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Abstract. Although they do not suffer from clear attacks, various key agreement protocols (for example
that used within the TLS protocol) are deemed as insecure by existing security models for key exchange.
The reason is that the derived keys are used within the key exchange step, violating the common key
indistinguishability requirement.
In this paper we propose a new security definition for key exchange protocols that offers two important
benefits. Our notion is weaker than the more established ones and thus allows the analysis of a larger
class of protocols. Furthermore, security in the sense that we define enjoys rather general composability
properties. In addition our composability properties are derived within game based formalisms, and do not
appeal to any simulation based paradigm.
Specifically, for protocols whose security relies exclusively on some underlying symmetric primitive we show
that they can be securely composed with key exchange protocols provided that two main requirements
hold: 1) no adversary can break the underlying primitive, even when the primitive uses keys obtained from
executions of the key exchange protocol in the presence of the adversary (this is essentially the security
requirement that we introduce and formalize in this paper), and 2) the security of the protocol can be
reduced to that of the primitive, no matter how the keys for the primitive are distributed. Proving that the
two conditions are satisfied, and then applying our generic theorem, should be simpler than performing a
monolithic analysis of the composed protocol. We exemplify our results in the case of a profile of the TLS
protocol. Our definition and results are set entirely within the framework of cryptographic games (and
thus avoid the use of simulation).

1 Introduction

Traditionally, a key-exchange protocol is deemed secure if an adversary cannot tell apart the keys derived
by honest parties from random keys [9, 10, 12, 13, 18, 19]. This definitional idea was pioneered by Bellare and
Rogaway [9] and later refined to a notion of security called session-key security (SK-security) by Canetti and
Krawczyk [18]. This definition is appealing since, intuitively, it should offer compositionality guarantees: if
the derived keys look like random ones, then they should be usable in subsequent protocols (typically secure
channels) which are secure when used with random keys. This intuition has been confirmed to a large extent.
Canetti and Krawczyk [19] show that, with slight modifications, SK-security implies security in the Universal
Composability (UC) framework [15]. More recently, Brzuska et al. [14] show that the original notion of Bellare
and Rogaway is composable without modifications as long as protocols satisfy the additional condition called
session matching, saying that it is possible to tell which sessions derive the same key based only on the public
conversations.

As key-exchange protocols on their own are of little use, key-indistinguishability (and the entailed compo-
sitionality guarantees) should be a crucial design criterion. Unfortunately, many important protocols (e.g. the
Transport Layer Security protocol – TLS) do not satisfy the indistinguishability notion. The reason is that
such protocols often include in their construction a key-confirmation step which should guarantee to the par-
ties involved in the execution that upon completion of the protocol they have obtained equal keys. However,
the standard method to perform key-confirmation in practical protocols destroys any key-indistinguishability
properties that one may have; i.e. the test that parties perform to confirm they obtained the same key can be



employed by an adversary to distinguish true keys from random ones. While a key-refresh step is in principle
a remedy for this problem [9, 8] it is common that such protocols omit this step and are thus ruled as insecure
(by existing models). Still, they do not not suffer from obvious attacks.

Two ways to circumvent this problem have been used in the past. One is to eliminate, whenever possible,
the key confirmation stage from the protocol and concentrate on the “core” of the protocol. If removing the
confirmation step is not possible, a second possibility is to analyze an altered version of the protocol (which
for example includes a key refresh step), so that key-confirmation does not get in the way. Clearly, neither
approach is satisfactory as the resulting analysis has little bearing on the original protocol, and in particular no
composability guarantees can be established for the original protocol.

1.1 Our Results.

The work that we present in this paper addresses the deeply unsatisfactory situation in which we find ourselves:
after nearly two decades of research on the security of key-exchange important protocols are still outside the
reach of rigorous cryptographic analysis, including the prominent example of TLS. Concretely, we propose
a novel security definition for key-exchange protocols which does not require that keys are somehow ideal
(indistinguishable from truly random ones), but more pragmatically, declares the key-exchange secure if a
symmetric-key primitive/protocol that later uses these keys cannot be broken. After all, even if the keys are
used for key confirmation, the latter task in which these keys are used may still be secure. Thus we allow a
much wider class of key agreement protocols to be used than in prior treatments, including possibly simpler
protocols akin to that used in the TLS protocol.

At a first glance, our definitional approach for the security of key-exchange protocols has two drawbacks:
the primitive(s) that use derived keys need to be known in advance, and the definition prevents modular proofs
where the key exchange is analyzed separately from these primitives. However, these concerns are only partially
valid and we believe that the benefits of our definition outweigh them, as explained below.

The intuition on which our security notion relies is highly reassuring and indeed, security in the sense that
we define guarantees, by definition, the security of the application(s) that rely on the key-exchange protocol.
More importantly, our security requirements are more permissive and allow for the analysis of a larger class of
protocols than possible with existing models thus extending the reach of rigorous security analysis to important
protocols like TLS. In addition, we develop a method for proving in a modular fashion that protocols meet our
notion. Before we detail this method and explain its benefits, we provide a high-level overview of the framework
that we develop.
Framework for cryptographic games. Our results (definitions and composition theorem) are use cryp-
tographic games. We use the framework for specifying games introduced recently by Brzuska et al. [14] which
we enrich and adapt for our purposes. At a high level, a game is described by a function that specifies how the
game computes answers to queries provided by an adversary. Our games do not have a hardwired method for
generating the keys and instead we task the adversary to provide the keys. The resulting keying mechanism
is a convenient way to define composition between key exchange and other protocols/primitives. Furthermore,
standard notions of security are recovered by considering “well-behaved” adversaries who generate keys honestly,
instantiate the game with these keys, and then “forget” them.
Security of key exchange protocols. The security notion that we propose extends and generalizes defi-
nitional ideas explored by others [23, 37, 3] and is based on the following observation. If the keys obtained from
the key exchange protocols are intended to be used to implement some “low-level” task ζ like a MAC or a
symmetric encryption scheme, from which a more complex protocol π like a secure channel is derived, then the
primary concern should be the security of ζ, rather than the key itself. Our security definition reflects this idea.
We consider an adversary that interacts, simultaneously, with the key exchange protocol and with instances of
ζ that use keys derived via the key exchange protocol. We demand that the adversary is not able to break ζ.
We say any key exchange protocol which can be used with ζ in this way is suitable-for-ζ.

Our definition can be easily extended from individual primitives to classes of primitives. Instead of fixing ζ to
be some particular (construction of a) primitive, one can quantify in the definition over a class of primitives. The
class itself can be described either by enumerating its members or simply by providing an abstract description
e.g. all IND-CCA symmetric encryption schemes for which key generation selects a random bitstring of length
equal to the security parameter. A key-exchange protocol suitable for this class would then need to guarantee
security when combined with each of the class members.

As explained above, indistinguishability-based security for keys is strictly weaker than the notion that we
put forth. Indeed, the recent result of Brzuska et al. [14] says that a protocol secure in the sense defined by
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Bellare and Rogaway [9] (and which satisfies the public-matching property) is suitable-for-ζ, no matter what ζ
is. Their work essentially offers a methodology for proving security in the sense that we define. In this paper
we show that a modular approach towards proving the security of the composition between a key exchange and
some complex protocol ζ is possible even if the key-exchange protocol uses the derived keys in its design. We
describe this compositional result below.

Key-independent reduction. A crucial ingredient of our composition result is a notion of a security reduction
which we call a key-independent reduction. Assume that a protocol π uses in its construction some primitive
ζ. A typical (black-box) reduction is some transformation R that transforms an adversary against π into one
against ζ, such that if the probability that A breaks π is non-negligible then the probability that R(A) breaks ζ
is also non-negligible. The probabilities are over the choice of keys and coins in the system. A key-independent
reduction is a strengthening of the above requirement: such a reduction is required to work no matter what
the distribution over the keys is (the remaining coins are still selected uniformly at random). In particular, the
reduction should work even if the adversary has arbitrary information about the keys (even the key itself!).

The example of Section 3.1 indicates that such reductions are in fact quite common in cryptography, and are
simply a minor adaptation of many existing black-box style reductions. Nevertheless, for sake of completeness,
we also show later in the paper that the converse is not true in general: there exist black-box reductions that
are not key-independent. Next we discuss our composition theorem and clarify why key-independent reductions
are a crucial component.

Composition theorem. A benefit of our new security notion is that it enjoys composability properties. In
particular, we provide a general tool for the analysis of the composition of key exchange protocols with protocols
that use symmetrically distributed keys. The framework we propose applies to protocols π that are built on
top of a symmetric primitive ζ so that the keys needed by ζ during executions of π are obtained from the key
exchange protocol ke.

To show that the composition of ke with π is secure we proceed in two stages. First, we show that ke is
suitable-for-ζ. As explained before, this means that an adversary who tampers with the key exchange protocol
does not obtain sufficient information to break the primitive. The second required step is to exhibit a key-
independent reduction from the protocol π to the primitive ζ. If these two conditions are satisfied, our theorem
concludes that ke can be safely used to provide keys for π.

The following high-level overview of the proof of the theorem also sheds light on the role that key-indpendent
reductions play in our result. Consider how would one prove security of the composition between ke and π, given
that there exists a reduction R which transforms an adversary A against π into an adversary R(A) against ζ
(when keys are generated using some key generation algorithm), and assuming that ke can be securely composed
with ζ. The only viable path is to extend R such that it takes an adversary against ke;π and produces one
against ke; ζ, i.e. that the same reduction works even if keys are generated using ke. If after running ke keys are
indinstinguishable from random ones (or if the execution of the ke can be simulated) the reduction can indeed
be extended. However if the adversary manages to obtain non-trivial information about the key (e.g. if the
key is used for confirmation) a normal reduction won’t work anymore. Key-independence deals precisely with
this issue: R is required to work indepdent of what information the adversary obtains about the key, including
through its uses in ke. This intuition sits at the core of our composition result.

An important issue is how difficult is it to prove security in the sense that we define. Proving that a key-
exchange protocol is suitable for a primitive is independent of the protocol(s) where that primitive is used, can be
carried once and then reused. Also, proving suitability of a key-exchange protocol for a primitive should be easier
than proving suitability for a protocol simply because the models that are involved are simpler. Furthermore,
the second step should not be more difficult than a standard reduction from the protocol to the primitive for the
simple case of randomly and independently distributed keys. An analysis based on our composition principle
should therefore a) be simpler than a monolithic analysis of the whole system (even if only for the fact that
many of the details of such an analysis are captured in the proof of our general theorem) and b) allow for reusing
stepts, especially for the case when the key-exchange and the protocol can each be implemented in more than
one way. The latter is precisely the setting offered by practical protocols where one is offered a variety of chiper
suites to select from at the beginning of the protocol.

Application to the Security of TLS. We apply our framework to a profile of TLS, mainly to show how
to apply our framework and to demonstrate that our framework is not vacuous. We define a notion of security
for this variant which essentially states that the channel that it implements is authenticated and hides all
information about messages (including their length). We prove that despite the keys for the channel being also
used during key-establishment, the protocol meets this notion of security. We show that our analysis is modular
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and parts can be reused if one considers different implementations for the different parts of the protocol. In
contrast, a monolithical analysis that does not use our theorem (while possible) would need to repeat complex
arguments for each such instantiation.

1.2 Related work.

The literature on (composability of) key exchange and TLS like protocols analysis is large. Due to space
constraints we briefly discuss only those works closest to ours.

Related work on key exchange Canetti and Krawczyk [18, 19] and Brzuska et al. [14] look at compositionality
of key-exchange and, like our paper, they rely on game-based security definitions. However their composition
results, either proved directly as in [14] or relying on equivalence with a UC [15] notion of key-exchange as in [19]
rely essentially on the more stringent requirement of key-indistinguishability. In particular, neither approach is
suitable for the analysis of protocols like TLS.

In the following comparison we assume familiarity of the reader with the technical details of [15, 18–20].
The source of differences, between the results of [19] and ours, lies in the approach that we take towards our
composability result. The proof that SK-security is composable uses the framework of Universal Composability
(UC) [15]: the authors show that SK security implies some variant(s) of UC-composability, and thus SK-secure
protocols are composable. In contrast, we aim for a more direct approach. Our definitions and results are
formalized in the alternative setting of game-based cryptography. In particular, we successfully avoid some of
the issues that come with the use of the powerful UC setting. Below we make several remarks regarding our
framework and how it compares with SK-security.

Usability: The first issue that we discuss is simplicity. Of course, we need a lot of machinery to set-up
an abstract framework where we can talk about primitives, protocols, games, and reductions. However, once
these technical details are fixed (we believe that they are not more complicated than those used in other
abstract settings, e.g. reactive simulatability or universal composability), understanding and using our results
only requires familiarity with the popular setting of game-based cryptography.

A security proof, using our composition theorem between a key exchange protocol and some arbitrary
protocol, would require proving that the key exchange is suitable for the primitive used in the protocol (we have
already shown how to obtain such a result generically), and a key-independent reduction from the security of
the system to that of the underlying primitive (currently we only deal with systems that use a single primitive).
These two steps are not more complicated than using SK-security which needs two similar steps. One shows that
the key exchange protocol is SK-secure and proves that the protocol UC-implements its intended task (provided
access to an ideal key exchange functionality).

On using UC: The second benefit is that, since we do not use UC-style composability, we do not incur some
of the penalties that this setting sometimes implies. We comment on several potential issues:
Session identifiers. The first is the issue of session identifiers. An ingredient of the UC framework are globally
unique session identifiers known to each participant to the protocol, and strictly speaking such identifiers are
needed for the composition result of the framework to hold. One can perhaps brush aside the issue of identifiers
as irrelevant, especially since highly efficient methods for establishing such identifiers do exist [1]. However,
the composition theorem relies on them and thus it would only hold if such identifiers had been established.
Interestingly, existing protocols often already incorporate in their design, in a rather inextricable way, the
derivation of such identifiers. Since these identifiers cannot substitute (in a rigorous, formal sense) those needed
for the application of the UC theorem, applying the UC framework implies duplicating the work for obtaining
such identifiers. Recently, Küsters and Thurgenthal [31] have shown that it is sometimes possible to obtain
composition theorem in the UC framework with session identifiers determined on the fly. It should be interesting
to see how too apply this result for the case of TLS.
The joint-state problem. A more delicate situation concerns the issue of concurrent runs of protocols that
share joint state. To understand the problem in this scenario and how it affects compositionality of SK-security,
consider some key exchange protocol that uses some signing key for authentication. The UC security for protocols
does not immediately imply security for concurrent executions of sessions of the protocol that share some local
state, e.g. the long-term signing key above since the composition theorem cannot be applied. The solution is to
use a composition theorem that somehow takes care of the joint-state.
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The application of the theorem (henceforth the JUC-theorem [21]) works roughly as follows. Separate the
joint state into a separate functionality (e.g. for authentication in the above case). Show that the protocol
with access to the functionality is UC-secure (this can be done as before, assuming a single session of the
protocol). Then, conclude that multiple sessions of the protocol run concurrently are secure when the authen-
tication functionality is replaced with a protocol that implements a multi-session version of the authentication
functionality.

Unfortunately, existing multi-session implementations of the functionalities that take care of the joint-state
use the session identifiers in a crucial way. For example, the multi-session functionality for signatures presented
in [21], requires each message that needs to be signed, is signed together with a session identifier. Therefore,
security is obtained for a protocol that is related but still rather different from the original protocol. Thus, UC
can provide an excellent framework for designing new systems, but often it can not be used to investigate the
security of existing protocols.

SK-security is not quite UC. Finally, SK-security is not directly equivalent with the vanilla notion of
UC-composability. The reason is that when corruption occurs (an attack of crucial importance of key exchange
protocols) the simulator needs to provide an internal state consistent with the view that the adversary has over
the execution of the corrupt session. Adaptive corruption of this sort is a well-known difficulty within the UC
setting.

