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Abstract. A prominent strand within the side-channel literature is the quest for generic attack strategies: methods
by which data-dependent leakage measurements can be successfully analysed with `no' a priori knowledge about the
leakage characteristics. In this paper, we introduce a well-reasoned de�nition for what it means to have `no' a priori
insight (that is, to use a power model which approximates the device�up to nominality�by the equivalence classes
associated with the target function), and use this to de�ne generic DPA attacks. With these de�nitions we are able to
clarify precise conditions (on the target function) under which generic attacks succeed. Doing so, we expose a rather
limited range of vulnerable target functions, so that the `myth' of the potential power of generic DPA is somewhat
dispelled. We then shift focus onto linear regression-based attacks: linear regression can operate generically (as we
explain) by `�tting' the leakage measurements (di�erently for di�erent key hypotheses) to a full basis of polynomial
terms in the targeted bits.
Quite surprisingly, we show that even when the target function is not susceptible to generic DPA, applying some
additional, non device-speci�c intuition to the di�erent hypothesis-dependent models can in fact reveal the key. This
intuition amounts to the idea that the estimated model coe�cients associated with the correct key hypothesis ought
to be `more orderly', in some sense, provided the target function is su�ciently nonlinear (as is typically the case for
cryptographic S-Boxes used in block ciphers).
To leverage this in a practical way we apply a model building technique called stepwise regression. Thus by `emulating'
a generic technique we can `magically' produce successful attacks even when generic attacks applied in a conventional
mode would fail.

1 Introduction

Ever since Kocher et al. showed that di�erential power analysis (DPA) could be successful even with very little
information about the target implementation [18], the quest to �nd `generic' methods for DPA attacks has been
an ongoing endeavour for the research community. Informally, the appeal of a `generic' method is the ability to
successfully recover secret information even in the total absence of knowledge about the attacked device's data-
dependent power consumption. Recent suggestions include mutual information analysis (MIA) using an identity
power model [14], distinguishers based on the Kolmogorov-Smirnov (KS) two-sample test statistic [31,35] and
the Cramer-von-Mises test [31], linear regression (LR)-based methods which can be seen as a sort of on-the-�y
pro�ling [10,25], and an innovative approach using copulas [32].

However, all existing proposals share a common shortfall when applied to injective target functions: in order to
distinguish between hypotheses the attacker must, after all, have some meaningful piece of knowledge by which to
partition the measurements (in the case of MIA and KS-based DPA)3 or select the appropriate set of covariates
(in the case of LR-based DPA) [32]. Such attacks can no longer be considered `generic', a description which is
earned primarily by virtue of the non-reliance on a priori knowledge rather than the statistical methodology.

3 A work-around frequently suggested in the literature is to group the predicted intermediate values according to their 7 least
signi�cant bits (sometimes called the 7LSB model). In fact does not circumvent this requirement: it does, sometimes, produce
successful outcomes, but only when the leakage function is such that increasing noise distorts the trace measurements towards
the model, rendering the seemingly arbitrary partition `meaningful' after all [34].



The focus (in the above-mentioned papers) on de�ning universally-applicable distinguishers indicates a confusion
about the role of the distinguisher and that of the power model in what has so far been only informally de�ned
as `generic' DPA. It also raises the fundamental question of whether truly `generic' tools exist at all.

Establishing whether or not truly generic DPA attacks exist has fundamental consequences for the process of
cryptographic device evaluation. The presence of generic attacks would imply that any device could potentially
be attacked without any information about its internal functioning or leakage characteristics. Consequently,
attacks based on pro�ling would only be `better' in terms of e�ciency (number of power traces needed)�
not in terms of applicability. The absence of generic attacks would imply that there exist devices (leakage
characteristics) which can only be evaluated soundly by performing pro�led attacks�a practice which is not
commonly undertaken at present. In the following, we tackle this important question in the practically relevant
context of �rst-order DPA similar to the one investigated, e.g. in [10,14,18,25,31,35]. That is, we assume side-
channel information such that the mean of the leakage distributions is key-dependent.

