
Binary and q-ary Tardos codes, revisited

Boris Škorić and Jan-Jaap Oosterwijk

Abstract

The Tardos code is a much studied collusion-resistant fingerprinting code, with the special
property that it has asymptotically optimal length m ∝ c2

0, where c0 is the number of colluders.
In this paper we simplify the security proofs for this code, making use of the Bernstein
inequality and Bennett inequality instead of the typically used Markov inequality. This sim-
plified proof technique also slightly improves the tightness of the bound on the false negative
error probability. We present new results on code length optimization, for both small and
asymptotically large coalition sizes.

1 Introduction

1.1 Collusion-resistant forensic watermarking

Watermarking, also known as fingerprinting, provides a means for tracing the origin and distribu-
tion of digital data. Before distribution, the content is modified by embedding an imperceptible
watermark, which plays the role of a personalized serial number. Once an unauthorized copy of the
content is found, the identities of those users who participated in its creation can be determined.
This is done using a tracing algorithm, which outputs a list of suspicious users. The whole process
is known as forensic watermarking.
In any practical implementation there are two layers [9, 18]: The ‘coding’ layer determines which
message to embed. The underlying watermarking layer hides symbols of the message in segments1

of the content. The symbols are from a discrete alphabet, binary or larger.
Reliable tracing of content requires security against various attacks on the watermarks. Collusion
attacks are a particularly strong threat. A coalition of users colludes to compare their copies. As
any differences between the copies have to arise from the watermarks and not the content, the
comparison tells the coalition where to attack.
To counter this attack, coding theory has produced a number of collusion-resistant codes. The
interface between the fingerprinting code and the watermarking system is usually specified in terms
of the Marking Assumption (MA) plus additional assumptions that are referred to as a ‘model’.
The MA states that the colluders are able to perform modifications only in those content segments
where they received differently marked content. These segments are called detectable positions.
The ‘model’ specifies the kind of symbol manipulations that the attackers are able to perform
in detectable positions. The commonly used Restricted Digit Model (RDM) allows them only to
choose pieces from their copies of the content, i.e. each segment of the unauthorized copy carries
exactly one symbol that the attackers have received. Most other models have unrealistically strong
attacks, e.g. putting any symbol from the alphabet in a detectable position, or creating an erasure.
Notable exceptions are the ‘fusion’ attack option in [25] and the Combined Digit Model in [23],
which both take into account realistic signal processing attacks.
If the alphabet is binary then all the MA-based attack models are equivalent. In this paper we
are primarily interested in larger (q-ary) alphabets. Our interest stems from the fact that the

1The concept of a ‘segment’ can vary wildly. It can be as simple as a video frame or as complex as a Fourier
coefficient spread out over many frames. We will use the concept of segments without defining what they are.
Ideally, statements about the coding layer are independent of the embedding process.

1

asymptotic (for #segments →∞) fingerprinting channel capacity2 in the RDM is known to be an
increasing function of the alphabet size q [3], and from the existence of q-ary schemes [22] that
perform better asymptotically than their binary counterparts.
Many collusion-resistant codes have been proposed in the literature. Most notable are the Boneh-
Shaw construction [4] and the by now famous Tardos code [21]. The former uses a concatenation of
an inner code with a random outer code, while the latter is a fully randomized binary code. Tardos’
code was the first to achieve the asymptotically optimal property m ∝ c20, where m is the number
of segments, and c0 is the number of attackers that can be resisted. (Previous codes had higher
powers of c0 or required an alphabet size that is unrealistically large in the context of multimedia
watermarking.) This optimality has generated a lot of interest. Papers have appeared containing
improved analyses [2, 7, 8, 12, 20, 24], code modifications [10, 15, 16], decoder modifications
[1, 6, 13] and various generalizations [5, 22, 23, 25]. In the current paper we improve the analysis
of the generalization [22] of the Tardos code to non-binary alphabets.

1.2 Upper-bounding the errors; cutoff parameter

The Tardos code and all its variants are non-deterministic in two ways: (1) the code generation is
randomized; (2) the tracing procedure allows for a (small) probability of error.
Two types of error are usually studied. The first one is a False Positive (FP) error. The probability
of wrongly accusing a fixed innocent user has to be upper-bounded by some very small constant,
PFP ≤ ε1. If there are n users and c attackers, c � n, then the total probability that someone
gets wrongly accused is η = 1− (1− PFP)n−c ≈ nPFP.
The second type of error is a False Negative (FN) error. The probability that the tracing algorithm
does not catch any attacker at all has to be bounded as PFN ≤ ε2. Typically ε2 � ε1, since a
viable deterrent exists even when e.g. ε2 ≈ 1

2 .
The typical proof technique in the literature is to use the Markov inequality to bound the proba-
bility that the ‘accusation score’ exceeds a certain threshold. For the Markov inequality to work it
is required that the scores are finite. They are made finite by introducing a small cutoff parameter
‘τ ’ for the symbol biases (see Section 2.1). It was shown in [22] that for q ≥ 3 the cutoff is a
proof-technical artifact, and one can set τ = 0 without ill effect. This was studied in further detail
in [20, 19]. However, for the binary Tardos scheme a cutoff is really necessary: it protects the
scheme against rare ‘tail’ events that blow up innocent users’ accusation scores.
In this paper we have the cutoff, since we will make use of so-called ‘concentration inequalities’,
which require random variables to be bounded.

1.3 Results on the length of Tardos codes

Tardos [21] proved bounds on the FP and FN errors using Markov inequalities. His construction
achieved the asymptotically optimal relation m = 100c20 ln ε−1

1 , but the constants appearing in the
scheme were far from optimal, especially the coefficient 100 in the code length, which was mostly
caused by the choice ε2 = ε

c0/4
1 . We will denote the code length coefficient as ‘A’, and write

m = Ac20 ln ε−1
1 . (1)

In later work the ε1 and ε2 were decoupled, and the numerical constants were tweaked to reduce
the code length parameter A. Blayer and Tassa [2] showed that the same proof technique could be
maintained while reducing A to some value slightly above 20. In [24] it was shown that for large
coalition sizes, A can be reduced to 2π2. Their asymptotic analysis made use of the fact that the
probability distributions of large sums become Gaussian due to the Central Limit Theorem.
In [22] Tardos’ accusation score function was modified to make it symmetric in the symbols 0,1.
This modification meant that all available information in the forged copy y was utilized, instead

2The channel capacity is a fair measure of how efficient a code can theoretically be made to be. It is an upper
bound on the achievable code rate. The rate of a watermarking code can be interpreted as the fraction of the
watermarked ‘space’ in the content that really gets used to distinguish between users.

2

of discarding 50% of the information (namely the positions containing 0). The effect was an im-
provement of the code length by a factor 4. In the same paper, the scheme was generalized to
arbitrary alphabet size. Asymptotic analysis using Gaussian distributions showed that asymptot-
ically one can go as low as A = 2/M2, where M is the expected accusation score of the coalition
(see Section 4) minimized over the attack strategy. In the binary case this becomes A = π2/2.
A different modification of the binary Tardos code was proposed by Nuida et al. [17]. They
adapted the distribution function of the biases, making it discrete. In the case of small coalitions
the modification leads to a significant improvement. In the current paper we will mostly consider
large coalitions; hence we will not follow their approach.
Recently Laarhoven and de Weger [12] applied the Markov-inequality based proof technique to
the symmetric accusation score in the binary case. They obtained the asymptotic result

A =
π2

2

[
1 + c

−1/3
0 [12

π2]
1
3

(
1 +

6 ln ε2/ ln ε1

ln c0
+ · · ·

)]
(2)

for optimal settings of the tunable parameters in the scheme. In [22] the same kind of analysis had
been attempted for general alphabet size, but the results were not tight, sitting a factor 2 above
the asymptotic 2/M2 known from the Gaussian approximation; the reason for the discrepancy
was that one tweakable extra parameter à la [2] was missing in the proof technique.
In [20, 19] a semi-analytical method was developed to compute FP error probabilities in Tardos
codes. This is especially useful for small ε1, a regime where simulations cannot penetrate due
to the extreme number of runs required. However, explicit pirate strategies have to be given as
input; the approach does not yield provable properties against arbitrary attacks.
The current state of affairs regarding provable properties of Tardos codes is unsatisfactory in two
respects,

• In [22] an opportunity was missed to do a tight analysis of provable bounds on the error
probabilities for q ≥ 3. Such an analysis is still missing.

• The existing proofs, based on Markov inequalities, are very lengthy and cumbersome, and
involve several auxiliary variables that have no concrete relation to the system parameters
in the code generation and/or score computation.

1.4 Contributions and outline

We present provable bounds on the FP and FN errors for the q-ary symmetric scheme of [22].
We use the bounds to provide sufficient code lengths that provably guarantee desired FP and FN
error rates.

• We base our bounds on the Bernstein inequality and the Bennett inequality. The resulting
proofs are much shorter than those using the Markov inequality, and do not contain auxiliary
variables.

• For q ≥ 3 this is the first analysis that gives tight bounds. It also is the first to provide
asymptotic correction terms to the limiting value A = 2/M2.

• In our analysis we distinguish more clearly between c, the actual number of attackers, and
c0, the system parameter, than previous literature.

• We provide a detailed analysis of the quantity M as a function of the cutoff parameter, and
a method to compute M numerically. This has not been done before for q ≥ 3.

• For q = 2 we reproduce the asymptotics of [12], but our proof is shorter and less complex.
Furthermore, we show that for large but finite c0, it is possible to get shorter codes by
slightly modifying the ‘concentration parameter’ (see Section 2.1).

3

• The code rate, obtained from numerics, turns out to be a decreasing function of q at ‘small’
c0. Asymptotically, however, we find for q ∈ {2, 3, 4, 5} that the non-binary alphabets have
a higher rate than the binary; q = 3 has the highest asymptotic code rate. (One has to
bear in mind that these results are based on ‘optimal’ code lengths, where the optimality is
defined only with respect to the employed proof method.)

The organization of this paper is as follows. In Section 2 we summarize the q-ary Tardos scheme
and discuss how its performance is measured. We also discuss the Bernstein and Bennett inequality.
After these preliminaries we prove bounds on the FP and FN error probabilities (Section 3).
In Section 4 we present a number of lemmas about the statistical properties of the accusation
scores. In Section 5 these are used to optimize the code length parameter in the asymptotic
regime c0 →∞.
In Section 6 we derive equations for optimizing the code length as a function of ε1, ε2 and finite
c0. We show numerical solutions for alphabet sizes q = 3, 4, 5 and c0 ≤ 20. For large (but
not asymptotic) c0 we derive an analytic expression for the code length parameter that contains
correction terms to the limiting value A = 2/M2. We summarize in Section 7.
An apology: This could have been a short paper, given the brevity of the proofs using Bernstein’s
and Bennett’s inequality. However, in the presence of a cutoff, the statistical parameter M is a
complicated beast, and many pages are spent on taming it.

2 Preliminaries

2.1 q-ary Tardos fingerprinting

Tardos [21] introduced the first fingerprinting scheme that achieves optimality in the sense of
having the asymptotic behavior m ∝ c20. He introduced a two-step stochastic procedure for
generating the codewords. Here we briefly summarize the generalization to non-binary alphabets
[22].
The alphabet is denoted as Q and has size |Q| = q. There are n users j ∈ {1, . . . , n}. Each user
receives a uniquely watermarked version of the content; the content consists of m segments3, each
of which contains one watermark symbol. The symbol of user j in segment i is denoted as Xji.
The matrix X is called the code matrix.
Code generation
Step 1: For each segment i ∈ {1, . . . ,m} the content distributor generates a random q-component
bias vector p(i) ∼ F , where F is a probability density function that is invariant under permutations
of the alphabet. Furthermore, the vector components satisfy p

(i)
α ∈ [pmin, pmax], where pmin = τ

and pmax = 1− t, with t = (q − 1)τ , and
∑
α p

(i)
α = 1. The τ � 1 is called the cutoff parameter.

For q ≥ 3 it is allowed to set τ = 0 without ill effects, but for q = 2 the cutoff is required to
prevent extreme scores (see Eq.6) from popping up and disturbing the statistics. The probability
density F is set to be a symmetric Dirichlet distribution.

F (p) =
1

N (q, κ, τ)

∏
α∈Q

p−1+κ
α , (3)

where κ > 0 is a constant called the ‘concentration parameter’ and N (q, κ, τ) is a normalization
constant taking care that ∫ 1−t

τ

dqp δ(1−
∑
α∈Q

pα)F (p) = 1 (4)

holds.4 The
∫

dqp denotes q-dimensional integration over all the q variables pα. In our notation,
the integration variable is written immediately after the

∫
symbol, and integrals are considered

3The concept of segments is very general, e.g. they can be combinations of coefficients in any codec.
4In the binary case, Tardos’ original scheme is regained by setting κ = 1/2. We then haveQ = {0, 1}, p = (p0, p1)

with p0 + p1 = 1, and F (p) = 1
π−4 arcsin

√
τ

(p0p1)−1/2.