The two solutions that are often provided are not fully satisfactory. The first solution is to demand the
existence of a simulator who can cope with the above corruption setting. This technical property is termed
the Ack property. The technical definition is not overly complicated, but the condition is not satisfied by many
practical protocols (e.g. those based of Diffie-Hellman). Although it is possible [19] to modify any SK secure
protocol to ensure that this additional property is satisfied, the modification adds extra flows to the protocol
and may require additional primitives. In any case, the protocol needs to be changed. An alternative solution
is to consider a relaxed version of UC where the simulators have access to a non-information oracle. Although
the resulting setting comes with a composition theorem, the use of such non-standard oracles makes the results
significantly less appealing.

Related work on TLS-like protocols Bellare and Namprempre [6], Krawczyk [30], Maurer and Tack-
mann [32], and more recently Paterson, Risternpart and Shrimpton [34] analyze the security of the encryption
scheme used to implement the record layer protocol. The most accurate analysis is that of [34] who formalize the
notion of a length-hiding authenticated encryption (LHAE) and show that the encode-mac-encrypt paradigm
used in one of the possible implementations of the record layer meets this notion. Our methodology allows using
such security results in a modular manner: for any other possible implementation of the encryption scheme used
in the record layer it is sufficient to prove that it is LHAE to conclude security of the overall protocol (in the
sense of implementing a secure channel).

In concurrent work, Jager et al. [29] aim to analyze the security of the TLS protocol for the case when the
underlying key-exchange is based on a DH exchange. The authors convincingly argue that in order to investigate
the security of TLS, they have to select one of two paths: either consider a modified version of the TLS key
exchange step (as for example done in [33]) or define a new model of security for the whole TLS stack, and
analyze the protocol with respect to this model. Clearly the more satisfactory path is the latter (as it deals with
a non-modified variant of TLS). The authors introduce a novel class of protocols which they call authenticated
and confidential channel establishment (ACCE) protocols, and analyze the security of TLS with respect to this
notion. In our terminology, proving that the composition between a key-exchange protocol ke and a particular
implementation of a secure channel ζ yields an ACCE channel is precisely proving that ke is good for ζ (where
the security game for ζ is essentially that for length hiding authenticated encryption (LHAE)). Notice that in
essence, this model looks at the record layer protocol as a channel that ensures privacy of messages and certifies
message origin. The model however allows for replay attacks and out-of-order delivery. This can be easily seen as
the primitive analyzed there does not involve counters. In particular, we consider a more realistic model for the
record-layer that captures security against replay attacks, prevents out-of-order delivery, and ensures secrecy
of the sent messages. The security analysis in [29] is for the case when the key-exchange protocol is based on
a Diffie-Hellman exchange. As explained above, if one were to now consider the case where the key-exchange
is implemented via RSA-based key transport, one would have to redo the whole proof from scratch. Using our
approach it is sufficient to prove that the resulting key-exchange is good for a LHAE encryption scheme. Finally,
while lifting the result of [29] from showing that the handshake is good for the encryption scheme to showing
that the handshake is good for the channel itself is possible but highly non-trivial. In particular it would require
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a new security model, and carrying out a complex reduction. This is precisely the part that our methodology
helps avoid.

The idea of defining the security of a key through its uses, rather than asking it be indistinguishable from
a random has been used in the past. In the context of the Protocol Compositional Logic [22] the authors define
security of a key as being good if it can be safely used for encryption. Similarly, In the context of the KEM/DEM
paradigm Bellare, Boldyreva, and Palacio [3] define an encapsulated key to be secure if it guarantees the security
of the DEM where it will be used. In both cases, the uses are less general than in the framework that we propose
here.

2 Cryptographic Games

In this section we formalize games for protocols and primitives. Both formalisms reflect the same basic idea
but differ in some aspects (e.g. protocols need explicit notions of users and sessions). We then introduce our
main technical tool, a strong notion of reduction from primitives to protocols. All our objects, i.e. games and
adversaries, are interactive Turing machines.

2.1 Games for Cryptographic Primitives.

The definitions we give follow the intuition that governs the typical games used in cryptography. Security is
defined for arbitrary (efficient) adversaries that interact with the primitive/protocol. The interaction is through
some interface to which the adversary sends queries. In return the adversary receives answers computed with
the help of the algorithms under attack. What queries are permitted and the way answers are computed should
capture the use of the system in real life. The goal of the adversary is to trigger some event which the game
deems as “bad”.

We do not enforce a particular syntax for primitives and take a general approach where we only explicitly
identify a key-generation algorithm. A primitive ζ is then given by a pair of algorithms (kgζ ,Pζ). Algorithm kgζ
is for key-generation and algorithm Pζ implements the desired functionality. This restriction is without loss of
generality since several algorithms can be emulated by a single one, as long as the inputs are tagged to indicate
for which of the underlying algorithms the input is intended.

The security of a primitive is captured by one (or more) games; where a game Gζ for the primitive ζ is
an interactive probabilistic Turing machine. The machine has input tapes Gin

ζ and Gk-in
ζ to receive queries and

keys, respectively, and one output tape Gout
ζ . The game takes as input a security parameter η and allows the

adversary access to various queries. The adversary drives the execution by writing queries (from some finite set)
on Gζ ’s standard input tape Gin

ζ . The game calculates a response and updates its internal state; the response is
returned to the adversary. Notice that these calculations may involve the algorithm Pζ , but we do not explicitly
say how this is done. The execution is randomized as both the adversary and game may use random coins. Keys
for the game are written on the input tape Gk-in

ζ . Keys may come from the key generation of the primitive, but
can also come from somewhere else, such as a key exchange protocol. See later for how this tape is used.

We require that when the execution of the adversary terminates, there is a single bit written on Gout
ζ , which

is the outcome of the game. We write Exec(Gζ ,A)(η) for the random variable that describes the output of the
game when interacting with adversary A for security parameter η. Naturally, Exec(Gζ ,A)(η) also depends on
the distribution of keys provided to Gk-in

ζ . If not specified, we assume that A provides those. We go into detail
later.

We now refine the above general definition of games. First, we add a mechanism to explicitly maintain keys
and related information (e.g. whether a key is corrupt). The game Gζ maintains an internal list LG consisting
of tuples (kid, k, stkid); where kid is an administrative key identifier, k is the key corresponding to this identifier
and stkid ∈ {honest, corrupted}. We describe two queries that make use of the list LG; the NewKey and Corrupt
queries which the game answers as follows:
• NewKey(): Prior to making this query, A writes some value on the Gk-in

ζ input tape of Gζ ; possibly the output
of the primitive’s key generation algorithm kgζ . The call NewKey() makes the game Gζ obtain a new key k by
reading its Gk-in

ζ input tape. The game checks whether k has been seen previously by searching for an existing
tuple (kid′, k, stkid) containing the key k. If such a tuple exists then the value kid′ is returned to the adversary.
Otherwise it instantiates a new “session” of the primitive, keyed with k, by generating a new key identifier
kid and adding the tuple (kid, k, honest) to the list LG. The value kid is returned to the adversary.
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• Corrupt(kid): If there is a tuple (kid, k, stkid) on the list LG then stkid is set to corrupted and k is returned to
the adversary. The adversary may not interact with a session once it is corrupt. If no such tuple exists then
the query is ignored.

Definition 1 (Primitive Game). A primitive game Gζ for the primitive ζ is a cryptographic game with a set
of queries that includes the two special queries NewKey and Corrupt, and maintains a list LG as defined above.

See Section 2.3 for examples of games related to IND-CCA encryption and MAC security.
In the above definition the adversary is allowed to set keys for the game so security is impossible to guarantee

(and indeed, we do not attempt to do so). We recover standard notions of security by restricting the adversary in
certain ways. We present three (increasingly) stronger restrictions, the last yielding standard notions of security.
We explicitly delineate the two intermediate classes since they are useful for technical reasons.

Definition 2 (Split Adversary). An adversary A against a cryptographic game G is a split adversary if it
consists of two subadversaries A = (A1,A2), such that A1 makes only certain types of queries to G, and A2

makes other types of queries of queries to G. The algorithms A1 and A2 may communicate as they wish. By
convention we assume that A2 is in charge of scheduling the execution.

Since there are no restrictions on how the two subadversaries communicate splitting an adversary does not
change its overall functionality. Next, we restrict the flow of information between the two subadversaries and
the queries that each adversary makes to obtain standard security requirements. A query-respecting adversary
and a key-benign adversary. The query-respecting adversary is a split adversary where only the first part of the
adversary is allowed to create keys.

Definition 3 (Query-Respecting Adversary for Primitives). A split adversary A = (A1,A2) against a
primitive game Gζ is query-respecting if it satisfies the following restrictions:
• The query NewKey() is only made by A1.
• Only A1 writes keys to the key input tape of Gζ .
• Both parts A1 and A2 are allowed to make Corrupt queries.
• A2 makes all other queries.

Finally, a key-benign adversary is additionally restricted to only initialize instances of primitives with keys
honestly produced via their associated key generation algorithm. In addition the adversary “forgets” the values
of these keys (but not maintaining state across invocations). Specifically, we consider the class of split adversaries
A = (A1,A2), where we restrict the information passed from A1 to A2.

Definition 4 (Key-Benign Adversary for Primitives). For a game Gζ of a primitive ζ = (kgζ ,Pζ) and a
split adversary A = (A1,A2), we say that A is key-benign with respect to kgζ if it behaves as follows:
• Adversary A is query-respecting.
• Subadversary A2 only sends the message NewKey() to A1.
• Each time A1 is activated by receiving a message NewKey() from A2, it runs the key generation algorithm

kgζ once, writes the output of this algorithm on the input tape Gk-in of G and makes a NewKey() query to the
primitive game. The game then returns a key identifier kid that A1 passes to A2.
• No other information is passed from A1 to A2.

We stress that per our convention in Defintion 2 adversary A2 drives the execution: either it queries the game
directly and is given the answer, or creates a new key via A1. The control is always returned to A2. The
behaviour of A1 is fully specified and thus does not allow for constructing covert channels between A1 and A2.
Standard security notions are obtained by restricting to adversaries which are key-benign. A security notion for
a protocol is a pair (Gζ , δ) with Gζ a game as described above and δ an error probability (a probability with
which the adversary can certainly win the game). A protocol is secure if no key-benign adversary can win the
game with probability significantly better than δ (typically δ = 1

2 or δ = 0).

Definition 5 ((Gζ , δ)-Secure Primitive). We say that a primitive ζ = (kgζ ,Pζ) is (Gζ , δ)-secure, or equiva-
lently that it satisfies (Gζ , δ), if for any probabilistic polynomial-time algorithm A that is key-benign with respect
to the key generation algorithm kgζ it holds that

Pr [Exec(Gζ ,A)(η) = 1]− δ

is a negligible function in the security parameter.

For clarity, sometimes we write Exec(Gζ ,A : kgζ)(η) for the execution of the game with a key-benign adversary
with respect to kgζ .
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2.2 Games for (Two-Party) Cryptographic Protocols.

In this section we extend the above framework to games for two-party protocols. The main difference is that
we introduce users and protocol sessions into the formalism. Again we make no assumptions on the syntax of
protocols and assume that a protocol π is given by two algorithms, π = (kgπ,Pπ); where again the first algorithm
is for generating keys, and the latter defines the execution of the protocol itself. We give general games for the
security of protocols, but specialize them for the case when the protocols are based on long-term symmetric
keys; see Section 7 for the alterations needed when dealing with long-term public key pairs.

We assume that protocols are executed by a set of users with identities in some polynomial size set U . A game
Gπ for a protocol π is similar to that for primitives and we only highlight the main differences. As part of its
internal state, the game maintains a list LG of tuples of the form (label, kid, U, V ). Each such tuple corresponds
to a local session of a user U with intended partner V . The entry label is a label that uniquely identifies the
session; the entry kid is the key identifier for the key used by the owner of the session. Both label and kid are
only administrative identifiers which are not used within the protocol. The key corresponding to kid could be a
shared password, a long-term key, or a key derived through a key exchange protocol.

The game keeps track of the actual values for the keys, as well as the identities associated to these keys;
recall that we work here in the symmetric key setting where such keys are shared by parties. This is done via a
list Lkeys

G whose entries are of the form (kid, U, V, k, stkid), where kid is a key identifier, k is the actual value for
the key, U and V are the identities associated to this key and stkid ∈ {honest, corrupted}. As before, keys are
passed to the game by the adversary via the input tape Gk-in

π .
The behaviour of the game Gπ is determined by the function that defines the protocol Pπ and, as for

primitives, we do not fully specify this dependency. It is worth noting however that a typical game maintains
the state of the various local sessions, directs the queries to the appropriate sessions, updates the local state,
and returns an answer to the adversary.

We now detail the particular mechanism that our games use to start sessions and provide keys to such
sessions. We informally discuss the queries that implement the mechanism and their use, and then give a more
formal description.

A query NewKey(U, V ) allows the adversary to “register” the key written on the input key tape with the
game (a key identifier kid is returned). As this is a local process, via query SameKey(V,U, kid), the same key
can be registered for user V . A new session of the protocol run by U , with intended partner V , is started via a
query NewSession(U, V, kid): the key used by U in this session is the one indexed by kid. We may then start a
session of V with the same key. Note that keys tie two sessions of two users together; this is a security property
that we will require from any key exchange protocol used to derive keys for π.
Formally, we require protocol games to allow the following special queries:
• NewKey(U, V ): The game Gπ reads a new key k off the Gk-in

π tape, generates a new identifier kid and creates
a new tuple (kid, U, V, k, honest) on the list Lkeys

G . The key identifier kid is returned to the adversary.
• SameKey(U, V, kid): If there is a tuple (kid, V, U, k, stkid) on the list Lkeys

G , the tuple (kid, U, V, k, stkid) is added
to Lkeys

G and kid is returned to the adversary. Else, the game returns ⊥.
• NewSession(U, V, kid): The game searches the list Lkeys

G for a tuple (kid, U, V, k, stkid) and aborts if no such tuple
exists. Else, it generates a new identifier label, creates the tuple (label, kid, U, V ) on the list LG and returns
label to the adversary.
• Corrupt(kid): The game searches the list Lkeys

G for all entries of the form (kid, U, V, k, stkid) and does nothing if
no such entry exists. Otherwise, for all such entries, it sets stkid = corrupted and returns k to the adversary.
No further queries are allowed to a corrupted session.

By slightly modifying the above definitions one can easily model public-key protocols, this is detailed in Section
4.1.

Definition 6 (Protocol Game). A protocol game Gπ for π = (kgπ,Pπ) is a cryptographic game with a
set of queries that includes the special queries NewKey(U, V ), SameKey(U, V, kid), NewSession(U, V, kid) and
Corrupt(kid). The game Gπ maintains a list LG and a list Lkeys

G as defined above.

As before, we write Exec(Gπ,B)(η) for the random variable that describes the output of the game when inter-
acting with adversary B for security parameter η. We adapt the notions of query-respecting and key-benign
adversaries from primitives to the case of protocols.

Definition 7 (Query-Respecting Adversary for Protocols). A split adversary B = (B1,B2) against a
protocol game Gπ is query-respecting if it satisfies the following restrictions:
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• The query NewKey is only made by B1 who has written some value to the tape Gk-in
π .

• The query SameKey(U, V, kid) is only made by B1. Moreover if a query NewKey(U, V ) previously returned
some kid then B1 is allowed at most one SameKey(V,U, kid) query and no SameKey(U, V, kid) query.
• The query NewSession(U, V, kid) is only made by B2.
• Both, B1 and B2 are allowed the query Corrupt(kid).
• All other queries are made by B2.

The second requirement in the above definition ensures that for adversaries that write different key values
on the key input tape of Gπ at most two protocols sessions of any pair of users U , V use the same key.

