphically,
Gentry et al. used in [13] circuits of depth L ≥ 50, with corresponding ring-dimension of over 50000.

As homomorphic operations proceed, the noise in the ciphertext grows (or the modulus shrinks, if we
use the modulus-switching technique from [5, 3]), hence reducing the modulus-to-noise ratio. Consequently,
it becomes permissible to start using lower-dimension rings in order to speed up further homomorphic
computation. However, in the middle of the computation we already have evaluated ciphertexts over the
big ring, and so we need a method for transforming these into small-ring ciphertexts that encrypt the same
thing. Such a “ring switching” procedure was described by Brakerski et al. [3], in the context of reducing the
ciphertext-size prior to bootstrapping. The procedure in [3], however, is specific to polynomial rings of the
form R2n = Z[X]/(X2n−1

+ 1), and moreover by itself it cannot be combined with the “packed evaluation”
techniques of Gentry et al. [11]. Extending this procedure is the focus of this work.

1.1 Our Contribution

In this work we present two complementary techniques:

• We extend the procedure from [3] to any cyclotomic ring R = Z[X]/Φm(X) for a composite m. This
is important, since the tools from [11] for working with “packed” ciphertexts require that we work
with an odd integer m. For m = u · w, we show how to break a ciphertext over the big ring R into
a collection of u′ = ϕ(m)/ϕ(w) ciphertexts over the smaller ring R′ = Z[X]/Φw(X), such that the
plaintext encrypted in the original big-ring ciphertext can be recovered as a simple linear function of
the plaintexts encrypted in the smaller-ring ciphertexts.

• We then show how to take a “packed” big-ring ciphertext that contains many plaintext values in its
plaintext slots, and distribute these plaintext values among the plaintext slots of several small-ring
ciphertexts. If the original big-ring ciphertext was “sparse” (i.e., if only few of its plaintext slots were
used), then our technique yields just a small number of small-ring ciphertexts, only as many as needed
to fit all the used plaintext slots.

The first technique on its own may be useful in the context of bootstrapping, but it is not enough to
achieve our goal of reducing the computational overhead by switching to small-ring ciphertexts, since we

1The schemes from [3, 2] can replace large rings by using higher-dimension vectors over smaller rings. But their most efficient
variants use big rings and low-dimension vectors, since the complexity of their key-switching step is quadratic in the dimension of
these vectors.
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still need to show how to perform homomorphic operations on the resulting small-ring ciphertexts. This is
achieved by utilizing the second technique. To demonstrate the usefulness of the second technique, consider
the application of homomorphic AES computation [13], where the original big-ring ciphertext contains only
16 plaintext values (corresponding to the 16 bytes of the AES state). If the small-ring ciphertexts has 16 or
more plaintext slots, then we can convert the original big-ring ciphertext into a single small-ring ciphertext
containing the same 16 bytes in its slots, then continue the computation on this smaller ciphertext.

1.2 An Overview of the Construction

Our starting point is the polynomial composition technique of Brakerski et al. [3]. When m = u · w then a
polynomial of degree less than ϕ(m), a(X) =

∑ϕ(m)−1
i=0 aiX

i, can be broken into u polynomials of degree
less than ϕ(m)/u ≤ ϕ(w), by splitting the coefficients of a according to their index modulo u. Namely,
denoting by a(k) the polynomial with coefficients ak, ak+u, ak+2u, . . ., we have

a(X) =

u−1∑
k=0

ϕ(w)−1∑
j=0

ak+ujX
k+uj =

u−1∑
k=0

Xk

ϕ(w)−1∑
j=0

ak+ujX
uj =

u−1∑
k=0

Xka(k)(X
u). (1)

We note that this “very syntactic” transformation of splitting the coefficients of a high-degree polynomial into
several low-degree polynomials, has the following crucial algebraic properties:

1. The end result is a collection of “parts” a(k), all from the small ring R′ (which is a sub-ring of the big
ring R, since w|m).

2. Recalling that f(x) 7→ f(xu) is an embedding of R′ inside R, we have the property that the original a
can be recovered as a simple linear combination of (the embedding of) the parts a(k).

3. The transformation T (a) = (a(0), . . . , a(u−1)) is linear, and as such it commutes with the linear
operations inside the decryption formula of BGV-type schemes: If s is a big-ring secret key and c is
(part of) a big-ring ciphertext, then decryption over the big ring includes computing a = s · c ∈ R
(and later reducing a mod q and mod 2). Due to linearity, the parts of a can be expressed in terms of
the tensor product between the parts of s and c over the small ring. Namely, T (s · c) is some linear
function of T (s)⊗ T (c).

In addition to these algebraic properties, in the case considered in [3] where m,w are powers of two, it turns
out that this transformation also possesses the following geometric property:

4. If a is a “short” element of R (in the canonical embedding of R), then all the components a(k) ∈ R′ of
T (a) are also short in the canonical embedding of R′.

The importance of this last property stems from the fact that a valid ciphertext in a BGV-type homomorphic
encryption scheme must have short noise, namely its inner product with the unknown secret key must be
a short ring element. Property 3 above is used to convert a big-ring ciphertext encrypting a (relative to a
big-ring secret key s) into a collection of “syntactically correct” small-ring ciphertexts encrypting the a(k)’s
(relative to the small-ring secret key T (s)), and Property 4 is used to argue that these small-ring ciphertexts
are indeed valid.

Attempting to apply the same transformation in the case where m,w are not powers of two, it turns out
that the algebraic properties all still hold, but perhaps the geometric property does not. In this work we
therefore describe a different transformation T (·) for breaking a big-ring element into a vector of small-ring
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elements, that has all the properties 1-4 above,2 for any integers m,w such that w|m. This transformation
crucially uses the interpretation of R as a dimension-ϕ(m)/ϕ(w) extension ring of R′, and is described in
Section 3.2. Another advantage of our transformation over the one from [3] is that it breaks a big-ring element
a ∈ R into only u′ = ϕ(m)/ϕ(w) small ring parts a(k), as opposed to u = m/w parts for the transformation
from [3].

