
Fair Private Set Intersection with a Semi-trusted Arbiter

Changyu Dong1, Liqun Chen2, Jan Camenisch3, and Giovanni Russello4

1 Department of Computer and Information Science,University of Strathclyde,
changyu.dong@strathclyde.ac.uk

2 Hewlett-Packard Laboratories – Bristol, United Kingdom,
liqun.chen@hp.com

3 IBM Research – Zurich, Switzerland,
jca@zurich.ibm.com

4 Department of Computer Science, University of Auckland,
g.russello@aucklanduni.ac.nz

Abstract. A private set intersection (PSI) protocol allows two parties to compute the intersection of their
input sets privately. Most of the previous PSI protocols only output the result to one party and the other
party gets nothing from running the protocols. However, a mutual PSI protocol in which both parties can
get the output is highly desirable in many applications. A major obstacle in designing a mutual PSI protocol
is how to ensure fairness. In this paper we present the first fair mutual PSI protocol which is efficient and
secure. Fairness of the protocol is obtained in an optimistic fashion, i.e. by using an offline third party arbiter.
In contrast to many optimistic protocols which require a fully trusted arbiter, in our protocol the arbiter is
only required to be semi-trusted, in the sense that we consider it to be a potential threat to both parties’
privacy but believe it will follow the protocol and not collude with any of the two parties. The arbiter can
resolve disputes blindly without knowing any private information belongs to the two parties. This feature is
appealing for a PSI protocol in which privacy may be of ultimate importance.

1 Introduction

An interesting problem in secure computation is private set intersection (PSI). Namely, how to enable
two mutually untrusted parties to compute jointly the intersection of their private input sets. PSI has
many potential applications in private data mining, online recommendation services, online dating
services, medical databases and so on. There have been many protocols proposed to solve the PSI
problem [1–10]. The majority of them are single-output protocols, i.e. only one party obtains the
intersection and the other party gets nothing. However, there are many motivating scenarios in which
both parties want to know the intersection. Several examples have been given in [6] to demonstrate
the need for such mutual PSI protocols:

– Two intelligence agencies (e.g., USA’s CIA and UK’s MI5) want to compare their respective
databases of terrorist suspects. National privacy laws prevent them from revealing bulk data,
however, by treaty, they are allowed to share information on suspects of common interest.

– Two real estate companies would like to identify customers (e.g., homeowners) who are double-
dealing, i.e., have signed exclusive contracts with both companies to assist them in selling their
properties.

– A government agency needs to make sure that employees of its industrial contractor have no
criminal records. Neither the agency nor the contractor are willing to disclose their respective
data-sets (list of convicted felons and employees, respectively) but both would like to know the
intersection, if any.

A mutual PSI protocol must be fair, i.e. if one party knows the intersection, the other party should
also know it. However fairness is hard to achieve in cryptographic protocols (see Section 2 for a

brief overview). To efficiently achieve fairness, most fair cryptographic protocols are optimistic which
requires help from an offline arbiter who is a trusted third party. The arbiter only participates if one
party unfairly aborts the protocol and can recover the output from the protocol for the honest party.
Incorporating optimistic fairness in PSI protocols is not easy for two reasons: firstly, although there is
a generic structure, there is no generic construction for optimistic fair protocols. Secondly, the arbiter
usually has to get access to some private information and therefore has to be fully trusted. However, in
reality it is hard to find such a fully trusted third party. Think about the first example above, as the two
national intelligence agencies mutually distrust each other, the arbiter has to be an organisation that is
not controlled or influenced by one of the states. Under this constraint, the two agencies might have
to consider an organisation in a third country, e.g. the French intelligence agency DCRI. However
choosing an overseas third party and disclosing private information about citizens to it will infringe
the privacy laws. There seems no satisfactory solution to the dilemma. The same happens in the other
two examples: an independent auditing service provider could be well qualified to resolve the disputes
expect the privacy concerns. We can find more cases in which the two parties may trust the third party
for fairly resolving disputes, but may not trust it for privacy.

In this paper, we present the first fair mutual PSI protocol. The protocol has built-in support for
optimistic fairness and does not require setup assumptions such as certified input sets. In addition, the
third party acting as the arbiter can resolve disputes without knowing the private inputs or the output
of the PSI protocol. Hence we can significantly reduce the trust placed on the arbiter. This makes the
protocol more flexible in terms of practical usage as any third party can become an arbiter as long as
they are believed to be able to correctly carry out instructions and not collude with any parties.

The paper is organised as follows: in the next section we review the related work in PSI protocols
and fairness. Section 3 briefly summaries the building blocks of our protocol. Section 4 gives a high-
level overview of the protocol. Section 5 provides the details of a concrete construction. In section 6
we analyse the protocol and prove it is secure. Section 7 concludes the paper and gives an outlook of
future works.

2 Related Work

Private Set Intersection (PSI) protocols allow two parties, each with a private set, to securely compute
the intersection of their sets. It was first introduced by Freedman et al. in [1]. Their protocol is based on
oblivious polynomial evaluation. Dachman-Soled et al. [2], Hazay and Nissim [3] followed the obliv-
ious polynomial evaluation approach and proposed protocols which are more efficient in the presence
of malicious adversaries. Hazey and Lindell [4] proposed another approach for PSI which is based on
oblivious pseudorandom function evaluation. This approach is further improved by Jarecki and Liu
[5]. De Cristofaro et al. [6, 7] proposed PSI protocols with linear communication and computational
complexities.

All of the above protocols are single-output, i.e. one party gets the output and the other party
gets nothing. This is a traditional way to simplify protocol design in the malicious model because
it removes the need for fairness, i.e. how to prevent the adversary from aborting the protocol pre-
maturely after obtaining the output (and before the other party obtains it) [11].

Nevertheless, there have been a few mutual PSI protocols which are designed to output the inter-
section to both parties. Kissner and Song [8] proposed the first mutual PSI protocol. The protocol it-
self does not guarantee fairness, but relies on the assumption that the homomorphic encryption scheme
they use has a fair threshold decryption protocol. However, unless there is an online trusted third party,

it is also non-trivial to achieve fairness in threshold decryption protocols. On the other hand, if an on-
line trust third party is available, the PSI functionality can be trivially computed by giving the input
sets to the trusted party. Camenisch and Zaverucha [9] sketched a mutual PSI protocol which requires
the input sets to be signed and certified by a trusted party. Their mutual PSI protocol is obtained by
weaving two symmetric instances of a single-output PSI protocol with certified input sets. Fairness is
obtained by incorporating an optimistic fair exchange scheme. However this protocol does not work
in general cases where inputs are not certified because it is hard to force the two parties to use the
same inputs in the two instances. Another mutual PSI protocol is proposed by Kim et al. [10], but they
specifically state that fairness is not considered in their security model.