Definition 8 (Key-Benign Adversary for Protocols). For a game Gπ of a protocol π = (kgπ,Pπ) and a
split adversary B = (B1,B2), we say that B is key-benign with respect to kgπ if it behaves as follows.
• Adversary B = (B1,B2) is query-respecting.
• The message sent from B2 to B1 is of the form NewKey(U , V ) or of the form SameKey(U, V, kid).
• Each time, B1, receives a message NewKey(U, V ) from B2, it runs the key generation algorithm kg once, writes

the output of this algorithm on the input tape Gk-in of G and makes a NewKey(U, V ) query to the protocol
game. The game then returns a key identifier kid that B1 passes to B2.
• Each time, B1, receives a message SameKey(U, V, kid) from B2, it makes a SameKey(U, V, kid) query to the

protocol game. The game then returns a key identifier kid that B1 passes to B2.
• No other information is passed from B1 to B2.

A security notion for a protocol is then a pair (Gπ, δ) with Gπ a game as described above and δ an error
probability (a probability with which the adversary can certainly win the game). A protocol is secure if no
key-benign adversary can win the game with probability significantly better than δ.

Definition 9 ((Gπ, δ)-Secure Protocol). We say that a protocol π = (kgπ,Pπ) is (Gπ, δ)-secure, if for any
probabilistic polynomial-time algorithm B key-benign with respect to the key generation algorithm kgπ, it holds
that

Pr [Exec(Gπ,B)(η) = 1]− δ

is a negligible function in the security parameter.

When the game for the protocol is clear from the context, we may simply say that the protocol is δ-secure
instead of (Gπ, δ)-secure. The same simplification applies for primitives. Below in Section 2.3 we provide an
example of a game for security of authenticated channel protocols.

2.3 Example Primitives and Protocols Games

In this section we present some basic definitions which will be needed in future sections, as well as examining
how our previous formalism for primitive and protocol games applies to some well known examples.

Basic Definitions Symmetric encryption. We define an encryption scheme E as a triple of algorithms
E = (KeyGen,Enc, Dec), where KeyGen is the key generation algorithm. To generate a key key we execute k ←
KeyGen(η). We have c← Enck(m), for a message m taken from the message space (M) of E and m′ ← Deck(c′),
with m′ ∈M ∪ {⊥}. It is required that m = Deck(Enck(m)) for all m ∈M .

An encryption scheme (KeyGen,Enc,Dec) is said to be indistinguishable under chosen ciphertext attacks
(IND-CCA2), if for any efficient algorithm A the probability that the experiment CCA2Enc

A evaluates to 1 is
negligible (as a function of n), where

Experiment CCA2Enc
A (n)

k ← KeyGen(1n).
b← {0, 1}.
d← AEnck(·,·),Deck(·)(1n),

Where the Enc oracle on input of m0, m1 returns
the output of Encε(mb)
The oracle Dec on input of c returns ⊥, if c has
been an output of oracle Enc,
Otherwise it returns Deck(c).

Return 1 iff b = d.
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Message authentication codes. A MAC scheme MAC is a triple of algorithms MAC = (KeyGen, Mac,
Verify), where keys for the scheme a generated by k ← KeyGen(η). We let σ ← Mack(m) with m ∈ {0, 1}∗ and
define v ← Verifyk(m′, σ′) where v ∈ {true, false}. Further, we require that Verifyk(m,Mack(m)) = true for all
m.

A message authentication code (KeyGen,Mac,Verify) is called unforgeable under chosen message attacks if
for any efficient algorithm A the probability that the experiment ForgeMac

A evaluates to 1 is negligible (as a
function of n), where

Experiment ForgeMac
A (n)

k ← KeyGen(1n)
(m∗, σ∗)← AMack(·),Verifyk(·,·)(1n)
Return 1 iff Verifyk(m∗, σ∗) = 1 and A has never
queried Mack(·) about m∗.

Computational Diffie–Hellman Assumption. We here state the computational Diffie-Hellman Assumption
(CDH), which will be needed when we discuss TLS later.

Definition 10 (CDH). The CDH problem is hard with respect to an instance generation algorithm Params, if
for all p.p.t. algorithms A the following probability is negligible:

Pr [(p, q, g) ← Params(1n); a, b← Zq :

A(p, q, g, ga, gb, 1n) = gab mod p
]

Example Primitive Games The following examples show how the standard games for defining multi-user
IND-CCA security of encryption schemes and multi-user UF-CMA for message authentication codes can be easily
cast as instances of the our framework for primitive games. The only difference is the addition of the Corrupt
query, which is a simple extension, but needed to be able to cope with security of protocols using this primitive
which allow adaptive session-state corrupts.
Example: IND-CCA encryption. We now describe the game for symmetric key based IND-CCA encryption
in the multi-user setting [2] using this language. We assume the scheme is given by the algorithms KeyGen(η),
Enck(m), Deck(c)), so that kgζ = KeyGen(η). Execution begins with the game selecting a random bit b← {0, 1}.
The key-benign adversary can now make the following queries, in addition to the NewKey and Corrupt queries,
as follows:
• Enc(kid,m) – The game computes the encryption c ← Enck(m), where k is the key in the tuple in LG

corresponding to kid. The ciphertext c is then passed back to the adversary. If no such tuple exists then this
operation does nothing.
• Challenge(m0,m1, kid) – The game computes the challenge ciphertext c† ← Enck(mb) as above and returns c†

back to the adversary. Note that it is required |m0| = |m1|.
• Dec(kid, c) – The game computes the decryption m ← Deck(c), where again k is the key in the tuple in LG

corresponding to kid. The value of m is passed back to the adversary.
• Guess(b′) – The game outputs 1 if b′ = b, otherwise 0 is output. Execution of the game terminates.
We make the following two restrictions on the queries, so as to make sure that the game cannot be trivially
won:
• On calling Dec(kid, c) if c was the output of some call to Challenge for this value of kid then the game aborts

outputting zero.
• The adversary may not make a Corrupt(kid) query if it has made a Challenge(·, ·, kid) query for the same value

of kid, and vice-versa.
Note that the query Enc(kid,m) can be simulated via a call to Challenge(m,m, kid), however we keep a separate
query of Enc(kid,m) so as to make the above restrictions simpler to define.

Since the adversary can guess the value of b with probability 1/2, we require that this game is key benign
secure for δ = 1/2. Notice that security clearly depends on what key generation algorithm is allowed to write to
the Gk-in

ζ tape. For example if kgζ consisted of sampling from the set of l-bit strings uniformly at random then
we would obtain the standard security notion for IND-CCA encryption with a cipher of l-bit keys. On the other
hand kgζ could consist of simply outputting the same l-bit string, since the adversary is assumed to know the
code of kgζ , such an algorithm would always be insecure. We see therefore that the definition of a kgζ is always
implicit in any security notion, we have simply brought it more to the fore.
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Example: EF-CMA MAC. Now suppose that the primitive we wish to model is a MAC, given by a triple
of algorithms (KeyGen(η),Mack(m),Verifyk(m,σ)). We want to test whether this primitive is secure against
a chosen message attack, where the adversary is trying to create a forgery for any message (ie. existential
forgeability). We now detail how this execution proceeds within our model. When execution of the game begins,
the key benign adversary makes a number of queries to the game. In addition to NewKey and Corrupt queries
he can make the following queries:
• Match(m, kid) – The game computes σ = Mack(m), where k is the key in the tuple in LG containing kid. The

game returns σ to the adversary.
• Verify(kid,m, σ) – Here the game computes the boolean value τ = Verifyk(m,σ) for k corresponding to kid in
LG. If τ = true and m has never been queried to Match(m, kid) and Corrupt(kid) has not been called then the
game outputs 1 and terminates. Otherwise the value τ is returned to the adversary.

If the game does not terminate because of the result of a Verify query, eventually the adversary terminates and
the game writes 0 to its output tape. We say the scheme is key-benign EF-CMA secure if the above game is
δ-secure for δ = 0.

Example Protocol Games Here we look at the specific example of a protocol which provides authenticated
channels. In order to model an authenticated channels scheme we must first decide upon a game based definition
to capture the requirements of an authenticated channel. An authenticated channel has a number of desired
properties. The first is that one must be able to verify messages are sent by someone who possesses the shared
secret key. The second property is that messages are only accepted if they are received in order and where
duplicates are rejected. We now describe a game to formally capture these notions.

The adversary is able to make call to NewKey, SameKey, NewSession and Corrupt as previously described,
the only difference here is, that for each kid, at most one call to NewSession(U, V, kid) and NewSession(V,U, kid)
is allowed, as authenticated channels shall preserve communication between two sessions. Thus, the property is
trivially broken, if several sessions may use the same key.

The game maintains two sets of “append only” lists, ι = {ιlabel} and θ = {θlabel}, where each entry corresponds
to a separate value of label. The adversary then interacts with the protocol via the following queries made
available via the game:
• mchannel ← Init(mplain, label) – The message mplain is appended to the list ιlabel corresponding to the entry

(label, kid, U, V ). The oracle responds with the (authenticated) protocol message, mchannel, which is intended
to be sent to party V with session identifier sid. It is assumed that mchannel contains the message mplain as a
subsequence. The value of mchannel is appended to the list θlabel.
• mplain ← Send(mchannel, label′) – The protocol message mchannel is passed to session label′ as though it was a

message received through the authenticated channel. The message mchannel is appended to the ιlabel′ list. If the
protocol message authenticates correctly then the message mplain is appended to the θlabel′ list.

At some stage the adversary B will terminate its execution with the game. At any point during execution,
the game G checks that, for all parties (U, V ) with (label1, kid, U, V ), (label2, kid, V, U) ∈ LG, that θlabel2 is a
subsequence of ιlabel1 when sid 6=⊥ and the entries (kid, U, V, k, stkey1), (kid, V, U, k, stkey2) ∈ Lkeys

G have stkey1 =
stkey2 6= corrupted. If there exists any pair where this condition is not satisfied then the adversary B has won the
game and so the game immediately writes 1 to the output tape of the Turing machine G. Otherwise, it outputs
0, when the adversary terminates. An instantiation of an authenticated channel is called secure, if it is δ-secure
with δ = 0.

3 Key-Independent Reductions

We define a new notion of reduction from primitives to protocols. We start with some high-level intuition and
then give the details. Our focus is on the case of some protocol π whose security relies solely on that of some
underlying symmetric primitive ζ. We assume that the keys, which are passed as input to the protocol, are used
to only key the underlying primitive. This assumption is satisfied, for instance, by standard authenticated and
private channel protocols. Moreover, the case when a protocol uses several primitives (e.g. both encryption and
authentication as for secure channels) can be cast as an instance of this setting.

Just as for standard reductions, a key-independent reduction uses an adversary A against protocol π to
construct an adversary R(A) against primitive ζ. Crucially, we require that the reduction works, independent of
the distribution of keys that are input to the protocol. Roughly speaking, for any key distribution, if adversary
A breaks the protocol π then adversary R(A) breaks the primitive for the same distribution on the keys. This
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property is difficult to formalize: primitives may use different keys in their instantiations, whereas protocols
may use the same key in two sessions so we have to clarify what “the same distribution” means. We do this by
explicitly showing how such a reduction maps the keys used in the protocol to the keys used by the primitive.

Let B = (B1,B2) be a query-respecting adversary for the protocol game Gπ. The adversary A constructed
via the reduction internally maintains the list Lkeys

A , which consists of tuples of the form (U, V, kid) that record
the keys shared by pairs of users. We need however to be more specific. For the particular type of reduction that
we consider, we demand the existence of an adversary A = (A1,A2) against Gζ , where the A1 component of A
manages the keys in a particular way. Intuitively A1 is in charge of maintaining a mapping between the keys
used in the game Gζ , which A is playing, and the game Gπ, which A simulates for B. The mapping between
the keys used in the simulation and the keys used in the game of A may not be straightforward as the same
key for a primitive may be used to simulate two or more sessions of the protocol. While we fix how A1 should
be constructed from B1 we do not impose any restriction on A2.

Formally, we define the adversary A1(B1) that works as an interface between B1, which expects to commu-
nicate with Gπ, and the game Gζ , as follows:
• When B1 writes a value k onto the input tape Gk-in

π , algorithm A1 writes k on the input tape Gk-in
ζ .

• Whenever B1 sends a NewKey(U, V ) query, algorithm A1 sends a NewKey() query to the game Gζ . When the
key identifier kid is returned, algorithm A1 stores the tuple (U, V, kid) on its list Lkeys

A . Finally A1 forwards kid
to B1.
• Whenever B1 sends a SameKey(U, V, kid) query, algorithm A1 searches Lkeys

A for a tuple (V,U, kid). If there is
such a tuple, then A1 adds the tuple (U, V, kid) to Lkeys

A and returns kid. Otherwise, A1 returns ⊥.
• Whenever B1 issues a Corruptπ(kid) query to the protocol game Gπ, algorithm A1 sends the Corruptζ(kid)

query to the primitive game. Algorithm A1 relays the answer it obtains to B1.
• Whenever B1 passes control to B2 by outputting some state sti, algorithm A1 passes sti together with the

list Lkeys
A to A2.

We require that the algorithm A2 makes only black-box use of B2. In addition, we require that whenever B2

outputs some state sti and passes control to B1, that A2 then sends sti to A1, who then runs B1 on this state.
Note, algorithm A2 is allowed arbitrary queries to the primitive game Gζ except NewKey queries. In par-

ticular, A2 can use the primitive oracle to answer B2’s queries. We stress that we do not specify how A2

answers B2’s queries, we only require that such an A2 exists. Also, notice that by the above description, if B is
query-respecting for the protocol then A is query-respecting for the primitive.

We can now define what it means to have a key-independent reduction from a protocol to a primitive.

Definition 11 (Key-Independent Reduction). We say there is a key independent ((Gζ , δζ), (Gπ, δπ))-
reduction from the protocol to the primitive, if for all query-respecting split adversaries B = (B1,B2) against
the protocol game Gπ, there is a query-respecting split adversary A = (A1,A2) against the primitive game Gζ
with A1 depending on B1, as described above, such that

Pr [Exec(Gπ,B)(η) = 1]− δπ ≤ Pr [Exec(Gζ ,A)(η) = 1]− δζ .

In other words if ζ is δζ-secure then π is δπ-secure, for whatever distribution on keys is determined by B1 (and
A1 constructed as above). Notice that we do not restrict the adversary B in the definition to be key-benign so
the reduction should work no matter what partial information the adversary has about the keys (even the keys
themselves). Note that, if we quantify over the smaller class of key-benign adversaries B, then we obtain the
standard notion of cryptographic reductions. Again, if the games for the primitive and the protocol are clear
from the context, we may simply say (δζ , δπ)-reduction.

3.1 Key-Independent Reduction – Example

Assume an overly simplified setting where a sender and a receiver share a symmetric key which they use to
establish an authenticated channel π. The protocol they use simply sends messages concatenated with a counter,
together with a message authentication code of this concatenation produced under the shared key. A reduction
would use an adversary against the authenticated channel to break the security of the MAC scheme as follows.
The MACs are produced with the help of the tagging oracle specific to the MAC game. Verification by the
receiver is done with the help of the corresponding verification oracle. If the receiver accepts some message that
was not sent by the sender, then the message comes with a tag that was not produced by the sender (and hence
the tagging oracle) and constitutes a forgery for the MAC game. Notice that the reduction is indeed independent
of the distribution of the keys. If an adversary knows the key which authenticates the channel π, then it can
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trivially break the security of the channel, but such an adversary is still turned into one which “forges” a MAC
via the above reduction.
Key-independent vs. black-box reductions. While key-independent reductions are black-box reductions,
the converse is not necessarily true. To see this, consider an arbitrary symmetric encryption scheme with a black
box reduction to some underlying primitive. Now modify the scheme so that if the encryption key is the all-0
string then the encryption function is the identity. While the black-box reduction still works (the probability
that the key is the all-0 string is negligible) no key-independent reduction to the underlying primitive exists.