4

Notation Meaning

Q the alphabet

q alphabet size |Q|
n number of users

C set of colluding users

c number of colluders, |C|
c0 coalition size that the code is meant to resist

m code length (number of q-ary symbols)

Xji embedded symbol in segment i for user j

p(i) bias vector for column i

F distribution function of the bias vector, p(i) ∼ F
κ shape parameter contained in F

τ cutoff parameter for the p-space

t t = (q − 1)τ

σ
(i)
α number of occurrences of symbol α in attackers’ segment i

yi symbol detected in segment i of attacked content

θy|σ prob. that attackers output symbol y, given σ

g0(p), g1(p) score functions

Sj score of user j

S
(i)
j score of user j in segment i

SC coalition score, SC =
∑
j∈C Sj

S
(i)
C coalition score in segment i

Z accusation threshold

L list of accused users

ε1 max. tolerable prob. of fixed innocent user getting accused

ε2 max. tolerable prob. of not catching any attacker

η ln ε2/ ln ε1

FP, FN False Positive, False Negative

µ̃ expected coalition score E[S(i)
C]; does not depend on m

σ̃2 variance of S(i)
C ; does not depend on m

M minimum of µ̃ over all strategies θ, for c = c0

M0 M at τ = 0

M∞0 M0 for c0 →∞
c0V

2 maximum of σ̃2 over all strategies θ, for c = c0

ν ∈ (1, 2) τ ∼ c−ν0

5

to be operators acting on everything to the right. The δ(· · ·) is the Dirac Delta function, and it
takes care that the probabilities pα add up to 1.
Let 1q denote a vector consisting of q ones; let B denote the generalized Beta function; then
N (q, κ, 0) = B(κ1q) = [Γ(κ)]q/Γ(κq).
Step 2: Next, the distributor randomly generates the to-be-embedded symbols by employing the
bias vectors as categorical probability distributions: P[Xji = α] = p

(i)
α . The columns of X are

independent, and the rows of X are independent for fixed biases.
The collusion attack
The set of colluders is denoted as C, with |C| = c. According to the Restricted Digit Model, for
each segment i the colluders have to output content containing precisely one of the symbols that
they have received; they do not have the knowledge to generate any other symbol. The symbol in
the forged version is denoted as yi. Their strategy for choosing yi is allowed to be nondeterministic.
The following assumptions are usually made:

1. The strategy is invariant under permutations of the alphabet.

2. The strategy is fair in the sense that the colluders equally share the risk. (I.e. the strategy
is invariant under permutation of the colluder identities.)

3. The same strategy is applied independently for each segment.

As long as the symbol labels have no physical meaning, assumption 1 does not reduce the strength
of the attack. In the setting we work in, namely that the content owner is successful when he
traces at least one attacker, it is obviously best for the coalition to share the risk equally; hence
assumption 2 also does not reduce the attack strength. It was argued in [14] that the most powerful
attack belongs to the segment-symmetric class as given by assumption 3.
We will adopt assumptions 1–3. The strategy can then depend only on the number of occurrences
of each symbol in the coalition. Let σ(i)

α ∈ {0, . . . , c} denote the number of colluders who have the
symbol α in segment i, with

∑
α∈Q σ

(i)
α = c. Let σ(i) be defined as the vector containing the σ(i)

α ;
then for each σ(i) independently the attack can be parametrized as a q-component vector θσ of
probabilities θy|σ = P[output y|σ], with

∑
y∈Q θy|σ = 1. Given the above assumption 1, the θy|σ

has to be invariant under alphabet permutations. We will use the shorthand notation ‘θ’ for the
complete attack strategy, i.e. the whole set of vectors, θ = {θσ}all σ.
Tracing

For each user j and each segment i independently, the content distributor computes a score S(i)
j ,

S
(i)
j =

{
If Xji = yi : g1(pyi)
If Xji 6= yi : g0(pyi)

(5)

where

g1(p) =
√

1− p
p

; g0(p) = −
√

p

1− p . (6)

The choice (6) of g0, g1 is the unique combination of functions that satisfies

pg1(p) + (1− p)g0(p) = 0 ; p[g1(p)]2 + (1− p)[g0(p)]2 = 1. (7)

This choice has been shown to be optimal for the binary alphabet [7, 24], i.e. it minimizes the
code length. Even though there is no such optimality proof for q ≥ 3, the properties (7) make the
scheme easy to analyze, which was the main motivation for using the score functions (6) in the
non-binary case.
The scores per segment are added up to form an overall score Sj for each user,

Sj =
m∑
i=1

S
(i)
j . (8)

6

If Sj exceeds a threshold value Z, user j is considered suspicious (‘accused’). The list of accused
users is denoted as L,

L = {j : Sj > Z}. (9)

2.2 Measuring the performance

We define the coalition’s score as

SC =
m∑
i=1

S
(i)
C ; S

(i)
C =

∑
j∈C

S
(i)
j . (10)

Two kinds of errors are usually considered: False Positives (FP, accusing an innocent user) and
False Negatives (FN, not catching any guilty ones). The corresponding error probabilities are
defined as

PFP = P[j ∈ L] for some fixed innocent j
PFN = P[L ∩ C = ∅]. (11)

The distributor has the requirement PFP ≤ ε1, PFN ≤ ε2. Typically ε1 � ε2, since accusing
innocents is much more damaging to the tracing system than not catching anyone. The PFP and
PFN depend on the following parameters: the alphabet size q; the code length m; the threshold
Z; the concentration parameter κ; the cutoff parameter τ ; the number of attackers c, unknown to
the distributor; the colluder strategy θ, also unknown to the distributor.
Let c0 denote the coalition size that the code can resist. An often used performance indicator is
m∗(ε1, ε2, c0), defined as the shortest achievable m as a function of ε1, ε2 and c0, independent of
colluder strategy. (The dependence on q, κ, τ is not written explicitly.) It is useful to write m∗

and the corresponding Z∗ as

m∗ = Ac20 ln ε−1
1 ; Z∗ = Bc0 ln ε−1

1 . (12)

In the limit c0 →∞ the A,B go to constants. For finite c0 the A, B are functions that (weakly)
depend on ε1, ε2 and c0. In [22] it was found5 that asymptotically for c0 → ∞, the A,B can be
expressed in terms of one statistical parameter M ,

µ̃ =
1
m

E[SC] = E[S(i)
C] (13)

M = min
θ
µ̃ for c = c0, (14)

where the i in S
(i)
C is arbitrary. The E denotes the expectation value (see Section 4) over all

stochastic degrees of freedom (p, X, y), and θ is the colluder strategy. Note that µ̃ is a decreasing
function of c. (This follows from the fact that adding extra attackers makes the attack more
powerful.) Hence for c ≤ c0 it holds that µ̃ ≥M . The asymptotic values for A and B are

Aasympt =
2
M2

; Basympt =
2
M
. (15)

For 1 � c0 < ∞ the M contains a weak dependence on c0. For q = 2, κ = 1
2 it holds that

M = 2
π −O(c0t) (see [21] and Theorem 4.15). We will use the notation M0 for M at τ = 0, and

M∞0 = limc0→∞M0.
A second statistical parameter that plays a role is the variance of the scores of guilty users,

σ̃2 =
1
m

Var(SC) = Var(S(i)
C) = E[(S(i)

C)2]− µ̃2 (16)

V 2 = max
θ,c≤c0

σ̃2

c
. (17)

5In fact the expression ln ε−1
1 should be replaced by [Erfcinv(2ε1)]2, which is smaller. E.g. for ε1 = 10−10 the

difference is 12%; for ε1 = 10−7 it is 16%.

7

Again, the i is arbitrary. The σ̃ is a function of c and the attack strategy, while V is a function of
c0, independent of the attack strategy. For all c ≤ c0 it holds that σ̃2/c ≤ V 2.
The parameter V appears in the non-asymptotic properties of the scheme.

2.3 The inequalities of Bernstein and Bennett

We list Bernstein’s and Bennett’s inequality, and derive a slightly weakened form of Bennett’s
inequality. We will use these instead of the Markov inequality which has been employed in previous
security proofs of the Tardos scheme. (Note, however, that the Bernstein and Bennett inequality
are typically proven by invoking the Markov inequality.)

Lemma 2.1 (Bernstein’s inequality) Let U1, · · · , Um be independent zero-mean random vari-
ables, with |Ui| ≤ a for all i. Let Z ≥ 0. Then

P

[∑
i

Ui > Z

]
≤ exp

(
− Z2/2∑

i E[U2
i] + aZ/3

)
.

Lemma 2.2 (Bennett’s inequality) Let Y1, · · · , Ym be independent zero-mean random vari-
ables, with |Yi| ≤ b for all i. Let s2 = 1

m

∑
i E[Y 2

i]. Let h be defined as

h(v) =
∫ v

0

dx ln(1 + x) = (v + 1) ln(v + 1)− v. (18)

Let T ≥ 0. Then

P

[∑
i

Yi > T

]
≤ exp

(
−ms

2

b2
h(

b

ms2
T)
)
.

Property 2.3 For v > 0 the fraction h(v)/v is an increasing function of v.

Proof: d
dv

h(v)
v = 1

v2 (v − ln[1 + v]), which is positive for v > 0. �

Property 2.4 The function h in Lemma 2.2 can be lower bounded as

v > 0 =⇒ h(v) > v ln
v

e
.

Proof: For v > 0 we have

h(v) =
∫ v

0

dx ln(1 + x) >
∫ v

0

dx lnx = v ln
v

e
. (19)

�

Corollary 2.5 (Weakened version of Bennett’s inequality) Let Y1, · · · , Ym be independent
zero-mean random variables, with |Yi| ≤ b for all i. Let s2 = 1

m

∑
i E[Y 2

i]. For T > 0 it holds that

P

[∑
i

Yi > T

]
< exp

[
−T
b

ln
bT

ms2e

]
. (20)

Proof: Follows directly from Lemma 2.2 and Property 2.4. �

3 Requirements on the code length and threshold

Using Bernstein’s and Bennett’s inequality, we derive upper bounds on the FP and FN error
probabilities. These are then rewritten as conditions on the code length parameter A and the
threshold parameter B, such that PFP ≤ ε1 and PFN ≤ ε2 hold. From these conditions we
immediately derive the asymptotic behaviour of the code length parameter A for given q, c0, τ
and M .

8

3.1 Bernstein’s inequality applied to the False Positive

Theorem 3.1 Let q ≥ 2. The False Positive probability of the q-ary Tardos system, as defined by
(11), can be upper bounded as

PFP ≤ ε ∧1
[
B2

2A

(
1 +

B

3A
1

c0
√
τ

)−1
]
.

Proof: In Lemma 2.1 we set Ui = S
(i)
j for some innocent user j. This is allowed since S(i)

j has
zero expectation value due to the first property in (7). We recall that g1 and g0 are decreasing
functions. We then have

|Ui| ≤ max{g1(pmin),−g0(pmax)} = g1(pmin) <
1√
pmin

=
1√
τ
. (21)

Thus we are allowed to set a = 1/
√
τ . Furthermore, we note that E[U2

i] = 1 for all i due to the
second property in (7). Lemma 2.1 then gives

PFP ≤ exp
(
− Z2/2
m+ aZ/3

)
= exp

(
− Z

2

2m
· 1

1 + aZ/(3m)

)
. (22)

Finally substituting a = 1/
√
τ and the expressions (12) for m and Z finishes the proof. �

Note: The bound in Theorem 3.1 does not depend on c (the actual number of attackers), but on
the scheme parameter c0.