1.1 Our Contribution

We approach the problem of generic attacks by revisiting Stevens' `levels of measurement' [29] to develop a theory
of power models. Using this theory we �rst de�ne what constitutes a generic power model. Next we investigate
how di�erent types of DPA distinguishers `�t' to power models and derive a de�nition for a generic-compatible

distinguisher accordingly. We then call the pairing of a generic-compatible distinguisher with the generic power

model a �rst-order generic strategy. These de�nitions provide a basis for making conclusive general statements
about generic DPA. We show that the noninjectivity of the target function is a prerequisite for any �rst-order
generic strategy to succeed: in other words we prove the absence of a universally-applicable generic distinguisher
in the context of �rst-order DPA! Note that generic higher-order DPA (i.e. exploiting the higher-moments of a
leakage distribution) can only be more di�cult to design. So the �rst-order context that we investigate in this
work can be viewed as the most general to prove such negative conclusions regarding the possibility of generic
attacks. We push our study further by observing that noninjectivity alone is still not su�cient for generic
success, and we hence investigate additional requirements on the target function. It is already known that there
is an inverse relationship between performance against certain S-Box criteria and susceptibility to DPA [22]; in
this paper we demonstrate a su�cient condition for �rst-order generic success which is promoted (though not
inevitably produced) by the design goal of di�erential uniformity [4].

Having thus dispelled the `mythical' possibility for a universally-applicable generic distinguisher, but having
gained more understanding, we make a fresh attempt at a distinguisher that operates without any a-priori

assumptions about the leakage, but which produces results requiring only some non device-speci�c intuition for
interpretation. A LR-based distinguisher is an ideal candidate; whilst it can operate from the starting point
of a full basis of polynomial terms in the targeted bits (and thus, we show, quali�es as a generic-compatible
distinguisher) the result will not only give a key ranking but also corresponding model estimates (for each key
hypothesis). Of course, in case of injective target functions, keys will be indistinguishable in the ranking, which
fact is consistent with the �rst half of our work and is already well-established in the literature [32]. However
the resulting model estimates can also be used in the interpretation of results. The non device-speci�c intu-
ition mentioned before in essence relates to the supposition that even if the leakage function is a high-degree
polynomial of the target bits, it will remain `simpler' or `more orderly' for the correct key hypothesis than for
an incorrect key hypothesis. This assumption can be exploited by the technique of stepwise regression, thus
`magically' producing successful outcomes even in scenarios where strictly generic strategies are known to fail!
In practice, we observe that stepwise regression is best exploited in situations where the leakage function re-
mains `su�ciently simple' compared to the target function, which we argue is frequently observed in modern
computing devices. Among others and for the �rst time, we perform successful key recoveries in the pathological
case of Hamming weight leakages with an injective target function and generic power model, for which previ-
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ously introduced generic-compatible distinguishers systematically failed. The experiments in Section 4.5 further
describe successful attacks for a range of increasingly complex leakage functions.

As our investigations focus on the feasibility of generic success (irrespective of e�ciency), we quantify the
asymptotic capabilities of LR-based distinguishers in a range of practically meaningful �rst-order scenarios,
targeting functions relating to DES, AES, and PRESENT block ciphers.

2 Preliminaries

2.1 Di�erential power analysis

We consider a `standard DPA attack' scenario as de�ned in [20], and brie�y explain the underlying idea as
well as introduce the necessary terminology here. We assume that the power consumption T of a cryptographic
device depends on some internal value (or state) Fk∗(X) which we call the target : a function Fk∗ : X → Z of

some part of the known plaintext�a random variable X
R
∈ X�which is dependent on some part of the secret

key k∗ ∈ K. Consequently, we have that T = L ◦ Fk∗(X) + ε, where L : Z → R describes the data-dependent
component and ε comprises the remaining power consumption which can be modeled as independent random
noise (this simplifying assumption is common in the literature�see, again, [20]). The attacker has N power
measurements corresponding to encryptions of N known plaintexts xi ∈ X , i = 1, . . . , N and wishes to recover
the secret key k∗. The attacker can accurately compute the internal values as they would be under each key
hypothesis {Fk(xi)}Ni=1, k ∈ K and uses whatever information he possesses about the true leakage function L
to construct a prediction model M : Z →M.

DPA is motivated by the intuition that the model predictions under the correct key hypothesis should give more
information about the true trace measurements than the model predictions under an incorrect key hypothesis.
A distinguisher D is some function which can be applied to the measurements and the hypothesis-dependent
predictions in order to quantify the correspondence between them. For a given such comparison statistic, D,
the theoretic attack vector is D = {D(L ◦ Fk∗(X) + ε,M ◦ Fk(X))}k∈K, and the estimated vector from a
practical instantiation of the attack is D̂N = {D̂N (L ◦ Fk∗(x) + e,M ◦ Fk(x))}k∈K (where x = {xi}Ni=1 are the
known inputs and e = {ei}Ni=1 is the observed noise). Then the attack is o-th order theoretically successful if
#{k ∈ K : D[k∗] ≤ D[k]} ≤ o and o-th order successful if #{k ∈ K : D̂N [k

∗] ≤ D̂N [k]} ≤ o.4

De�nition 1 A practical instantiation of a standard univariate DPA attack computes, given a set of power

traces T, a prediction model M , a set of inputs X, and a comparison statistic D, the distinguishing vector

D̂N = {D̂N (L ◦ Fk∗(x) + e,M ◦ Fk(x))}k∈K. A practical instantiation is said to be o-th order successful if
#{k ∈ K : D̂N [k

∗] ≤ D̂N [k]} ≤ o.