4 Composition of Key Exchange with Primitives and Protocols

In this section we first define games for key exchange protocols by specializing the two-party games described in
Section 2.2. In particular we specify how the games maintain sessions, the additional required information, and
define two security properties. The first property we deem to be the core property of a key exchange protocol,
namely that its keys can be used safely to accomplish some task. The second security property we define is a
notion of authentication.

4.1 Key Exchange Protocols.

We now define a game for key exchange protocols. This game captures the typical execution model of a key
exchange protocol, where an adversary can run multiple sessions, mediates all communication, and is allowed
to corrupt various keys in the system. This game has two purposes. First, the game may be “composed” with a
primitive (or protocol) game; here the session keys generated by running the key exchange protocol are then used
as the keys for the primitive (or protocol). Security is then defined in terms of this whole composed system.
Secondly, the key exchange game is used to define an authentication property required of the key exchange
protocol. Informally, this property ensures that at most two parties agree on the same session identifier, sid, and
if two session have the same sid, and have exchanged session keys, then these keys are equal.

To define the game for key exchange, we specialize the generic two-party protocol game definition given in
Section 2.2. As the generic definition only applies to symmetric long-term keys, below in Section 4.1 we provide
a minor extension to allow asymmetric long-term keys. A key exchange protocol ke = (kgke,Pke) is given by
two algorithms. The first algorithm generates the (symmetric or asymmetric) long-term keys, while the second
algorithm defines how a session of the key exchange protocol executes. The game for key exchange is written as
Gke. As before, this game has input tapes Gk-in

ke for receiving keys and Gin
ke for receiving queries. In addition to

its normal output tape, the game has an additional output tape, Gk-out
ke , where the keys derived from sessions

are written. The adversary does not have access to this tape which we only use for defining the security of the
composition between a key exchange and a protocol/primitive.

The internal state of the game augments the generic one from Section 2.2. The tuples (label, kid, U, V ) from
the list LG are extended to tuples of the form (label, kid, U, V , sid, stexec, κ, stkey), where the semantics of the
additional entries is as follows. Entry sid is a (global) session identifier set by the protocol at some point during
the execution. Note that sid can have a very different structure than being, for example, the entire conversations
of a session. For example it may be a partial transcript or the result of a local computation, potentially involving
secret information. To analyse a protocol, one needs to choose the appropriate form of sid. The value sid must be
locally computable by a session and needs to satisfy security requirements specified later. The session identifier
used in the analysis of a protocol does not necessarily need to coincide with values that are called “session
identifiers” in the protocol specification. For instance, TLS uses administrative session identifiers for technical
reasons that do not satisfy the necessary security requirements. In contrast to sid, the value label is not locally
computed but merely an administrative game-related value which the local session of a user has no access to.
The value stexec ∈ {running, accepted, rejected} indicates the status of the session, the entry κ is the key produced
by the session, and stkey ∈ {fresh, revealed} indicates if the session key has been revealed to the adversary. If
the value of κ is ⊥ then stexec ∈ {running, rejected}. If stexec is set to accepted for any local session label this is
always the result of some query to the game.

We require the key exchange protocol to set the value κ and the value sid, before setting stexec to accepted.
Furthermore, as soon as stexec is set to accepted for the session identified by label, the session key κ and the
session identifier sid are written onto the tape Gk-out

ke and the game signals to the adversary that a session
has accepted by sending the message (accepted, label, U, V ), for U and V corresponding to identifier label. This
message is in addition to the normal response of the query that caused a session to accept.
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The adversary can interact with the game via queries for setting long-term keys (NewKey and SameKey),
starting new sessions (NewSession), corrupting the long-term key of parties (Corrupt), sending messages to the
different sessions (Send), and revealing the locally output keys (Reveal).

Note that the NewKey query here refers to the setting of long-term keys for the key exchange protocol,
while the NewSession query starts key exchange protocol sessions. For instance, the (asymmetric) key set via a
NewKey query correspond to TLS certificates while the NewSession query corresponds to a single TLS session.
We first detail the queries appropriate to symmetric long-term keys; these are the specializations of the queries
outlined in Section 2.2. Next we detail the adaptations required to model long-term asymmetric keys.

Queries for long-term symmetric keys.

• NewKey(U, V ): The game Gke checks whether there is a tuple (∗, U, V, ∗, ∗) or a tuple (∗, V, U, ∗, ∗) on list
Lkeys
G . If so, there is already a long-term key for the pair (U, V ), so it returns ⊥. Else, it reads a new key k

off the Gk-in
ke tape, generates a new identifier kid and creates a new tuple (kid, U, V, k, honest) on the list Lkeys

G .
The key identifier kid is returned to the adversary.
• SameKey(U, V, kid): The game Gke checks if there is a tuple (∗, U, V, ∗, ∗) on list Lkeys

G . If so it returns ⊥. Else,
it searches list Lkeys

G for a tuple (kid, V, U, k, stkid) and returns ⊥ if no such tuple exists. Else, it creates a new
tuple (kid, U, V, k, stkid) on the list Lkeys

G . The key identifier kid is returned to the adversary.
• NewSession(U, V, kid): The game searches the list Lkeys

G for a tuple (kid, U, V , k, stkid) and aborts if no such
tuple exists. Else, it creates a new identifier label. The tuple (label, kid, U, V, sid, stexec, κ, stkey) is created on
list LG, with sid and κ being undefined, stexec := running, and stkey := fresh. If stkid = corrupted, then stkey is
immediately set to revealed. The game returns label to the adversary.
• Corrupt(kid): The game searches the list Lkeys

G for all entries of the form (kid, U, V, k, stkid) and does nothing if
no such entry exists. Otherwise, for all such entries, it sets stkid = corrupted and returns k to the adversary.
For all tuples (label, kid, U, V, sid, stexec, κ, stkey) on the list LG, stkey is set to revealed.3 No further queries are
allowed to sessions of a corrupted party.
• Send(label,msg): The game searches the list LG for a tuple (label, kid, U, V, sid, stexec, κ, stkey) and returns ⊥

if no such tuple exists. If stexec = accepted, the game returns ⊥. Else, the game delivers message msg to the
session labelled label and runs Pke on the state of this session to compute a response. The response of this
algorithm is returned to the adversary.
• Upon executing Pke, if stexec = rejected then the message rejected is also sent to the adversary.
• Upon executing Pke, if stexec = accepted then the message accepted is also sent to the adversary, and κ and

sid are written to the output tape Gk-out
ke of the key exchange game. Furthermore, the game searches the list

LG for a tuple (label′, kid, V, U, sid, accepted, κ, revealed). If such a tuple exists, stkey is set to revealed. This
corresponds to the case where the partner session of label accepted a session and became revealed before
label accepted the session key.

• Reveal(label): The game searches the list LG for the tuple (label, kid, U, V, sid, stexec, κ, stkey) and does nothing
if no such tuple exists. Else, if a tuple is found but stexec 6= accepted then the game simply returns ⊥ to the
adversary. Otherwise the game sets stkey to revealed, and returns κ to the adversary. Furthermore, if there is
a tuple (label′, kid, V, U, sid, accepted, κ, stkey

′) with stkey
′ = honest, then stkey

′ is set to revealed. No further
queries are allowed to a revealed session.

Modifications and queries for long-term asymmetric keys To modify the symmetric key model into
an asymmetric key model, the main task is to deal with the key identifiers and the NewKey query. Instead of
having two inputs, the NewKey query has only one, as keys are now assigned to single users instead of pairs
of users. For the same reason, the SameKey query becomes obsolete. The list of sessions, LG, stores tuples
(label, kidU , kidV , U, V, sid, stexec, κ, stkey). The owner of the session is U . So, U uses its secret key corresponding
to kidU , and U uses the public key corresponding to kidV . The Send and Reveal queries are the same as for
symmetric long-term keys. We now formally define the NewKey, NewSession and Corrupt queries for asymmetric
long-term keys.

• NewKey(U): The game Gπ reads a new key pair (sk, pk) off the Gk-in
π tape, generates a new identifier kid and

creates a new tuple (kid, U, (sk, pk), honest) on the list Lkeys
G . The key identifier kid is returned to the adversary

together with pk.

3 In the forward-secure variant, for all tuples (label, kid, U, V, sid, stexec, κ, stkey) with stexec = running in the list LG, the
value stkey is set to revealed.
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• NewSession(U, V, kidU , kidV ): The game searches the tuples (kidU , U, (sk, pk), stkid) and (kidV , V, (sk′, pk′), stkid)
on the list Lkeys

G and aborts if either of the tuples does not exist. Else, it generates a new identifier label and
creates the tuple (label, kidU , kidV , U, V, sid, stexec, κ, stkey) on the list LG and returns label to the adversary.
• Corrupt(kid): The game searches the list Lkeys

G for an entry (kid, U, (sk, pk), stkid) and does nothing if no such
entry exists. Otherwise it sets stkid = corrupted and returns (sk, pk) to the adversary. No further queries are
allowed to sessions of U that use the secret key corresponding to kid. Note that queries to sessions of V
that use the public key corresponding to kid are still allowed. In the forward-secure case, for all sessions
(label′, kidV , kidU , V, U, sid, running, κ, stkey), stkey is set to revealed. In the non-forward-secure case, for all
sessions (label′, kidV , kidU , V , U, sid, stexec, κ, stkey), stkey is set to revealed.

4.2 Secure Composition of Key Exchange with Primitives and Protocols.

Keys derived via key exchange protocols can be used in symmetric protocols and primitives, and we aim to
determine when such uses are secure. In this section we define what “secure use” means by giving security games
for the composition between key exchange and primitives and protocols.

The composed game runs the key exchange game and the primitive/protocol game as subgames. Whenever a
session in the key exchange phase accepts a key, then the composed game passes this key to the protocol/primitive
game as a new key. Thus, the adversary is not given access to the NewKey query, as new keys are passed directly
from the key exchange protocol to the primitive/protocol. Otherwise, the adversary is given all key exchange
queries (to model attacks in the key exchange phase) and all queries of the primitive/protocol game (to model
attacks on the latter). The adversary is successful when satisfying the winning condition of the primitive/protocol
game. The key exchange game does not have a separated winning condition. The key exchange protocol is
considered suitable for the primitive/protocol if the adversary cannot break the primitive/protocol when the
previously randomly chosen keys are replaced by keys derived via a key exchange protocol.

We now discuss the formalism in more detail: We have already formally defined the execution for key exchange
protocols via the game Gke. The game Gke writes the keys output by the sessions of the protocol on its special
output tape Gk-out

ke . We have also defined (generic) security notions for protocols and primitives Gπ and Gζ .
Both these games expect to receive keys as input on the special input tapes Gk-in

π and Gk-in
ζ , respectively. We

now define the game Gke;ζ , which allows an adversary to simultaneously interact with the key exchange protocol
and with the instantiation of the primitive that uses the keys derived via the key exchange protocol. Roughly
speaking, we “fuse” the game Gke with Gζ by simply passing the keys written on Gk-out

ke to Gk-in
ζ . The output

tape of the resulting game is the output tape of Gζ . Since the subgame Gζ writes the bit onto the tape, this
means that the goal of the adversary is to break ζ. The game Gke;π reflects the analogous idea for protocols.
In Section 4.3 we present these ideas in greater detail, and show how the games internally maintain state, and
pass information from the key exchange sub-game to the protocol/primitive sub-game.

An interesting issue arises when considering corruption. In the composed game, corruptions need to be treated
consistently. For instance, the adversary might reveal keys in the key exchange phase while not corrupting the
key in the primitive/protocol game. Then, the adversary could trivially win any game. Thus, whenever a key
is revealed in the key exchange phase, the composed game issues a Corrupt query to the primtive/protocol
subgame. For the long-term keys of the key exchange, we need to distinguish forward security and non-forward
security. When a protocol is forward secure, then corruption of the long-term key used in the key exchange does
not affect sessions which have already terminated. However, in non-forward secure protocols, corruption of the
long-term secrets automatically renders insecure, all session keys which were established using this key. Hence,
in the non-forward secure case, the composed game marks all these keys as corrupted in the primitive/protocol
game via additional Corrupt queries. For forward secure protocols, no additional action needs to be undertaken.
We thus distinguish between the forward secure composed game (Gfs

ke;ρ, δρ) and the non-forward secure composed
game (Gnfs

ke;ρ, δρ). Again this is detailed more formally in the following Section.

4.3 Details of our Key-Exchange/Protocol Game Composition

We first detail how to compose a key exchange protocol with a protocol, then we discuss the corruption model,
and finally we discuss the modifications to compose a key exchange protocol with a primitive.
Composition of key exchange with protocols. The game Gke;π internally runs a copy of Gke and a copy
of Gπ. The key input tape is Gk-in

ke and the tape for the output bit is Gout
π . The tape Gk-out

ke and the input tape
Gk-in
π are internalized by the composed game; we explain later how Gke;π uses these to pass keys from one game

to the other. The query input tapes Gin
ke and Gin

π of the two subgames are internalized as well. Instead the game
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has a new input tape, on which it accepts any of the following queries: NewKeyke, SameKeyke, NewSessionke,
Corruptke, Sendke and Revealke which are intended for the subgame Gke and also queries NewSessionπ, Corruptπ
and Nameπ for the subgame Gπ. Here Nameπ is a generic query for the protocol game. The parameters of these
queries are as before. Notice that the adversary is no longer allowed the queries NewKeyπ, SameKeyπ, as keys
for the protocol sessions are now obtained from the Gke game. The composed game internally maintains a list
LIdentifiers linking sessions of the key exchange game to key identifiers of the protocol game. The list LIdentifiers

is a list of tuples (labelke, sid, kidπ) of administrative session identifiers labelke, session identifiers, sid, of the key
exchange game and key identifiers, kidπ, for the underlying protocol game.

For most queries, the composed game simply forwards the queries of the adversary to the appropriate
subgame, and forwards back the response. For example when the adversary makes a NewKeyke(U, V ), the
composed game makes a NewKey(U, V ) query to Gke and returns kidke obtained from Gke to the adversary. The
trickier parts of the execution deal with passing the keys from one game to the other and with (long-term and
session) key corruption. We explain these difficulties in turn.

Keys are passed from Gke to Gπ when some session in Gke accepts, i.e. when Gke writes (κ, sid) on Gk-out
ke .

There are two possible situations: If the pair of session identifier and session key, (sid, κ) had not been output
before, then κ is a new key established between the identities associated to sid. Thus, the game generates a new
key identifier which is returned to the adversary. Otherwise, there already exists a session of the key exchange
with the same values of sid and κ. This session is the partner of the newly finished key exchange session.
Therefore, we initialise the newly finished session within the protocol subgame via a SameKey query, thus
partnering this session with the previously established protocol session. We now formalize these two situations.

The Sendke Query. When, a query Sendke(labelke,msg) is made, the following operations are performed:

• The value stexec in the tuple (labelke, kidke, U, V, sid
∗, stexec, κ∗, stkey) is set to accepted.

• The key exchange game writes (sid∗, κ∗) to its output tape and sends the message accepted.
• The game Gke;π searches the list LGke

for a tuple (label′ke, kidke, V, U, sid
∗, accepted, κ∗, stkey), i.e. a tuple with

sid = sid∗ and κ = κ∗.
• If such a tuple does not exist, then Gke;π writes key κ on the input tape of the protocol game Gπ and queries

NewKeyπ(U, V ) to the protocol game which returns a key identifier kidπ that is returned to the adversary, and
the triple (labelke, sid, kidπ) is stored in list LIdentifiers. Further, if stkey = revealed the game sends the query
Corruptπ(kidπ) to Gπ and relays the game’s answer to the adversary.
• Otherwise, in list LGke

there exists a tuple (label′ke, kidke, V,U, sid∗, accepted, κ∗, stkey), the game searches the
list LIdentifiers for a triple (label′ke, sid, kidπ) and issues the query SameKeyπ(V,U, kidπ) to the protocol game
Gπ.