Corollary 3.2 Theorem 3.1 allows us to express the requirement PFP ≤ ε1 as a closed-form
relation between A and B,

A ≤ B2

2
− 1
c0
√
τ

B

3
=⇒ PFP ≤ ε1. (23)

3.2 Bennett’s inequality applied to the False Negative

Theorem 3.3 Let q ≥ 3. Let µ̃Ac0 − Bc > 0. Let τ be small enough for the following inequality
to hold, √

τ ≤ c

µ̃
(1− 1√

q − 1
). (24)

Then the False Negative probability of the q-ary Tardos system, as defined by (11), can be bounded
as

PFN < exp
[
ln ε1

c20τAσ̃
2

c2
h

(
c

σ̃2
√
τ

[µ̃− Bc

Ac0
]
)]

. (25)

Proof: We start from PFN = P[C ∩ L = ∅] = P[Sj < Z for all j ∈ C] < P[SC < cZ] = P[mµ̃− SC >
mµ̃ − cZ]. We apply Lemma 2.2 with the following parameters. We set Yi = µ̃ − S(i)

C so that
E[Yi] = 0. We have

∑
i Yi = mµ̃ − SC . We take T = mµ̃ − cZ. As a result we can now

write PFN < P[
∑
i Yi > T]. The condition µ̃Ac0 − Bc > 0 ensures that T > 0. Next, we have

s2 = 1
m

∑
i E[Y 2

i] = 1
m

∑
i σ̃

2 = σ̃2, with σ̃2 as defined in (16). We have

|Yi| = |S(i)
C − µ̃| ≤ max{cg1(pmin)− µ̃, µ̃− cg0(pmax)}

= max{ c√
τ

√
1− τ − µ̃, c√

τ

√
1− τ(q − 1)√

q − 1
+ µ̃}

< max{ c√
τ
,
c√
τ

1√
q − 1

+ µ̃} (26)

The condition (24) makes sure that the second argument of the max cannot exceed the first
argument. Hence |Yi| < c/

√
τ , and we can set b = c/

√
τ . Finally, substituting these values of

9

T, s2, b into Lemma 2.2 and using the parametrization (12) for m and Z in terms of A and B gives
the end result. �
Remark 1: We could have chosen b more tightly, e.g. c/

√
τ −M . However, for typical values of

c, µ̃ and τ the gain would have been less than 1%, and we felt that it was not worth the effort,
given the more complicated equations that would result.
Remark 2: The condition (24) does not cause any trouble. Since c ≥ 2 in coalition attacks, µ̃ is of
order 1, and τ is always set to be very small, (24) is automatically satisfied in practice.
Note that the error bound (25) depends on c0, c and the attack strategy θ. We get rid of the
dependence on c and θ as follows.

Corollary 3.4 Let q ≥ 3 and 2 ≤ c ≤ c0. Let MA−B > 0. Let
√
τ ≤

√
2
q (1− 1√

q−1
). Then the

False Negative probability of the q-ary Tardos system, as defined by (11), can be upper bounded as

PFN < exp
[
ln ε1 c0τAV

2 h

(
M −B/A
V 2
√
τ

)]
. (27)

Proof: The conditions MA − B > 0 and c ≤ c0 imply µ̃Ac0 − Bc > 0. Furthermore, we make

use6 of Lemma 4.3 to bound µ̃ <
√
qc. Thus, if

√
τ ≤

√
c
q (1 − 1√

q−1
) holds then the condition

(24) in Theorem 3.3 holds. Hence Theorem 3.3 applies. We use σ̃2/c ≤ V 2 (see Section 2.2) in
combination with Property 2.3 in order to replace σ̃2/c → V 2 in (25). Then we use c ≤ c0 and
µ̃ ≥ M in combination with the fact that h is an increasing function in order to replace c → c0
and µ̃→M . �
Corollary 3.4 allows us to formulate a condition on the system parameters (independent of c and
θ) such that the FN probability is sufficiently small.

Corollary 3.5 Let q ≥ 3 and 2 ≤ c ≤ c0. Let MA−B > 0. Let
√
τ ≤

√
2
q (1− 1√

q−1
). Then

c0τAV
2 h

(
M −B/A
V 2
√
τ

)
≥ ln ε2

ln ε1
=⇒ PFN < ε2. (28)

Proof: Follows directly from Corollary 3.4. �

Corollary 3.6 Let q ≥ 3 and 2 ≤ c ≤ c0. Let MA−B > 0. Let
√
τ ≤

√
2
q (1− 1√

q−1
). Then

(MA−B)c0
√
τ ln

M −B/A
eV 2
√
τ
≥ ln ε2

ln ε1
=⇒ PFN < ε2. (29)

Proof: Follows directly from Corollary 3.5 and Property 2.4. �
Corollary 3.6 is a less tight version of Corollary 3.5. When the argument of the h function is large
(which we will see is the case), the tightness lost in the approximation of h(v) is of relative order
O(1/v), which will turn out to be too small to care about.
For q = 2 the above analysis cannot be repeated exactly; a complication arises because condition
(24) cannot be satisfied. We get the following, less tight, result.

Theorem 3.7 Let q = 2. Let µ̃Ac0 − Bc > 0. Then the False Negative probability, as defined by
(11), can be bounded as

PFN < exp
[
ln ε1

c20τAσ̃
2

c2(1 + µ̃
√
τ/c)

h

(
c

σ̃2
√
τ

[µ̃− Bc

Ac0
]
)]

. (30)

6We apologize for invoking a lemma situated in a later section. It would have added a lot of extra preliminaries
to move the lemma forwards, for little effect.

10

Proof: Follows the same steps as the proof of Theorem 3.3, with the difference that we have to set
b = c/

√
τ + µ̃. Using Property 2.3 we have b−2h(b · · ·) > (τ/c2)(1 + µ̃

√
τ/c)−1h(c√

τ
· · ·), which

results in (30). �
From Theorem 3.7 we can derive corollaries as for q ≥ 3, but now taking into account the extra
factor 1 + µ̃

√
τ/c in the exponent.

Corollary 3.8 Let q = 2 and c ≤ c0. Let MA−B > 0. Then

(MA−B)
c0
√
τ

1 +
√

2τ/c0
ln
M −B/A
eV 2
√
τ
≥ ln ε2

ln ε1
=⇒ PFN < ε2. (31)

Proof: Follows the same steps as the proofs of Corollaries 3.4–3.6, but with the extra factor

1 + µ̃
√
τ/c. We use µ̃ <

√
2c (Lemma 4.3) and c ≤ c0 to write c2 + cµ̃

√
τ < c20 + c

3/2
0

√
2τ =

c20(1 +
√

2τ/c0). �
Remark: The difference between the case q = 2 and q ≥ 3 can be seen as an extra factor 1+

√
2τ/c0

that slightly modifies the parameter η = ln ε2/ ln ε1 to η(1 +
√

2τ/c0). We will see in Section 6
that the exact value of η has little effect on the code length parameter A.

3.3 General remarks on optimization and asymptotics

Corollaries 3.2 and 3.5 together allow us to draw some conclusions about the optimization of the
code length parameter A for given q, c0, even before looking at M and V in detail.

• Corollary 3.2 and the condition MA − B > 0 define an interval in which A must lie as a
function of B,

A ∈ (
B

M
,
B2

2
− B

3c0
√
τ

]. (32)

The interval exists only if

B >
2
M

+
2

3c0
√
τ
. (33)

• From the argument above we get a lower bound

A >
2
M2

+
2

3Mc0
√
τ
, (34)

which for c0 → ∞ corresponds to the asymptotic value known from the Gaussian approxi-
mation iff c0

√
τ → ∞. We conclude that, asymptotically, τ has to depend on c0 in such a

way that c0
√
τ →∞. On other grounds [21] we know that c0τ → 0. Hence, if we assume an

asymptotic power law of the form
τ ∼ c−ν0 , (35)

then the parameter ν has to lie in the interval ν ∈ (1, 2).

• We consider optimization in the asymptotic case. The A is minimized by reducing B as
far as possible while still satisfying (28); hence we want to achieve the equality in (28).
The function h for large arguments behaves as h(v) → v ln v. Let us use the notation
M −B/A = Mα, where α scales as a function of c0 such that α→ 0 and α/

√
τ →∞. The

left hand side of the inequality in (28) has leading order contribution α(2/M)c0
√
τ ln(α/

√
τ)

which has to go to a constant, η = ln ε2/ ln ε1. Hence the α has to behave as follows,

α = 1− B

MA
=
M

2
η

c0
√
τ ln 1

c0τ

+ higher order. (36)

11

We set B very close (distance 2
M β) to the lower bound (33). From (32) it then follows that

A behaves asymptotically as

A =
2
M2

[1 +
M

3c0
√
τ

+ β + · · ·][1 + α+ · · ·] with β > α. (37)

Finally, substituting (36) gives

A =
2
M2

[
1 +

M

3c0
√
τ

(1 +
3η

ln 1/c0τ
) + higher order

]
. (38)

(The above reasoning applies to q = 2 as well.) Finding the optimal choice for τ requires knowledge
of M as a function of τ . It turns out to be surprisingly difficult to determine what M(τ) looks
like, even for τ � 1/q. Section 4 is almost completely devoted to this question. In Sections 5 and
6 we address the optimization of A.

4 Statistical properties of the accusation scores

4.1 Expectation values

The expectation value over all stochastic degrees of freedom (p, X, y) is denoted as E. For quanti-
ties that refer to a single segment and (symmetrically) depend on the attackers’ symbols without
depending on the codewords of innocent users, i.e. for functions of σ, the E can be split up as

E[· · ·] = EpEσ|pEy|σ[· · ·]. (39)

We treat the ‘E’ notation as a linear operator acting to the right. The splitup (39) is natural,
since chronologically the first step is to generate p; then X is generated for given p, leading to
counters σ; finally the (possibly nondeterministic) colluder strategy for choosing y depends only
on σ. The three separate expectation values are defined as

Ep[· · ·] =
∫ 1−t

τ

dqp δ(1−
∑
α∈Q

pα)F (p)[· · ·] (40)

with F given in (3), and

Eσ|p[· · ·] =
∑
σ

(
c

σ

)
pσ[· · ·] ; Ey|σ[· · ·] =

∑
y∈Q

θy|σ[· · ·]. (41)

The notation pσ stands for
∏
α∈Q p

σα
α . In the

∑
σ summation in (41), it is implicit in the notation

that the sum runs only over vectors σ that satisfy
∑
α σα = c. The notation

(
c
σ

)
stands for the

multinomial coefficient c!/
∏
α(σα!).

We also consider an expectation over σ that is not conditioned on p. For τ = 0 we define E(0)
σ as

E(0)
σ [· · ·] =

∑
σ

(
c

σ

)
B(κ1q + σ)
B(κ1q)

[· · ·]. (42)

For τ = 0, the integrals over p typically yield Gamma functions and Beta functions. We will
occasionally use the following asymptotic properties.

Lemma 4.1 For x→∞ and a, b� x it holds that

Γ(x+ a)
Γ(x+ b)

= xa−b[1 +O(
1
x

)]. (43)

Lemma 4.2 For λ ∈ (0, 1), x→∞ and a, b� x it holds that

B(λx+ a, (1− λ)x+ b) =
√

2π√
c0

λa(1− λ)b√
λ(1− λ)

e−c0H(λ)[1 +O(
1
c0

)], (44)

where H denotes the binary entropy function H(λ) = −λ lnλ− (1− λ) ln(1− λ).

12

4.2 Statistics of the guilty accusation scores

The parameters µ̃ and M , defined in (13,14), as well as σ̃2 and V 2, defined in (16,17), play an
important role in the next sections. An upper bound is given in the following lemma.

Lemma 4.3 (From [22]) It holds that µ̃2 + σ̃2 ≤ qc. This gives upper bounds

M ≤ √qc0 and V 2 ≤ q. (45)

Proof: The single-segment coalition score S(i)
C is σyg1(py) + (c− σy)g0(py) which can be rewritten

as σy−cpy√
py(1−py)

. We have µ̃2 + σ̃2 = E[{S(i)
C }2], which can be written as

µ̃2 + σ̃2 =
∑
y∈Q

EpEσ|pθy|σ
(σy − cpy)2

py(1− py)
. (46)

We use the rather crude bound θy|σ ≤ 1 (which holds because probabilities cannot be larger
than 1) and then apply the fact that Eσ|p(σy − cpy)2 is the variance of the binomial-distributed
variable σy, given by cpy(1 − py). The expectation over p becomes trivial, and the sum over y
yields a factor q. That proves µ̃2 + σ̃2 ≤ qc. Next, M = minθ µ̃|c=c0 ≤

√
qc0 − σ̃2 ≤ √qc0. Finally,

V 2 = maxθ,c≤c0 σ̃
2/c ≤ maxθ,c≤c0(q − µ̃2/c) = q −M2/c0 ≤ q. �

Lemma 4.4 (From [22]) The parameter M as defined in (14) can be expressed as

M =
∑
σ

(
c0
σ

)
min

y: σy≥1
Ep

[
pσ

σy − c0py√
py(1− py)

]
. (47)

Proof: The expectation value µ̃ = E[S(i)
C] for c = c0 is given by

µ̃|c=c0 = EpEσ|pEy|σ
σy − c0py√
py(1− py)

=
∑
σ

(
c0
σ

)
Ey|σEp

[
pσ

σy − c0py√
py(1− py)

]
. (48)

The minimum over θ is achieved when the strategy picks y ∈ Q such that, for a given σ, the lowest
possible value of Ep[· · ·] is selected. Due to the Marking Assumption there is the constraint that
y cannot be chosen when σy = 0. �
We have included the proof of Lemma 4.4 here because the notation differs from [22], and we make
a clearer distinction between c and c0.
The summation in (47) contains a large number of terms (∝ cq−1

0). Since the argument of the
‘min’ depends only on the numbers {σα}α∈Q, and not on their location in the vector σ, the
σ-summation can be replaced by a sum over partitions, which contains fewer terms.