Fairness is a long discussed topic in cryptographic protocols. Cleve [12] showed that complete
fairness is impossible in two-party protocols in the malicious model. However, partial fairness can
be achieved. Partial fairness means that one party can have an unfair advantage, but the advantage is
computationally insignificant. Many protocols achieve partial fairness by using the gradual release ap-
proach [13–15]. However, this approach is very inefficient in nature. The Optimistic approach, which
uses an offline trusted third party, has been widely used to obtain fairness efficiently. It is called opti-
mistic because it cannot prevent the unfair behaviour but later the trusted third party can recover the
output for the honest party. There has been a long line of research in this direction [16–22]. Previ-
ously, the trusted third party in an optimistic fair protocol which requires non-trivial computation on
the inputs needs to be fully trusted and can get the output or inputs of the protocol if one party raises
a dispute. This might not be desirable when the output or inputs should be strictly kept private. There
are also other approaches for achieving partial fairness efficiently. But usually they work only for a
specific problem. For example, the concurrent signatures protocol [23] allows two parties to produce
and exchange two ambiguous signatures until an extra piece of information (called keystone) is re-
leased by one of the parties. The two parities obtain the signature from the other party concurrently
when the keystone is released and therefore fairness is achieved.

3 Building Blocks

3.1 Homomorphic Encryption

A semantically secure additively homomorphic public key encryption scheme is used as a building
block in the protocol. The homomorphic property can be stated as follows: (1) given two ciphertexts
Epk(m1), Epk(m2), Epk(m1 + m2) = Epk(m1) · Epk(m2); (2) given a ciphertext Epk(m1) and a
constant c, Epk(c ·m1) = Epk(m1)

c.

3.2 The FNP protocol

Our staring point is the PSI protocol in the semi-honest model proposed by Freedman et al. [1], which
is based on oblivious polynomial evaluation. In this protocol, one party A has an input set X and
another party B has an input set Y . Without loss of generality, we assume the sizes of the two input
sets are equal, i.e. |X| = |Y | = n. The two parties interact as follows

1. A chooses a key pair (pk, sk) for a homomorphic encryption scheme and makes the public key pk
available to B.

2. A defines a polynomial Q(y) = (y− x1)(y− x2) . . . (y− xn) =
∑n

i=0 diy
i, where each element

xi ∈ X is a root of Q(y). A then encrypts each coefficient di using the public key chosen in the
last step and sends the encrypted coefficients Epk(di) to B.

3. For each element yj ∈ Y ,B evaluatesQ(yj) obliviously using the homomorphic propertyEpk(Q(yj)) =∏n
i=0Epk(di)

yij . B also encrypts yj using A’s public key. B then chooses a random rj and uses
the homomorphic property again to compute Epk(rj ·Q(yj) + yj) = Epk(Q(yj))

rj · Epk(yj). B
sends each Epk(rj ·Q(yj) + yj) to A. 5

4. A decrypts each ciphertext received from B. If yj ∈ X ∩ Y , then Q(yj) = 0, thus the decryption
will be yj which is also an element in X , otherwise, the decryption will be a random value. By
checking whether the decryption is in X , A can output X ∩ Y while learns nothing about other
elements in Y but not in X .

3.3 Zero Knowledge Proof

A zero knowledge proof protocol allows a prover to prove the validity of a statement without leaking
any other information. The protocol presented in Section 3.2 is secure against semi-honest adversaries.
However, in the presence of malicious adversaries we have to prevent the adversaries from deviating
from the protocol. We enforce this by requiring each party to use zero knowledge proofs to convince
the other party that it follows the protocol correctly. We will name the protocols as PK(...) and use the
notation introduced in [24] to present the protocols in the rest of the paper:

PK{(x, y, ...) : statements involving x, y, ...}

In short, the prover is proving the knowledge of (x, y, ...) such that these values satisfy certain state-
ments. In our protocol, the statements are knowledge of and relations between discrete logarithms. For
example, the following means that given a certain group structure and a tuple (α, β, g, h), the prover
can prove in zero knowledge that logg α = logh β = x and it knows the discrete logarithm x.

PK{(x) : α = gx ∧ β = hx}

3.4 Proxy Re-encryption

Another building block of our protocol is a semantically secure proxy re-encryption scheme. In a
proxy re-encryption scheme, one party can delegate decryption to another party, with the help from a
proxy. The delegator generates a re-encryption key for the delegatee and gives it to the proxy. Later the
proxy can use the re-encryption key to re-encrypt a ciphertext encrypted under the delegator’s public
key. The re-encryption will transform the ciphertext into a ciphertext encrypted under the delegatee’s
public key. In the whole process, the proxy learns nothing about the private keys and the plaintext.
Thus the definition of semantic security of a proxy re-encryption scheme is twofold in nature: firstly,
the ciphertexts are indistinguishable to an external adversary who has access to public keys; secondly,
the ciphertexts are indistinguishable also to the proxy who in addition has access to the re-encryption
key. A comprehensive study on proxy cryptography and formal definition of its security can be found
in [25].

In our protocol, we propose to use proxy re-encryption to allow the semi-trusted arbiter to recover
the set intersection computed from the protocol without knowing the intersection or the private input
sets of the two parties. To achieve this, we require the proxy re-encryption scheme to be also additively
homomorphic and allow efficient zero knowledge proofs. In Section 5.1, we provide a construction of
a proxy re-encryption scheme that satisfies the requirements.

5 For the sake of simplicity, we neglect the optimisations made in the paper to polynomial evaluation by using balanced
allocation scheme and Horner’s rule.

3.5 Verifiable Encryption

In a nutshell, a verifiable encryption scheme is a public key encryption scheme accompanied by an
efficient zero knowledge proof of the plaintext satisfies certain properties [26]. It has numerous appli-
cations in key escrow, secret sharing and optimistic fair exchange. In optimistic fair exchange proto-
cols, a convention is to let a party create a verifiable escrow of a secret key or a data item. The escrow
is essentially an encryption of the escrowed item under the offline arbiter’s public key. The escrow is
verifiable so that the other party can verify, without decrypting it, the escrowed item satisfies its re-
quirements. We follow this convention and in Section 5.2 we will show how to obtain such a verifiable
encryption.

3.6 Perfectly Hiding Commitement

In our protocol, we also use a perfectly hiding commitment scheme [27]. Generally speaking, a com-
mitment scheme is a protocol between two parties, the committer and the receiver. The committer can
commit to a value v by generating a commitment com(v) and sends it to the receiver. The commit-
ment has two properties: hiding which means it is infeasible for the receiver to find v; binding which
means it is infeasible for the committer to find another v′ such that com(v′) = com(v). The strength
of binding and hiding can be perfect or computational. In our case, we want a perfectly hiding com-
mitment scheme which means the receiver cannot recover the value committed even with unbounded
computational power.

4 Overview of the Protocol

In this section, we give a high level view of the protocol as depicted in Fig. 1. The protocol has two
sub-protocols: a PSI protocol to compute the set intersection betweenA andB and a dispute resolution
protocol.

– Setup: A homomorphic proxy encryption scheme E, a verifiable encryption scheme E and a per-
fectly hiding commitment scheme are chosen. Public parameters are published. The offline arbiter
R also generates a key pair for E and publishes the public key.