Corruption Model. We now explain how the composed game deals with corruption. The problem is that
corrupting keys in one of the games influences which keys are corrupt in the other game. We start with the
simpler case of Revealke queries. When such a query is issued for some session label, the composed game sends
Reveal(label) to Gke. If the answer is ⊥ then nothing else happens. Otherwise (i.e. the answer is some session
key k) then for each entry (label, sid, kidπ) on the list LIdentifiers, the composed game issues a Corruptπ(kidπ)
query to Gπ. These queries essentially mark that the key has been corrupted. The game then returns k.

For corruption of symmetric long-term keys we distinguish two possibilities. In the forward-secure version
of the game, corrupting a long-term key does not affect the security of sessions keys already established (using
the long-term key). In the non forward-secure version, all of the sessions keys derived using the long-term key
become corrupt. To distinguish between the two possibilities we call the corresponding games Gfs

ke;π and Gnfs
ke;π,

respectively.
In Gfs

ke;π the Corruptke queries are just forwarded to the subgame Gke and its answer it relayed to the
adversary. In the Gnfs

ke;π version, when a corruption query Corruptke(kidke) is received, the composed game relays
it to the subgame Gke which returns a key k, that is passed back to the adversary. Furthermore, for all sessions
(labelke, kidke, ∗, ∗, sid, accepted, κ, stkey) in LGke

, the composed game searches the list LIdentifiers for tuples (labelke,
sid, kidπ) and sends the query Corruptπ(kidπ) to the protocol game Gπ. The answer of the subgame is also relayed
to the adversary. This models the idea that if the key exchange is not forward secure, corruption of long term
keys also compromises the derived session keys.

For asymmetric long-term keys, the forward-secure model is as described for symmetric long-term keys. In
the non-forward-secure model (for asymmetric long-term keys), whenever the composed game receives the query
Corruptke(kidU ), for all tuples (labelke, kidU , ∗, ∗, ∗, sid, accepted, κ, stkey) and (label′ke, ∗, kidU , ∗, ∗, sid

′, accepted, κ′, stkey
′)

in LGke
, the game searches LIdentifiers for triples (labelke, sid, kidπ) and (label′ke, sid′, kid′π). It then queries Corruptπ(kidπ)
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and Corruptπ(kid′π) to the Gπ subgame for all found values. The answers of the subgame are relayed to the ad-
versary.
Composing key exchange with primitives. Most of the discussion above also applies to the composition of
key exchange protocols with primitives. We therefore give only relevant details of defining Gke;ζ ; highlighting the
differences. As above, we distinguish between the forward secure, Gfs

ke;ζ , and non forward secure Gnfs
ke;ζ versions

of the composed game. The input/output tape configuration is as above. In addition to the queries for the
key exchange subgame, which are as above, an adversary is allowed to make queries: Corruptζ and Nameζ for
the subgame Gζ (where Nameζ is any generic query). The query NewKeyζ used to instantiate keys for the Gζ
subgame is only used internally by the composed game. The only conceptual difference between composition
of key exchange with protocols and with primitives is that for primitives, the key agreed by two parties which
have obtained the same sid is instantiated in the subgame for the primitive only once. Specifically, when some
session of the key exchange outputs (sid, κ) on Gk-out

ke the composed game searches for a triple (labelke, sid, kidζ)
in the LIdentifiers. If such a triple exists, then the game takes no further action. Otherwise, the composed game
writes κ on Gk-in

ζ and issues a NewKeyζ query to its Gζ subgame. As for protocols, if the session where the key
has been obtained is revealed, then the composed game issues a Corruptζ(kidζ) query to Gζ .

4.4 Secure Key Exchange Protocols

Above we defined how key exchange protocols can be composed with primitives and protocols. We now explain
what it means for a key exchange protocol to be suitable for primitive ζ (and analogously for protocol π).
Intuitively, this means that the security of the primitive does not break down when, instead of using keys
generated with the key generation algorithm for the primitive, one uses the keys established by the key exchange
protocol. Using the machinery developed in the previous section, the requirement simply means that the game
Gke;ζ for the composed protocol (ke; ζ) cannot be won when the long-term keys of the parties are generated
honestly. This intuition, which applies equally to the case of composing key exchange with protocols, is formalized
next. The definition treats explicitly both the forward-secure and the non-forward secure settings.

Definition 12 (Suitability for Primitives/Protocols). Let ke = (kgke,Pke) be a key exchange protocol,
ρ = (kgρ,Pρ) be an arbitrary primitive or protocol, and (Gρ, δρ) an arbitrary security notion for ρ. We say that
ke is (Gρ, δρ)-suitable-for-ρ if (kgke, ke; ρ) is (Gnfs

ke;ρ, δρ)-secure. We say that that ke is (Gρ, δρ)-suitable-for-ρ with
forward security if (kgke, ke; ρ) is (Gfs

ke;ρ, δρ)-secure.

If the security notion for ρ is clear from the context, we may simple say that ke is suitable-for-ρ. One aspect we
wish to stress is that (as per Definition 4 of a key-benign adversary) the key generation used to initialize the
composed game is the key generation algorithm of the key exchange protocol. In turn this means that the main
functionality of the adversary is covered by the second stage of the adversary that interacts simultaneously with
the underlying games Gke and Gρ.

The main property desired from a key exchange protocol is to be suitable for the protocol where the keys
derived are then used. In the next section we show that being suitable for the symmetric primitive on which the
protocol relies together with the authentication property we define next, suffice to ensure this. The intuition of
why we need an authentication property is the following. In the composition of key exchange with primitives,
for every two partnered sessions (i.e. that have the same sid), the adversary is given access to a single instance
of the primitive under the key derived in the session that finishes first. When the partner session finishes,
the key is ignored. We therefore need to ensure that partnered sessions do agree on the same key. A second
related property we demand is that there exist at most two sessions which agree on the same sid. Notice that
the requirement is very weak. In particular, it even allows for the same key to be output in multiple sessions.
However, the notion of suitability for a specific primitive will usually disallow unrelated sessions to output the
same key, as naturally, this leads to a security breach for most natural primitives.

We formally define the security property by adding a winning condition to the game Gke that describes the
execution of key exchange protocols. The resulting game, which we write as GMatch

ke outputs 1 if and only if one
of the following two conditions is violated:
• If there are two tuples in LG with the same value sid, then they are of the form (label1, kid, U, V, sid, accepted,
κ1, stkey1), (label2, kid, V, U, sid, accepted, κ2, stkey2).
• For any two tuples (label1, kid, U, V, sid, accepted, κ1, stkey1) and (label2, kid, V, U, sid, accepted, κ2, stkey2) in LG

, one has κ1 = κ2.

Definition 13 (Match-secure Key Exchange). We say that a key exchange protocol ke = (kgke,Pke) is
Match-secure ke if it is (GMatch

ke , 0)-secure.
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5 Composition Theorem

Our theorem relates the security of the composition of a key exchange with a protocol (ke;π) to the security
of the key exchange with a primitive (ke; ζ), assuming that the key exchange protocol is Match secure. The
theorem says that once we have proved a key exchange protocol to be suitable for a given primitive, then this
key exchange protocol can be used with any protocol whose security can be reduced (in a key-independent way)
to the security of the primitive. We first give the theorem as well as several remarks, and then provide a brief
overview of the proof, where the details of the proof are delegated to Section 6. We finally show how our model
helps to overcome a well-known problem in the security analysis of TLS.

Theorem 1. Let ζ be a primitive, π be a protocol and ke = (kgke,Pke) be a key exchange protocol. Assume the
following conditions hold.
(1) The key exchange protocol ke is Match-secure.
(2) The key exchange protocol ke is (Gζ , δζ)-suitable-for-ζ.
(3) There exists a key-independent ((Gζ , δζ), (Gπ, δπ))-reduction from π to ζ.
Then ke is (Gπ, δπ)- suitable-for-π.

Remark 1. Our theorem relies on the Match property in Definition 13 which, as formulated, provides strong
guarantees regarding the identities of the parties that are involved. We want to emphasize that these restrictions
(i.e. the Match property) can be relaxed. In fact the theorem relies on properties that Match security entail
but which are strictly weaker. More specifically, Match implies that at most two sessions can have equal session
identifiers (and that such sessions must have derived equal keys). These weaker guarantee is sufficient to prove
the security of the composition. Technically, they guarantee that the adversary against π that we construct out
of adversary against ke;π is a valid adversary for the game that defines the security of π: such adversaries are
allowed to set keys for the sessions of π, but at most two sessions are allowed to have equal keys. In another
incarnation, our theorem could relax the Match requirement (or even completely drop it!) at the expense of
strengthening the last requirement which would need to ask the existence of a key-independent reduction from
a game for π where the adversary has more liberty in how he sets the keys of the sessions.

Proof idea. Consider a key-benign adversary C playing the game Gke;π. We transform C into a non key-benign
adversary C∗ still playing Gke;π. The first part of C∗ makes the key exchange queries, while the second part of
C∗ makes all protocol queries. The next step transforms adversary C∗ into an adversary B against the protocol
game Gπ. To do this the first part of B internally simulates the key exchange game, with the keys from this
simulation used as the session keys for the protocol game.

Provided the key exchange is Match-secure, then adversary B is query-respecting by construction, so the key-
independent reduction from π to ζ yields an adversary A against the primitive game Gζ . Since the construction
of the first part of A is well-defined, we are able to remove the simulation of the key exchange within the
adversary, thus providing an adversary A′ against the composed key exchange and primitive game Gke;ζ . A final
transformation turns A′ into a key-benign adversary A∗ against Gke;ζ . This contradicts that ke is suitable-for-ζ,
and so it follows that ke is suitable-for-π.

6 Proof of Composition Theorem

We now prove our main Theorem 1.

Proof. Step 1: Conversion to non-key-benign adversary. Let C = (C1, C2) be a key-benign adversary
playing the (forward-secure) game Gke;π of the composed protocol (ke;π). Remember that C2 basically plays the
whole composed game, while C1 merely generates the long-term keys used by the parties in the key exchange
protocol and makes the NewKeyke queries. Algorithm C1 then passes a key identifier to C2. As before, we denote
the subgames of Gke;π by Gke and Gπ. We can view the adversary (C1, C2) according to Figure 1.

As an intermediate step we convert the adversary C into a specific non-key-benign adversary C∗ = (C∗1 , C∗2 )
which we will subsequently turn into a query-respecting adversary B and which will attack the protocol game
instead of the composed game.

Algorithms C∗1 and C∗2 each run their local copy of C = (C1, C2). At first, C∗1 initializes C. Now, C can take
the following actions:
• Write a key to the input tape of the key exchange game.
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• Issue a NewKeyke query.
• Issue a NewSessionke query.
• Issue a Sendke query.
• Issue a Corruptke query.
• Issue a Revealke query.
• Issue a NewSessionπ query.
• Issue a Corruptπ query.
• Issue a Nameπ query.
For the first six actions, C∗1 just forwards the output of C, i.e. C∗1 writes keys to the key exchange game input
tape if C intends to do so. If C sends a query to the key exchange game, then so does C∗1 and the game’s answer
is forwarded to C. If C sends a NewKeyπ query to the protocol game, C∗1 forwards the query to the game and
relays the game’s answer to C.

For the three latter actions, C∗1 sends the output of C together with the whole state of the Turing machine
C to C∗2 . Algorithm C∗2 then forwards C’s query to the game and relays the response to C, where C runs with
the state that C∗2 obtained from C∗1 . Now, symmetrically, for any of the three latter queries, C∗2 relays messages
between the game and C. For any of the six first actions, C∗2 passes control to C∗1 by giving the whole state of C
as well as C’s output.

When C terminates, then so does C∗. As the input to C and the inputs to the game are distributed as in
the previous game, the probability that the game outputs 1 remains unchanged. Adversary C∗ is illustrated in
Figure 1.

C1

kid

��

��long−term
keys

��
ke

keys

��
uujjjjjjjj

C2

OO

55jjjjjjjj

**UUUUUUUU

π

jjUUUUUUUU

C1

��

��long−term
keys

��
C2 //

OO

C∗1oo

��

// keoo

keys

��
C2 // C∗2oo

OO

// πoo

Fig. 1. The left diagram shows the interaction between the key-benign adversary C = (C1, C2) and the composed game
Gke;π. The right diagram shows the transformation to the non key-benign adversary C∗, still playing against Gke;π.

We have that

Pr [Exec( Gke;π), C : kgke) = 1]− δπ
= Pr [Exec(Gke;π, C∗)(η) = 1]− δπ.

Step 2: Folding. We will now transform the adversary C∗ playing Gke;π into a query-respecting adversary B
playing Gπ. Basically, B2 equals C∗2 with the difference that B2 plays directly with game Gπ, while C∗2 expects
to play with the composed game Gke;π. Thus, whenever C∗2 issues a NewSessionπ, Corruptπ or Nameπ query, B2

sends the corresponding NewSession, Corrupt or Name query to game Gπ and relays the game’s answer to C∗2 .
We define E to be the “good” event that in the composed game Gke;π for all tuples (label, kidke, U, V, sid,

accepted, κ, stkey) there exists at most one tuple (label′, kid′ke, V
′, U ′, sid, accepted, κ, stkey

′), and if it exists then
U = U ′ and V = V ′. We next condition on the event E to occur, and now turn to the description of B1.
Algorithm B1 internally simulates the key exchange game Gke and further makes all steps that the (forward
secure) composed game would have, if Gke and Gπ were composed together. Algorithm B1 internally runs C∗1
and passes queries from C∗1 to the internally simulated game Gke. Whenever C∗1 sends a Corruptπ(kidπ) query, B1

relays this query to Gπ and passes the game’s answer to C∗1 . We now describe B formally: B1 internally models
Gke.
• If C∗1 makes any query NewKeyke, SameKeyke or NewSessionke (we write Nameke for these) queries to the key

exchange game then B1 internally simulates the key exchange game Gke. The state of Gke is updated within
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B1 and the response (if applicable) is returned to C∗1 , which then updates its state as though it received the
response from the real Gke game.
• If B1 receives control and state st from B2, B1 forwards st directly to C∗1 and execution continues within C∗1 .
• If C∗1 outputs state st, and therefore control, then B1 passes st to B2, and B2 passes st to C∗2 , and execution

continues within C∗2 .
• If C∗1 executes kgke and writes k to the tape Gk-in

ke . The tape Gk-in
ke is simulated within B1, so k is written to

this and then used by Gke, internally within B1.
• If C∗1 outputs a Sendke(labelke,msg) query, then B1 forwards this message to the internally simulated key

exchange game Gke. If the corresponding session labelke of the key exchange does not accept a key, the answer
from the internally simulated key exchange game is relayed to C∗1 .
• If C∗1 issues a Sendke(labelke,msg) query such that the session labelke of the key exchange (internally simulated

within B1) accepts, i.e. when session labelke receives query Sendke(labelke,msg) and changes the value of
the variable stexec to accepted in the tuple (labelke, kidke, U, V, sid, stexec, κ, stkey) stored in list LGke

, then the
internally simulated key exchange game writes (sid, κ) to its output tape and sends the message accepted, which
B1 relays to C∗1 . Algorithm B1 searches the list LGke

for the tuple (label′ke, kidke, V, U , sid, accepted, κ, stkey).

• If no such tuple exists, B1 writes the key κ on the input tape of the protocol game Gπ. Since the event
E occurs it follows that the key κ has not been written to the key input tape before. Now B1 queries
NewKeyπ(U, V ) to the protocol game which returns a key identifier kidπ to B1. Algorithm B1 stores the
triple (labelke, sid, kidπ) in list LIdentifiers.

• Else, if in list LGke
there exists a tuple (label′ke, kidke, V , U, sid, accepted, κ, stkey), the algorithm B1 searches

the list LIdentifiers for the triple (labelke, sid, kidπ) and queries SameKeyπ(V,U, kidπ) to the protocol game Gπ
which returns kidπ to B1. Since the event E occurs, B1 will only ever make one such SameKeyπ(V,U, kidπ)
query.