Lemma 4.5 Let Pcq denote the set of (ordered) partitions of the integer c into exactly q nonneg-
ative integers (i.e. allowing zeroes). For a ∈ Pcq let R(a) be a tuple containing the frequencies of
the numbers appearing in a. For y ∈ {1, · · · , q} let ay denote the y’th entry in a. Then M can be
written as

M =
∑
a∈Pc0q

(
c0
a

)(
q

R(a)

)
min

y∈{1,...,q}: ay≥1
Ep

[
pa

ay − c0py√
py(1− py)

]
. (49)

Proof: The a ∈ Pc0q is an ordered version of σ, e.g. in decreasing order of σα values. Hence(
c0
a

)
=
(
c0
σ

)
. The multinomial factor

(
q

R(a)

)
counts how many different σ-vectors can be constructed

by permuting a. The total number of permutations of q elements is q!. Re-occurrence of some
integer in a, say f -fold, reduces the number of permutations by f !. �

Example 4.6 For c0 = 5, q = 3, the partitions are (5, 0, 0), (4, 1, 0), (3, 2, 0), (3, 1, 1), (2, 2, 1),
with R((5, 0, 0)) = (1, 2), R((4, 1, 0)) = (1, 1, 1), R((3, 2, 0)) = (1, 1, 1), R((3, 1, 1)) = (1, 2), and
R((2, 2, 1)) = (2, 1).

13

For (c0 � 1, q = O(1)), it is known [11] that the number of terms in the
∑
a summation, i.e.

the number of partitions of c0 into at most q parts, scales as cq−1
0

q!(q−1)! . For comparison: direct

summation over σ consists of ≈ cq−1
0 /(q−1)! terms (the volume of a (q−1)-dimensional simplex).

Hence the speedup in Lemma 4.5 is approximately a factor q!.
Next we list a number of results about the behaviour of M .

Lemma 4.7 (from [19]) It holds that

M0 = E(0)
σ min

y: σy≥1
W (σy) (50)

W (σy) = c0{ 1
2 − κ+

σy
c0

(κq − 1)}Γ(κ+ σy − 1
2)Γ(κ[q − 1] + c0 − σy − 1

2)
Γ(κ+ σy)Γ(κ[q − 1] + c0 − σy)

.

For c0 →∞ the function W behaves as

W (c0x)→
1
2 − κ+ x(κq − 1)√

x(1− x)
. (51)

Lemma 4.8 Let q ≥ 3. Then

M∞0 =
1

N (q, κ, 0)

∫ 1

0

dqp δ(1−
∑
α∈Q

pα) p−1+κ min
y∈Q

1
2 − κ+ py(κq − 1)√

py(1− py)
. (52)

Proof: We start from Lemma 4.7. Asymptotically σ tends to c0p. Hence E(0)
σ becomes Ep with

τ = 0. �

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

κ

M∞
0

q = 3

q = 5

Figure 1: .

Proof: We start from Lemma 4.7. Asymptotically σ tends to c0p. Hence E(0)
σ

becomes Ep with τ = 0. !

Lemma 4.9 Let τ ! 1. The normalizaton factor N in F (p) can be expressed
as an expansion in powers of τ as follows

N (q, κ, τ) =
∞∑

x=0

q−1∑
b=0

τx+bκ

(
q

b

)
(−1)x+bB(κ1q−b)

(−1 + κ[q − b]
x

) ∑
s∈NbP
j sj=x

(
x

s

) b∏
α=1

1
κ+ sα

. (52)

Proof: See Appendix A.1.

Corollary 4.10 Let κ < 1. For q = 2 the leading order behaviour of N is

N (2, κ, τ) = B(κ, κ)− 2
κ
τκ +O(τκ+1) (53)

while for q ≥ 3 it is

N (q, κ, τ) = B(κ1q)− q

κ
B(κ1q−1)τκ +O(τ2κ). (54)

Proof: Follows directly from Lemma 4.9. !
For the next lemma we first introduce some extra notation. Let A ⊆ Q. The
statement s ∈ NA means that s is a |A|-component vector such that for every
α ∈ A there is a component sα ∈ N. Furthermore we define the vector σA
as the restriction of σ to the components (σα)α∈A, and we define the scalar
σA =

∑
α∈A σα.

18

Figure 1: M∞0 as a function of κ, plotted for q = 3, q = 4 and q = 5. The graphs were obtained
by numerical evaluation of the integral in (52). For κ > 1/q there is some inaccuracy in the
numerical evaluation.

The M∞0 is plotted in Fig. 1 for q = 3, 4 and 5. (For large q, numerical evaluation of the integral
in (52) turns out to be very time consuming. We leave evaluation for q ≥ 6 for future work.) We
observe maxima at κ = 1/q. The maxima are sharp, with discontinuous derivatives. In [22] it was
observed that when c is not infinite, the curves are smooth, while the maxima lie at somewhat
larger κ. Fig. 1 shows that asymptotically it is optimal to choose κ equal to 1/q or very close
to 1/q.
We can read off from Fig. 1 which fingerprinting rate can be achieved asymptotically. The rate
R of a fingerprinting code is defined as R = (logq n)/m, i.e. the number of q-ary symbols needed
to uniquely determine one out of n users, divided by the number of symbols in the code. Using
ε−1

1 ≈ n/η (see Section 1.2), we get R ≈ 1/(Ac20 ln q) = (M∞0)2/(c20 2 ln q) for large c0. Evaluation
of the fraction (M∞0)2/(2 ln q) at κ = 1/q for q ∈ {2, 3, 4, 5} yields {0.29, 0.36, 0.33, 0.33}. We
tentatively conclude that the asymptotic rate is best at alphabet size q = 3.

14

Lemma 4.9 Let τ � 1. The normalizaton factor N in F (p) can be expressed as an expansion in
powers of τ as follows

N (q, κ, τ) = B(κ1q)+
∞∑
x=0

q−1∑
b=1

τx+bκ

(
q

b

)
(−1)x+bB(κ1q−b)

(−1 + κ[q − b]
x

)∑
s∈Nb0:P
j sj=x

(
x

s

) b∏
α=1

1
κ+ sα

.

(53)

Proof: See Appendix A.1.

Corollary 4.10 Let κ < 1. For q = 2 the leading order behaviour of N is

N (2, κ, τ) = B(κ, κ)− 2
κ
τκ +O(τκ+1) (54)

while for q ≥ 3 it is
N (q, κ, τ) = B(κ1q)− q

κ
B(κ1q−1)τκ +O(τ2κ). (55)

Proof: Follows directly from Lemma 4.9. �
For the next lemma we first introduce some extra notation. Let A ⊆ Q. The notation s ∈ NA
means that s is a |A|-component vector such that for every α ∈ A there is a component sα ∈ N.
Furthermore we define the vector σA as the restriction of σ to the components (σα)α∈A, and we
define the scalar σA =

∑
α∈A σα.

Lemma 4.11 Let q = 2 and κ = 1
2 + ψ, with ψ 6= 0 and |ψ| < 1

2 . Let τ < |ψ| 1
1+ψ /c0. Let Bvu

denote the incomplete Beta function,

Bvu(x, y) :=
∫ v

u

dp p−1+x(1− p)−1+y. (56)

Then for sufficiently large c0, M can be expressed as

M (q=2,κ6= 1
2) =

2c0
N [1 + signψ]B1−τ

τ (1 + ψ, c0 + ψ)

−2 signψ
N

c0!
[Γ(c02 + 1

2)]2
B1−τ
τ (c02 + 1

2 + ψ, c02 + 1
2 + ψ). (57)

Proof: See Appendix A.2.

Corollary 4.12 Let q = 2 and κ = 1
2 + ψ, with ψ 6= 0 and |ψ| < 1

2 . Then

M∞0 =
2√
π

Γ(1 + ψ)
Γ(1

2 + ψ)
sign(−ψ). (58)

Proof: See Appendix A.3
Remark 1: This result tells us7 that choosing κ > 1

2 is very bad asymptotically! The scheme
becomes so bad that the coalition’s expected score is negative, whereas innocent users have zero
expected score.
Remark 2: The limit ψ ↑ 0 yields M∞0 → 2/π, the known result for ψ = 0.
In the rest of the paper we will mainly consider κ ≤ 1

2 .

7In [19] it was already noted that κ > 1
2

is problematic, leading to negative terms in the
P

σ for any alphabet
size.

15

Lemma 4.13 Let q ≥ 3 and τ � 1. The expectation value in (47) is evaluated as

Ep[pσ
σy − c0py√
py(1− py)

] =
I1 + I2
N , (59)

with

I1 =
∞∑
j=0

∑
A⊂Q:
y∈A

τ j+κ|A|+σA−
1
2 (−1)j+|A|B(κ1q−|A| + σQ\A)

∑
s∈NA0 :
sA≤j

(− 1
2

j − sA

)

(
κ[q − |A|] + σQ\A − 1

sA

)(
sA
s

) ∏
α∈A\{y}

1
κ+ σα + sα


(

σy

κ+ σy + sy + j − sA − 1
2

− c0τ

κ+ σy + sy + j − sA + 1
2

) (60)

I2 =
∞∑
z=0

∑
A⊆Q\{y}

τz+κ|A|+σA(−1)z+|A|

 ∏
β∈(Q\A)\{y}

Γ(κ+ σβ)


Γ(κ+ σy − 1

2)Γ(κ[q − |A| − 1] + σQ\A − σy − z − 1
2)

Γ(κ[q − |A| − 1] + σQ\A − σy − z)Γ(κ[q − |A|] + σQ\A − z − 1)

(σy − c0
κ+ σy − 1

2

κ[q − |A|] + σQ\A − z − 1
)
∑
s∈NA0 :
sA=z

∏
α∈A

1
(κ+ σα + sα)sα!

. (61)

Here the Beta function of a scalar argument is defined as 1.

Proof: See Appendix A.4.
Note: The notation A ⊂ Q does not include A = Q.
Eqs. (60) and (61) look daunting, but they are useful: they allow us to numerically evaluate M
for nonzero τ with sufficient accuracy. Cutting off the j and z summations yields a result up to a
certain power of τ . The ensuing finite summations are far easier to compute numerically than the
original q-dimensional integration.

Lemma 4.14 Let q ≥ 2. For κ ∈ [1
2(q−1) ,

1
2] it holds that M0 ≥ M∞0 > 0 with M∞0 = O(1).

Furthermore, in the limit c0 →∞ it holds for any κ that M0 = M∞0 {1 +O(1
c0

)}.
Proof: See Appendix A.5.

Theorem 4.15 Let τ asymptotically follow the power law τ ∼ c−ν0 with ν ∈ (1, 2). Then the
leading order asymptotic behaviour of M for various combinations of q and κ is given by

q κ ν M/M∞0

≥ 3 (1
q ,

1
2) (1, 2) 1− c0τ

1
2 +κ q(q−1)

M∞0 (
1
2 +κ)

Γ(κq)Γ(κ+c0−1)
[Γ(κ)]2Γ(κ[q−1]+c0−1) + · · ·

≥ 3 < 1
q (1, 1

1−κ) 1− (· · ·)c0τ + · · ·
(1

1−κ , 2) 1− τκ 1
κ

[
M
∞(q−1)
0
M∞0

− q
B(κ,κ[q−1])

]
+ · · ·

2 1
2 (1, 2) 1− 2c0τ + · · ·

2 < 1
2 (1, 2) 1 + τκ 2

κB(κ,κ) + · · ·

Proof: See Appendix A.6.

16

5 Code length optimization for c0 →∞
5.1 Asymptotic correction terms

By combining the asymptotic expression for the code length parameter A (38) and Theorem 4.15,
we can find the optimal choice for the cutoff τ so as to minimize A (for given κ). If we write
M/M∞0 = 1− ω, with ω given in the table in Theorem 4.15, then from (38) we have

A =
2

(M∞0)2

[
1 + 2ω +

M∞0
3c0
√
τ

+ · · ·
]
. (62)

Several situations can occur.

• ω is positive and proportional to a positive power of τ , e.g. ω ∼ ca0τ
b for some b > 0 and

some a. In this case the best code length is obtained by letting ω and 1
c0
√
τ

scale in the

same way, if possible. We have ω ∼ ca−νb0 and 1
c0
√
τ
∼ c
−1+ν/2
0 ; ν has to be set such that

a− νb = −1 + ν/2, if allowed by the constraints on ν.

• ω = O(c−1
0). In this case ω loses against 1

c0
√
τ
∼ c−1+ν/2

0 , since ν > 0. The best code length
is obtained by making 1

c0
√
τ

as small as possible, i.e. ν as small as possible.

• ω is negative. In this case the best code length is obtained by setting ν such that ω beats
1

c0
√
τ

by the largest possible margin. If this turns out to be impossible, then 1
c0
√
τ

should be
made as small as possible, as above.