A Key-Switching Optimization. One source of inefficiency in the ring-switching procedure of Brakerski
et al. [3] is that using the tensor product T (s)⊗ T (c) amounts essentially to having u small-ring ciphertexts,
each of which is a dimension-u vector over the small ring. Brakerski et al. point out that we can use key-
switching/dimension-reduction to convert these high dimension ciphertexts into low-dimension ciphertexts
over the small ring, but processing u ciphertexts of dimension u inherently requires work quadratic in u.
Instead, here we describe an alternative procedure that saves a factor of u in running time.

Before using T (·) to break the ciphertext into pieces, we apply key-switching over the big ring to get a
ciphertext with respect to another secret key that happens to belong to the small ring R′. (We again recall that
R′ is a sub-ring of R). The transformation T (·) has the additional property that when applied to a small-ring
element s′ ∈ R′ ⊂ R, the resulting vector T (s′) over R′ has just a single non-zero entry, namely s′ itself.
Hence T (s′)⊗T (c) is the same as just s′ ·T (c), and this lets us work directly with low-dimension ciphertexts
over the small ring (as opposed to ciphertexts of dimension u). This is described in Section 3.1, where we
prove that key-switching into a key from the small subring is as secure as ring-LWE in that small subring.

Packed Ciphertexts. As sketched so far, the ring-switching procedure lets us convert a big-ring ciphertext
encrypting an element a ∈ R into a collection of u′ small-ring ciphertexts encrypting the parts a(k) ∈ R′.
However, coming in the middle of homomorphic evaluation, we may need to get small-ring ciphertexts
encrypting elements other than the a(k)’s. Specifically, if the original a encodes several plaintext values in its
plaintext slots (as in [18, 11]), we may want to get encryptions of small-ring elements that encode the very
same values in their slots.

We note that the plaintext values encoded in the element a ∈ R are the evaluations a(ρi), where the ρi’s
are primitive m-th roots of unity in some extension field F2d . (Equivalently, the evaluations a(ρi) correspond
to the residues a mod pi, where the pi = 〈2, Fi(X)〉 are the distinct prime ideal factors of 〈2〉 in the ring R.
Hence the evaluation representation over F2d is just Chinese remaindering modulo 2 in R.)

Similarly, the plaintext values encoded in an element b ∈ R′ are the evaluations b(τj), where the τj’s are
primitive w-th roots of unity in F2d (equivalently, the residues of b modulo the prime ideal factors of 2 in R′).
Our goal, then, is to decompose a big-ring ciphertext encrypting a into small-ring ciphertexts encrypting
some bk’s, such that for every i there are some j, k for which bk(τj) = a(ρi).

On a very high level, the approach that we take is to observe that the linear transformation T (·) for break
big-ring elements into vectors of small-ring parts, must as a side-effect of induce some linear transformation
(over F2d) on the values in the plaintext slots. Hence after we apply T , we just need to compute homomor-
phically the inverse linear transformation (e.g., using the techniques from [11] for computing on packed
ciphertexts), thereby recovering the original values.

2An earlier version of the current work [10] used the same transformation as in [3], and patched the problem with the geometric
property by “lifting” everything from the big ring Z[X]/Φm(X) to the even bigger ring Z[X]/(Xm − 1), using techniques similar
to [11, 7].

3



2 Notation and Preliminaries

For any positive integer u we let [u] = {0, . . . , u− 1}.

2.1 Algebraic Background

Recall that an ideal (in an arbitrary commutative ring R) is an additive subgroup which is closed under
multiplication by R. Below we typically denote ideals by p, q, etc. An R-ideal p is prime if ab ∈ p (for some
a, b ∈ R) implies a ∈ p or b ∈ p (or both). When R′ is a sub-ring of R and p is an R′-ideal, we implicitly
identify p with its extension to R, namely the R-ideal pR. For an R-ideal p, the quotient ring Rp = R/pR is
a ring consisting of the residue classes a+ p for all a ∈ R, with the ring operations induced by R.

For any positive integer m ≥ 2, let K = Q(ζm) ∼= Q[X]/Φm(X) be the mth cyclotomic number field
(of degree ϕ(m)), and R = Z[ζm] ∼= Z[X]/Φm(X) its ring of integers, where ζm = exp(2π

√
−1/m) is

the mth principal complex root of unity, and Φm(X) =
∏
i∈Z∗m(X − ζim) ∈ Z[X] is the mth cyclotomic

polynomial. The elements ζjm (equivalently, Xj) for j ∈ [ϕ(m)] form a Q-basis of K and a Z-basis of R,
called the “power basis.” That is, any a ∈ K can be written uniquely as a =

∑ϕ(m)−1
j=0 aj · ζjm for some

ak ∈ Q, and a ∈ R if and only if every aj ∈ Z.
There are ϕ(m) ring homomorphisms from K to C that fix Q pointwise, called embeddings, which are

denoted σi : K→ C for i ∈ Z∗m and characterized by σi(ζm) = ζim. (Equivalently, σi(a(X)) = a(ζim) ∈ C
when viewing K as Q(X)/Φm(X).) We note that the σi are automorphisms of K, when viewing it as a
sub-field of C. The (field) trace is a Q-linear function TrK/Q : K→ Q, which can be defined as the sum of
the embeddings: TrK/Q(a) =

∑
i∈Z∗m σi(a).

The canonical embedding σ : K → Cϕ(m) is the concatenation of all the embeddings, i.e., σ(a) =
(σi(a))i∈Z∗m , and it endows K with a canonical geometry. In particular, we define the Euclidean (`2) and `∞
norms on K as

‖a‖ := ‖σ(a)‖ =

√∑
i

|σi(a)|2 and ‖a‖∞ := ‖σ(a)‖∞ = max
i
|σi(a)|,

respectively. Note that ‖a · b‖ ≤ ‖a‖∞ · ‖b‖ for any a, b ∈ K, because the σi are ring homomorphisms.
For some w|m, let u = m/w (so ζw = ζum) and u′ = ϕ(m)/ϕ(w), and let K′ = Q(ζw) ⊆ K and R′ =

Z[ζw] ⊆ R be the wth cyclotomic number field and ring (respectively), with ϕ(w) embeddings σ′i : K′ → C
for i ∈ Z∗w defining the canonical embedding σ′ : K′ → Cϕ(w). Notice that when we restrict to the subfield
K′ = Q(ζum) of K, for any i ∈ Z∗m we have σi = σ′i mod w, because σi(ζum) = ζ

u·(i mod w)
m = σ′i mod w(ζw).