– Private Set Intersection: A and B are parties who engage in the computation of the set intersec-
tion, and each has a private input set X and Y respectively. A and B each generates a random key
pair for E and sends the public key to the other.
1. A generates a re-encryption key rka→b for B. The re-encryption key is then encrypted using
R’s public key and the ciphertext is sent toB.A then runs a sub-protocol PKrk to convinceB
that the re-encryption key is correctly generated and the ciphertext is indeed a valid encryption
of the re-encryption key under pkR.

2. B commits to its input set using a perfect hiding commitment scheme. B sends all commit-
ments to A.

3. A generates a polynomial as described in Section 3.2, encrypts all the coefficients and sends
the ciphertexts to B. A then runs another protocol PKpoly to prove that the polynomial is
indeed correctly constructed.

4. For each element yj ∈ Y , B evaluates the polynomial using the homomorphic property, re-
turns the result EpkA(rj · Q(yj) + yj) to A and proves that the evaluation is consistent with
regard to a value committed in step 2. A decrypts each ciphertext and checks whether there is
an element in X matches rj ·Q(yj) + yj , if so the element is in X ∩ Y .

pkA/skA, X pkB/skB, Y

PKrk

obtain the
intersection

PKpoly

EpkR(rka→b)

EpkA(rj ·Q(yj) + yj)

PKeval

for each yj

obtain the
intersection

for each
rj ·Q(yj) + yj

com(y1), com(y2), . . . , com(yn)

pkB/skB, Y

R

pkR/skR
transcript in PSI

verify the transcript

EpkA(rj ·Q(yj) + yj)

PKeval

re-encrypt the
ciphertexts

EpkB(rj ·Q(yj) + yj)

pkA/skA, X

EpkA(rj ·Q(yj) + yj)

obtain the
intersection

obtain the
intersection

PSI Dispute Resolution

obtain rka→b

1

2

3

4

5

1

2

3

4

EpkA(d0), EpkA(d1), . . . , EpkA(dn)

EpkB(rj ·Q(yj) + yj)

PKre-enc

A

A

B
B

Fig. 1. Overview of the Fair PSI protocol

5. For each EpkA(rj · Q(yj) + yj), A sends EpkB (rj · Q(yj) + yj) back to B by performing
a re-encryption of EpkA(rj · Q(yj) + yj), and proves that the value is indeed a re-encrypted
ciphertext of the corresponding EpkA(rj · Q(yj) + yj). B decrypts each received value and
checks whether it matches yj , if so yj is in X ∩ Y .

– Dispute Resolution: B can raise a dispute with R if A aborts the PSI protocol unfairly
1. B sends the transcript of the PSI protocol execution to R. The transcript contains all messages

sent and received in the PSI protocol execution. R verifies it and obtains EpkR(rka→b) from
the transcript. R then decrypts it using its private key to obtain the re-encryption key rka→b.

2. B sends each EpkA(rj · Q(yj) + yj) to R and proves that the evaluation is consistent with
regard to a value committed in step 2 of the PSI protocol.

3. R uses the re-encryption key to transform eachEpkA(rj ·Q(yj)+yj) intoEpkB (rj ·Q(yj)+yj)
which is a ciphertext can be decrypted by B.

4. R also sends a copy of EpkA(rj ·Q(yj) + yj) to A.

Remark 1: In the first step of the PSI protocol, A creates a verifiable escrow of the re-encryption
key for B. The intuition is to protect A’s privacy against both B and R. In optimistic protocols, all
three parties are assumed to be not collude (see [20] for a detailed account). Therefore because the
re-encryption key is encrypted underR’s public key,B cannot use it to decryptA’s ciphertexts. On the
other hand, having the re-encryption key does not enable R to gain any additional information about
the ciphertexts.
Remark 2: In the FNP paper [1], the authors proposed strategies to deal with malicious adversaries.
Namely, they use cut-and-choose to force A to construct the polynomial correctly and use hash func-
tions to force B to evaluate the polynomial correctly. Cut-and-choose can become inefficient with
large input sets. The hash based solution works only in a single-output PSI protocol and will allow a

malicious B to compromise A’s privacy in a mutual PSI protocol. Therefore, we replace them with
two efficient zero knowledge proofs in step 3 and step 4.
Remark 3: Releasing EpkB (rj · Q(yj) + yj) to B in the last step of the PSI protocol does not affect
A’s privacy because as we will see later, B cannot recover rj ·Q(yj) + yj , but only a group element
Zrj ·Q(yj)+yj . This gives no information to B regarding A’s input unless Q(yj) = 0.
Remark 4: To ensure timeliness of dispute resolution and all the messages in the transcript (sent by
B in the conflict resolution protocol) are from the same execution of the PSI protocol, each message
in the PSI protocol needs to include a session ID and be signed by the sender. We assume a standard
format and semantics of the session ID have been agreed by all parities beforehand. Public keys for
signature verification need to be agreed and known to all parties beforehand. To simplify presentation,
we omit them in the protocol description .
Remark 5: In the last step of the dispute resolution protocol,R sends EpkA(rj ·Q(yj)+yj) toA. This
is needed because from the transcript, R cannot tell whether B has sent them to A or not. It is possible
that B unfairly aborts the protocol after receiving the coefficients in step 3 and then uses R to recover
the result. we add this step to make sure A also receives the output in this case. Thus we do not need a
dispute resolution protocol for A because in case of B being unfair, either B does not raise a dispute
and then no one gets the output, or B raises a dispute and both get the output.

5 A Concrete Construction

5.1 A Homomorphic Proxy Re-encryption
Scheme

At the core of our construction is a semantically secure proxy re-encryption scheme which is also ad-
ditively homomorphic. This scheme is adapted from [28]. The scheme makes use of bilinear maps. We
briefly review the necessary facts about bilinear maps. Let G1, G2 and GT be three cyclic groups of
prime order q. A bilinear map e : G1 ×G2 → GT has properties such that for any g1 ∈ G1, g2 ∈ G2

and a, b ∈ Zq, (1) e(ga1 , g
b
2) = e(g1, g2)

ab is efficiently computable (2) e(g1, g2) 6= 1. To facili-
tate the construction of the verifiable encryption scheme, we also require the external Diffie-Hellman
(XDH) assumption [29–32] to hold in the bilinear map. That is, the Decisional Diffie-Hellman (DDH)
assumption must be hard in G1. The XDH assumption is widely believed to hold in bilinear maps
obtained from certain MNT curves [33]. The homomorphic proxy encryption scheme is described as
follows:

– Public parameters: two groups G1 and G2 of prime order q with a bilinear map e : G1 ×G2 →
GT , random generators g1 ∈ G1, g2 ∈ G2 and Z = e(g1, g2) ∈ GT .