The above considerations lead to the following result.

Theorem 5.1 Let κ be given. Let the asymptotic behavior of A be parametrized as A = 2
(M∞0)2 [1+

δ], where δ depends a.o. on the choice of τ . Let τ be parametrized as τ ∼ c−ν0 . Then the optimal
ν, which minimizes A, is given in the table below, for various combinations of q and κ. The sign
and the order of the ensuing δ are also listed.

q κ ν range optimal ν δ from optimal ν

≥ 3 (1
q ,

1
2) (1, 2) 2

1+κ +O(c−κ/(1+κ)
0)

≥ 3 < 1
q (1, 1

1−κ) 4/3 +O(c−1/3
0)

or 1
1−κ +O(c−1+1/(2[1−κ])

0)
(1

1−κ ,
2

1+2κ] and ω < 0 1
1−κ −O(c−κ/(1−κ)

0)
(1

1−κ ,
2

1+2κ] and ω > 0 2
1+2κ +O(c−2κ/(1+2κ)

0)
(max{ 1

1−κ ,
2

1+2κ}, 2) max{ 1
1−κ ,

2
1+2κ} +O(c−1+ν/2

0)

2 1
2 (1, 2) 4/3 +O(c−1/3

0)
2 < 1

2 (1, 2
1+2κ) 1 + 0+ −O(c−κ−0+

0)
2 (2

1+2κ , 2) 2
1+2κ +O(c−2κ/(2κ+1)

0)

Proof: See Appendix A.7.
Theorem 5.1 allows us to draw conclusions about the optimization of the code length. For a given
q, we are allowed to choose some κ and τ so as to minimize A. The M∞0 depends on q and κ only;
hence κ should be chosen such that M∞0 is (close to) maximal. Then τ must be set such that the
leading order correction δ is as negative as possible. (If δ cannot be negative, then it should be
made as close to zero as possible.)

17

5.2 Asymptotic optimization for q = 2

The largest value of M∞0 is achieved at κ = 1/2. Hence the optimum for ‘c0 =∞’ lies at κ = 1/2.
According to Theorem 5.1 (3rd row from below in the table), the corresponding best choice for
the cutoff is τ ∼ c−4/3

0 , leading to δ ∼ c−1/3
0 . This matches the result of Laarhoven and de Weger

[12].
However, it is possible to achieve a smaller δ for ‘intermediate’ large values of c0. As can also be
seen from Theorem 5.1 (2nd row from below in the table), by setting κ slightly smaller than 1/2
the asymptote becomes worse, but is approached with a power law ≈ c

−1/2
0 , which falls off faster

than c
−1/3
0 . For this regime we can formulate the following result.

Theorem 5.2 Let q = 2, κ = 1
2 − ε, τ = Tc−1−ρ

0 , with ε � 1, ε > 0, ρ < ε
1−ε and T some

positive constant. For c0 > (T/ε)1/ρ the code length parameter is given by

A =
π2

2
[1 + ε · 4 ln 2 +O(ε2)]

[
1− 4

π

√
Tc
− 1

2 +ε− ρ2 +ερ

0 +
2

3π
√
T
c
− 1

2 + ρ
2

0 + · · ·
]
. (63)

The negative correction term dominates the positive correction term for c0 > (1
6T)

1
ε−ρ+ερ .

Proof: See Appendix A.8.
Note that the bound c0 > (1

6T)
1

ε−ρ+ερ is typically an extremely large number; hence, in practice,
the positive term in (63) is dominant. The positive correction term of order ≈ c−1/2

0 can be better
than the +O(c−1/3

0) that is obtained at κ = 1/2, ν = 4/3. Fig. 2 shows an example of a better
correction term than (2) for large but finite c0.

Proof: See Appendix A.8.
Note that the bound c0 > (1

6T)
1

ε−ρ+ερ is typically an extremely large number;
hence, in practice, the positive term in (63) is dominant. But even the positive
correction term of order ≈ c

−1/2
0 is better than the +O(c−1/3

0) that is obtained
at κ = 1/2, ν = 4/3.

100 200 300 400 500

1.15

1.20

1.25

1.30

c0

A · 2/π2

Figure 2: .

Fig. ??
We conclude that it can make sense in practice to set κ slightly below 1/2.
@

5.3 Asymptotic optimization for q ≥ 3

For q ≥ 3 it is a bit harder to decide which parameter settings are optimal. If
we set κ = 1/q + 0+, then line 1 of the table in Theorem 5.1 tells us that the
best choice is τ ∼ c

−2q/(1+q)+0+

0 , with a positive correction term of approximate
order O(c−1/(q+1)

0); not a very good result. Setting κ = 1/q − 0+ allows for
better correction terms.

• For q = 3, κ = 1/3− 0+, the interval (1
1−κ , 2

1+2κ] does not exist (see lines
3 and 4 in the table of Theorem 5.1). Hence there is no possibility to
achieve the corresponding negative correction term. The best option is to
set ν = 4/3, which yields a positive correction term of order O(c−1/3

0).

• For q ≥ 4, κ = 1/q−0+, the interval (1
1−κ , 2

1+2κ] does exist. Furthermore,
from the numerical results on M∞

0 (part of which is shown in Fig. 1) we
find that ω < 0 for q = 4, 5, 6. Hence the negative correction term of order
O(c−1/[q−1]

0) applies when ν is set to ν = 1
1−κ +0+. For larger q we do not

have numerical results, and there it might be the case that ω > 0. Then
the best option is to set ν = 1

1−κ − 0+, yielding a positive correction term

23

Figure 2: The dotted line is the expression 1+(12/π2)1/3c
−1/3
0 from [12]. The solid line corresponds

to (63) with the ε2 term neglected, for ε = ρ = 0.02, T = 0.0215.

5.3 Asymptotic optimization for q ≥ 3

For q ≥ 3 it is a bit harder to decide which parameter settings are optimal. If we set κ = 1/q+0+,
then line 1 of the table in Theorem 5.1 tells us that the best choice is τ ∼ c

−2q/(1+q)+0+

0 , with
a positive correction term of approximate order O(c−1/(q+1)

0); not a very good result. Setting
κ = 1/q − 0+ allows for better correction terms.

• For q = 3, κ = 1/3 − 0+, the interval (1
1−κ ,

2
1+2κ] does not exist (see lines 3 and 4 in the

table of Theorem 5.1). Hence there is no possibility to achieve the corresponding negative
correction term. The best option is to set ν = 4/3, which yields a positive correction term
of order O(c−1/3

0).

18

• For q ≥ 4, κ = 1/q−0+, the interval (1
1−κ ,

2
1+2κ] does exist. Furthermore, from the numerical

results on M∞0 (part of which is shown in Fig. 1) we find that ω < 0 for q = 4, 5, 6. Hence
the negative correction term of order O(c−1/[q−1]

0) applies when ν is set to ν = 1
1−κ + 0+.

For larger q we do not have numerical results, and there it might be the case that ω > 0.
Then the best option is to set ν = 1

1−κ − 0+, yielding a positive correction term of order

approximately O(c
−1+ 1

2[1−κ]
0) = O(c

− q−2
2[q−1]

0). Note that this decreases for increasing alphabet
size.

It would be nice to derive a result like Theorem 5.2 for general alphabet size, but that requires
precise knowledge of the ω in the expression M/M∞0 = 1− ω.

6 Optimization of the code length for finite c0

6.1 Formulas for finite coalition size

Based on Corollaries 3.2 and 3.6 we provide analytic equations for finding the optimal code length
for non-asymptotic c0. They take the form of coupled implicit equations.

Theorem 6.1 Let q ≥ 3 and 2 ≤ c ≤ c0. Let
√
τ ≤

√
2
q (1 − 1√

q−1
) and

√
τ < M

2eq . Let the
functions f1 and f2 be defined as

f1(τ, r) =
1
M2

[
1 +

M

c0
√
τ

(
1
3

+ ηr) +
√
D

]
(64)

f2(τ, r) =
η

eq

r

c0τ
e−1/r (65)

D(τ, r) = 1 +
2M
c0
√
τ

(
1
3

+ ηr) +
M2

9c20τ
. (66)

Then there exists an r∗(τ) > 0 such that f1(τ, r∗(τ)) = f2(τ, r∗(τ)), and the following choice of A
and B

A = f1(τ, r∗)

B = Mf1(τ, r∗)− ηr∗
c0
√
τ

(67)

achieves both PFP ≤ ε1 and PFN ≤ ε2.

Proof: See Appendix A.9.
For small (non-asymptotic) c0 it is quite difficult to determine which value of τ is optimal. The
main difficulty is the complicated dependence of M on τ . If ∂M/∂τ is known, then τ can be
optimized in the following way.

Theorem 6.2 The code length parameter A is minimized by choosing A,B according to Theo-
rem 6.1 and by setting the cutoff parameter to τ∗, where τ∗ and r∗ are obtained by solving the
following system of equations for τ and r,

f1(τ, r) = f2(τ, r) ; τ
∂(f1 − f2)/∂τ
∂(f1 − f2)/∂r

= − r2

r + 1
. (68)

Proof: See Appendix A.10.
Note that the derivative ∂f1/∂τ contains ∂M/∂τ . This hinders straightforward application of
Theorem 6.2. An approximation for ∂M/∂τ can be based on Lemmas 4.9 and 4.13.

19

0

A

r

f1

f2

r∗

10

Figure 3: Schematic plot of the functions f1 and f2 as a function of r for fixed τ .

6.2 Numerical results for ‘small’ coalition sizes

In this section we present numerical results for q = 3, q = 4 and q = 5. For fixed q, c0 and η we
used Theorem 6.1 to find κ and τ values that minimize the code length parameter A. Table 1
shows κ, τ and A for q = 3 at several c0. In Fig. 4 we plotted A versus c0 in two different ways:
(i) the parameter A itself; (ii) the expression A · log2 q. The first way reflects the number of q-ary
symbols, since A is defined according to m = Ac20 ln ε−1

1 , with m the number of symbols in a
codeword. The second way measures the amount of ‘space’ occupied by the watermark, and is a
more fair way to compare the use of different alphabet sizes; A log2 q is inversely proportional to
the code rate (see Section 4.2).
From Fig. 4 we see that the rate at c0 ≤ 20 worsens when the alphabet size is increased, even
though the code length (number of q-ary symbols) is reduced. We have to be careful drawing
conclusions from this graph. It shows values of A that are optimal with respect to the chosen
proof method and therefore does not necessarily tell what is ‘really’ happening.8 Furthermore, the
results in Section 4.2 demonstrate that for c0 →∞ the opposite behaviour occurs: there the code
rate increases with growing q.

q = 3

η = ln 1/2
ln 10−10 ≈ 0.030 η = ln 1/2

ln 10−3 ≈ 0.100

c0 A κ τ A κ τ

3 14.3 0.309 0.0017 15.4 0.309 0.0017

4 12.3 0.309 0.0013 13.2 0.302 0.0017

5 10.9 0.304 0.0013 11.7 0.304 0.0013

6 10.0 0.305 0.0011 10.7 0.305 0.0011

8 8.85 0.305 0.0009 9.43 0.304 0.0009

10 8.09 0.305 0.0007 8.60 0.303 0.0008

13 7.33 0.302 0.0006 7.77 0.301 0.0006

20 6.38 0.294 0.00046 6.70 0.299 0.00042

Table 1: Results of numerical optimization of the code length parameter A for q = 3, using
Theorem 6.1. For various combinations of c0 and η, the optimal A is shown as well as the κ and
τ values required to get the optimal A.

8For a given attack strategy, the method of [20, 19] can be used to obtain exact results.

20

!
!
!
! ! !

!

!

!

!

!

!
!

!

!

!

!
!

!
!

!

!

!
!
!

!
!

!
5 10 15 20

6

8

10

12

14

! ! ! ! ! !
!

!

!

!
!

!
!

!

!

!

!
!

!
!

!

!

!

!
!

!
!

!

5 10 15 20

10

15

20

cc

A A·log2 q

q = 2 q = 2

q = 3

q = 3

q = 5

q = 5

Figure 3: .

Theorem 7.1 Let the following inequalities be satisfied,

√
τ <

M

2qe
(68)

c0τ ln(
1

c0τ
) <

M2η

2e2q
(69)

c0

√
τ

ln[ln(1/c0τ) 2eq
M2η]

ln(1/c0τ)
≥ M(1

3 + η). (70)

Then the choice A = Â, B = B̂, with

Â =
2

M2

[
1 +

M

3c0
√
τ

(1 + 3ηr̂)
]

(71)

B̂ =
2
M

[
1 +

M

3c0
√
τ

(1 + 3
2ηr̂)

]
(72)

r̂ := 1/ ln
[
(c0τ ln

1
c0τ

)−1 M2η

2eq

]
, (73)

achieves both PFP ≤ ε1 and PFN ≤ ε2.