• If C∗1 issues a Revealke(labelke), B1 simulates the key exchange and relays its answer to C∗1 . Moreover, B1

searches the list LIdentifiers for the tuple (labelke, sid, kidπ) and queries Corruptπ(kidπ) to Gπ.
• If C∗1 issues a Corrupt(kidke) query, we need to distinguish between forward secure games and non-forward

secure games. In the first game, B1 simply passes the query to the internally simulated game Gke and returns
its answer to C∗1 . In the latter case, B1 does the following for all tuples (labelke, kidke, ∗, ∗, sid, accepted, κ, stkey)
in LGke

: Search LIdentifiers for all tuples (labelke, sid, kidπ) and query Corruptπ(kidπ) to Gπ and return Gπ’s
answer to C∗1 .
• If C∗2 issues any query Nameπ to the subgame Gπ of the composed game Gke;π B2 passes the query Nameπ to
Gπ and returns the game’s answer to C∗2 .

We can view the interaction of B with the game Gπ in Figure 2.
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Fig. 2. Adversary B = (B1,B2) playing game Gπ. Algorithm B1 runs using C∗1 and simulates the key exchange internally.
Keys output by the simulated key exchange are written to the key input tape of Gπ.

If the algorithm B1 needed to make more than one query SameKeyπ(V,U, kidπ) for some triple (V,U, kid),
this would correspond to a tuple (label, kidke, V, U, sid, stexec, κ, stkey) accepting a key, which had already been
accepted by tuple (label′, kidke, V, U, sid, accepted, κ, stkey

′); i.e. the event E did not occur. Therefore B1 will
only ever make one such SameKeyπ(V,U, kidπ) query. The same argument applies to B1 never making a
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SameKeyπ(U, V, kid), when it has made a query, NewKeyπ(U, V ), which responded with kid. Therefore adversary
B will be query-respecting.

If we now assume that the event E does not occur, then in the composed game, some session has accepted a
key which violates on of the properties of the Match-security property of the key exchange. Given the composed
adversary C∗ that caused such an event, one can trivially construct an adversary D against the GMatch

ke game.
This leads us to the following:

Pr [Exec( Gke;π, C∗)(η) = 1|E]− δπ
= Pr [Exec(Gπ,B)(η) = 1]− δπ,

and

Pr [Exec( Gke;π, C∗)(η) = 1|¬E]

= Pr
[
Exec(GMatch

ke ,D : kgke)(η) = 1
]
≤ ε(η),

and we can see that

Pr [ Exec(Gke;π, C∗)(η) = 1]
= Pr [Exec(Gke;π, C∗)(η) = 1 ∩ E]

+ Pr [Exec(Gke;π, C∗)(η) = 1 ∩ ¬E]
= Pr [Exec(Gke;π, C∗)(η) = 1|E] · Pr [E]

+ Pr [Exec(Gke;π, C∗)(η) = 1|¬E] · Pr [¬E]
< Pr [Exec(Gke;π, C∗)(η) = 1|E]

+ Pr [Exec(Gke;π, C∗)(η) = 1|¬E]
= Pr [Exec(Gπ,B)(η) = 1]

+ Pr
[
Exec(GMatch

ke ,D : kgke)(η) = 1
]
.

Step 3: Reducing to the primitive. Currently we have an adversary B = (B1,B2) playing Gπ, where B1

writes keys to the input tape Gk-in
π . By construction the algorithm B1 makes only NewKeyπ, SameKeyπ and

Corruptπ queries to Gπ, whilst B2 makes all other queries to Gπ as well as Corruptπ queries. It follows that B is
a query-respecting adversary according to Section 3.

Hence, by assumption, we are given a key-independent (δζ , δπ)-reduction from the protocol to the primitive.
Therefore there exists an adversary A = (A1,A2) playing Gζ , where A1 is constructed from B1 as defined in
Section 3. We now have that

Pr [Exec(Gπ,B∗)(η) = 1]− δπ ≤ Pr [Exec(Gζ ,A)(η) = 1]− δζ .

Step 4: Unfolding. We now show how to unfold the adversary A = (A1,A2), so that the key exchange is
no longer simulated within the adversary. Currently, we have that A1 is constructed using B1, and in turn,
B1 is constructed using C∗1 . We now look at how to construct A′1 for the adversary A′ = (A′1,A2) playing
the composed game Gke;ζ , where A′1 is constructed using C∗1 directly, thus eliminating B1. This construction is
illustrated within Figure 3.

Let us now examine how A1 executes, and we construct A′1, so that an execution of A and A′ will be
identical. Let Lkeys

A′ be an initially empty list of triples of the form (U, V, kidπ).
• If C∗1 makes any query NewKeyke or NewSessionke (we write Nameke for those) queries to the key exchange:
• A1: B1 receives Nameke and internally simulates the key exchange game Gke. The state of Gke is updated

within B1 and the response (if applicable) is returned to C∗1 , which then updates its state as though it
received the response from the real Gke game.

• A′1: A′1 receives Nameke and forwards this to the real key exchange game Gke. The response of Gke is received
by A′1 and forwarded directly to C∗1 , which updates its state exactly as it does within A1.

• If A1 (or A′1) receives control and state st from A2:
• A1: The state st is passed directly from A1 to B1. In turn B1 forwards st directly to C∗1 and execution

continues within C∗1 .
• A′1: The state st is passed directly to C∗1 and execution continues within C∗1 .
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Fig. 3. Construction showing what each adversary interacts with and which adversaries they run as a subroutine. We
note that adversary B1 of the left picture internally simulates the key exchange, while on the right picture this key
exchange has been unfolded from the adversary so that A′1 interacts with the composed primitive game.

• If C∗1 outputs state and therefore control:
• A1: Control and state is passed from C∗1 to B1. Now B1 forwards this state directly to A1, who in turn

passes control and state on to A2 and execution continues within A2.
• A′1: Control and state is passed from C∗1 to A′1. Now A′1 passes control and state to A2 and execution

continues within A2.
• If C∗1 executes kgke and writes k to the tape Gk-in

ke :
• A1: The tape Gk-in

ke is simulated within B1, so k is written to this and then used by Gke, internally within
B1.

• A′1: A′1 takes k and writes this onto the tape Gk-in
ke for the real game Gke. Essentially this is a copy operation

for A′1, and we notice that A′1 does not store any information about k.
• If C∗1 outputs a Sendke(labelke,msg) query, then A1 forwards this message to the internally simulated key

exchange game Gke, and A∗1 forwards this message to the key exchange game Gke being a subgame of the
composed primitive game Gke;ζ . If the corresponding session labelke of the key exchange does not turn its state
into accepted, answers from the key exchange game are relayed to C∗1 (either through D1 in the case of A1,
or directly in the case of A′1).
• If C∗1 outputs a Sendke(labelke,msg) query such that the corresponding session labelke of the key exchange

turns its state into accepted, B1 simulates internally, that the game Gke writes to its output tape Gk-out
ke , then

B1 undertakes certain actions that were modified by transforming B1 into A1. We need to show that they
are now identical to what the composed game of key exchange and primitive would have done. This can be
verified by examining the two columns in Figure 4
• C∗1 issues a Revealke(labelke) query.
• A1: B∗1 receives this query and passes it to the internally simulated key exchange game Gke. B∗1 relays the

game’s answer to C∗1 . Furthermore, B∗1 performs a lookup on the list LIdentifiers to find an entry (labelke, sid,
kidπ). If such an entry exists, it intends to send the query Corruptπ(kidπ) to the protocol game Gπ. A1 passes
the query Corruptζ(kidπ) to the primitive game which returns k′. It follows that κ = k′, and A1 returns κ
to the adversary to B∗1 that relays κ to C∗1 .

• A′1 receives this query and passes it to the key exchange game. A′1 relays the game’s answer to C∗1 . The
composed game performs a lookup on the list LIdentifiers to find and entry (labelke, sid, kidζ). If such a tuple
exists, it sends the query Corruptζ(kidζ) to the Gζ subgame which returns k′. It follows that κ = k′ and
Gke;ζ returns κ to the A′1 that relays it to C∗1 .

• C∗1 issues a Corruptke query. We first describe the step for the non-forward secure proof.
• A1: The query Corruptke(kidke) is received by B1 and passed to the internally simulated game Gke which

returns a key k. This key is passed back to C∗1 . Furthermore, for all sessions (labelke, kidke, ∗, ∗, sid, accepted,
κ, stkey) in LGke

, B1 searches the list LIdentifiers for tuples (labelke, sid, kidπ) and intends to send the query
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A1: If C∗1 issues a Sendke(labelke,msg) query such
that the session labelke of the key exchange (inter-
nally simulated within B1) accepts, i.e. when ses-
sion labelke receives query Sendke(labelke,msg) and
changes the value stexec to accepted in the tu-
ple (labelke, kidke, U, V, sid, stexec, κ, stkey) stored in list
LGke , then the key exchange game writes (sid, κ) to
its output tape and sends the message accepted which
B1 relays to C∗1 . A1 searches the list LGke for tuples
(label′ke, kidke, V, U, sid, accepted, κ, stkey).
If no such tuple exists, B1 intends to write the key
κ on the input tape of the protocol game Gπ - and
A1 writes κ to the input tape of primitive game Gζ .
B1 intends to query NewKeyπ(U, V ) to the proto-
col game - and A1 queries NewKeyζ() to the prim-
itive game which returns a key identifier kidζ that A1

passes as the expected kidπ to B1. B1 stores the triple
(labelke, sid, kidζ) in list LIdentifiers and passes kidζ to
C∗1 .
Else, if in list LGke there exists a tuple
(label′, kidke, V, U, sid, accepted, κ, stkey), B1 searches
the list LIdentifiers for a triple (label, sid, kidπ) and
intends to issue the query SameKeyπ(V,U, kidπ) to
the protocol game Gπ. A1 then searches Lkeys

A for a
tuple (V,U, kid). If there is such a tuple, A1 adds the
tuple (U, V, kid) to Lkeys

A and returns kid to B1 which
passes it to C∗1 .

A′1: If C∗1 issues a Sendke(labelke,msg) query that
is relayed by A′1 to the composed game Gke;ζ and
makes the session labelke of the key exchange accept,
i.e. session labelke receives query Sendke(labelke,msg)
query and changes the value stexec to accepted in
the tuple (labelke, kidke, U, V, sid, stexec, κ, stkey) stored
in list LGke , then the key exchange game writes
(sid, κ) to its output tape and sends the mes-
sage accepted which A′1 relays to C∗1 . The com-
posed game searches the list LGke for tuples
(label′ke, kidke, V, U, sid, accepted, κ, stkey).
If no such tuple exists, the composed game writes the
key κ on the input tape of the primitive game Gζ .
The composed game then sends query NewKeyζ() to
the primitive game which returns a key identifier kidζ
that A1 passes as the expected kidπ to C∗1 . The game
stores the triple (labelke, sid, kidζ) in list LIdentifiers.
Else, if in list LGke there exists a tuple
(label′, kidke, V, U, sid, accepted, κ, stkey), the com-
posed game does not write key κ to the input tape
of the primitive game. A′1 then searches Lkeys

A′ for a
tuple (V,U, kid). If there is such a tuple, A′1 adds the
tuple (U, V, kid) to Lkeys

A′ and returns kid to C∗1 .

Fig. 4. Transformation from A1 into A′1

Corruptπ(kidπ) to the protocol game Gπ. A1 then sends Corruptζ(kidπ) to the primitive game Gζ . The answer
of the primitive game is received by A1 who returns it to B1 that relays it to C∗1 .

• A′1 receives the query Corruptke(kidke) and passes it to the composed game that relays it to the subgame
Gke which returns a key k. A′1 passes this key to the C∗1 . Furthermore, for all sessions (labelke, kidke, ∗, ∗, sid,
accepted, κ, stkey) in LGke

, the composed game searches the list LIdentifiers for tuples (labelke, sid, kidζ) and
sends the query Corruptζ(kidζ) to the primitive game Gζ . The answer of the subgame is relayed to the A′1
that passes it to C∗1 .

• C∗1 issues a Corruptke query. We now detail this step for the forward secure proof.
• A1: The query Corruptke(kid) is received by B1 and passed to the internally simulated game Gke which

returns a key k. This key is passed back to C∗1 .
• A′1 receives the query Corruptke(kid) and passes it to the composed game that relays it to the subgame Gke

which returns a key k. A′1 passes this key to the C∗1 .
It follows from the above descriptions that if the random bits used by the internally simulated game Gke

and the key exchange subgame Gke of the composed game (Gke, Gζ) are the same and the randomness used by
the adversaries A and A′ in particular steps is also equal, and if the random bits used by the game Gζ and by
the subgame Gζ of the composed game (Gke, Gζ) are equal then an execution of A or A′ will result in the same
keys being written to the Gk-in

ζ tape of Gζ in either case so that C∗1 in both cases receives and returns the same
state and queries (if also C∗1 is used with the same random bits in both cases. Therefore we have

Pr [Exec(Gζ ,A)(η) = 1] = Pr [Exec(Gke;ζ ,A′)(η) = 1] .

Diagrammatically we see A interacting with Gke;ζ in Figure 5.

Step 5: Conversion to key-benign adversary. The final step requires us to convert A′ = (A′1,A2) playing
Gke;ζ into a key-benign adversary A∗ = (A∗1,A∗2) playing the composed game Gke;ζ . Remember that this means
that almost all functionality of A′ is moved into A∗2, while A∗1 will be bound to run the key generation algorithm
of the key exchange, to write long-term keys to the input tape of the key exchange game and to pass the key
identifiers to A∗2. Algorithm A∗2 decides when such an action shall take place.
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Fig. 5. The construction of adversary A′ playing the Gke;ζ game.

Presently we have A′1 constructed using C∗1 . Moreover C∗ was constructed based upon C, and therefore A′1
was constructed from C; where C is the key-benign adversary against Gke;π.

Pictorically, our goal is illustrated in Figure 6. On the left side, you see the current situation while on the
right side, you see the goal of the transformation we are going to undertake.
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Fig. 6. The left side shows the construction of A′ interacting with the composed game Gke;ζ . The right side shows the
construction of the key-benign adversary A∗ playing the Gke;ζ composed game. Notice that only key identifiers are passed
from A∗1 to A∗2, and excluding the NewKey queries, A∗2 makes all queries to the composed game Gke;ζ .

We now examine the interaction between C1 and C2. Adversary C is a key-benign adversary. Hence, setting
A∗1 := C1, the first part of A∗ is already well-formed. We now need to define A∗2 in such a way that the only
messages sent by A∗2 to A∗1 are of the form NewKey(U, V ) or SameKey(U, V , kid).

We define A∗2 as follows: A∗2 equals A′ except that whenever within A′, C2 sends a message to C1, this message
is not sent to the internal copy of C1 but instead, A∗2 relays it to A∗1 = C1 which acts as described. Its answer is
returned to C2.

Now,A∗ is a key-benign adversary because the communication betweenA∗1 andA∗2 equals the communication
of C1 and C2. Furthermore, the inputs provided by the adversary A∗ to the game (Gke, Gζ) are identical to those
provided by A′. Thus, the success probability does not change.
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Therefore A∗ is a key-benign adversary such that

Pr [Exec( Gke;ζ ,A′)(η) = 1]
= Pr [Exec(Gke;ζ ,A∗ : kgke)(η) = 1] .

Finally, given that the composition (ke; ζ) is (forward-secret) δζ-secure we have that

Pr[Exec(Gke;ζ ,A∗ : kgke)(η) = 1]− δζ ≤ ε(η).

The above leads to

Pr [ Exec(Gke;π, C : kgke) = 1]− δπ
= Pr [Exec(Gke;π, C∗)(η) = 1]− δπ
< Pr [Exec(Gπ,B)(η) = 1]− δπ

+ Pr
[
Exec(GMatch

ke ,D : kgke)(η) = 1
]

≤ Pr [Exec(Gζ ,A)(η) = 1]− δζ
+ Pr

[
Exec(GMatch

ke ,D : kgke)(η) = 1
]

= Pr [Exec(Gke;ζ ,A′)(η) = 1]− δζ
+ Pr

[
Exec(GMatch

ke ,D : kgke)(η) = 1
]

= Pr [Exec(Gke;ζ ,A∗ : kgke)(η) = 1]− δζ
+ Pr

[
Exec(GMatch

ke ,D : kgke)(η) = 1
]

≤ ε(η),

and hence the composition (ke;π) is (forward-secret) δπ-secure.