2.2 Measuring DPA outcomes

Metrics to compare the e�ciency of DPA attacks include the (o-th order) success rate and the guessing entropy
of [28]�de�ned respectively as the probability of o-th order success and the expected number of key hypotheses
remaining to test after a practical attack on a given number of traces. However, in the evaluation of generic
strategies, the question of asymptotic feasibility takes precedence over that of e�ciency. By the law of large
numbers 1

N

∑N
i=1 L ◦ Fk∗(x) + ei → L ◦ Fk∗(x) as N → ∞ (as long as the samples are independent and

4 Note that standard DPA attacks do not include collision-based attacks [26], which exploit information from several leakage points
per observation, and do not require a power model at all.
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identically distributed). We can therefore discuss feasibility from the perspective of the ideal distinguishing
vector DIDEAL = {D(L◦Fk∗(X),M ◦Fk(X))}k∈K, noting that this no longer depends on the noise but only on
the hypothesis-dependent power models relative to the true leakage. Indeed, averaging the trace measurements
conditioned on the inputs is a popular pre-processing step in practice as it strips out irrelevant variance and
reduces the dimensionality of the computations (see, for example, [1]); it is a sound approach as long as the side-
channel information to be exploited originates in di�erences between the mean values of the leakage distributions,
which is the case in our standard DPA scenario.

For the purposes of evaluating generic strategies, we will focus on �rst-order asymptotic success, as cap-
tured by the (ideal) nearest-rival distinguishing margin (see [33,34]): NRMarg(DIDEAL) = DIDEAL[k

∗] −
max{DIDEAL[k]|k 6= k∗}.

2.3 Boolean vectorial functions

We are often interested in the special case that the key-indexed functions Fk can be expressed as Fk(X) =
F (k ∗X) where F : Fn2 → Fm2 is an (n-m) Boolean vectorial function and ∗ denotes the key combining operator
(for example, XOR). This case is particularly relevant to the study of block ciphers, which in general can be
decomposed into combinations of such functions. Those components which are especially designed to introduce
confusion into the system are known as S-Boxes (where `S' stands for `substitution').

Certain algebraic properties of such functions are known to be particularly important to the cryptanalytic

robustness of a cipher system. We (very) brie�y introduce such concepts as will play a role in our later analysis;
for a good basic introduction see [16] or, for a more comprehensive explanation, [7,8].

F is a�ne if it can be expressed as a linear map followed by a translation�that is, if there exists a matrix
M ∈ Fm×n2 and a vector v ∈ Fm2 such that F (x) = Mx ⊕ v. Such functions are known to be cryptanalytically
vulnerable, and one of the aims in designing an S-Box is that any nonzero linear combination of the coordinate
functions of F be as far away as possible from the set of all Boolean a�ne functions, in order to defend against
linear cryptanalysis [21]. Thus the nonlinearity is de�ned: NF = minu∈Fn

2 ,v∈Fm
2 \{0}

∑
x∈Fn

2
u · x⊕ v · F (x).

F is balanced if the preimages in F of all singleton subsets of Fm2 are uniformly sized: that is, ∀y ∈ Fm2 , #{x ∈
Fn2 |F (x) = y} = 2n−m. This property applies to many functions used in block ciphers, particularly S-Boxes [36]
where any bias on the unobserved inputs is extremely undesirable.

The key property providing resistance to di�erential cryptanalysis as introduced by Biham and Shamir [4] is
the notion of di�erential uniformity. This means that the derivatives of F with respect to a ∈ Fn2 , de�ned as
DaF (x) = F (x)⊕F (x⊕ a), must be as uniform as possible. If there exists a vector a ∈ Fn2 such that DaF (x) is
constant over Fn2 then a is called a linear structure of F and (as per [11]) can be exploited by a cryptanalyst. The
space {a ∈ Fn2 |DaF = cst} is the linear space of F and the larger it is, the more susceptible to cryptanalysis.