Proof: See Appendix A.11.
Theorem 7.1 provides a shorter sufficient code length (by a factor ≈ 2) than
the proofs in [21]. (Although the asymptotic value 2/M2 was already derived
in [21] using the Gaussian approximation.)

Theorem 7.2 Let q ≥ 3 and κ ∈ (1
q , 1

2). Let λ > 0 be a constant defined
by M = M0(1 − λc0τ

1/2+κ + higher order terms), in accordance with Corol-
lary ??. For c0 → ∞, the code length parameter Â in Theorem 7.1 converges
to 2/(M∞

0)2, and the fastest possible convergence to this limit occurs when τ is
chosen as

τopt = Topt · c
− 2

1+κ
0 ; Topt =

[
M∞

0

6(1 + 2κ)λ

] 1
1+κ

. (74)

25

Figure 4: Optimal code length parameter, obtained numerically using Theorem 6.1, as a function
of c0, for η = 0.03 and q = 2, 3, 4, 5. The data for q = 2 were taken from [12]. Left: The
parameter A, related to the number of q-ary symbols. Right: The product A log2 q, inversely
proportional to the rate of the code.

6.3 Formulas for ‘large’ c0

It is interesting to see what happens to the finite-c0 formulas in Theorem 6.1 when the coalition
size is increased. For c0 � 1 we can solve the crossover point r∗(τ) approximately, and also
approximately determine how τ must be chosen as a function of c0 in order to minimize the code
length. The cutoff τ has to be chosen as a decreasing function of c0 such that c0τ1/2+κ → 0 and
c0
√
τ →∞.

Theorem 6.3 Let the following inequalities be satisfied,

√
τ <

M

2qe
(69)

c0τ ln(
1
c0τ

) <
M2η

2e2q
(70)

c0
√
τ

ln[ln(1/c0τ) 2eq
M2η]

ln(1/c0τ)
≥ M(1

3 + η). (71)

Then the choice A = Â, B = B̂, with

Â =
2
M2

[
1 +

M

3c0
√
τ

(1 + 3ηr̂)
]

(72)

B̂ =
2
M

[
1 +

M

3c0
√
τ

(1 + 3
2ηr̂)

]
(73)

r̂ := 1/ ln
[
(c0τ ln

1
c0τ

)−1M
2η

2eq

]
, (74)

achieves both PFP ≤ ε1 and PFN ≤ ε2.

Proof: See Appendix A.11.
Note that the inequalities (69–71) are not difficult to satisfy.
Theorem 6.3 provides a shorter sufficient code length (by a factor ≈ 2) than the proofs in [22].
(Although the asymptotic value 2/M2 was already derived in [22] using the Gaussian approxima-
tion.)
The code length parameter (72), unsurprisingly, has the same form as (38), with an explicit
expression for the ‘higher order’ terms in (38). Theorem 6.3 captures the large-c0 behaviour of
the provably secure code without specifying an asymptotic relation for τ as a function of c0.

21

7 Summary

Use of the Bernstein inequality (for FP, leading to Corollary 3.2) and the Bennett inequality (for
FN, leading to Corollaries 3.6 and 3.8), instead of the Markov inequality, significantly simplifies
the security proofs for Tardos codes. Furthermore, for q ≥ 3 the obtained FN bound is tighter
than previously available. With very little effort the lower bound (38) on the large-c0 code length
parameter is derived, as well as the general-c0 optimization equations given in Theorem 6.1.
Our paper could have ended at this point. However, the parameter M has a nontrivial dependence
on c0, q, the concentration parameter κ and the cutoff τ . For a serious analysis of optimal code
lengths this dependence has to be known precisely. Section 4 is completely devoted to this problem,
and most of the appendices too. The limit τ → 0, c0 → ∞ is difficult to compute, because it
requires a (q − 1)-dimensional integration over p.
Numerics for q = 3, 4, 5 (Fig. 1) indicate that the asymptotic code rate is best at alphabet size q =
3. One has to be careful how to interpret this result. On the one hand, it seems to indicate
that the q-ary scheme of [22] fails to make use of the fact that the fingerprinting capacity is an
increasing function [3] of q. However, one must also bear in mind that the provably secure code
length may be significantly larger than the actually secure code length. Unfortunately, the proof
method does not reveal how much tightness is lost in the inequalities.
The lemmas that give finite-c0 correction terms (Lemmas 4.9, 4.11 and 4.13) are not pretty.
However, they have enabled us to derive optimal asymptotic power laws for the code length
parameter A. For q = 2 we have found that setting κ slightly below 1/2 allows for shorter
codes (Fig. 2). Furthermore, the ugly lemmas made it possible to do the small-c0 code length
optimization in Section 6.2. This optimization shows that for c0 ≤ 20 the binary code has a
better rate than q ≥ 3. However, all the ‘optimality’ results are again valid only with respect
to the employed proof technique, which makes it hard to draw final conclusions about the real
performance of the Tardos scheme.

Acknowledgements

We thank Dion Boesten, Jeroen Doumen, Thijs Laarhoven, Antonino Simone, and Benne de
Weger for useful discussions. We thank Wil Kortsmit for his help with numerical integrations.
This research was funded by Sentinels.

References

[1] E. Amiri and G. Tardos. High rate fingerprinting codes and the fingerprinting capacity. In
Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 336–345,
2009.

[2] O. Blayer and T. Tassa. Improved versions of Tardos’ fingerprinting scheme. Designs, Codes
and Cryptography, 48(1):79–103, 2008.

[3] D. Boesten and B. Škorić. Asymptotic fingerprinting capacity for non-binary alphabets. In
Information Hiding 2011, volume 6958 of LNCS, pages 1–13. Springer, 2011.

[4] D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEE Transactions
on Information Theory, 44(5):1897–1905, 1998.

[5] A. Charpentier, C. Fontaine, T. Furon, and I.J. Cox. An asymmetric fingerprinting scheme
based on Tardos codes. In Information Hiding, volume 6958 of LNCS, pages 43–58. Springer,
2011.

[6] A. Charpentier, F. Xie, C. Fontaine, and T. Furon. Expectation maximization decoding of
Tardos probabilistic fingerprinting code. In Media Forensics and Security, volume 7254 of
SPIE Proceedings, page 72540, 2009.

22

[7] T. Furon, A. Guyader, and F. Cérou. On the design and optimization of Tardos probabilistic
fingerprinting codes. In Information Hiding, volume 5284 of Lecture Notes in Computer
Science, pages 341–356. Springer, 2008.

[8] T. Furon, L. Pérez-Freire, A. Guyader, and F. Cérou. Estimating the minimal length of
Tardos code. In Information Hiding, volume 5806 of LNCS, pages 176–190, 2009.

[9] S. He and M. Wu. Joint coding and embedding techniques for multimedia fingerprinting.
TIFS, 1:231–248, June 2006.

[10] Y.W. Huang and P. Moulin. Capacity-achieving fingerprint decoding. In IEEE Workshop on
Information Forensics and Security, pages 51–55, 2009.

[11] C. Knessl and J.B. Keller. Partition asymptotics from recursion equations. Siam J. Appl.
Math., 50(2):323–338, 1990.

[12] T. Laarhoven and B.M.M. de Weger. Optimal symmetric Tardos traitor tracing schemes,
2011. http://arxiv.org/abs/1107.3441.

[13] P. Meerwald and T. Furon. Towards joint Tardos decoding: the ‘Don Quixote’ algorithm. In
Information Hiding, volume 6958 of LNCS, pages 28–42. Springer, 2011.

[14] P. Moulin. Universal fingerprinting: Capacity and random-coding exponents. In Preprint
arXiv:0801.3837v2, avilable at http: // arxiv. org/ abs/ 0801. 3837 , 2008.

[15] K. Nuida. Short collusion-secure fingerprint codes against three pirates. In Information
Hiding, volume 6387 of LNCS, pages 86–102. Springer, 2010.

[16] K. Nuida, S. Fujitsu, M. Hagiwara, T. Kitagawa, H. Watanabe, K. Ogawa, and H. Imai. An
improvement of discrete Tardos fingerprinting codes. Des. Codes Cryptography, 52(3):339–
362, 2009.

[17] K. Nuida, M. Hagiwara, H. Watanabe, and H. Imai. Optimal probabilistic fingerprint-
ing codes using optimal finite random variables related to numerical quadrature. CoRR,
abs/cs/0610036, 2006.

[18] H.G. Schaathun. On error-correcting fingerprinting codes for use with watermarking. Multi-
media Systems, 13(5-6):331–344, 2008.

[19] A. Simone and B. Škorić. Asymptotically false-positive-maximizing attack on non-binary
Tardos codes. In Information Hiding, volume 6958 of LNCS, pages 14–27. Springer, 2011.

[20] A. Simone and B. Škorić. Accusation probabilities in Tardos codes: beyond the Gaussian
approximation. Designs, Codes and Cryptography, 63(3):379–412, 2012.

[21] G. Tardos. Optimal probabilistic fingerprint codes. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing (STOC), pages 116–125, 2003.

[22] B. Škorić, S. Katzenbeisser, and M.U. Celik. Symmetric Tardos fingerprinting codes for
arbitrary alphabet sizes. Designs, Codes and Cryptography, 46(2):137–166, 2008.

[23] B. Škorić, S. Katzenbeisser, H.G. Schaathun, and M.U. Celik. Tardos fingerprinting codes
in the Combined Digit Model. IEEE Transactions on Information Forensics and Security,
6(3):906–919, 2011.

[24] B. Škorić, T.U. Vladimirova, M.U. Celik, and J.C. Talstra. Tardos fingerprinting is better
than we thought. IEEE Transactions on Information Theory, 54(8):3663–3676, 2008.

[25] F. Xie, T. Furon, and C. Fontaine. On-off keying modulation and Tardos fingerprinting. In
Proc. 10th Workshop on Multimedia & Security (MM&Sec), pages 101–106. ACM, 2008.

23

A Proofs

A.1 Proof of Lemma 4.9

We take the alphabet labeling Q = {1, 2, . . . , q} in this proof, without loss of generality. The
normalization constant N in (3) is defined as N =

∫ 1−t
τ

dqp δ(1−∑α pα)p−1+κ. The upper bound
1− t on the integration can be replaced by ∞, since the delta function makes sure that only the
relevant part of the integration region plays a role. We split the integration operator

∫
dqp into

a product of q operators, and then further split each of them according to
∫∞
τ

=
∫∞

0
− ∫ τ

0
. This

gives rise to a sum over 2q integration operators, which due to symmetry can be grouped according
to the number of

∫ τ
0

factors appearing.

N =

[∏
α∈Q

(
∫ ∞

0

dpα −
∫ τ

0

dpα)

]
p−1+κδ(1−

∑
γ∈Q

pγ)

= B(κ1q) +
q−1∑
b=1

(
q

b

)
(−1)b

[
b∏

α=1

∫ τ

0

dpα

] q∏
β=b+1

∫ ∞
0

dpβ

p−1+κδ(1−
∑
γ∈Q

pγ).

The maximum value of the index b is q − 1, since at b = q the delta function can no longer be
satisfied. We write pA :=

∑b
α=1 pα and pβ = (1− pA)sβ , with sβ ∈ [0, 1]. Provided that τ < 1/q

(which in practice is always the case) we can then evaluate the pβ integrals,

N −B(κ1q) =
q−1∑
b=1

(
q

b

)
(−1)b

[
b∏

α=1

∫ τ

0

dpα p−1+κ
α

]
(1− pA)−1+κ(q−b)

∫ ∞
0

dq−bs s−1+κδ(1−
q∑

a=b+1

sa)

=
q−1∑
b=1

(
q

b

)
(−1)bB(κ1q−b)

[
b∏

α=1

∫ τ

0

dpα p−1+κ
α

]
(1− pA)−1+κ(q−b). (75)

We expand in τ , using the fact that pA = O(τ). We write pα = τuα, with uα ∈ [0, 1]. Using the
binomial expansion of (1− pA)··· we get

(1− pA)−1+κ(q−b) =
∞∑
x=0

τx
(−1 + κ[q − b]

x

)
(−
∑
α

uα)x. (76)

Substitution into (75) and doing a multinomial expansion of (
∑
uα)x yields

N = B(κ1q) +
q−1∑
b=1

(
q

b

)
(−1)bB(κ1q−b)

∞∑
x=0

τx+bκ(−1)x
(−1 + κ[q − b]

x

)
ζbx

ζbx :=
∫ 1

0

dbu u−1+κ(
b∑

α=1

uα)x =
∑

s:
P
j sj=x

(
x

s

) b∏
α=1

1
κ+ sα

. (77)

A.2 Proof of Lemma 4.11

For q = 2, the minimization miny in (47) reduces to choosing one out of two expectation values.
Because of the 0 ↔ 1 symbol symmetry these two values turn out to be identical, up to a minus
sign. The negative contribution is always chosen, except where the marking assumption prohibits
it. The sum over the vector σ reduces to a sum over a scalar σ. Also because of symbol symmetry,
the contribution from c0−σ equals the one from σ. Hence the range of the σ-sum can be restricted
to the lower half.