7 Application to the Security of TLS

We now sketch how we use the theorem above to prove that the composition of the TLS handshake protocol
(which implements a key-exchange) with one particular instantiation of the TLS record layer protocol (which
implements a secure channel).

The record layer protocol implements a secure channel with multiple security guarantees among which we are
mainly concerned with privacy of messages, length hiding, and authentication of messages. The implementation
essentially encrypts the payload together with a sequence number via a Length Hiding Authenticated Encryption
(LHAE) scheme. TLS offers multiple choices for the implementation of each of the two components.

In TLS, the last message of the handshake protocol, i.e. the FINISHED message acting as a key confirmation,
is already sent over the record layer and hence the handshake actually uses the keys later employed by the
record layer. In practice, this does not create a problem with message authentication (e.g. the FINISHED mes-
sage cannot be replayed) due to the use of appropriately initialized sequence numbers. The sequence number
is encrypted together with the payload to prevent replay attack and out-of-order delivery, and to allow the
receiver to distinguish protocol messages from the FINISHED message. So, although the derived keys are not
indistinguishable from random ones in the end of the TLS handshake, it appears that they can be safely used
for the record layer.

TLS falls within the setting where our composition theorem applies and its security follows from three
steps: a) the handshake satisfies the Match property, b) the key exchange is suitable for a (variant of) LHAE
encryption scheme, and c) the security of the record layer reduces to (that variant of) the encryption scheme
via a key-independent reduction.

The benefits of this modular approach should be clear. To analyze TLS for a different instantiation of the
key exchange one needs to show that the variant of key exchange is good for the LHAE scheme (this step is
inevitable no matter what approach one takes) and that the record layer indeed employs an LHAE scheme.
Thus, our approach allows reusing step c) across different implementations (there is no need to repeat this step
for a different implementation of the handshake part). In contrast a monolithic analysis would have to repeat
the reduction argument for each possible instantiation (key-exchange, record layer). Of course, one can hand-
wavingly appeal to the (inevitable) similarities between the corresponding proofs, but our rigorous approach
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is obviously cleaner. Finally, for the record layer protocol one can concentrate the analysis on the underlying
encryption scheme and ignore the difficulties associated with statefulness, sequence numbers, etc which are delt
with once and for all. We do precisely that when we rely on the result of [34] which proves that one particular
implementation for the record protocol is LHAE.

7.1 Protocol description

In the TLS handshake protocol, the parties agree on application keys for the secure channel protocol, called
record layer. Firstly, they derive a so-called pre-master secret via a key transport (KT) protocol or via a
Diffie-Hellman key exchange. A transformation of the pre-master secret then yields the so-called master secret,
which, in turn, is used to compute the application keys. Note that each party holds two application keys: one
is used for sending and one for receiving messages. Finally, the parties engage in a key confirmation step, the
FINISHED messages. As explained earlier the use of the application keys in the FINISHED messages violates key
indistinguishability and renders an analysis in the BR-model impossible.

The protocol description in Figure 7 provides an overview on the TLS handshake protocol. Depending on
whether one opts for computing the pre-master secret via Diffie-Hellman (DH) or via key transport (KT), one
either skips all steps with label “(KT)” or all steps labeled “(DH)”. The Diffie-Hellman key exchange yields a
forward-secure protocol, while the key transport protocol only provides a non-forward secure key exchange. We
refrain from allowing parties and/or adversaries to decide on the fly the pre-master secret computation mode,
as this involves a rather complicated mixed models overhead. Strictly speaking, our analysis only holds for
concurrently running protocol executions that always derive the pre-master secret in the same way and those
executions in which client authentication is performed.

Note that we abstract out the concrete header information for encryption resp. authentication, as well as the
type of cipher used etc. Our result applies to all implementations of the record layer, current ones or even future
ones for which one can show LHAE security. In such a case, the protocol specifies the header, but the encryption
primitive even remains secure when queried on non-well-formed headers (it might reject those headers, though).
Note that Paterson et al. [34] proved the LHAE security of the record layer encryption scheme according to the
current TLS standard when the cipher is used in CBC mode.

The use of the term “header” is sometimes ambiguous. In particular, we have to distinguish between the
string H, which is an input to the encryption scheme with authenticated data, and the header for packages in
the TLS protocol. In particular, H = n|H1|H2, where n is a locally maintained sequence number (i.e., which is
not transmitted but each party keeps track itself), H1 is further locally maintained header information, and H2

is the part of the header that appears in the beginning of a TLS record protocol package. The only property of
the header that we use is that the position of the sequence number in H1 is uniquely defined, we denote this by
n|H1.

The participants derive the pre-master secret, the master secret and the application keys as follows: in the key
transport case, the client chooses the pre-master secret premaster and sends an encryption of it to the server. In
the Diffie-Hellman case, the parties run an ephemeral Diffie-Hellman key agreement to establish the pre-master
secret premaster. In both cases, both derive the master secret via a key derivation function RO (which we model
as a random oracle below, hence the name) as

master := RO(premaster, “master secret”, rc, rs).

Afterwards, they query the random oracle as follows:

key block := RO(master, “key expansion”, rs, rc)

They cut key block into four pieces key block1,...,key block4 of equal length and query the random oracle to
compute the following keys µc and µs for message authentication and εc, εs for encryption:
• µc := RO(key block1, “client-write-MAC-secret”, rc, rs),
• µs := RO(key block2, “server-write-MAC-secret”, rc, rs),
• εc := RO(key block3, “client-write-key”, rc, rs),
• εs := RO(key block4, “server-write-key”, rc, rs),
They set κs := (εs, µs) and κc := (εc, µc) and return (κc, κs) as the application keys. The keys output by the key
exchange protocol then consist of (κc, κs). As session identifiers, we define the pair (rc||IDc, rs||IDs, premaster)
and show that with these, the TLS protocol satisfies Match security.
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client (Alice) server (Bob)

1. rc ← {0, 1}t
rc||IDc−−−−−→

2.
rs||IDs←−−−−− rs ← {0, 1}t

2a. Ver(pkCA,CertCA(pks||IDs)) = 1 ?
CertCA(pks||IDs)←−−−−−−−−−−−

2b.
“CertificateRequest”←−−−−−−−−−−−−−
“ServerHelloDone”←−−−−−−−−−−−−

2c. (p, q, g)← Params(1t)

b← Zq , Ys := gb

h1 ← RO(rc||rs||p||g||Ys), Ver(pks;h1) = 1 ?
(p,q,g,Ys,σs)←−−−−−−−− h1 ← RO(rc||rs||p||g||Ys), σs ← Sig(sks, h1)

3.
CertCA(pkc||IDc)−−−−−−−−−−−→ Ver(pkCA,CertCA(pkc||IDc)) = 1 ?

4a. a← Zq , Yc := ga Yc−→
4b. κ← {0, 1}t, C ← Encpks

(κ)
C−→

5. premaster premaster

6. master master

7. (κc, κs) (κc, κs)

8. h2 := RO(Transcript), σc ← Sig(skc;h2)
σc−→ h2 := RO(Transcript), Ver(pkc;h2, σc) = 1 ?

9.
“ChangeCipherSpec”−−−−−−−−−−−−−→

h3 := RO(Transcript), τ1 ← Macmaster(h3), h3 := RO(Transcript)

Fc ← LHEnc(κc; `, 0|Hc
1 |H

c
2 , τ1)

Hc
2 ,Fc−−−−→ τ1 ← LHDec(κc;Fc), Ver(master;h3, τ1) = 1 ?

“ChangeCipherSpec”←−−−−−−−−−−−−−
h4 := RO(Transcript) h4 := RO(Transcript), τ2 ← Mac(master;h4),

τ2 ← LHDec(κs;Fs), Ver(master;h4, τ2) = 1 ?
Hs

2 ,Fs←−−−− Fs ← LHEnc(κs; `, 0|Hs
1 |H

s
2 , τ2)

Fig. 7. TLS protocol with pre-master computation being either DH or KT. The numbered stages refer to 1. Client Hello,
2. Server Hello, 2a. Certificate Transfer, 2b. Certificate request, 2c. Server Key Exchange (DH), 3. Certificate Transfer,
4a. Client Key Exchange (DH), 4b. Client Key Exchange (KT), 5. Derivation of pre-master secret, 6. Derivation of master
secret, 7. Derivation of application keys, 8. Client Authentication, 9. Finished Messages

7.2 Match security

In this section, we show the first of the three cornerstones in our analysis of the TLS protocol.

Theorem 2 (Match Security of TLS). The TLS Handshake protocol satisfies Match security.

Proof. If both parties derive the same sid = (rc||IDc, rs||IDs, premaster), then the first condition of Match
security is trivial. For the second condition, we observe that starting from the parameters (rc, rs, premaster), key
generation is deterministic and thus both parties derive the same master secret and application keys whenever
they have the same sid. ut

We now turn to the security models that we use for the TLS primitive and the TLS channel security.

7.3 Length-Hiding-Authenticated Encryption Models

Paterson et al. [34] recently proved that the TLS record protocol meets a notion called length-hiding authen-
ticated encryption (LHAE). This notion says that an adversary cannot distinguish, in the usual left-or-right
sense, between encryptions of messages which are not necessarily of the same length. In addition, the adversary
is unable to generate new ciphertexts for which the decryption algorithm does not return an error message. Both
properties are combined into a single game, in which the adversary gets access to an left-or-right encryption
oracle (with secret key K and bit b) which for input (`,H,M0,M1), the length parameter `, the header data
H and two messages M0,M1, computes C0 ← LHEncK(`,H,M0), C1 ← LHEncK(`,H,M1), and returns Cb if
both C0, C1 6= ⊥, and ⊥ else. If it returns a ciphertext, it adds the pair (H,C) to the initially empty list LEnc.
The decryption oracle, when called about H,C, rejects if b = 0 or (H,C) is in LEnc, i.e. comes from a previous
query to the left-or-right oracle. Else, it returns LHDecK(H,C).
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Definition 14 (LHAE security). We say that the LHAE-scheme (KeyGen, LHEnc, LHDec) is 1
2 -secure, if

for all probabilistic polynomial-time adversaries A, the probability that the game GLHAE outputs 1 is at most
negligibly greater than 1

2 . This probability is taken over all random bits of the game, of the key generation
algorithm and of the adversary.

Note that unlike in our definition, the decryption oracle in Paterson et al. [34] rejects all previously returned
ciphertexts C and not only previous header-ciphertext pairs (C,H). However, they prove that TLS also satisfies
this notion of ciphertext integrity. And as both security notions use the same oracles, the results compose and
show the security of the TLS primitive in the above game.

We now define a multi-session version of the above game as the TLS primitive game. One further modification
is that pairs of the form (0|H1|H2, C) never count as successful forgeries, although they might be “fresh”.
Whenever a new key is initiated with session identifier kid, the TLS primitive game runs the key generation
algorithm KeyGen which returns two random strings (κc, κs). Moreover, it flips two random coins bckid and
bskid, one for the client and one for the sever in that session, and initiates the two lists LEnc(kid, s) := ∅, and
LEnc(kid, c) := ∅. Upon a query NewKey(U, V ), besides the actions mentioned in Section 2 for the primitive
game, there are several queries allowed to the adversary given below. Let u ∈ {c, s}:

• LHEnc(kid, u, `, n|H1|H2,m0,m1):
Run Cb ← LHEncκu

(`, n|H1|H2,mb) and return Cb, if Cb 6= ⊥ and ⊥ 6= C1−b ← LHEncκu
(`, n|H1|H2,m1−b).

Set LEnc(kid, u) := LEnc(kid, u) ∪ {(H,Cb)}.
• LHDec(kid, u, n|H1|H2, C):

If (n|H1|H2, C) ∈ LEnc(kid, u) return ⊥, else run m← LHDecκu
(n|H1|H2, C). If now b = 1 or n = 0, return

m. Else, return ⊥.
• Target(kid, u, b):

If b = bukid and stkid is not corrupted, return 1. Else, return 0.

Definition 15 (TLS Primitive Game). We say that the TLS primitive (KeyGen, LHEnc, LHDec) is 1
2 -secure,

if for all probabilistic polynomial-time adversaries A, the probability that the game GTLS-Prim outputs 1 is at
most negligibly greater than 1

2 . This probability is taken over all random bits of the game, of the key generation
algorithm and of the adversary.

Note that the games above do not touch the issues of replay attacks, package re-ordering, package dropping,
etc. and do thus do not provide a secure channel per se. Similarly, the stateful version of such games, such
as the one proposed in [29] which is attributed to [34], appears to be even closer to the properties one would
expect from a secure channel, but it still does not seem to capture the aforementioned properties. Moreover,
the definition in [29] seems to assume that sender and receiver share counters, as their decryption oracle uses
the counter value i from the encryption step. While counters are a common mean to build secure channels we
believe they should not be part of the security definition.

We nonetheless rely on their definition of stateful LHAE. Starting from the LHAE primitive we next define
an LHAE-channel game, equally as a multi-session-game. Each session involves two users, say a client and a
server, and a channel in each direction. Each direction is indexed by the server or the client and consists of a
sending and a receiving oracle. For both, the server and the client key, u ∈ {c, s}, the game relies on a queue
Q(kid, u) with two methods, Enqueue(C) and Dequeue(), with the usual semantics that Enqueue(C) puts an
element into the data structure, and Dequeue returns an element (or ⊥, if empty). We assume the usual first-in
first-out behavior of Q. For sake of distinction we refer to the two oracles to which the adversary in the game
has access, as the sender sender(kid, u) and the receiver receiver(kid, u), respectively.

Both oracles are initialized by a generation algorithm KeyGen with the symmetric key κu and some fixed
initial state st0. The sender oracle also holds a random secret bit b. If called on `,m0,m1, then, assuming it is
in state stsender, it runs (C0, st

sender
0 )← Sendκu

(`,m0; stsender), (C1, st
sender
1 )← SendK(`,m1; stsender), and returns

Cb and sets stsender ← stsender
b , if both encryptions succeed; in this case it also calls Q(kid, u).Enqueue(Cb). Else it

merely returns ⊥. The receiver oracle, if called about some C, first runs (m, streceiver∗ )← Receiveκu
(C; streceiver).

It then returns ⊥, unless b = 1 and Q.Dequeue() 6= C, in which case it returns M . As a multi-session game,
we also allow a query Target(kid, u, d), where the game returns 1 if and only if b = d, and the session kid is
uncorrupted.

Definition 16 (TLS Channel). We say that the TLS Channel (KeyGen,Send,Receive) is 1
2 -secure, if for all

probabilistic polynomial-time adversaries A, the probability that the game outputs 1 is at most negligibly greater
than 1

2 . This probability is taken over all random bits of the game, of the key generation algorithm and of the
adversary.
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7.4 The TLS Handshake is Suitable for the TLS Primitive

In this section, we prove that the TLS Handshake is suitable the TLS primitive according to Definition 15.

Theorem 3 (Suitability for Primitive). The TLS Handshake protocol is (GTLS-Prim,
1
2 )-suitable for the TLS

primitive (KeyGen, LHEnc, LHDec) if

• the encryption scheme used in the Record Layer is LHAE-secure,
• the certification authority uses an UNF-CMA signature scheme4 ,
• the signature scheme for the pre-master-secret phase is UNF-CMA,
• the Diffie-Hellmann assumption holds resp. the key transport encryption scheme is IND-CCA,
• the MAC scheme for the FINISHED message is UNF-CMA, and
• the deployed hash function is modeled via a random oracle.