3 The `myth' of generic DPA

What does it mean for an attack to be `generic'? The discussion in the literature has focused on appropriating,
as distinguishers, statistics which `require few distributional assumptions'�trawling the statistical literature
for nonparametric, distribution-comparing procedures such as the Kullback-Leibler divergence (a.k.a. Mutual
Information Analysis) [14], the Kolmogorov-Smirnov [31,35] and Cramer-von-Mises [31] tests, and copulas [32].
However, the emphasis on �nding `distribution-free' statistics for use as distinguishers somewhat distracts from
the essential de�ning feature of generic DPA which is that no assumptions have been made about the device
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leakage. Clearly, the (fairly common) practice of combining such distinguishers with an informed prior model
(i.e. some prior information) does not produce a generic attack. We hence also need to pay attention to what
`type' of power model is used in conjunction with a distinguisher; evidently we are seeking to de�ne what
constitutes a `generic' power model.

This section concentrates �rst on the di�erent types of model used in DPA attacks in Sect. 3.1, and which
distinguishers are suitable in each instance. Based on this we subsequently give de�nitions for what is a generic
power model, a generic-compatible distinguisher, and a generic DPA strategy in Sect. 3.2. These de�nitions
then form the basis for a number of propositions that clarify the cases in which any generic strategy is bound
to fail (we spell out necessary conditions for success and discuss further the feasibility of generic DPA).

3.1 Delineating leakage assumptions

Firstly we must distinguish between assumptions about the data-dependent leakage, as captured by the power
model, and assumptions about the distribution of the noise�which in most cases play a less visible role, but can
a�ect how accurately or e�ciently certain statistics may be estimated. Figure 1 visualises this two-dimensional
continuum, and indicates the suitability of some popular distinguishers as assumptions vary.

Assumptions on noiseMinimal Demanding

Nominal 

Ordinal 

Proportional

Direct

Po
w

er
 m

od
el

MIA, Kolmogorov
-Smirnov

Spearman’s rank
correlation

Linear regression

Pearson’s correlation

Stochastic profiling Bayesian templates

Fig. 1. Types of leakage model and the assumptions required by common distinguishers.

Assumptions about the noise range from fully characterised distributions as exploited (e.g.) by Bayesian template
attacks, down to no knowledge whatsoever, when the robustness of nonparametric statistics such as mutual
information and the Kolmogorov-Smirnov test may come in handy. Fortunately, the often reasonable assumption
of approximate normality opens up a broad range of (semi-)parametric options, which are to be preferred as
they are inherently less costly to estimate.

We now consider the nature of the power model, with which this paper is primarily concerned. Previous studies
have talked about `good' power models, in an arbitrary sense, and most have missed the very material distinction
between di�erent levels of model. As hinted towards in [2,12], the widely-accepted `levels of measurement' laid
out in [29] present a natural framework for delineation. It is important to understand the appropriate (type-
speci�c) notion of accuracy for a given model, and to select a compatible distinguisher; that is, one which
(implicitly) interprets the model according to the correct type.

The type of power model exploited by pro�led attacks (e.g. Bayesian templates [9] and stochastic pro�ling [25])
amounts to a direct approximation of the actual power consumed by processing the data, in contribution to
the overall consumption. This requirement is the most demanding possible, expressed as M ≈ L (c.f. the `ratio
scale' of [29]). The outcome of an attack will depend on how accurately the templates approximate the actual
data-dependent consumption (as well as the noise distribution). The error sum-of-squares is a natural way of
quantifying the appropriate notion of accuracy.
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Less demanding is the requirement that the attacker has a power model which is a good approximation for L up

to proportionality : M ≈ αL (c.f. the `interval scale' of [29]). Pearson's correlation coe�cient provides a natural
way to quantify accuracy and can be directly adapted for use as distinguisher [5] (a popular strategy since, as a
simple, moment-based statistic, it can usually be estimated very e�ciently with respect to the number of trace
measurements required).

Less demanding again is the requirement that M approximates L up to ordinality : {z|M(z) < M(z′)} ≈
{z|L(z) < L(z′)} ∀z ∈ Z (c.f. the `ordinal scale' of [29]). Such a model could be exploited via a variant of
correlation DPA using Spearman's rank correlation coe�cient, as proposed in [2]. And, again, the accuracy of
the model can be quanti�ed via the rank correlation itself.