– Key generation: A user U’s key pair is of the form pku = (Zu1 , gu21) and sku = (u1, u2).
– Re-encryption key generation: A user A can generate a re-encryption key from another user B’s

public key rka→b = (gb21)a1 = ga1b21 .
– Encryption: To encrypt a messagem ∈ Zq,A chooses a random r and computes c = (gr2, Z

mZa1r).
– Decryption: To decrypt c = (α, β), A computes
β/e(g1, α)

a1 = ZmZa1r/e(g1, g
r
2)
a1 = ZmZa1r/Za1r = Zm (note that m cannot be recovered,

but Zm serves our purpose).
– Re-encryption: c = (α, β) can be converted by computing α′ = e(rka→b, α) = e(ga1b21 , gr2) =
Zra1b2 then publishing (α′, β) = (Zra1b2 , ZmZra1) = (Zr

′b2 , ZmZr
′
) where r′ = ra1.

– Re-decryption: B can decrypt the re-encrypted ciphertext (α′, β): β/α′1/b2 = ZmZra1/Zra1 =
Zm.

The scheme [28] is semantically secure under the Decisional Bilinear Diffie-Hellman (DBDH)
assumption [34]. The additive homomorphic property is easy to see: (1) for Epk(m1) = (α1, β1) and
Epk(m2) = (α2, β2), Epk(m1 +m2) = (α1 · α2, β1 · β2) (2) for Epk(m1) = (α1, β1) and a constant
c, Epk(c ·m1) = (αc1, β

c
1). We also summarise the changes we made to the original scheme:

– Originally the scheme uses a symmetric bilinear map where G1 = G2. We use an asymmetric
bilinear map and require XDH assumption to hold so that a verifiable encryption scheme can
be designed and integrated easily. These changes do not affect the security of the scheme. The
security proof of the original scheme still holds with the changes.

– Originally the encryption algorithm encrypts the message m directly as (gr2,m · Za1r). To make
it additively homomorphic, we encrypt m as (gr2, Z

mZa1r). This makes it impossible to fully
decryptm. But it is sufficient in our protocol because we only need to check that givenm′, whether
Zm

′
= Zm. For convenience, we still call the relevant algorithms “decryption” although they do

not really decrypt to the plaintext m.

5.2 Verifiable Encryption of a Re-encryption Key

In the first step of the PSI protocol, A must encrypt a re-encryption key for B. B must verify that the
re-encryption key is generated correctly and the ciphertext is a proper ciphertext of the re-encryption
key encrypted under R’s public key. The tricky part is that B has to verify the ciphertext without
knowing the plaintext, i.e. the re-encryption key.

The encryption scheme used by R is the ElGamal encryption scheme [35] linked to the bilinear
groups used in Section 5.1. Namely, R re-uses the group G1 and the generator g1, chooses a random
secret key skR = k ∈ Zq and publishes the public key pkR = gk1 . As we require XDH assumption to
hold, then DDH assumption is hard in G1 and consequently ElGamal in G1 is semantically secure.

We also designed a zero knowledge proof protocol PKrk to allow B to efficiently verify the
ciphertext without knowing the re-encryption key. Recall that the re-encryption key is of format
rka→b = ga1b21 . After being encrypted usingR’s public key, the ciphertext EpkR(rka→b) = (gr1, g

a1b2
1 gr·k1)

where r is a random value. Now let EpkR(rka→b) = (α1, α2), PKrk is defined as follows:

PK{(a1, r) : α1 = gr1 ∧ α2 = (gb21)a1(gk1)
r ∧ α3 = Za1}

where (a1, r) is known to A, gb21 is part of B’s public key, gk1 is R’s public key and Za1 is part of A’s
public key. Although the proof involves two groups G1 and GT , we don’t need to add a range proof
as in [36] because |G1| = |GT | = q. The correctness of the protocol is easy to see: the re-encryption
key is correctly constructed because the same exponent a1 is used in the first part of α2 and in α3, the
ciphertext is correctly encrypted because the same exponent r is used in the second part of α2 and in
α1.

5.3 Perfectly Hiding Commitment

We use the Pedersen Commitment Scheme [27] in step 2 of the PSI protocol. The Commitment
Scheme is known to be perfectly hiding and computationally binding. The underlying group we
use is GT . For an element in B’s input set yi ∈ Y , B chooses a random si ∈ Zq, and computes
com(yi) = ZyiHsi , where H ∈ GT is random and B does not know logZH . For efficiency, here we
do not require B to prove that the commitments are correctly constructed, this will be done later in
PKeval.

5.4 PKpoly: Proof of Correct Construction of a Polynomial

In step 3 of the PSI protocol,A has to prove toB that the polynomial is constructed correctly. Namely,
A has to convince B that it knows the polynomial and the polynomial has no more than n roots. For
an encrypted coefficient di, the ciphertext is EpkA(di) = (gri2 , Z

diZa1ri) = (αdi , α
′
di
). To prove it

knows the polynomial, A runs the following protocol for each encrypted coefficient:

PK{(ri, di) : αdi = gri2 ∧ α′di = Zdi(Za1)ri}

As the maximum degree of the polynomial is determined beforehand and can be verified by count-
ing the number of encrypted coefficients received, then for a polynomial of degree n, the only case
that it can have more than n roots is when all coefficients are zero. We require A to prove that at least
one coefficient is not zero by running

PK{(ri, r′i) : αdi = gri2 ∧ α′di = (Za1)r
′
i ∧ ri 6= r′i}

Intuitively, r′i = ri + di/a1 and therefore ri = r′i iff di = 0. So by verifying ri 6= r′i, B can
be convinced that di 6= 0. To prove the inequality of discrete logarithms, we can use the protocol
proposed in [26].

5.5 PKeval: Proof of Correct Evaluation of the Polynomial

In step 4 of the PSI protocol and step 2 of the dispute resolution protocol,B must prove that each value
sent by it is indeed EpkA(rj · Q(yj) + yj). Recall that for an encrypted coefficient di, the ciphertext
is EpkA(di) = (gr2, Z

diZa1r) = (αdi , α
′
di
). Then for each term diy

i
j of the polynomial, the cipher-

text computed using the homomorphic property from EpkA(di) is EpkA(diy
i
j) = ((αdi)

yij , (α′di)
yij).

Similarly, for each rj ·Q(yj), the ciphertext is

EpkA(rj ·Q(yj)) = ((
n∏
i=0

(αdi)
rjy

i
j), (

n∏
i=0

(α′di)
rjy

i
j))

B also encrypts yj by itself, and the ciphertext EpkA(yj) = (g
r′j
2 , Z

yjZa1r
′
j). The ciphertext of the

whole can be obtained by multiplying the corresponding components of the two:

EpkA(rj ·Q(yj) + yj) = ((
n∏
i=0

(αdi)
rjy

i
j) · gr

′
j

2 , (
n∏
i=0

(α′di)
rjy

i
j) · ZyjZa1r′j) = (α, β)

The proof has two steps. In the first step, B commits to rjyij for 0 ≤ i ≤ m : com(rjy
i
j) =

Zrjy
i
jH s̃i . Then starting from i = 1, B must prove that the value committed in com(rjy

i
j) is the

product of the values committed in com(rjy
i−1
j) and com(yj), where com(yj) is committed in step 2

of the PSI protocol. To do this, we use the protocol proposed in [37]:

PK{(â, b̂, r̂1, r̂2, r̂3) : α̂ = ĝâĥr̂1 ∧ β̂ = ĝb̂ĥr̂2 ∧ γ̂ = ĝâb̂ĥr̂3}

which proves a committed value is the product of two other committed values. Now A (or R) has a
series of correct commitments of a geometric sequence com(rjy

i
j) for 0 ≤ i ≤ m. In the second step,

B runs the following protocol:

PK{(rjyij , s̃i, r′j , yj , sj) : α = (

n∏
i=0

(αdi)
rjy

i
j) · gr

′
j

2

∧β = (

n∏
i=0

(α′di)
rjy

i
j) · Zyj (Za1)r′j

∧com(yj) = ZyjHsj

n∧
i=0

com(rjy
i
j) = Zrjy

i
jH s̃i}

WhatB proves in the above protocol is that each exponent rjyij in α and β match the value committed
in com(rjy

i
j), yj in β matches the value committed in com(yj), and (α, β) is a proper ciphertext. If

B can prove these, then the polynomial evaluation must be correct. 6

5.6 PKre-enc: Proof of Correct Re-encryption

In the last step of the PSI protocol, A must prove that each value sent is the correct re-encryption of
a ciphertext EpKA

(rj ·Q(yj) + yj) = (gr̃2, Z
rj ·Q(yj)+yjZa1r̃) = (α, β). After re-encryption, the new

ciphertext EpKB
(rj · Q(yj) + yj) = (Za1b2r̃, β) = (α′, β). The re-encryption only changes the first

part of the ciphertext, therefore verifying β can be done by simply comparing the second part in the
two ciphertexts. B and A can also compute γ = Zb2r̃ = e(gb21 , α) = e(gb21 , g

r̃
2) easily from public

values. The following protocol is then used to prove that α′ is correctly constructed:

PK{(a1) : α′ = γa1 ∧ δ = Za1}

where δ is a component of A’s public key.

6 Security Analysis

6.1 Definitions

In this section we present the definitions of the terminologies we will use later. Let κ denote a security
parameter, we have the following:

Definition 1 (Negligible). A function f is negligible if for every polynomial p(·) and sufficiently large
κ it holds that f(κ) < 1

p(κ) .

Definition 2 (Computationally indistinguishable). Let {Xκ}, {Yκ} be sequences of distributions
withXκ, Yκ ranging over {0, 1}l(κ) for some polynomial l(κ). {Xκ}, {Yκ} are computationally indis-
tinguishable, written as Xκ

c≡ Yκ, if for every polynomial-time algorithm D there exist a negligible
function µ(·) such that for every κ ∈ N:

|Pr[D(Xκ) = 1]− Pr[D(Yκ) = 1]| ≤ µ(κ)
6 Although we present it in two steps, the two steps can be combined into one protocol and makes the protocol more

efficient.

An n-party protocol Π is modelled as a collection of n interactive Turing machines (ITM) as in
[11]. Each ITM represents the strategy run by a party. A party may be corrupted by an adversary. The
adversaries are also modelled as ITMs. The adversaries have an auxiliary input string and therefore
are non-uniform. The protocol realises an n-party functionality f = (f1, ..., fn), where each fi maps
n inputs to a single output. More specifically, in this paper, the functionality we wish to compute is:

Definition 3 (Functionality f∩). Let X and Y be subsets of a predetermined domain D, and |X| =
|Y | = n, the functionality f∩ is defined as:

f∩(X,Y, λ) =

{
(X ∩ Y,X ∩ Y, λ)
(⊥,⊥, λ)

where ⊥ denotes a special error symbol and λ denotes the empty string.

6.2 Security Model

We analyse the protocol in the non-colluding model proposed in [38]. The model is based on the
ideal/real world paradigm and formalises secure multiparty computation in the presence of non-
colluding adversaries. The reason why we use this model is that as pointed out in [20], security of
optimistic fair protocols is only achievable when the participants of the protocol do not collude. For
example, if R colludes with A, B will not be able to obtain the result from the protocol; or if B col-
ludes with R, they can pool their keys to compromise A’s privacy. In the past, the arbiter is modelled
as a fully trusted party therefore non-colluding is implicit (we don’t consider the case that A and B
collude which is meaningless). In our protocol the trust on R is weakened and R is not fully trusted,
therefore we need to make non-colluding explicit in the model.

The non-colluding model differs from the standard malicious model for multi-party secure com-
putation in that: (1) in the non-colluding model, a set of independent adversaries can be modelled in
the sense that the adversaries do not share any state. Where in the standard malicious model there is
a monolithic adversary controls all corrupted parties; (2) the notion of emulation is weakened to only
require that indistinguishability holds with respect to the honest parties’ outputs and a single adver-
sary’s view. This partial emulation captures privacy in the presence of non-colluding adversaries: as
long as the adversaries do not share information the protocol remains private.

In the non-colluding model, the participants are divided into three disjoint sets: the honest par-
ties (denoted by H), the corrupted but non-colluding parties (denoted by I) and the corrupted and
colluding parties (denoted by C). Each corrupted party in I is controlled by an independent adver-
sary. All corrupted party in C are controlled by a single adversary separated from these who each
controls a corrupted party in I. The behaviour of the adversaries in the non-colluding model can be
semi-honest, malicious or non-cooperative. Semi-honest means the adversary follows the protocol but
attempts to learn more information that should be kept private. A semi-honest adversary in the model
is non-colluding by definition because it does not share state with others and it follows the protocol.
Malicious means the adversary can deviate arbitrarily from the protocol. Because a malicious adver-
sary can behave arbitrarily, an independent malicious adversary can collude with other adversaries by
sending arbitrary messages. Non-cooperative formalises deviating but non-colluding adversaries. An
adversaryAi is said to be non-cooperative to another adversaryAj if it may deviate from the protocol
but does not intentionally share any useful information with Aj . Formally,

Definition 4 (Non-cooperative adversary). Let f be a deterministic n-party functionality and Π be
an n-party protocol. Furthermore, letH, I and C be pairwise disjoint subsets of participants and letA

be a set of independent PPT adversaries controlling corrupted partied in I ∪ C. For any i, j such that
i 6= j, we say that adversary Aj is non-cooperative with respect to Ai if there exists a ppt simulator
Vi,j such that for all ~x ∈ ({0, 1}∗)n and ~z ∈ ({0, 1}∗)n, and all y ∈ Ran(fi) ∪ {⊥},

mathcalVi,j(y, zi)
c≡ {viewi,j |outputi = y : {OUTl}l ← REAL

(i)
Π,H,A,I,C,~z(~x, κ)}

whenever Pr[outputi = y] > 0. Here viewi,j denotes the messages between Ai andAj in the
real-world execution and outputi = y is the event that party Pi receives output value y.