Proof. We say that (label1, kidU , kidV , U, V, sid1, stexec1, κ1, stkey1) is temporarily partnered with (label2, kidV ,
kidU , V,U, sid2, stexec2, κ2, stkey2), if the transcripts of these sessions contain the same pair of nonces. With
overwhelming probability, at any point in the protocol (after the hello messages), each session has at most one
partner session of this form.

The proof consists of several game hops. We define games 0 to 6 as follows.
• Game 0: The original game.
• Game 1: The parties execute step 8 of the protocol before step 5, i.e., the client sends his certificate verify

message before deriving the keys, and the server verifies the signature, before deriving the keys. Moreover,
the game aborts and returns 1, whenever there is a random oracle collision amongst all queries asked to it by
the game and the adversary. Moreover, the game aborts with output 1, if a user chooses the same random
string for the hello message more than once.
• Game 2: Let n be an upper bound on the number of NewSession queries that A asks. Game 1 draws a

random number k between 1 and n. Let (label, kidU , kidV , U, V, sid, stexec, (κc, κs), stkey) be the k’th session
of the protocol. Throughout the execution of the game, the game checks whether one of the following events
occurs (we distinguish between the key-exchange implemented with DH exchange or via key-transport): a)
Key Transport: The keys corresponding to kidV or kidU are corrupted and b) DH: kidV or kidU is corrupted
before session label accepts. As soon as one of these events occurs, the game aborts and returns a uniformly
distributed bit.
• U computes a key in session label which accepts, and this key is revealed in the Gke subgame or corrupted

in the Gζ subgame.
• U sends a Finished message in session label, and upon receiving this message, a session label′ of V accepts

its key, and this key is revealed in Gke or corrupted in Gζ .
• The final output of the adversary contains as key identifier a value kid′ that does not correspond to the key

which is output of session label, respectively, session label did not accept.
• Game 3: the game aborts when one session accepts a certificate that is for a different key than the one that

belongs to the partner.
• Game 4: the game aborts, when label and label′ compute different pre-master secrets, but label and label′

accept the key nevertheless.
• Game 5: the master secrets for session label and its partner are replaced with uniformly random keys.
• Game 6: the application keys session label and its partner are replaced with uniformly random keys.
It remains to transform any successful adversary A against game 6 into a successful adversary B against the
LHAE game GLHAE. For all sessions except for label and its temporal partner label′, the adversary B simulates
game 6 as described. For label and label′, it proceeds as follows: the adversary B flips a random bit to decide,
whether it uses GLHAE for the encryption under the server’s sending key or the client’s sending key. For ease of
presentation, say, that it chooses the server’s sending key. Then, B modifies the server’s FINISHED message as
follows: it submits (`, 0|Hs

1 |Hs, τ2) to the encryption oracle of GLHAE and returns the output as the FINISHED
message. To simulate the client when receiving this message, the adversary B accepts, if the message was
transmitted in an unmodified way, and else, submits the modified message to the decryption oracle of GLHAE. It
rejects, whenever GLHAE rejects, and else uses the decrypted value to check whether this is a valid MAC under
the master secret. For any further query of the adversary A for the server’s sending key, B relays the respective
queries and answers between A and GLHAE. Whenever an abort occurs in game 6, B returns a random bit.
4 More abstractly, any kind of UNF-CMA certification scheme would work, but we stick to signature-based certificates

for sake of simplicity.
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Analysis. We first analyze the game hops and then show that if A has non-negligible advantage, then so has B.
• Game 0 to game 1: as key derivation does not trigger any output in the game, the order of the computation

does not change the game’s interaction with the adversary. The probability of random oracle collisions is
negligible, and so is the collision probability amongst random strings of a user.
• Game 1 to game 2: Let A be an adversary playing game 1. Let p0 := 1

2 + p, with p > 0, be the probability
of A winning game 1. Let n be an upper bound on the number of NewSession queries made by A. The game
guesses kid correctly with probability at least 1

n , and in this case, the adversary A wins with probability at
least 1

2 + p, because if the adversary wins, then the session accepted and is uncorrupted. Else, the adversary
wins with probability at least 1

2 . Thus, the adversary’s overall success probability in Game 1 is

1
n ( 1

2 + p) + n−1
n

1
2 = 1

2 + 1
np.

• Game 2 to Game 3: the event that one accepts a certificate for another key than the partner’s key is negligible,
as the authority’s signature scheme is unforgeable.
• Game 3 to Game 4: we have to bound the probability that they accept although they derive different keys. As

key derivation is deterministic, it suffices to show that if they accept, they derived the same pre-master secret
with overwhelming probability. In the following, we assume that the random oracle is collision-free amongst
all queries queried by the game and the adversary, and that random nonces never occur twice.

Let us consider the Diffie-Hellman-case first. As random nonces do not occur twice and as the random
oracle is collision-free, the adversary either transfers the Diffie Hellman parameters of the server correctly, or
modifies the Diffie Hellman parameters to (p∗, g∗, Y ∗s ) and sends a signature over a random oracle value of the
form RO(rc||rs||p∗, g∗, Y ∗s ). However, the server never issued such a signature by uniqueness of the nonce rs.
Thus, if the adversary had non-negligible probability in creating a valid signature over modified parameters,
we could break the unforgeability of the underlying signature scheme. Similar reasoning, applied to the Client
Authentication message and the earlier Diffie–Hellman flows, assures that the client’s parameter Yc is correctly
transmitted. Thus, if both parties accept the Verify messages then with overwhelming probability, both parties
hold the same parameters (p, g, Ys, Yc) and thus derive the same pre-master secret.

For the key transport case, it suffices to argue that the ciphertext C is correctly transmitted from the client
to the server. Again, the uniqueness of the nonce rc together with collision-freeness of the random oracle, and
the unforgeability of the client’s signature scheme guarantee that, if the server accepts, then the adversary
has modified the ciphertext C only with negligible probability.
• Game 4 to Game 5: It suffices to show that the adversary does not query the random oracle on the value

of the pre-master secret of session label. If so, the value of the master secret is statistically hidden from the
adversary. Note that in this case, the modification does not affect other sessions, even if they happen to derive
the same pre-master secret as the random oracle is queried on (premaster, “master secret′′, rc, rs) and the pair
of randomnesses never occurs twice.

Diffie-Hellman Case. If an adversary A queries the random oracle on the pre-master secret with non-negligible
probability, we can break the computational Diffie-Hellman (CDH) assumption (see Section 2.3) as follows.
The adversary B against CDH gets (p, q, g, ga, gb) from the challenger and has to output a guess for gab.
The adversary B simulates Game 4 with one modification. Let n be an upper bound on the sessions that A
invokes. Then, B guesses a random value i between 1 and n embeds the parameters in the ith session and
skips the pre-master derivation step for this session by directly choosing a random value for the master secret.
Moreover, let q be an upper bound on A’s random oracle queries. Then, B chooses a random value k between
1 and q and returns a prefix of the kth query of A to its oracle as a guess for gab, where the length of the
prefix is the length of the pre-master secret.

For the analysis note that, before the adversary A queries (gab, “mastersecret′′, rc, rs) to the random ora-
cle, the simulation is perfect. Thus, if p(λ) is the probability that A queries the pre-master secret, i.e., queries
(gab, “mastersecret′′, rc, rs), to the random oracle, then B’s success probability in correctly determining gab

is at least p
qn .

Key Transport Case. An analog analysis applies to the key transport case. Here, the security is reduced to
the IND-CCA2-security of the encryption scheme. Let A be an adversary that queries the random oracle
on the pre-master secret with non-negligible probability, let n be an upper bound on the number of users
that he initiates and s be an upper bound on the number of sessions of this user. The adversary B simulates
game 4 with one modification. It picks a random user to embeds the public key, and a random session i of
this user to embed the challenge ciphertext, i.e., the adversary B draws two random strings premaster0 and
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premaster1 and send them to its encryption oracle to receive a ciphertext C that it embeds in session i. It
skips the pre-master derivation step for this session by directly choosing a random value for the master secret.
Moreover, let q be an upper bound on A’s random oracle queries. Then, B chooses a random value k between
1 and q and returns a prefix of the kth query of A to its oracle as a guess for premaster, where the length of
the prefix is the length of the pre-master secret. Moreover, all other sessions of this user are handled by using
the decryption oracle - unless the same ciphertext occurs again, in which case the adversary B also picks the
master secret for these sessions at random. Note that these values are chosen independently, as the random
oracle is queried on (premasterb, “mastersecret′′, rc, rs), and collisions amongst nonces do not occur. If in any
of the adversary’s queries, the value (premasterb, “mastersecret′′, rc, rs) is queried to the random oracle, then
B returns b as its output. Else, it returns a random bit b.

For the analysis, note again that, before the adversary A queries (premasterb, “mastersecret′′, rc, rs) to the
random oracle, the simulation is perfect. Thus, if p(λ) is the probability that A queries the pre-master secret,
i.e. (premasterb, “mastersecret′′, rc, rs), to the random oracle, then B’s success probability in correctly deter-
mining b is at least p

sn minus the negligible probability, that by coincidence, A queries about the (statistically
hidden) value premaster1−b.
• Game 5 to Game 6: As before, it suffices to show that with overwhelming probability, the adversary does

not query the random oracle on the master secret (more precisely, about (master||“key expansion”||rs||rc)).
Let A be an adversary which queries the random oracle on the master secret with non-negligible probability.
Then, we construct an adversary B against the UNF-CMA property of the underlying Mac. Let n be an upper
bound on the number of sessions that A initiates. The adversary B simulates game 4 with one modification.
It draws a random number i between 1 and n. In the ith session, instead of querying the random oracle on
the master secret, it picks two random values for the application keys. To compute the Mac values in the
Finished messages, the adversary B queries the Mac oracle. Let q be an upper bound on the queries that A
makes. Then, B draws a random number k between 1 and q and does the following for A’s kth query to the
random oracle. It uses a prefix of the length of the master secret and computes a Mac of a fresh message. It
submits the Mac and the message to the unforgeability game.

Analysis Unless the adversary queries the random oracle on the master secret respectively on (master, “key
expansion”, rc, rs), the simulation is perfect. Thus, if p(λ) is A’s probability in querying the master secret to
the random oracle, then B’s success probability is at least p

qn minus the negligible correctness error of the
Mac scheme.

We now prove that if A is a successful adversary against game 6, then the adversary B that we constructed,
is a successful adversary against GLHAE. If A never makes any fresh query of the form (0|H1|H2, C) such
that the decryption algorithm does not reject, then the simulation is perfect. It thus suffices to bound this
probability. Assume that A had non-negligible probability p in making successful fresh decryption queries of
the form (0|H1|H2, C). Then, we can use A as a distinguisher against GLHAE by outputting 1, whenever GLHAE

accepts such a query and by outputting 0, else. Then, we win GLHAE with probability 1
2 · p+ 1

2 · 1. ut

7.5 The TLS Record Layer Protocol Reduces to the TLS Primitive

We now describe how to build the TLS channel algorithms (KeyGen,Send,Receive) from the TLS Primitive. As
mentioned before, we work with an abstracted version of headers etc. and thereby cover all implementations
that could be shown LHAE-secure and that use counters in the way described below. To this end, let Header
be a stateful, public algorithm that on input a message, a length parameter ` and a sequence number n returns
a header n|H1|H2 with sequence number n and similarly for ReceivingHeader, which only returns the locally
stored part n|H1 of the header.

Algorithm KeyGen initializes the states for Header and ReceivingHeader, and initializes two counter values
cnts and cntc by 0. It then draws two random keys (κc, κs) for the LHEnc scheme and initializes the states of
boths senders and both receivers. The Send algorithm runs the algorithm Header the message, the parameter
` and the counter cntu to yiel n|H1|H2. Then, the Send algorithms runs LHEncκu(`, n|H1|H2,m) that returns
a ciphertext C or ⊥. If C 6= ⊥, then Send increments its counter cntu by 1 and returns (C,H2) as the channel
message. The Receive algorithm on input (C,H2) runs ReceivingHeader to return a header n|H1. Receive then
runs LHDecκu

(n|H1|H2, C) that returns a message m and an updated state. If m 6= ⊥, then cntu is incremented
by 1. When initializing the states, the KeyGen algorithm chooses an appropriate value ` and sends the message
0 on both channels and receives the message on both channels. This increments all counters to 1. Note that
neither Header nor ReceivingHeader requires any secret information at any point.
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Theorem 4 (Protocol reduces to Primitive). There is a key-independent reduction from the security of
the TLS Record Layer as a TLS-channel to the security of the TLS Primitive according to the TLS Primitive
Game.

Proof. Let A be a successful adversary against the TLS-channel, then we construct B as follows: for all (kid, u)
with u ∈ {c, s}, the adversary B stores the public information for the header algorithm with the counter initially
set to 0. It then sends the message 0 on both channels and receives the message on both channels.

For all send queries (kid, u,m0,m1, `) that A sends, B generates the header n|H1|H2 using the public header
algorithm and queries (kid, u, n|H1|H2,m0,m1, `) to the LHEnc oracle. If the encryption oracle returns a cipher-
text C, then B passes (H2, C) to A and increments n by 1. Else, B returns ⊥ to A and does not increment the
counter. For any decryption query (kid, u, C,H2), the adversary B generates n|H1 using ReceivingHeader and
queries (kid, u, n|H1|H2, C) to the LHDec oracle. If the answer is not ⊥, it increments the counter by 1 and
returns the answer. Else, it leaves the sequence number unchanged and returns ⊥. In the end of the game, B
relates A’s Target query.

Analysis. To see that the distributions in both games are equal and thus the winning probabilities, we only have
to argue that whenever A submits a ciphertext C|H2 to the Receive oracle such that the latter does not return
⊥, then the tuple (kid, u, n|H1|H2, C) is also “fresh” for the LHDec oracle. Firstly, n ≤ 1. Moreover, C was not
output by LHEnc as the nth query (as else, the game would have rejected it). Thus, (n|H1|H2, C) 6= (H,C) for
all previously queried (H,C). The analysis for the freshness condition applies to all key distributions, and thus,
the reduction is key-independent.

8 Conclusion and Future Work

In this paper we presented a novel security definition for key exchange protocols. Our notion is weaker than
standard indistinguishability-based ones and at the same time enjoys composability properties. Our current
focus is on the composition of key exchange protocols with arbitrary primitives/protocols. However our results
hint at more general composition principles. In particular, it may be possible to extend our notion of key-
independent reductions to deal with arbitrary state passing between protocols (and not only keys) which in
turn could allow more general composition of protocols with security specified through games.

We applied our general composition theorem to show the whole TLS stack (with two different implemen-
tations of the handshake) yields an LHAE channel. Yet the framework is more general and should be aplicable
to other protocols that suffer from the key-distinguishability problem. A prime target for future research is the
key-exchange protocol PACE [28] which the International Civil Aviation Organization (ICAO) plans to use on
all machine readable travel documents. This protocol, too, uses a key-confirmation step without a key refresh.

As explained in Remark 1 the Match property that we require from protocols can be relaxed at the expense
of demanding more from the protocol with which the key-exchange is composed. In particular, it should be
interesting to clarify how such a relaxation would look in the case when only servers have long-term keys
(currently our formulation assumes all parties involved have such keys).

A related issue, tightly connected to the kind of guarantees ensured by the key-exchange protocol (and
which we capture via the Match property) concerns entity authentication. In addition to the privacy and
message authentication properties that we prove in this paper TLS offers additional guarantees regarding the
parties involved. After running the handshake part of the protocol the parties are convinced of each other’s
identity (mutual authentication), or at the very least the client is convinced of the identity of server to which it
connects (one-way authentication). Intuitively, these guarantees are preserved through the use of the record layer.
Formalizing this type of guarantees (notice that our Match property already formalizes mutual authentication)
and explaining rigorously in what form such guarantees are preserved by composition with the record-layer (or
more generally with arbitrary protocols) is an interesting direction for further research.
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