The least demanding requirement to place on a model is that it approximates the leakage function up to

nominality only: {z|M(z) =M(z′)} ≈ {z|L(z) = L(z′)} ∀z ∈ Z (c.f. the `nominal scale' of [29]). As ever, such a
model must be paired with a statistic which interprets the values appropriately: that is to say, as arbitrary labels
only. In fact, these correspond to the `partition-based' distinguishers of [27]. Typical examples include statistics
which are used to compare arbitrary distributions, such as mutual information [14] and the Kolmogorov-Smirnov
test statistic [31,35].

Appropriate notions of accuracy for a nominal model are drawn from classi�cation theory. Precision is the
probability that items grouped according to the model really do belong together, whilst recall is the probability
that items which belong together are identi�ed as such (see, e.g. [19]).5

Precision(M) = P(L(z) = L(z′)|M(z) =M(z′)),

Recall(M) = P(M(z) =M(z′)|L(z) = L(z′)).

3.2 De�ning `genericity'

We are now in a position to discuss the generic power model: what, in practice, does it mean to make no

assumptions about the data-dependent leakage? Essentially, that we do no more than to assign a distinct label
to each value in the range of the target function. These labels can be seen to correspond to the key-dependent
equivalence classes produced by the preimages of Fk: [x]k = F−1k [Fk(x)] ∀x ∈ X .

De�nition 2 The generic power model associated with key hypothesis k ∈ K is the nominal mapping to the

equivalence classes induced by the key-hypothesised target function Fk.

The `identity' power model emphasised in previous literature is �ne for this purpose as long as it is understood
that the identity mapping is simply a convenient labelling system and should be interpreted nominally only. It is
immediately clear that the generic-compatible distinguishers are precisely those (described in Section 3.1 above)
which interpret hypothesis-dependent predictions as an approximation up to nominality of the data-dependent
leakage.

De�nition 3 A distinguisher is generic-compatible if it is built from a statistic which operates on nominal scale

measurements.

5 The classi�cation theory literature more frequently states these de�nitions in terms of ratios of counts�practically convenient
but less directly translatable across contexts. See [15] for a more explicit probabilistic interpretation; though in our case we are,
of course, averaging over multiple classes.
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This provides valuable clari�cation on previous work such as [3], which demonstrated successful attacks against
Hamming weight leakage using correlation DPA with an `identity' power model. The authors rightly remarked
that this was possible precisely because, over F4

2, the identity is su�ciently accurate as a proportional approx-
imation of the Hamming weight to produce a successful correlation attack. Far from operating generically, the
identity mapping in such a strategy is interpreted as an interval scale model�not a perfect approximation
but adequate in the speci�c case that L can be well-approximated by the Hamming weight. And even in this
restricted case it is not, of course, invariant to permutation of the `identity' labels.

De�nitions 2 and 3 together give rise to a natural notion of a `generic strategy':

De�nition 4 A generic strategy performs a standard univariate DPA attack using the generic power model

paired with a generic-compatible distinguisher.

However, as previous work on `partition-based' distinguishers (separately, e.g. [14,32,35], and collectively [27])
has consistently noted, not all (indeed, not many) scenarios are suited to a generic strategy.

3.3 Conditions for a generic strategy to succeed

All distinguishers operate by identifying the key hypotheses producing the most accurate model predictions for
the actual measurements, according to the appropriate notion of accuracy for the model type (some are able
to perform this comparison more e�ectively or from fewer trace measurements). In the generic setting each key
hypothesis k ∈ K gives rise to a model Mk s.t. M−1k [z] = F−1k [z] ∀z ∈ Fk(X ). Key-recovery will be possible
precisely when the model produced by the correct key hypothesis is a better nominal approximation for the true
leakage than those produced by any of the alternatives. We can therefore explore the conditions necessary for
a successful attack�independently of any particular distinguisher�by reasoning directly about the accuracy
of Fk∗ and Fk, ∀k ∈ K \ {k∗} as nominal approximations for L ◦ Fk∗ . Recall the precision and recall measures
introduced in Section 3.1 (with E to denote expectation):

Precision(Mk) = P(L ◦ Fk∗(x) = L ◦ Fk∗(x′)|Fk(x) = Fk(x
′))

= Ex∈X

[
#F−1k∗ [L−1[L ◦ Fk∗(x)]] ∩ F−1k [Fk(x)]

#F−1k [Fk(x)]

]
Recall(Mk) = P(Fk(x) = Fk(x

′)|L ◦ Fk∗(x) = L ◦ Fk∗(x′))

= Ex∈X

[
#F−1k∗ [L−1[L ◦ Fk∗(x)]] ∩ F−1k [Fk(x)]

#F−1k∗ [L−1[L ◦ Fk∗(x)]]

]

Trivially, the precision of the generic model under the correct hypothesis is always maximal (the leakage preimage
must contain the function preimage). By contrast, the recall depends additionally on the true leakage function,
so that even under the correct hypothesis we do not get perfect recall unless it happens that L is also injective.
The ability of a strategy to reject an incorrect alternative requires the corresponding model to be of inferior
quality; whether this is so depends on features of Fk and L. An immediate and quite restrictive pre-requisite
arises from the inherent nature of the generic power model:

Proposition 1. No generic strategy is able to distinguish the correct key k∗ from an alternative hypothesis k if

Fk∗ and Fk are injective.