Observe that using the polynomial representation in the small ring R′ ∼= Z[X]/Φw(X), the element ζw
is represented by the indeterminate X . However, using polynomial representation in the big ring, R ∼=
Z[X]/Φm(X), the same ring element ζw = ζum ∈ R′ ⊂ R is represented by the monomial Xu. In general,
if r′ ∈ R′ is a small-ring element represented by the polynomial b(X) ∈ Z[X]/Φw(X), then the same
small-ring element is represented by the polynomial a(X) = b(Xu) mod Φm(X) ∈ Z[X]/Φm(X), when
viewed as an element in the sub-ring R′ of R. In other words, the mapping f(X) 7→ f(Xu) mod Φm(X),
mapping polynomials of degree less than ϕ(w) into a subset of the polynomials of degree less than ϕ(m), is
a ring embedding of Z[X]/Φw(X) ∼= R′ as a subring of Z[X]/Φm(X) ∼= R. Similarly, this mapping is also
a field embedding of Q[X]/Φw(X) ∼= K′ as a subfield of Q[X]/Φm(X) ∼= K.

We will use extensively the fact that K is a degree-u′ extension of K′, i.e., K = K′(ζm), and similarly
R = R′[ζm]. The powers ζkm for k ∈ [u′] (also called the “power basis”) form a K′-basis of K, and an
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R′-basis of R. Looking ahead, our transformation T (·) for breaking a big ring element into small-ring
components will just output the vector of coefficients of the big-ring element relative to the power basis.

One can verify that among all the embeddings σi of K, exactly u′ of them fix K′ (not just Q) pointwise.
Specifically, these are the embeddings σi indexed by each i = 1 mod w. The intermediate trace function
TrK/K′ : K→ K′ is a K′-linear function, defined as the sum of all those K′-fixing embeddings, i.e.,

TrK/K′(a) =
∑
i∈I

σi(a), I = {i ∈ Z∗m : i = 1 mod w}.

A standard fact from field theory is that every K′-linear map L : K → K′ can be expressed as L(x) =
TrK/K′(d · x) for some d ∈ K. Another standard fact is that the intermediate trace satisfies TrK/Q =
TrK′/Q ◦TrK/K′ .

The following lemma relates the intermediate trace to the embeddings of K and K′, and will be used later
to show that our ciphertext decomposition from R to R′ produces component ciphertexts having short error
terms.

Lemma 1. For any a ∈ K and i ∈ Z∗w,

σ′i(TrK/K′(a)) =
∑

j=i mod w

σj(a).

In matrix form, σ′(TrK/K′(a)) = P · σ(a), where P is the ϕ(w)-by-ϕ(m) matrix (with rows indexed by
i ∈ Z∗w and columns by j ∈ Z∗m) whose (i, j)th entry is 1 if j = i mod w, and is 0 otherwise.

Proof. Recall that for any i′ ∈ Z∗m such that i′ = i mod w, the K′-embedding σ′i and the K-embedding σi′
coincide on K′. In particular, σ′i(TrK/K′(a)) = σi′(TrK/K′(a)) because TrK/K′(a) ∈ K′. Then by definition
of TrK/K′ and linearity of σi′ , we have

σ′i(TrK/K′(a)) = σi′

( ∑
j=1 mod w

σj(a)

)
=
∑
j

σi′(σj(a)) =
∑

j′=i mod w

σj′(a),

where for the last equality we have used σi′ ◦ σj = σi′·j and i′ ∈ Z∗m, so j′ = i′ · j ∈ Z∗m runs over all
indexes congruent to i′ = i mod w when j ∈ Z∗m runs over all indexes congruent to 1 mod w.

2.2 The Big Ring-to-Small Ring Decomposition

As sketched in the introduction, our approach is rooted in the technique of decomposing an element of
the “big” ring R = Z[ζm] (or field K) into several elements of the “small” ring R′ = Z[ζw] (or field K′).
Recall from Section 2.1 that K = K′[ζm] is a field extension of degree u′ = ϕ(m)/ϕ(w) over K′, having
power K′-basis ζ0

m, . . . , ζ
u′−1
m . That is, any a ∈ K can be written uniquely as a =

∑u′−1
k=0 ak · ζkm for

some “coefficients” ak ∈ K′, and a ∈ R if and only if every ak ∈ R′. We define the decomposition map
T : K→ (K′)u′ (which also maps R to (R′)u

′
) to simply output the vector of these coefficients:3

T (a) = (a0, . . . , au′−1). (2)

We note a few simple but important properties of T :
3Alternatively, we could define T to output coefficients with respect to the “dual power” K′-basis of K, which would map the

(fractional) dual ideal R∨ of R to (R′∨)u
′
. That decomposition has better geometric properties and is more consonant with the

ring-LWE problem as defined in [15], but it is more technically involved. We defer the details to the full version.
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1. It is K′-linear (and hence also R′-linear): for any a, b ∈ K and r′ ∈ K′, T (a+ b) = T (a) + T (b) (i.e.,
T is an additive homomorphism), and T (r′ · a) = r′ · T (a).

2. Any ideal p in R′ induces a bijective R′p-linear map Tp : Rp → (R′p)
u′ , namely, Tp(a + pR) =

Tp(a) + (p)u
′

= (a0 + p, . . . , au′−1 + p).

When using polynomial representations, the K′-linearity of T must be interpreted relative to the embed-
ding f(X) 7→ f(Xu) that maps the polynomial representation of K′ into that of K. Specifically, it means
that for any polynomials b(X) ∈ Q[X]/Φw(X) and a(X) ∈ Q[X]/Φm(X), it holds that

T
(
b(Xu) · a(X) mod Φm(X)

)
= b(X) · T

(
a(X)

)
mod Φw(X). (3)

Another important property is that T maps short elements in R to vectors of relatively short elements in R′

(where as always, “short” is with respect to the canonical embeddings).