The adversarial behaviours of multiple adversaries are described in terms of adversary structures.
For example, a four-party protocol is secure against the following adversary structure

ADV = {(A1[m],A2[h],A3[nc4],A4[sh])}

if it is secure when A1 is malicious, A2 is honest, A3 is non-cooperating with A4, and A4 is semi-
honest.
The real world. Our protocol has three participants A,B and R. All participants have the public
parameters of the protocol including the function f∩, the security parameter κ, cryptographic keys and
other cryptographic parameters to be used. A has a private input X , B has a private input Y and R has
a private key. We use AA,AB and AR to denote the adversary that corrupts A,B and R respectively.

At the end of the execution, the honest parties output whatever prescribed in the protocol, a
corrupted party has no output, and an adversary outputs its view. Let C = ∅, I ⊆ {A,B,R},
H = {A,B,R}/I and A be the set of real world adversaries, the partial output with respect to
Ai (i ∈ I) is defined as

REAL
(i)
Π,H,A,I,C,~z(~x, κ) = {OUTj : j ∈ H} ∪OUTi

which consisted of all honest parties’ outputs and Ai’s output.
The ideal process. In the ideal process, there is an incorruptible trust party T who will help A and B
to compute the set intersection as follows:

– Setup: R generates a public/private key pair and gives the public key to A and B.
– Inputs: A has an input set X , B has an input set Y and R has no input.
– Sending inputs to T : An honest party always sends its input to T . A malicious party may either

send ⊥, its input or some other input (with the same length) to T .
– T answers A: If T receives ⊥ from either A or B, T replies ⊥ to both parties and the execution

terminates here. Else T receives (X ′, Y ′) from the A and B, then T replies to A with X ′ ∩ Y ′.
– A replies: After receiving X ′ ∩ Y ′, A can send ⊥ or continue to T .
– T answers B: If T receives continue from A, T sends X ′ ∩ Y ′ to B and the empty string λ to R.

If T receives ⊥, T sends ⊥ to B. B can output ⊥ and stop or interact with R.
– B interacts with R: B can send resolve to R at any point of the time. R can send ⊥ or resolve

to T . T sends X ′ ∩ Y ′ to B if and only if T receives resolve from R and has sent X ′ ∩ Y ′ to A.
Otherwise T answers ⊥ to B.

Similar to the real world execution, let C = ∅, I ⊆ {A,B,R}, H = {A,B,R}/I, the partial output
of the ideal world execution with respect to an independent simulator Si (i ∈ I) is defined as,

IDEAL
(i)
f∩,H,S,I,C,~z(~x, κ) = {OUTj : j ∈ H} ∪OUTi

which consisted of all honest parities output and Si’s output.
Partial Simulatability. The security of the protocol in the presence of non-colluding adversaries is
defined in terms of partial simulatability, i.e. the indistinguishability of the partial output in the real
world execution and the ideal world execution. To make it clear that each Si depends only on Ai, in
the definition we require the existence of a set of transformation Simi such that Si = Simi(Ai).

Definition 5. Let C = ∅, I ⊆ {A,B,R},H = {A,B,R}/I, and letADV be an adversary structure.
We say thatΠ (I, ADV)-securely computes f∩ if there exists a set {Simi}i∈I of PPT transformations
such that for all PPT adversaries {Ai}i∈I that satisfy ADV , for all ~x, ~z and i

REAL
(i)
Π,H,A,I,C,~z(~x, κ)

c≡ IDEAL(i)
f∩,H,S,I,C,~z(~x, κ)

where Si = Simi(Ai).

6.3 Security Proof

We are now ready to state and prove the security of our protocol. The protocol uses zero knowledge
proof protocols PKrk, PKpoly, PKeval, PKre-enc as subprotocols. As they are obtained by using
existing protocols which have been proved secure and standard composition techniques, they are con-
sequently secure and we omit the security proofs of them. To prove the main theorem below, we work
in a hybrid model in which the real protocol is replaced with a hybrid protocol such that every in-
vocation of the zero knowledge proof protocols is replaced by an ideal call to a trusted party. If the
zero knowledge proof protocols are secure, then by the composition theorem [39] the output distribu-
tion of the hybrid execution is computationally indistinguishable from the output distribution of the
real execution. Thus, it suffices to show that the ideal execution is indistinguishable from the hybrid
execution.

Theorem 1. The fair mutual private set intersection protocol securely computes f∩ with respect to
the following adversary structure

ADV = {(AA[ncB, ncR],AB[sh],AR[sh]), (AA[sh],AB[ncA, ncR],AR[sh])}

Proof. We consider each case in ADV separately.
Case 1: AA is non-cooperative with regard to semi-honest AB and AR.
Case 1.A: We first show partial simulatability of AA by constructing a simulator SA = SimA(AA)
that uses the adversary AA as a subroutine. If AA aborts prematurely, SA sends ⊥ to T and outputs
whatever AA outputs.

1. SA is given A’s input X , an auxiliary input and invokes AA on these inputs, and plays the role of
B

2. SA generates a random public/private key pair pkB/skB and gives the public key to AA
3. SA receives the encrypted re-encryption key EpkR(rka→b).
4. SA receives (a1, r) from AA for the ideal computation of PKrk. If EpkR(rka→b) and (a1, r) do

not satisfy the condition, SA sends ⊥ to T and terminates the execution.
5. SA generates a random set Y ′ such that |Y ′| = n, and for each y′i ∈ Y ′, generates a commitment
com(y′i). The commitments are sent to AA.

6. SA receives the encrypted coefficients EpkA(di) from AA. SA also receives for all 0 ≤ i ≤
n, (ri, di) for the ideal computation of PKpoly, where di is a coefficient of the polynomial. If the
condition is not satisfied, then SA sends ⊥ to T and terminates the execution.

7. SA reconstructs the polynomial and finds the adversary AA’s input X ′. SA sends X ′ to T .
8. SA receives X ′ ∩ Y from T . SA then constructs Y ′′ which contains X ′ ∩ Y and some random

elements and |Y ′′| = n.
9. For each y′′j ∈ Y ′′, SA computes EpkA(rj ·Q(y′′j) + y′′j) and sends the ciphertext to AA. SA also

emulates the ideal computation of PKeval by sending accept to AA.
10. SA receives EpkB (rj · Q(y′′j) + y′′j) from AA. It also receives a1 for the ideal computation of

PKre-enc. If the condition is not satisfied, then SA sends ⊥ to T otherwise it sends continue to
T .

11. SA outputs whatever AA outputs.

We claim that the simulator’s output is computationally indistinguishable from the adversary’s output
in the hybrid execution through a sequence of games:

– Game0: The simulation described above.
– Game1: We construct a simulator S1A that uses Y instead of using Y ′ in step 5. The only difference

between the outputs of SA and S1A is the commitments, namely com(y′i) inGame0 and com(yi) in
this game. Since the commitment scheme is perfectly hiding, the distributions of the two outputs
are indistinguishable.