Proof. If Fk∗ , Fk are injective then ∀x ∈ X , F−1k [Fk(x)] = F−1k∗ [Fk∗(x)] = {x}. Each hypothesis produces
models of equivalent nominal accuracy�no generic-compatible distinguisher can be expected to separate the
candidates.
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Indeed, all of the known generic-compatible distinguishers, from the seminal CHES '08 paper on MIA [14] to
the recent copula-based method presented at Crypto '11 [32], have individually been shown to fail whenever
the composition of the target function and the power model is injective; the same observation was made for the
entire class of `partition-based' distinguishers described in [27]. The authors duly noted that some restriction
was required on the power model in order for these distinguishers to operate against an injective target, but
left as an open question the existence (or demonstrable non-existence) of an as-yet undiscovered method which
would somehow circumvent this requirement. Demonstrating that the limitation is attributable directly to the
generic power model rules out this possibility.

Noninjectivity is therefore a necessary condition, but not, as we next establish, a su�cient one. In the general
case it is rather di�cult to formulate useful, concrete observations so we will henceforth narrow down to the
restricted but highly relevant case that F is a balanced (n-m) function and k is introduced by key addition (as
described in Section 2.3). It then becomes fairly straightforward to draw out such function characteristics as
will obstruct a generic strategy.

Proposition 2. Suppose F is a balanced, non-injective (n-m) function, with k introduced by (XOR) key addi-

tion, i.e. Fk(x) = F (x⊕ k). Then:

(a) If F is a�ne then no generic strategy is able to distinguish the correct key k∗ from any k ∈ K \ {k∗}.
(b) If a ∈ Fn2 is a linear structure of F then no generic strategy is able to distinguish between k∗ and k∗ ⊕ a.
(c) If, for some a ∈ Fn2 we have that DaF (x) depends on x only via F (x), then no generic strategy is able to

distinguish between k∗ and k∗ ⊕ a.

The proof of Proposition 2 can be found in Appendix A. Part (a) arises from the fact that all key hypotheses
produce indistinguishably `good' models for the leakage; the distinguishing vector produced by such an attack
would be �at and maximal across all hypotheses.

The implication of 2(b) is that k∗ ⊕ a cannot be rejected if the derivative of F with respect to a is constant
over the domain of F , i.e #DaF (Fn2 ) = 1. In such a case we would expect a practical attack to exhibit a ghost

peak at k∗ ⊕ a [5]; [22], notes a corresponding phenomenon for correlation DPA.

Part (c) can be otherwise expressed as the fact that k∗⊕a cannot be rejected if the derivative of F with respect
to a is constant over each singleton preimage of F , i.e. #DaF (F

−1[F (x)]) = 1 ∀x ∈ Fn2 . We have actually
observed this property in the fourth DES S-Box, for the key-o�set a = 47(10) = 101111(2): in consequence,
k∗ ⊕ 47 produces a `ghost peak' in the distinguishing vector, with a nonetheless substantial margin between
these two and the remaining hypotheses�a good example of an attack scenario with a low �rst-order, but high
second-order, success rate [28]. Our observation is consistent with, and further illuminates, past works such as
[6] which recognised the unusual operation of DPA distinguishers confronted with this particular S-Box/o�set
combination.

Thus emerges a minimal requirement for k∗ to be distinguished from k:

Proposition 3. Suppose F is a balanced, noninjective n-m function, with k introduced by (XOR) key-addition.