24

Without loss of generality we take c0 odd. Then

M =
2c0
N J1 − 2

N
(c0−1)/2∑
σ=1

(
c0
σ

)
|J2| (78)

J1 :=
∫ 1−τ

τ

dp pψ(1− p)c0−1+ψ

J2 :=
∫ 1−τ

τ

dp pσ−1+ψ(1− p)c0−σ−1+ψ(σ − c0p).

Further evaluation of the integrals yields

J1 = B(1 + ψ, c0 + ψ)−
∫ τ

0

dp pψ(1− p)c0−1+ψ −
∫ τ

0

dk kc0−1+ψ(1− k)ψ

= B(1 + ψ, c0 + ψ)− τ1+ψ

1 + ψ
[1 +O(c0τ)] (79)

J2 =
∫ 1−τ

τ

dp [p(1− p)]ψ d
dp

[pσ(1− p)c0−σ]

= −ψ c0 − 2σ
c0 + 2ψ

B(σ + ψ, c0 − σ + ψ)− τσ+ψ σ

σ + ψ
[1 +O(c0τ)]. (80)

In the last step we used integration by parts and made use of coτ � 1.
Next we look at the Beta function term in (80) and compare its magnitude to the factor τσ+ψ in
the last term. We distinguish between two cases:

• σ � c0. In this case we apply Lemma 4.1 and obtain

ψB(σ + ψ, c0 − σ + ψ) = ψΓ(σ + ψ)c−σ−ψ0 [1 +O(1/c0)]. (81)

The condition τ < |ψ| 1
1+ψ /c0 that we imposed in the lemma makes sure that the τσ+ψ term

‘loses’: we get τσ+ψ < |ψ|σ+ψ
1+ψ c−σ−ψ0 ≤ |ψ|c−σ−ψ0 .

• σ of the same order as c0. We write σ = αc0, with α < 1
2 , α � 1/c0. Applying Lemma 4.2

we find

ψB(σ + ψ, c0 − σ + ψ) = ψ

√
2π√
c0

[α(1− α)]−
1
2 +ψe−c0h(α)[1 +O(

1
c0

)]. (82)

Again, the imposed condition on τ causes the τσ+ψ term to ‘lose’: we have τσ+ψ <
|ψ|c−σ−ψ0 = |ψ|c−ψ0 exp[−c0α ln c0]. Since α ln c0 > h(α) for α � 1/c0 and large enough
c0, we have an expression that is exponentially smaller than (82) in the limit c0 →∞.

We conclude that the term containing the Beta function determines the sign of J2. Furthermore,
the factor c0− 2σ is positive. The Beta function is also positive. Hence for sufficiently large c0 we
have |J2| = J2 · sign(−ψ) for all σ ∈ {1, · · · , c0−1

2 }.
Then we go back to (78): we move the

∑
σ into the J2-integral and use the following summation

equality,

(c0−1)/2∑
σ=1

(
c0
σ

)
pσ(1− p)c0−σ(σ − c0p) = c0p(1− p)c0 − c0!

[(c0−1
2)!]2

[p(1− p)](c0+1)/2. (83)

Finally we express the integrals as incomplete Beta functions.

25

A.3 Proof of Corollary 4.12

In the limit c0 → ∞ we have τ ↓ 0, so that the incomplete Beta functions become complete. We
look at the first term in (57). If ψ < 0 then it vanishes. Using Lemma 4.1 we see that the Beta
function scales as

c0B(1 + ψ, c0 + ψ) ∼ c−ψ0 . (84)

Hence this term disappears for ψ > 0 as well. In the second term we use the doubling formula for
the Gamma function, c0! = (2c0/

√
π)Γ(c0/2 + 1/2)Γ(c0/2 + 1) and, again using Lemma 4.1,

B(c0/2 + κ, c0/2 + κ) =
√
π

2c0+2κ−1

Γ(c0/2 + κ)
Γ(c0/2 + 1/2 + κ)

∼
√
π

22ψ

(c0/2)−1/2

2c0
(85)

We divide by [Γ(c0/2 + 1/2)]2 and use Γ(c0/2 + 1)/Γ(c0/2 + 1/2) ∼ √c0/2. Using the doubling
formula again we rewrite the normalization factor N as

N (2, 1
2 + ψ, 0) = B(1

2 + ψ, 1
2 + ψ) = 2−2ψ

√
π

Γ(1
2 + ψ)

Γ(1 + ψ)
. (86)

Combining all the ingredients yields the end result.

A.4 Proof of Lemma 4.13

We write Ep[σy−c0py√
py(1−py)

pσ] = I
N , where I is a q-dimensional integral, split up as in Appendix A.1,

I = [
∏
α∈Q

(
∫ 1

0

dpα −
∫ τ

0

dpα)]δ(1−
∑
β∈Q

pβ)p−1+κ+σ σy − c0py√
py(1− py)

. (87)

The product
∏
α can be rewritten as a sum of different q-dimensional integrals; in each if these

integrals a different choice is made which of the α are integrated in the (0, τ) interval. We
denote the set of these symbols as A. For brevity we will use the notation a = |A|, B = Q \ A,
σA =

∑
α∈A σα, σB =

∑
β∈B σβ , PA =

∑
α∈A pα, PB =

∑
β∈B pβ .

I =
∑
A⊂Q

(−1)a
∫ τ

0

dapA p−1+κ+σA
A

∫ 1−PA

0

dq−apB p−1+κ+σB
B δ(1− PA − PB)

σy − c0py√
py(1− py)

(88)

(Note that A = Q does not occur in the sum.) We split the
∑
A into two parts: one with y ∈ A

(giving rise to a contribution to I denoted as I1) and one with y ∈ B (giving rise to I2). In
both parts we write, for β ∈ B, pβ = (1 − PA)sβ , with sβ ∈ (0, 1). We have δ(1 − PA − PB) =
(1−PA)−1δ(1−∑β∈B sβ). The integrals over the ‘B’ degrees of freedom can be evaluated to Beta
functions.
We first derive the result for I1.

I1 =
∑
A⊂Q:
y∈A

(−1)aB(κ1q−a + σB)
∫ τ

0

dapA p−1+κ+σA
A

σy − c0py√
py(1− py)

(1− PA)−1+κ[q−a]+σB . (89)

We use binomial and multinomial expansions to write

1√
1− py

=
∞∑
x=0

(−1/2
x

)
pxy ,

(1− PA)u =
∞∑
z=0

(
u

z

)
(−PA)z

=
∞∑
z=0

(
u

z

)
(−1)z

∑
s∈NA: sA=z

(
z

s

) ∏
α∈A

psαα . (90)

26

Substitution into (89) yields an expression containing a independent integrals that can be evaluated
analytically. Furthermore we re-arrange the x and z summations by introducing j := x+ z,

∞∑
x=0

∞∑
z=0

f(x, z) =
∞∑
j=0

j∑
z=0

f(j − z, z). (91)

Thus we obtain

I1 =
∞∑
j=0

∑
A⊂Q: y∈A

(−1)j+aτ j+κa+σA− 1
2B(κ1q−a + σB)

j∑
z=0

(− 1
2

j − z
)

(−1 + κ[q − a] + σB
z

) ∑
s∈NA: sA=z

(
z

s

) ∏
α∈A\y

1
κ+ σα + sα


(

σy

κ+ σy + sy + j − z − 1
2

− c0τ

κ+ σy + sy + j − z + 1
2

). (92)

We use the constraint sA = z to eliminate the z-sum,

I1 =
∞∑
j=0

∑
A⊂Q: y∈A

(−1)j+aτ j+κa+σA− 1
2B(κ1q−a + σB)

∑
s∈NA: sA≤j

(− 1
2

j − sA

)

Γ(κ[q − a] + σB)
Γ(κ[q − a] + σB − sA)

1∏
α sα!

 ∏
α∈A\{y}

1
κ+ σα + sα


(

σy

κ+ σy + sy + j − sA − 1
2

− c0τ

κ+ σy + sy + j − sA + 1
2

) (93)

Next we do a similar derivation for I2. Integration over the ‘B’ degrees of freedom gives

I2 =
∞∑
x=0

(− 1
2

x

) ∑
A⊆Q\{y}

(−1)x+a

∫ τ

0

dapA p−1+κ+σA
A (1− PA)−

3
2 +κ[q−a]+σB+x

{
σyB(κ1 + σB + ey[x− 1

2])− c0(1− PA)B(κ1 + σB + ey[x+ 1
2])
}
. (94)

Expansion of (1− PA)··· as in (90) folowed by
∫

dapA integration yields

I2 =
∞∑
z=0

∑
A⊆Q\{y}

(−1)z+aτz+κa+σA

 ∏
β∈B\{y}

Γ(κ+ σβ)


[∞∑
x=0

(− 1
2

x

)
(−1)x {σyξx − c0ξx+1}

] ∑
s∈NA: sA=z

(
z

s

)
1
z!

[∏
α∈A

1
κ+ σα + sα

]

ξx =
Γ(κ+ σy + x− 1

2)
Γ(κ[q − a] + σB − z + x− 1

2)
. (95)

Finally we use the following identity to get rid of the x-sum,

∞∑
x=0

(− 1
2

x

)
(−1)x

Γ(u+ x)
Γ(w + 1

2 + x)
=

Γ(u)Γ(w − u)
Γ(w − u+ 1

2)Γ(w)
, (96)

with u = κ+ σy − 1
2 , w = κ[q − a] + SB − z − 1.

27

A.5 Proof of Lemma 4.14

For τ = 0, the (q− 1)-dimensional integral Ep occurring in (47) can be evaluated exactly, yielding
generalized Beta functions. These can be rearranged [22, 19] to yield M0 =

E(0)
σ

[
min

y: σy≥1

Γ(κ+σy− 1
2)Γ(κ[q−1]+c0−σy− 1

2)
Γ(κ+ σy)Γ(κ[q − 1] + c0 − σy)

{
c0(1

2−κ)+σy(κq−1)
}]
. (97)

All the Gamma functions are positive, since σy ≥ 1 causes all their arguments to be nonnegative.
Furthermore, the condition κ ∈ [1

2(q−1) ,
1
2] makes sure that the expression {· · · } is positive9 at

σy ≤ c0 − 1 and nonnegative at σy = c0. That proves that M0 > 0 independent of c0.
It was shown in [22] that (97) is of order O(1) in the limit c0 →∞. Finally, a series expansion of
(97), of which we omit the details, shows that the correction to the leading order is +O(1

c0
). �

A.6 Proof of Theorem 4.15

The case q ≥ 3
We start from Lemma 4.13. The M0 part follows from setting z = 0, A = ∅ in I2. We use the
notation Y for the symbol choice y that achieves the minimum in (47). Note that Y is a function
of σ. For the sub-leading term, there are several competitors (1 to 4 listed below). Furthermore,
there is a positive O(1/c0) term from M0/M

∞
0 = 1 +O(1/c0), which has to be taken into account

as well.

1. Set j = 0, A = {Y } in I1 and take the τ = 0 part of N . This yields the following contribution
to M :

4M1 =
−1

B(κ1q)

∑
σ

(
c0
σ

)
τκ+σY − 1

2B(κ+ σQ\{Y })
σY

κ+ σY − 1/2
. (98)

We have to determine if it is possible for σY = 1 to occur, since this gives the lowest power
of τ . Close inspection of the function W (51) reveals that asymptotically W (c0−1)−W (1)→√

c0√
1−1/c0

(κq − 1)(1 − 2/c0). For κ > 1
q we have W (1) < W (c0 − 1), which means that σ-

vectors of the form (1, c0 − 1, 0, · · · , 0) will indeed lead to the selection of the symbol that
occurs once, i.e. σY = 1. Furthermore, W (c0 − 2) < W (1), which means that the above
form of σ is the only one that can yield σY = 1. Substitution of this form into (98) gives

4M1 =
−τκ+

1
2

B(κ1q)

∑
σ

∑
y∈Q

δσy,1
∑

α∈Q\y
δσα,c0−1

(
c0
σ

)
[Γ(κ)]q−2Γ(κ+ c0 − 1)

Γ(κ[q − 1] + c0 − 1)
1

κ+ 1
2

(99)

which reduces to the expression in the first row of the table. For κ < 1/q it does not occur
that σY = 1, and 4M1 (98) does not contain dominant contributions.

2. Take M0 and the leading order correction to N (q, κ, 0). From Corollary 4.10 we get

4M2 = M0
q

κB(κ, κq − κ)
τκ. (100)

Note that for κ > 1/q we have 4M2/4M1 = O(1/c0
√
τ)� 1.