– Game2: We construct a simulator S2A that differs from S1A only in that it uses Y instead of using
Y ′′ in step 8 and 9. Recall that Y ′′ contains X ′ ∩ Y . For each y′′j ∈ X ′ ∩ Y , there is a yi such that
yi ∈ X ′∩Y and y′′j = yi. The two ciphertexts EpkA(rj ·Q(y′′j)+y

′′
j) and EpkA(ri ·Q(yj)+yj)are

identical. For all other y′′j 6∈ X ′ ∩ Y and yi 6∈ X ′ ∩ Y , rj · Q(y′′j) + y′′j and ri · Q(yi) + yi
are uniformly random and convey no information about y′′j and yi, so the distributions of the
ciphertexts are identical. Therefore the distributions of the two outputs are indistinguishable.

– Game3: The hybrid execution. It differs from Game2 only in that now the adversary interacts
with B. However, S2A behaves exactly like B when interacts with the adversary. Therefore the
distributions of the two outputs are indistinguishable.

Case 1.B: We then show partial simulatability of the semi-honest adversary AB by constructing a
simulator SB = SimB(AB) that uses the adversary AB as a subroutine.

1. SB is given B’s input Y , an auxiliary input and invokes AB on these inputs.
2. SB generates a random key pair pkA/skA and gives the public key to AB .
3. SB receives the public key pkB from AB , generates the re-encryption key and encrypts it. The

ciphertext is sent to AB . SB also emulates the ideal computation of PKrk by sending accept to
AB .

4. SB receives the commitments from AB .
5. SB sends Y to T ,

(a) it may receive X ′ ∩ Y from T , in this case
i. SB constructs a set X ′′ which contains X ′ ∩ Y and some random elements and |X ′′| = n.

ii. SB constructs a polynomial using X ′′. The coefficients are encrypted and the ciphertexts
are sent to AB . SB emulates the ideal computation of PKpoly by sending accept to AB .

iii. SB receives EpkA(rj · Q(yj) + yj) for every yj ∈ Y . SB also receives the input for the
ideal computation of PKeval.

iv. SB transforms EpkA(rj · Q(yj) + yj) into EpkB (rj · Q(yj) + yj). SB also emulates the
ideal computation of PKre-enc by sending accept to AB .

v. SB outputs whatever AB outputs.

(b) it may receive ⊥ from T , it then sends resolve to R and finally receives X ′ ∩ Y . In this case:
i. SB constructs a set X ′′ which contains X ′ ∩ Y and some random elements and |X ′′| = n.

ii. SB constructs a polynomial using X ′′. The coefficients are encrypted and the ciphertexts
are sent to AB . SB emulates the ideal computation of PKpoly by sending accept to AB .

iii. SB receives EpkA(rj · Q(yj) + yj) for every yj ∈ Y . SB also receives the input for the
ideal computation of PKeval. SB stops the PSI protocol here and engages with AB in the
dispute resolution protocol.

iv. SB receives the transcript from AB and verify it.
v. SB receives each EpkA(rj ·Q(yj) + yj) and input for the ideal computation of PKeval.

vi. SB transforms EpkA(rj ·Q(yj) + yj) into EpkB (rj ·Q(yj) + yj) and sends to AB .
vii. SB outputs whatever AB outputs.

In either case, the simulator’s output is computationally indistinguishable from the adversary’s output
in the hybrid execution if the encryption schemes are semantically secure.
Case 1.R: Next, We show partial simulatability of AR by constructing a simulator SR = SimR(AR)
that uses the adversary AR as a subroutine.

1. SR is given an auxiliary input and generates a public/private key pair. SR invokes AR on the
auxiliary input and private key.

2. SR generates a transcript with two random sets by playing both A’s and B’s role internally.
3. SR engages with AR in the dispute resolution protocol and outputs whatever AR outputs.

The simulator’s output is computationally indistinguishable from the adversary’s output in the hybrid
execution if the proxy encryption schemes is semantically secure.
Case 2: AB is non-cooperative with regard to semi-honest AA and AR.
Case 2.A: Now AA is semi-honest, the simulator is constructed as follows:

1. SA is given A’s input X , an auxiliary input and invokes AA on these inputs, and plays the role of
B

2. SA generates a random public/private key pair pkB/skB and gives the public key to AA
3. SA receives the encrypted re-encryption key EpkR(rka→b).
4. SA receives (a1, r) from AA for the ideal computation of PKrk.
5. SA sends X to T and receives X ∩ Y ′ from T

6. SA generates a set Y ′′ such that Y ′′ contains X ∩ Y ′ and |Y ′′| = n, and for each y′′i ∈ Y ′′,
generates a commitment com(y′′i). The commitments are sent to AA.

7. SA receives the encrypted coefficients EpkA(di) from AA. SA also receives ∀0 ≤ i ≤ n, (ri, di)
for the ideal computation of PKpoly.

8. For each y′′j ∈ Y ′′, SA computes EpkA(rj ·Q(y′′j) + y′′j) and sends the ciphertext to AA. SA also
emulates the ideal computation of PKeval by sending accept to AA.

9. SA receives EpkB (rj ·Q(y′′j) + y′′j) from AA.
10. SA outputs whatever AA outputs.

The simulator’s output is computationally indistinguishable from the adversary’s output in the
hybrid execution because the commitment scheme is perfectly hiding and the encryption schemes are
semantically secure.
Case 2.B: The simulator SB is constructed on non-cooperative adversary AB as follows :

1. SB is given B’s input Y , an auxiliary input and invokes AB on these inputs.

2. SB generates a random public/private key pair pkA/skA and gives the public key to AB .
3. SB receives the public key pkB from AB , generates the re-encryption key and encrypts it. The

ciphertext is sent to AB . SB also emulates the ideal computation of PKrk by sending accept to
AB .

4. SB receives the commitments from AB .
5. SB constructs a polynomial with every coefficient being 0. The coefficients are encrypted and the

ciphertexts are sent to AB . SB emulates the ideal computation of PKpoly by sending accept to
AB .

6. SB receivesEpkA(rj ·0+y′j) for every y′j ∈ Y ′. SB also receives the input for the ideal computation
of PKeval. If the condition is not satisfied, SB sends ⊥ to T and terminates the execution.

7. SB sends AB’s input Y ′ extracted in the last step to T and receives X ∩ Y ′ from T.
8. For each y′j ∈ X ∩Y ′, SB transforms EpkA(rj · 0+ y′j) into EpkB (y

′
j). For each y′j 6∈ X ∩Y ′, SB

chooses a random r and transforms EpkA(rj · 0 + y′j) = (gr̃2, Z
y′jZa1r̃) into (Za1b2r̃r, Zy

′
jZa1r̃)

which is effectively EpkB (r̂j) where r̂j is an unknown random element. The ciphertexts are sent
to AB . SB also emulates the ideal computation of PKre-enc by sending accept to AB .

9. SB outputs whatever AB outputs.

The differences in the simulation and the hybrid execution are that (1) SB uses a zero polynomial
instead of Q(·) from step 5; (2) the ciphertext encrypts a random element for y′ 6∈ X ∩ Y ′ in step 8.
We claim the outputs in the simulation and the hybrid execution are indistinguishable:

– The encrypted coefficients in step 5 are indistinguishable in the two outputs sinceE is semantically
secure. And so are the ciphertexts in step 6.