A necessary condition for a generic strategy to distinguish k∗ from k is: ∃x ∈ Fn2 such that #Dk∗⊕kF (F
−1[F (x)]) 6=

1. If L is injective then this becomes a su�cient condition.

This is informally expressed as the requirement that there is at least one (singleton) preimage over which the
derivative with respect to k∗⊕k is not constant. The proof follows from our reasoning in support of Proposition 2
and can be found in Appendix A along with a toy example to demonstrate that we can no longer claim su�ciency
if L is noninjective.
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It is an explicit design goal that S-Boxes should have high di�erential entropy [4]; a�ne functions or functions
with non-null linear spaces represent the extreme in terms of cryptanalytic vulnerability. The pursuit of this
criteria does not guarantee the minimal condition above, as even a perfectly balanced derivative could be so
arranged as to be constant over the singleton preimages (which are of cardinality 2n−m since F is also balanced).
However, it would certainly seem to increase the chance that the condition be met for a given key-o�set, as the
more �nely DaF partitions Fn2 , the fewer the possible re�nements into 2m (balanced) parts. Therefore, among
the (already restricted) class of noninjective S-Boxes we would expect ghost peaks and indistinguishable keys
to be a rarity�even more so as the size of the S-Box increases.

4 The `magic' of learning

The �rst part of this paper makes it clear that any generic-compatible distinguisher which returns only some
`classi�cation accuracy' for the key hypotheses will fail against injective target functions. Intuitively, then, we
looking for distinguishers that compute something `more': linear regression-based methods are an immediate
candidate because they can be used with a generic power model (equivalent, as we show, to providing a full basis
of polynomial terms in the targeted bits)�in which case the distinguishing vector of goodness-of-�t values will be
unable to discriminate between key hypotheses if the target is injective�but in the process they also return the
estimated power model coe�cients. Examining these one can readily observe that the �tted models for di�erent
key hypotheses are di�erent: we will show that the application of some simple, non device-speci�c intuition to
these models can in fact reveal the correct key hypothesis. This process can be automated straightforwardly by
using LR in a stepwise mode.

We begin by introducing (standard) LR-based DPA, explaining the mechanism by which it distinguishes the
correct key, and demonstrating that it is among the class of generic-compatible distinguishers. We then present
the `generic-emulating' stepwise regression-inspired variant which exploits the non device-speci�c intuition to
successfully attack injective targets even with `no' (other) prior knowledge. We �nally demonstrate the (asymp-
totic) e�ectiveness of these distinguishers against well-known (injective and noninjective) S-Boxes, as the level
of prior knowledge available varies from `complete' to `none'.

4.1 Introduction to linear regression-based DPA

The motivation for a linear regression-based approach begins with the observation that L : Fm2 → R can be
viewed as a pseudo-Boolean vectorial function with a unique expression in numerical normal form [7]. That is to
say, there exists coe�cients αu ∈ R such that L(z) =

∑
u∈Fm

2
αuz

u, ∀z ∈ Fm2 (zu denotes the monomial
∏m
i=1 z

ui
i

where zi is the i
th bit of z). Finding those coe�cients amounts to �nding a power model for L in polynomial

function of the coordinate functions of F .

`Stochastic attacks' [25], proposed as an alternative to Bayesian template attacks, used linear regression in
a pro�ling stage to estimate those coe�cients from data collected on a controlled device. The authors also
observed�though it was only later demonstrated [10]�that the procedure could be adapted to non-pro�led
key-recovery, in which the true leakage function is estimated `on-the-�y' and recovered synchronously with the
true key.

Appendix B provides background on linear regression; in short, the LR-based attack uses ordinary least squares
to estimate, for each k ∈ K, the parameters of the model Lk∗(X) + ε = α0 +

∑
u∈U Fk(X)uαu where U ⊆

Fm2 \ {0}. The distinguishing vector comprises the R2 measure of �t from each of these models: DLR(k) =
ρ(Lk∗(X)+ε, α̂k,0+

∑
u∈U Fk(X)uα̂k,u)

2 (where ρ denotes Pearson's correlation coe�cient). It can be viewed as
a generalisation of correlation DPA, where the power model M is known a priori : Dρ(k) = ρ(Lk∗(X) + ε,M ◦
Fk(X)). In each case, the value of k which produces the largest distinguisher value is selected as the key guess.
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4.2 Linear regression is generic-compatible

In the way the distinguisher is most naturally presented, the attacker's prior knowledge is contained within U
and it is not immediately obvious exactly what is the power model, or where it �ts alongside the various types
presented in Section 3.1. In fact, each u ∈ U could be seen to represent a separate power model which divides
the traces into two nominal classes: {x ∈ Fn2 |Fk(x)u = 1} and {x ∈ Fn2 |Fk(x)u = 0}.6 Intuitively, as long as
the power consumption really does di�er systematically according to the bit-interaction term represented by u,
then this `approximation' has low precision but high recall under the correct key hypothesis, and loses accuracy
under an incorrect hypothesis as long as the function F is such that changes to the input produce nonuniform
changes to the output. Such, in fact, is the mechanism by which the original di�erence-of-means distinguisher
of [18] operates!