Lemma 2. For a ∈ R, let T (a) = (a0, . . . , au′−1). Then for any k ∈ [u′], we have ‖ak‖ ≤ cm,w · ‖a‖/
√
u′,

where cm,w ≥ 1 is a constant that depends only on m and w.

Note that the
√
u′ term appearing above is merely a normalization factor associated with the fact that the

power basis elements of R′ are a
√
u′ factor shorter than those of R under the canonical embeddings, so the

decomposition does not actually shrink the elements in any effective way.
Te constant cm,w turns out to depend only on the ratio r = rad(m)/ rad(w), where rad(n) denotes the

radical of n, i.e., the product of all the prime divisors of n (without multiplicities). Hence we hereafter denote
it by cr rather than cm,w. For typical values of r = rad(m)/ rad(w), the constant cr is (somewhat) small,
e.g., c1 = 1 and cp =

√
2− 2/p when p is a prime. (Hence if m and w share all the same prime divisors,

the relevant constant is 1, and if m has only one additional prime divisor then the constant is smaller than√
2.) Some other examples are c3·5·7 ≈ 17.4 and c5·7·11 ≈ 155. We also note that the constant factor cr

can actually be removed entirely, by following the framework of [15, 16] and defining T to work with the
fractional ideals R∨ and R′∨ (as mentioned in Footnote 3); see the discussion after the proof of Lemma 2.

sketch. We first express T in terms of the intermediate field trace TrK/K′ , then use Lemma 1 to bound ‖ak‖.
Recall that every K′-linear map from K to K′ can be expressed as L(x) = TrK/K′(d · x) for some fixed
d ∈ K. Since T is K′-linear, then for every k ∈ [u′] there exists dk ∈ K such that ak = TrK/K′(dk · a) (for
all a ∈ K). The elements dk are “dual” to the power K′-basis elements ζkm: for every j, k ∈ [u′] we have
TrK/K′(ζ

j
m · dk) = 1 if j = k and TrK/K′(ζ

j
m · dk) = 0 if j 6= k.

Now by Lemma 1 and the fact that the σj are ring homomorphisms, we have

σ′(ak) = P · σ(dk · a) = P ·D · σ(a),

where D = diag(σ(dk)). Notice that the rows of P · D are orthogonal (since each column has exactly
one nonzero entry). The Euclidean norm of row i ∈ Z∗w is ‖dk,i‖, where dk,i = (σj(dk))j=i mod w ∈ Cu′ .
Therefore, ‖ak‖ ≤ ‖a‖ ·maxi‖dk,i‖.

It remains to bound maxk,i‖dk,i‖. For each i ∈ Z∗w, denote byZi the matrix (of dimension u′×u′) defined
as Zi = (σj(ζ

k
m))j=i mod w,k∈[u′]. Then the dk,i’s are determined by the linear constraints Zti · dk,i = ek

(where ek ∈ Zu′ is k’th standard basis vector). From Galois theory it follows that ‖dk,i‖ is actually the same
for every i ∈ Z∗w. It can also be shown that maxk‖dk,1‖ ·

√
u′ depends only on rad(m)/ rad(w); we omit

the details.
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We note again that the constant cr in Lemma 2 can be eliminated by defining the transformation T relative
to a different basis, specifically the “dual” of the power basis, consisting of the vectors d0, d1, . . . , du′−1 from
the proof above. The proof then proceeds in the same way, but with the roles of dk and ζkm reversed. The
tighter bound then follows by observing that the magnitude of each σj(ζk) is exactly one. One technical
issue with using the dual basis, however, is that T no longer maps R to vectors over R′. Instead, it maps the
dual ideal R∨ to vectors over R′∨, which introduces some additional algebraic subtleties but also turns out to
have certain other advantages, as described in [15, 16]. We defer further details to the full version.

2.3 RLWE-Based Cryptosystems

Below and throughout this work, for a residue class z + qZ ∈ Zq we let [z]q ∈ Z denote its canonical
representative in the interval [−q/2, q/2). (One can think of [·]q as an operation that takes an arbitrary integer
z and reduces it modulo q into the interval [−q/2, q/2), so as to get the canonical representative of z + qZ.)
We extend this to a map from Rq = R/qR to R, by applying the operation coefficient-wise to the input
(viewed as a polynomial in coefficient representation). I.e., for z =

∑
i ziX

i ∈ Rq we get [z]q =
∑

i[zi]q ·Xi.
A standard fact is that if z ∈ a+ qR for some a ∈ R that is sufficiently short relative to q and the dimension
of R, then [z]q = a. Throughout the paper we implicitly assume that q is chosen large enough to ensure that
all of the operations we describe produce valid ciphertexts.

In a basic ring-LWE-based cryptosystem [15], secret keys and ciphertexts are elements of (Rq)
2 for

some odd integer q, and moreover the secret key has the form s = (1, s) mod q, where s ∈ R is short. The
plaintext space is the quotient ring R2 = R/2R. A valid ciphertext c = (c0, c1) ∈ (Rq)

2 that encrypts a
plaintext a ∈ R2 with respect to s = (1, s) satisfies

〈c, s〉 = c0 + s · c1 ∈ (a+ 2e) + qR (4)

for some sufficiently short a+ 2e ∈ R. To decrypt, one just computes [c0 + s · c1]q = a+ 2e and reduces
modulo 2 to recover the plaintext a. Additionally, Brakerski et al. [4, 3] showed that this system (with certain
additions to the public key) supports additive and multiplicative homomorphisms.

Our ring-switching procedure will be given a ciphertext where Equation (4) holds over R (for some
s ∈ R), and will output ciphertexts for which the equality holds over R′ (for a different secret s′ ∈ R′).

2.4 Plaintext Arithmetic

Following [18, 3, 11, 12, 13], we recall how to encode vectors over a certain finite field into the message
spaces. A summary is provided in Figure 1 below.