– In both the simulation and the hybrid execution, for each ciphertext (α, β) received in step 6, a
re-encryption in the form of (α′, β) is returned. If y′j ∈ X ∩ Y ′, it is also true that y′j ∈ X ,
therefore it is a root of Q(·) which means Q(y′j) = 0. The ciphertexts EpkB (rj · 0 + y′j) =
EpkB (rj · Q(y′j) + y′j) = EpkB (y

′
j). Therefore the distribution of two corresponding ciphertexts

in the two outputs are identical and contain no information of elements which are not in X ∩ Y ′.
if y′j 6∈ X ∩ Y ′, then in the hybrid execution, Q(y′j) is random, therefore the encrypted value

ZrjQ(y′j)+y
′
j is random. In the simulation the ciphertext encrypts Z r̂j which is also random. So the

two corresponding ciphertexts in the two outputs are indistinguishable.

Therefore the distributions of the two outputs are indistinguishablel.
IfAB aborts the protocol prematurely and then invokes the dispute resolution protocol. As we can

see, step 2 and step 3 in the dispute resolution protocol are almost identical to step 4 and step 5 in the
PSI protocol. In this case, the simulator is constructed as follows:

1. SB behaves exactly as described in case 1 until AB aborts.
2. SB plays R’s role and receives the transcript from AB . If the transcript is not consistent or ends

before the end of step 3 of the PSI protocol, it sends ⊥ to T and terminates the execution.
3. SB receivesEpkA(rj ·0+y′j) for every y′j ∈ Y ′. SB also receives the input for the ideal computation

of PKeval. If the condition is not satisfied, SB sends ⊥ to T and terminates the execution.
4. SB sends AB’s input Y ′ extracted in the last step to T and receives X ∩ Y ′ from T.
5. For each y′j ∈ X ∩Y ′, SB transforms EpkA(rj · 0+ y′j) into EpkB (y

′
j). For each y′j 6∈ X ∩Y ′, SB

chooses a random r and transforms EpkA(rj · 0 + y′j) = (gr̃2, Z
y′jZa1r̃) into (Za1b2r̃r, Zy

′
jZa1r̃)

which is effectively EpkB (r̂j) where r̂j is an unknown random element. The ciphertexts are sent
to AB .

6. SB outputs whatever AB outputs.

The analysis is similar to that above, therefore is omitted.
Case 2.R: The simulator works analogously to the one in Case 1.R.

Now the theorem follows from the fact that in both adversarial settings, a partial emulation that is
computationally indistinguishable from the hybrid execution can be produced by each simulator.

7 Conclusion and Future Work

In this paper, we have presented a fair mutual PSI protocol which allows both parties to obtain the
output. The protocol is optimistic which means fairness is obtained by using an offline third party
arbiter. To address the possible privacy concerns raised by introducing a third party, the protocol is
designed to enable the arbiter to resolve dispute blindly without knowing any private information
from the two parties. We have analysed and shown that the protocol is secure in the presence of non-
colluding adversaries.

The protocol presented in this paper makes use of a verifiable escrow of a proxy re-encryption key
to allow a third party to resolve disputes. This approach is largely independent of the specific function
computed by a secure protocol. A future direction of this work will be to generalise this approach
and apply it to other secure computation protocols. We will seek to build a framework which would
facilitate protocol design and allow easily plug fairness into appropriate single output protocols.

References

1. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: EUROCRYPT. (2004) 1–19
2. Dachman-Soled, D., Malkin, T., Raykova, M., Yung, M.: Efficient robust private set intersection. In: ACNS. (2009)

125–142
3. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. In: Public Key Cryptography.

(2010) 312–331
4. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and

covert adversaries. In: TCC. (2008) 155–175
5. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive ot and secure computation

of set intersection. In: TCC. (2009) 577–594
6. Cristofaro, E.D., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Financial Cryptog-

raphy. (2010) 143–159
7. Cristofaro, E.D., Kim, J., Tsudik, G.: Linear-complexity private set intersection protocols secure in malicious model.

In: ASIACRYPT. (2010) 213–231
8. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: CRYPTO. (2005) 241–257
9. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Financial Cryptography. (2009) 108–127

10. Kim, M., Lee, H.T., Cheon, J.H.: Mutual private set intersection with linear complexity. IACR Cryptology ePrint
Archive 2011 (2011) 267

11. Goldreich, O.: Foundations of Cryptography: Volume II Basic Applications. Cambridge University Press (2004)
12. Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: STOC. (1986)

364–369
13. Blum, M.: How to exchange (secret) keys. ACM Trans. Comput. Syst. 1(2) (1983) 175–193
14. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A fair protocol for signing contracts. IEEE Transactions on

Information Theory 36(1) (1990) 40–46
15. Pinkas, B.: Fair secure two-party computation. In: EUROCRYPT. (2003) 87–105
16. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In: ACM Conference on Computer and

Communications Security. (1997) 7–17
17. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures (extended abstract). In: EURO-

CRYPT. (1998) 591–606

18. Bao, F., Deng, R.H., Mao, W.: Efficient and practical fair exchange protocols with off-line ttp. In: IEEE Symposium
on Security and Privacy. (1998) 77–85

19. Ateniese, G.: Efficient verifiable encryption (and fair exchange) of digital signatures. In: ACM Conference on Computer
and Communications Security. (1999) 138–146

20. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: CRYPTO. (2000) 93–111
21. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: PODC. (2003) 12–19
22. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In: Public Key Cryptography. (2007)

118–133
23. Chen, L., Kudla, C., Paterson, K.G.: Concurrent signatures. In: EUROCRYPT. (2004) 287–305
24. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical Report 260,

Institute for Theoretical Computer Science, ETH Zurich (March 1997)
25. Ivan, A.A., Dodis, Y.: Proxy cryptography revisited. In: NDSS. (2003)
26. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: CRYPTO. (2003)

126–144
27. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: CRYPTO. (1991) 129–

140
28. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption schemes with applications to secure

distributed storage. ACM Trans. Inf. Syst. Secur. 9(1) (2006) 1–30
29. Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage via keyword-searchable encryption.

IACR Cryptology ePrint Archive 2005 (2005) 417
30. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. IACR Cryptology ePrint Archive 2004 (2004) 174
31. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: EUROCRYPT. (2005) 302–321
32. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable rfid tags via insubvertible encryption. In: ACM Conference

on Computer and Communications Security. (2005) 92–101
33. Miyaji, Nakabayashi, Takano: New explicit conditions of elliptic curve traces for FR-reduction. TIEICE: IEICE

Transactions on Communications/Electronics/Information and Systems (2001)
34. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. of Computing 32(3) (2003) 586–615

extended abstract in Crypto’01.
35. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: CRYPTO. (1984)

10–18
36. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (extended abstract). In: CRYPTO. (1997)

410–424
37. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified vss and fact-track multiparty computations with applications to thresh-

old cryptography. In: PODC. (1998) 101–111
38. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. IACR Cryptology ePrint Archive 2011

(2011) 272
39. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1) (2000) 143–202