3. Take N (q, κ, 0) and set A = ∅, z = 1 in I2. This yields a contribution

4M3 = c0τE(0)
σ

[
(κq+c0−1)

Γ(κ+ σY − 1
2)Γ(κ[q − 1] + c0 − σY − 3

2)
Γ(κ+ σY)Γ(κ[q − 1] + c0 − σY −1)

{σY
c0

(2−κq)− (1
2−κ)}

]
,

(101)
9The case q = 2, κ = 1

2
is special. Here the Γ(− 1

2
+ κ[q − 1] + c0 − σy) at σy = c has to be combined with the

expression {· · · } = 0 in order to obtain a non-divergent value 0 · Γ(0) = Γ(1) = 1.

28

with E(0)
σ as defined in (42). Using Lemma 4.1 we see that 4M3 is of order O(c0τ) when

σY = O(c0) and even smaller if σY = O(1). Thus for κ > 1/q we have 4M3/4M1 =
o(τ1/2−κ)� 1. In the case σY = O(c0) we can write

4M3 → c0τE(0)
σ

 σY
c0

(2− κq)− (1
2 − κ)√

σY
c0

(1− σY
c0

)

 . (102)

4. Take N (q, κ, 0) and set A = {γ} (with γ 6= Y), σγ = 0, z = 0 in I2. The contribution to M
is

4M4 =
−τκ
κ

E(0),q→q−1
σ

[
Γ(κ+σY − 1

2)Γ(κ[q−2]+c0−σY − 1
2)

Γ(κ+ σY)Γ(κ[q − 2] + c0 − σY)
{c0(1

2−κ)+σY (κ[q−1]−1)}
]

=
−τκ
κ

Mq→q−1
0 (103)

where the “q → q−1” denotes that the alphabet has effectively been reduced by the exclusion
of the symbol γ.

The largest possible contributions occur when σY = 1 (case κ > 1/q); the corresponding form
of σ = (1, c0−1, 0, · · · , 0) happens with probability O(c−κ[q−1]

0). Again using Lemma 4.1 we
conclude that4M4 = O(τκc1/2−κ[q−1]

0). We have4M4/4M1 = O(c−(κq−1)−(1/2−κ)
0 /(c0

√
τ)).

Finally, with κq > 1,κ < 1
2 and c0

√
τ →∞ we find 4M4 �4M1.

In the case κ < 1/q, we have σY = O(c0), yielding 4M4 = O(τκ).

For κ > 1/q, the 4M1 is of larger order than 4M2, 4M3, 4M4. Furthermore, 4M1 is also of
larger order than the O(1/c0) correction. This is seen as follows: c0τκ+1/2/[1/c0] = (c0

√
τ)(c0τκ);

use κ < 1/2 and c0
√
τ →∞.

For κ < 1/q, the contestants are 4M3 = O(c0τ) (4M3 > 0) and 4M2 +4M4 = O(τκ). Their
quotient is τκ/4M3 ∼ c−1

0 τκ−1 ∼ c−1+ν(1−κ)
0 .

• For ν < 1/(1 − κ), the c0τ wins. Note that c0τ dominates the 1/c0 correction, since
c0τ/[1/c0] = (c0

√
τ)2 with c0

√
τ →∞.

• For ν > 1/(1− κ), the τκ wins. Note that τκ dominates the 1/c0 correction, since we have
τκ/(1/c0) ∼ c1−νκ0 with ν < 1/κ.

The case q = 2
We start from Lemma 4.11. The τκ term in the last row of the table comes from taking all the
p-integrals with τ = 0 and then dividing by N as given in Corollary 4.10.
All the other leading order corrections to M0 are obtained from the Marking Assumption term (the
first term) and from the σ = 1 term in the summation; in both cases the correction can be computed
as an integration

∫ τ
0

dp(· · ·), and the leading order correction is proportional to
∫ τ

0
dp p−1/2+κ =

τ1/2+κ/(1/2+κ). It turns out that for σ = 1 the sign of the integral is sgn(1/2−κ−0+). For κ ≥ 1
2

the leading order corrections add up, yielding O(c0τ1/2+κ). However, for κ < 1
2 the leading order

corrections cancel each other, and the next terms (of relative order c0τ � 1) become dominant.

A.7 Proof of Theorem 5.1

We give the proof case by case. We refer to the table in Theorem 4.15 as ‘the table’.
q ≥ 3, κ ∈ (1

q ,
1
2), ν ∈ (1, 2):

From line 1 of the table we get δ = O(c0τ
1
2 +κ) + O(1

c0
√
τ

) = O(c
1−ν(

1
2 +κ)

0) + O(cν/2−1
0). The

contributions are of the same order if we set ν = 2/(1 + κ).

29

q ≥ 3, κ < 1
q , ν ∈ (1, 1

1−κ), assuming ω > 0:

Line 2 of the table gives δ = O(c0τ) + O(1
c0
√
τ

) = O(c1−ν0) + O(cν/2−1
0). The contributions are

of the same order if we set ν = 4/3. However, κ may be so small that 4/3 lies outside the given
range ν ∈ (1, 1

1−κ). In that case, the O(c1−ν0) wins and we want to make ν as large as possible.
q ≥ 3, κ < 1

q , ν ∈ (1, 1
1−κ), assuming ω < 0:

We have δ = −O(c0τ) +O(1
c0
√
τ

) = −O(c1−ν0) +O(cν/2−1
0). We want the coτ to win by as large

a margin as possible. This is achieved by setting ν = 1 + 0+.
q ≥ 3, κ < 1

q , κ <
1
4 , ν ∈ (1

1−κ ,
2

1+2κ], ω < 0:

Line 3 of the table gives δ = −O(τκ) +O(1
c0
√
τ

) = −O(c−νκ0) +O(cν/2−1
0). By setting ν as small

as possible, ν∗ = 1
1−κ + 0+, we let the negative term win as much as possible. This can be seen

by comparing the powers: −ν∗κ− (ν∗/2− 1) = (1
2 − 2κ)/(1− κ)− 0+, which is positive by virtue

of κ < 1
4 .

q ≥ 3, κ < 1
q , κ <

1
4 , ν ∈ (1

1−κ ,
2

1+2κ], ω > 0:

Now we have δ = +O(c−νκ0) +O(cν/2−1
0). The two terms are of equal order if we set ν = 2

1+2κ .
q ≥ 3, κ < 1

q , ν ∈ (max{ 1
1−κ ,

2
1+2κ}, 2):

Now we have δ = ±O(c−νκ0) + O(cν/2−1
0), but the second term always wins. The optimum is to

set ν as small as possible.
q = 2, κ ∈ [1

2 , 1), ν ∈ (1, 4
1+2κ):

Line 4 of the table gives δ = O(c0τ1/2+κ) +O(1
c0
√
τ

) = O(c1−ν(1/2+κ)
0) +O(cν/2−1

0). The balance
lies at ν = 2

1+κ , which is inside (1, 4
1+2κ).

q = 2, κ ∈ [1
2 , 1), ν ∈ (4

1+2κ , 2):

Line 5 of the table gives δ = O(c−1
0) +O(1

c0
√
τ

). The c−1
0 always loses. The optimum is to set ν

as small as possible.
q = 2, κ < 1

2 , ν ∈ (1, 2
1+2κ):

Line 6 of the table gives δ = −O(τκ) + O(1
c0
√
τ

) = −O(c−νκ0) + O(cν/2−1
0). Let κ = 1

2 − ψ and
ν = 1 + ε. The negative term wins as long as ε < ψ/(1− ψ).
q = 2, κ < 1

2 , ν ∈ (2
1+2κ , 2):

Again we have δ = −O(c−νκ0) +O(cν/2−1
0), but now the positive term always wins. The optimum

is to set ν as small as possible.

A.8 Proof of Theorem 5.2

Lemma 4.11 (from which the correction terms were derived) is applicable only for τ < ε/c0. This
translates to Tc−ρ0 < ε, i.e. c0 > (T/ε)1/ρ. This explains the condition on c0. Applying a Taylor
expansion to Corollary 4.12 for ψ = −ε gives

Γ(1− ε)
Γ(1

2 − ε)
=

1√
π

[1− ε · 2 ln 2 +O(ε2)], (104)

which leads to the factor after π2

2 in (63). In Theorem 5.2, the quotient of the positive correction
term divided by the negative one is 1

6T c
−ε+ρ(1−ε)
0 . The condition ρ < ε/(1 − ε) makes sure that

the negative correction term dominates for sufficiently large c0. The above mentioned quotient is
smaller than 1 for c0 > (1/6T)1/(ε−ρ+ερ).

A.9 Proof of Theorem 6.1

τ is given. We define r = c0
√
τ(MA − B)/η, with r ≥ 0. Instead of the variables (A,B) we

consider (A, r) as our independent variables of interest. We are allowed to apply Corollary 3.6,

30

since the condition MA − B > 0 is satisfied by the A,B solution given in Theorem 6.1. Using
Corollary 3.6 and V 2 < q (Lemma 4.3), we find

A ≤ f2(τ, r) =⇒ PFN ≤ ε2. (105)

Rewriting (23) in terms of A, r is a bit more laborious. It results in a quadratic inequality for A,

0 ≤ M2

2
A2 −A

{
1 +

M

c0
√
τ

(
1
3

+ ηr)
}

+
ηr

c20τ
(
1
3

+
1
2
ηr)

=⇒ PFP ≤ ε1. (106)

The quadratic function in A has two positive roots. We concentrate on the largest root,

A ≥ f1(τ, r) =⇒ PFP ≤ ε1. (107)

We have f1(τ, 0) > 0, f2(τ, 0) = 0, ∂f1∂r (τ, r →∞) = 2η/(Mc0
√
τ) and ∂f2

∂r (τ, r →∞) = η/(eqc0τ).
Since it was given that

√
τ < M

2eq , it holds at large enough r that ∂f2/∂r > ∂f1/∂r. Hence there
exists a point r∗(τ) where f1(τ, r∗) = f2(τ, r∗). See Fig. 3. The value r∗(τ) is the smallest value
of r for which both conditions A ≥ f1(τ, r) and A ≤ f2(τ, r) can hold simultaneously. �

A.10 Proof of Theorem 6.2

We have the following derivatives,

∂f2

∂τ
= −1

τ
f2 < 0

∂f2

∂r
=

r + 1
r2

f2 > 0.

∂f1

∂r
=

η

Mc0
√
τ

(1 +
1

2
√
D

) > 0. (108)

The implicit function theorem gives us

dr∗(τ)
dτ

= − ∂(f1 − f2)/∂τ
∂(f1 − f2)/∂r

∣∣∣∣
r=r∗(τ)

. (109)

Minimizaton of A = f2(r∗) with respect to τ can be written as

0 =
df2(τ, r∗(τ))

dτ
=
∂f2

∂τ
(τ, r∗) +

∂f2

∂r
(τ, r∗)

dr∗(τ)
dτ

. (110)

Substitution of (109) and the ∂f2/∂τ and ∂f2/∂r from (108) into (110) yields

0 = −1
τ
f2(τ, r∗)− r∗ + 1

r2∗
f2(τ, r∗)

∂(f1 − f2)/∂τ
∂(f1 − f2)/∂r

∣∣∣∣
r=r∗(τ)

. (111)

Multiplication by τ/f2 and some slight rearranging yields the end result. �

A.11 Proof of Theorem 6.3

The idea is to pick a value r̂ (74) slightly larger than r∗, and setA to some value Â ∈ [f1(τ, r̂), f2(τ, r̂)].
The condition (69) is necessary so that we can use Theorem 6.1.
We introduce the abbreviation y = ln[ln(1/c0τ) 2eq

M2η]/ ln(1/c0τ). The condition (70) ensures that
y < 1. We then have

f2(τ, r̂) =
2
M2
· 1

1− y >
2
M2

(1 + y). (112)

31

Condition (70) also ensures that r̂ < 1. For f1 we get

f1(τ, r̂) ≤ 2
M2

[
1 +

M

3c0
√
τ

(1 + 3ηr̂)
]
<

2
M2

[
1 +

M

3c0
√
τ

(1 + 3η)
]
, (113)

where the first inequality follows from neglecting a part of the determinant D (66) and the second
inequality from r̂ < 1. Condition (71) ensures that the lower bound on f2(τ, r̂), i.e. the last
expression in (112), lies higher than the upper bound on f1(τ, r̂), so that indeed we have f2(τ, r̂) >
f1(τ, r̂) as planned. Furthermore, the first inequality in (113), together with the definition of Â in
(72) tells us that indeed f1(τ, r̂) < Â < f2(τ, r̂). The choice forB follows by setting B̂ = MÂ− ηr̂

c0
√
τ

just as in Theorem 6.1. �

32