For concreteness, we focus first on R′, viewing it as Z[X]/Φw(X). Let d′ be the order of 2 in the
multiplicative group Z∗w. Then Φw(X) factors modulo 2 into `′ = ϕ(w)/d′ distinct irreducible (over F2) poly-
nomials Fi(X), each of degree d′. The ideal 2R′ has factorization 2R′ =

∏`′

i=1 pi, where pi = 〈2, Fi(X)〉
are distinct prime ideals. Since each Fi(X) is irreducible modulo 2, each R′/piR′ = F2[X]/〈Fi(X)〉 is
isomorphic to the finite field F2d′ . By the Chinese remainder theorem, we can therefore identify elements of
R′2 with elements of (F2d′ )

`′ , as summarized by the following diagram of ring isomorphisms.

R′/2R′
⊕

i(R
′/piR

′) (F2d′ )
`′CRT

For our ring-switching application we use a particular ring isomorphism between R′/2R′ and (F2d′ )
`′ ,

for some fixed representation of F2d′ . Consider the quotient group Z∗w/ 〈2〉 (which has cardinality `′), and
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fix a specific set of representatives for this quotient group, Uw = {j0, j1, . . . , j`′−1} ⊆ Z∗w, containing of
exactly one member from every conjugacy class in Z∗w/ 〈2〉.4 Also fix a specific primitive w-th root of unity
τ ∈ F2d′ , and identify each element a ∈ R′2 with the `′-vector consisting of a(τ j) ∈ F2d

′ for all j ∈ Uw:

a ∈ R′2 ←→
〈
a(τ j1), . . . , a(τ j`′ )

〉
∈ (F2d′ )

`′ .

Showing that this is indeed a bijection is standard. In one direction, from a we can compute all the values
a(τ jk). In the other direction we have the following simple claim:

Claim 1. For every vector (α0, α1, . . . , α`′−1) ∈ F`′
2d′

, there is a unique polynomial a ∈ R′2 such that over
F2d′ it holds that a(τ jk) = αk for all k ∈ [`′].

Proof. We identifyR′2 with F2[X]/Φw(X) ⊂ F2d′ [X]/Φw(X), and recall that a polynomial a ∈ F2d′ [X]/Φw(X)
belongs to the subring R′2 if and only if a(X2) = a(X)2 (as an identity in R′2). Given a vector of values
(α0, α1, . . . , α`′−1) ∈ F`′

2d′
, we can therefore deduce from a(τ jk) = αk the evaluations of a on the other

members of the same conjugacy class, namely a(τ2jk) = α2
k, a(τ4jk) = α4

k, a(τ8jk) = α8
k, etc. Since Uw

is a complete set of representatives for the quotient group Z∗w/ 〈2〉, we can get in this way the evaluations of
a(τ j) for all the indices j ∈ Z∗w. This gives us the evaluation of a at ϕ(w) different points, from which a is
uniquely defined (because F2d′ is a field and a has degree less than ϕ(w)).

We thus view the evaluation of the plaintext element at τ jk as the k’th “plaintext slot,” and note that
arithmetic operations in the ring R′2 act on the plaintext slots in a componentwise manner.

For R ∼= Z[X]/Φm(X) the analysis proceeds similarly. Let d be the order of 2 in the multiplicative
group Z∗m, so d′|d, and let ` = ϕ(m)/d. Recalling that Fi(Xu) is the embedding of Fi(X) ∈ R′ into R,
we denote the factorizaton of Fi(Xu) into irreducible factors modulo 2 by Fi(Xu) =

∏
j Fi,j(X). We note

that each Fi(X) factors into exactly `/`′ distinct irreducible (mod 2) factors, each of degree d, and that the
factorization of Φm(X) into irreducible factors mod 2 is Φm(X) =

∏
i,j Fi,j(X). Therefore, each prime

ideal pi in R′ factors further in R, into the product of the `/`′ prime ideals pi,j = 〈2, Fi,j(X)〉, where each
R/pi,jR is isomorphic to F2d .

We use a concrete ring isomorphism between R/2R and (F2d)` analogous to the one described above,
using some representative set Um of the quotient group Z∗m/ 〈2〉 and a primitive m-th root of unity ρ, and
considering the “plaintext slots” of a ∈ R2 as the evaluations a(ρi) for all i ∈ Um. Of course, the analog of
Claim 1 holds here too.

R/2R
⊕

i(R/piR)
⊕

i,j(R/pi,jR) (F2d)`

(R′/2R′)u
′ ⊕

i(R
′/piR

′)u
′

(F2d
′ )`
′·u′

T2

CRT

CRT

⊕
i Tpi

CRT

Figure 1: Commutative diagram of various representations of the plaintext spaces, and morphisms between
them. Solid lines are ring isomorphisms, and dashed lines are R′-linear homomorphisms (i.e., satisfying
T (x+ y) = T (x) + T (y) and T (rx) = rT (x) for all r ∈ R′).

4In other words, the sets Uw, 2Uw, 4Uw, . . . 2
d′−1Uw are all disjoint, and their union is the entire group Z∗w.
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3 The Ring-Switching Procedure

Given a big-ring ciphertext c ∈ (Rq)
2 that encrypts a plaintext a ∈ R2 relative to a big-ring secret key s ∈ R,

our goal is to output u′ small-ring ciphertexts ck ∈ (R′q)
2 for k ∈ [u′], where each ck encrypts ak ∈ R′2,

namely the kth component T (a), all relative to some small-ring secret key s′ ∈ R′. The procedure consists of
the following two steps:

1. Key-switch. We use the key-switching method from [5, 3] to switch to a ciphertext that is still over the
big ring R, but which has a secret key s′ ∈ R′ belonging to the small subring R′ ⊆ R.

2. Decompose. We break the resulting big-ring ciphertext (over Rq) into u′ small-ring ciphertexts (over
R′q) using the decomposition Tq. These ciphertexts will be valid with respect to the small-ring secret
key s′ ∈ R′, and will encrypt the components of T (a)k as desired (see Lemma 4).

3.1 Switching to a Small-Ring Secret Key

To enable this transformation, we include in the public key a “key switching hint,” essentially encrypting
the old big-ring key s under the new small-ring key s′. Note that using such a small-ring secret key has
security implications, since it severely reduces the dimension of the underlying LWE problem. In our case,
however, the whole point of switching to a smaller ring is to get ciphertexts over a smaller dimension,
so we are not actually losing any additional security by giving out the hint. Indeed, we show below that
assuming the hardness of the decision-ring-LWE problem [15] over the small ring R′q, the key-switching hint
is indistinguishable from uniformly random over Rq (even for a distinguisher that knows the old secret key s).

Ring-LWE. The ring-LWE (RLWE) problem [15] over R′q is parameterized by an error distribution χ′ over
R′, typically derived from a Gaussian and so highly concentrated on short elements.5 For a “secret” element
s′ ∈ R′, a sample from the RLWE distribution As′,χ′ is generated by choosing α ∈ R′q uniformly at random
and ε← χ′, computing β ← α · s′ + ε in R′q, then outputting the pair (α, β) ∈ (R′q)

2. The decision RLWE
problem in R′q is: given arbitrarily many pairs (αi, βi) ∈ (R′q)

2, distinguish the case where the samples are
chosen independently from As′,χ′ (for a single s′ ← χ′) from the case where they are uniformly random and
independent.

To set up the key-switching technique, we first prove a lemma of independent interest about the hardness
of RLWE over the big ring Rq when the secret is chosen according to χ′ from the subring R′. Define an
error distribution χ over R as χ = T−1((χ′)u

′
), i.e., a sample from χ is generated by choosing independent

εi ← χ′ for i ∈ [u′], and outputting ε = T−1(ε0, . . . , εu′−1) =
∑

i εi · ζim ∈ R. Note that elements drawn
from χ are short: because ‖σ(ζim)‖∞ = 1 for all i, we have

‖σ(εi · ζim)‖ = ‖σ(εi)‖ =
√
u′ · ‖σ′(εi)‖

(where as usual, the
√
u′ term is effectively a normalization factor between R′ and R). Then by the triangle

inequality, ‖σ(ε)‖ ≤ (u′)3/2 ·B, where B is an upper bound on every ‖σ′(εi)‖. (Tighter bounds can also be
obtained when χ′ is Gaussian, as is typical with RLWE.)

Lemma 3. If the decision RLWE problem over R′ with error distribution χ′ is hard, then so is the decision
RLWE problem over R with error distribution χ = T−1((χ′)u

′
), but where the secret is chosen from χ′, and

in particular is in subring R′.
5Or, following [15] more closely, χ′ would be a distribution over the dual R′∨.
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Proof. It suffices to give a reduction that maps small-ring samples over (R′q)
2, drawn from As′,χ′ (respec-

tively, the uniform distribution), to big-ring samples over (Rq)
2 with distribution As′,χ (resp., the uniform

distribution). To generate each output sample, the reduction takes u′ fresh input samples (αi, βi) ∈ (R′q)
2 for

i ∈ [u′], defines α′ = (αi)i, β
′ = (βi)i ∈ (R′q)

u′ , and outputs (α, β) = (T−1
q (α′), T−1

q (β′)) ∈ Rq.
Since Tq is a bijection, it is clear that the reduction maps the uniform distribution to the uniform

distribution. On the other hand, if the samples (αi, βi = αi · s′ + εi) are drawn from As′,χ′ for some s′ ← χ′,
then α is still uniformly random, and moreover, letting ε′ = (εi)i ∈ (R′)u

′
and by R′-linearity of T−1

q , we
have (over Rq)

β = T−1
q (α′ · s′ + ε′) = T−1

q (α′) · s′ + T−1(ε′) = α · s′ + ε,

where ε = T−1(ε′) is distributed according to χ by construction. So (α, β) is distributed according to As′,χ,
as desired.

The key-switching hint. Let s ∈ R be the big-ring secret key, and s′ ∈ R′ ⊂ R be the small-ring secret
key that we want to switch to. To construct the key-switching hint, we independently draw l = dlog2 qe error
terms εi ← χ and uniformly random elements αi ∈ Rq, for i ∈ [l]. The hint consists of the all the pairs6

(αi, βi = 2i · s− αi · s′ + 2εi) ∈ (Rq)
2.

For security, note that by the form of the hint, it is immediate from Lemma 3 that for any big-ring secret key
s ∈ R, the hint (even along with s) is computationally indistinguishable from uniform.

Since the errors εi are short, the hint is functional for key-switching, as described in [5]. Specifically,
suppose we are given a valid ciphertext c = (c0, c1) relative to s, for which c0 + s · c1 = (a+ 2e) mod q for
some short (a+ 2e) ∈ R. We decompose c1 into its bitwise representation as c1 =

∑
i∈[l] 2idi mod q for

short elements di ∈ R having 0-1 coefficients in the power basis. We then have the relation (over Rq)

c0 +
∑
i

diβi︸ ︷︷ ︸
c′0

+
∑
i

diαi︸ ︷︷ ︸
c′1

·s′ = c0 +
∑
i

di(2
is + 2εi) = c0 + c1 · s + 2

∑
i

diεi

= a+ 2(e+
∑
i

diεi).

Since
∑

i diεi ∈ R is short, (c′0, c
′
1) is a valid ciphertext encrypting a under s′, as desired.

3.2 Decomposing the Ciphertext

After switching to a small-ring secret key s′ ∈ R′ in the previous step, the ciphertext is a pair c = (c0, c1) ∈
(Rq)

2 such that
c0 + s′ · c1 ∈ (a+ 2e) + qR,

where a+ 2e ∈ R is sufficiently short. We decompose this ciphertext into u′ ciphertexts ck = (ck,0, ck,1) ∈
(R′q)

2 for k ∈ [u′], where for b ∈ {0, 1}, Tq(cb) = (c0,b, . . . , cu′−1,b). (Recall that Tq : Rq → (R′q)
u′ is the

R′-linear bijection induced by the decomposition T defined in Section 2.2.)

Lemma 4. If c is a valid encryption of plaintext a ∈ R2 under secret key s′ ∈ R′, then each ck is a valid
encryption of the kth component of T2(a) ∈ (R′2)u

′
.

6We could alternatively use the key-switching variant from [13], where the hint consists of a single pair (β, α), but with respect
to a large modulus Q ≈ q2 ·m. The proof of security would then depend on the hardness of ring-LWE in R′Q rather than in R′q .
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Proof. Below we identify s′ ∈ R′ with its mod-q equivalence class s′ + qR′ ∈ R′q. Because Tq is R′q-linear,
we have

Tq(c0) + s′ · Tq(c1) = Tq(c0 + s′ · c1) = T (a+ 2e) + (qR′)u
′
,

where the multiplication of scalar s′ ∈ R′ with Tq(c1) ∈ (R′q)
u′ is coordinate-wise. By Lemma 2, each

component of T (a+ 2e) has length bounded by cr · ‖a+ 2e‖/
√
u′ (where the

√
u′ term is a normalization

factor), so the “effective” lengths (relative to q and the dimension of R′) grow by at most a fixed constant
factor cr, and are sufficiently small. Moreover, T (a+ 2e) ∈ T2(a) ∈ (R′2)u

′
, so the message encrypted by

ck is the kth component of T2(a).

4 Homomorphic Computation in the Small Ring

So far we have shown how to break a big-ring ciphertext, encrypting some big-ring element a ∈ R2, into a
collection of u′ small-ring ciphertexts encrypting the small-ring elements T (a) = (a0, a1, . . . , au′−1) ∈ R′2.
This, however, still falls short of our goal of speeding-up homomorphic computation by switching to small-
ring ciphertexts. Indeed we have not shown how to use the encryption of the ak’s for further homomorphic
computation.

Following the narrative of SIMD homomorphic computation from [18, 11, 12, 13], we view the big-ring
plaintext element a ∈ R2 as an encoding of a vector of plaintext values from the extension field F2d (with d
the order of 2 in Z∗m). We therefore wish to obtain small-ring ciphertexts encrypting small-ring elements that
encode of the same underlying F2d values.

One potential ”algebraic issue” with this goal, is that it is not always possible to embed F2d values inside
small-ring elements from R′2. Recall that the extension degree d is determined by the order of 2 in Z∗m. But
the order of 2 in Z∗w may be smaller than d, in general it will be some d′ that divides d. If d′ < d then we can
only embed values from the sub-field F2d

′ in small-ring element from R′2, and not the F2d values that we
have encoded in the big-ring element a. For the rest of this section we only consider the special case where
the order of 2 in both Z∗m and Z∗w is the same d, leaving the general case to the full version.

Even for the special case where the order of 2 in Z∗m and Z∗w is the same (and hence the “plaintext slots”
in the small ring contain values from the same extension field as those in the big ring), we still need to tackle
the issue that big ring elements have more plaintext slots than small ring elements. Specifically, big-ring
elements have ` = ϕ(m)/d slots, whereas small-ring elements only have `′ = ϕ(w)/d slots. The solution
here is obvious: we just use more small-ring elements to hold all the plaintext slots that we need.

Note that if the original plaintext element a was “sparsely populated”, holding only a few plaintext values
in its slots, then we would like to generate only as many small-ring ciphertexts as needed to hold these few
plaintext slots. A good example is the computation of the AES circuit in [13]: Since there are only 16 bytes
in the AES state, we only use 16 slots in the plaintext element a. In this case, as long as we have at least 16
slots in small-ring elements, we can continue working with a single small-ring ciphertext (as opposed to the
u′ ciphertexts that the technique of the previous section gives us).

4.1 Ring-Switching with Plaintext Encoding

Below we describe our method for converting the plaintext encoding between the different rings, for the
special case where the order of 2 is the same in Z∗m and Z∗w. As sketched in the introduction, the basic
observation underlying our approach is that the transformation T (a) = (a0, a1, . . . , au′−1) that we apply to
our plaintext when breaking a big-ring ciphertext into its small-ring parts, induces a linear transformation
over the values in the plaintext slots. We then just finish-up the process by homomorphically computing the
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inverse linear transformation over the resulting small-ring ciphertexts (using “general purpose” techniques
for computing on packed ciphertexts, such as in [11]), thereby restoring the plaintext slots to their original
values.

As explained in Section 2.4, each plaintext slot in the big-ring element is associated with a member
of the quotient group Qm = Z∗m/ 〈2〉, and similar association holds between plaintext slots in small-ring
elements and members of the quotient group Qw = Z∗w/ 〈2〉. We thus begin by relating the structures and
representations of these two quotient groups.

Below let Uw ⊆ Z∗w be a representative set for Qw. i.e., a set containing exactly one index from each
conjugacy class in Z∗w/ 〈2〉. It is easy to see that when the order of 2 is the same in Z∗m and Z∗w, then the
set Um = {j ∈ Z∗m : ∃ i ∈ Uw s.t. j ≡ i (mod w)} is a representative set for Qm. Fixing in addition a
primitive m’th root of unity ρ ∈ F2d and the particular primitive w’th root of unity τ = ρu, we let the
plaintext slots encoded in a ∈ R2 be the evaluations a(ρj) ∈ F2d for j ∈ Um, and similarly the plaintext
slots encoded in a′ ∈ R′2 be the evaluations a′(τ i) for i ∈ Uw.

We proceed to prove that under this representation, the transformation T from Section 2.2 induces an
F2d-linear transformation on the values in the F2d values in the plaintext slots. A key lemma is the following:

Lemma 5. Let m = u · w for odd integers u,w, such that the order of 2 is the same in Z∗m and in Z∗w.
Let Uw be a representative set of Qw = Z∗w/ 〈2〉, and fix the representative set of Qm = Z∗m/ 〈2〉 to be
Um = {j ∈ Z∗m : ∃ i ∈ Uw s.t. j ≡ i (mod w)}. Denote the order of 2 (in both Z∗m and Z∗w) by d, let
ρ ∈ F2d be a primitive m’th root of unity, and fix the particular primitive w’th root of unity τ = ρu.

Finally, fix an arbitrary value α ∈ F2d and let a(X) be the (unique) polynomial in F2[X]/Φm(X) that
satisfies a(ρj) = α for all j ∈ Um.

Then a is of the form a(X) = b(Xu) mod (Φm(X), 2) for some polynomial b(X) ∈ F2[X]/Φ2(X)
satisfying b(τ i) = α for all i ∈ Uw. In particular a, b represent the same element r′ ∈ R′2 ⊂ R2.

Proof. We first note that a polynomial a(X) as above is indeed unique, due to Claim 1. Similarly a
polynomial b(X) ∈ F2[X]/Φ2(X) satisfying b(τ i) = α for all i ∈ Uw is also uniquely determined.

Denoting c(X)
def
= b(Xu) mod (Φm(X), 2) ∈ R2, it is only left to show that c(X) = a(X).

Clearly both c and a are polynomials in R2
∼= F2[X]/Φm(X) ⊂ F2d [X]/Φm(X), so it is sufficient to

show that they agree when evaluated on ρj ∈ F2d for all j ∈ Um (again by Claim 1). By definition of Um,
for every j ∈ Um there exists i ∈ Uw such that j ≡ i (mod w), hence we get

c(ρj) = b(ρu·j) = b(τ j) = b(τ i) = α = a(ρj).

(We note that the fact that 2 has the same order modulo w and m is used in the assertion that the set Um
as above is a representative set for Qm.)

Corollary 1. With notations as in Lemma 5 and the transformation T : R2 → (R′2)u
′

from Section 2.2, if
a, b are as in Lemma 5 then for any element x ∈ R2 we have T2(a · x ∈ R2) = b · T (x) ∈ (R′2)u

′
.

Proof. Follows immediately from theR′2-linearity of T2 and the fact that the polynomials a ∈ F2[X]/Φm(X)
and b ∈ F2[X]/Φw(X) represent the same element r′ ∈ R′2 ⊆ R2 (since a(X) = b(Xu) mod (Φm(X), 2)).

Given Corollary 1, the rest of the proof follows quite easily. Consider now the encoding functions that
map R2 elements into the vector of F2d values that are encoded in all their slots. Namely, for a ∈ R2 denote
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by Encm(a) ∈ F `
2d

the vector of values a(ρj) for j ∈ Um. Similarly consider the encoding of a vector of
R′2 elements into the F2d values that are encoded in all the slots of all the elements. That is, for a vector
~a = (a0, a1, . . . , au′−1) ∈ (R′2)u

′
, denote by Encw(~a) the vector of values ak(τ i) for i ∈ Uw and k ∈ [u′].

We note that the dimensions of Encm(a) and Encw(T2(a)) are the same, namely they both have dimension
` = ϕ(m)/d = u′ · ϕ(w)/d.

Lemma 6. There exists an invertible linear transformation L over F2d such that for any a ∈ R2 it holds that
Encw(T2(a)) = L( Encm(a) ).

Proof. Recalling that the encoding functions are bijections (by Claim 1), we thus defineL(~x)
def
= Encw(T2(Enc−1

m (~x))),
and note that L must be invertible, because T2(·) is also a bijection.

It remains only to show that L is F2d-linear. The property L(~x) +L(~y) = L(~x+ ~y) follows immediately
from the facts that the same property holds for each of T2(·), Encm(·), and Encw(·). We next use Lemma 5
and Corollary 1 to show the property L(α · ~x) = α · L(~x).

Fix a vector ~x ∈ F `
2d

and a value α ∈ F2d , and let a ∈ F2[X]/Φm(X) ∼= R2 be the element that has α in
all of its plaintext slots, a = Enc−1

m (α`). Similarly let x = Enc−1
m (~x). Observe that since multiplication in

R2 implies pointwise multiplication on the slots, then the product a · x ∈ R2 encodes in its slots exactly α
times the slots of x. In other words, we have Enc−1

m (α · ~x ∈ F `
2d

) = a · x ∈ R2.
Since a has the same element α in all its slots then it satisfies the condition of Lemma 5 and Corollary 1.

Let b ∈ F2[X]/Φw(X) ∼= R′2 be the polynomial promised by Lemma 5. Then from Corollary 1 we have
that T2(a · x) = b · T (x). Moreover Lemma 5 tells us that b also have the values α in all its slots. Since
multiplication in R′2 also implies pointwise multiplication on the slots, i.e., Encw(b · ~y) = α · Encw(~y) for
every ~y ∈ (R′2)u

′
. In particular,

Encw(T2(a · x)) = Encw(b · T2(x)) = α · Encw(x),

or in other words L(α · ~x) = α · L(~x), as needed.

Our strategy for recovering the original values in the plaintext space after ring-switching is to first use the
transformation T to break a big-ring ciphertexts into a collection of small-ring ciphertexts. By Lemma 6 this
operation has the side effect of transforming the slots according to the invertible F2d-linear transformation L,
so we compute homomorphically the inverse transformation L−1 on the slots, using the tools from [11] for
computing on packed ciphertexts.

If we only need a few of the slots in a (as in the AES example), then we can compute only the relevant
rows of L−1, thereby getting at the end of the process only as many small-ring ciphertexts as required to
encode all the plaintext slots that we are interested in.

Remarks. Note that the only properties of T that we used in this work are the properties 1-4 that were
described in the introduction. Namely, all we need is a transformation T : R→ (R′)∗ which is injective and
R′2-linear, and that maps small R elements into small R′ vectors. There could be many such transformations,
and they could offer different tradeoffs in practice. (For example, the transformation in a previous version of
this work [10], which was based on the coefficient-splitting technique from [3], turns out to include a very
sparse linear transformations L, making the homomorphic computation of L−1 at the end must easier.) Also,
as mentioned in Section 2.2, in some cases we can use a K ′2-linear transformation T : K→ (K′)∗ even if it
does not map R-elements to R′-vectors.

We also note that Lemma 5 (and consequently Corollary 1 and Lemma 6) can be extended also to the
case where the order of 2 modulo w is smaller than its order modulo m, as long as we only consider elements
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a ∈ R2 that have values from the smaller field F2d′ in their plaintext slots. We defer details of this extension
to the full version.
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