So the linear regression distinguisher could be viewed as an extension of di�erence-of-means DPA�a means
of exploiting multiple (overlapping) nominal approximations, each of low precision (and therefore weak as
standalone models) but in conjunction providing a re�ned description of the leakage. Note that any u ∈ U
which does not induce a `meaningful' partition will detract from the overall distinguishing power�hence the
motivation to use any prior knowledge available to re�ne U .

Intuitively, the generic instantiation should correspond to U = Fm2 \ {0}, which is equivalent to imposing no
restrictions on the form of the leakage. But our previous reasoning about the operation of generic strategies
supposed a single power model (Fk, interpreted nominally) and it is hard to see how we might begin to reason
about the impact of multiple power models. Fortunately, in the U = Fm2 \ {0} case only, the operation of the
distinguisher can be re-framed in terms of the generic power model as de�ned above�implying that all of our
prior reasoning applies.

Proposition 4. The linear regression-based DPA attack with a full set of covariates U = Fm2 \ {0} constitutes
a generic strategy.

We sketch a proof as follows: IfMk is an arbitrary labeling on Fk, we can always map bijectively to Fm2 to acquire
an arbitrary permutation of the function outputs M ′k(x) = p◦Fk(x). For each u ∈ Fm2 , the associated monomial
M ′k(x)

u has a unique expression in numerical normal form M ′k(x)
u =

∑
v∈Fm

2
bvFk(x)

v, bv ∈ R [7]. So the

system of equations relating to an incorrect hypothesis k can be re-written in function of Fk(x) by substituting
in these expressions, expanding out and collecting up the terms. Note that we end up with di�erent values of
αu, u ∈ Fm2 whenever we reparametrise in this way: but, crucially, the terms in the equation collectively explain
the measured traces equally well�and it is in this sense that linear regression DPA is invariant to re-labeling

and therefore can be discussed alongside other generic-compatible strategies (though it is not usually used in
this way�particularly as restrictions on U contribute to e�ciency gains in the estimation stage).

`Fixing' generic linear regression-based DPA for injective targets? By the above argument, we expect
that linear regression-based DPA with U = Fm2 \ {0} to fail for injective targets. However, we want to discuss
brie�y how this failure manifests itself, as it gives a �rst intuition regarding how that linear regression might
be adapted to work even for injective targets. We focus, for clarity, on the asymptotic case (see Section 4.5).

When the target function is injective, the data-dependent part of the power consumption can be expressed as
a system of 2n equations (in function of Fk(x)) with 2n unknowns. Because this system is fully-determined and
consistent under any key hypothesis it always has a perfect solution, so as to produce a �at distinguishing vector

6 Note that the labeling is irrelevant since they are represented in the regression equation by dummy variables: the 1/0 assignment
is arbitrary and will impact only the estimated coe�cients, not the R2.
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of maximal R2s. The attack can be made e�ective by introducing some prior information about the true form
of the data dependent leakage; that is, by dropping known-to-be-redundant terms from the model equation for
L so as to produce an over -determined system. By way of simple example, supposing bit contributions to be
independent (a slight generalisation of a Hamming weight leakage assumption), equates to taking U =

⋃m−1
i=0 {2i}.

As long as the discarded terms include some which do not contribute to L but do contribute to L ◦ Fk ◦ F−1k∗

then k is distinguished from k∗. The point, though, is that this is no longer a `generic' strategy as it relies on
some minimal insights about the device. It also assumes that the prediction `labels' are the function outputs
Mk = Fk (in order to correctly interpret U ⊂ Fm2 \ {0}).

4.3 Exploiting non device-speci�c intuition

We have just argued in the previous section that if an attacker was able to make a meaningful restriction on
the model terms, linear regression could be made to work�that is, to return R2s which allow us to distinguish
between key hypotheses (producing a successful, but non-generic attack). However we now return our attention
to operating linear regression generically. In this case we still have that for U = Fm2 \ {0}, the derived models
give an equally good �t. However, they will only give the correct expression for L in function of the output bits
when k = k∗: the rest of the time, they will give an expression for L ◦ Fk ◦ F−1k∗ . So, in a sense, the per-key
parameter estimates contain all the information required to indicate the secret key, if only the attacker knew
how to recognise the correct expression for L.

Thus motivated, we examine the correct and incorrect expressions for L in the case that the target function
is an injective S-Box (of size 8 bits in the case of AES, or 4 bits in the case of PRESENT) and that the true
form of the leakage is the Hamming weight: L(z) =

∑m
i=0 z

2i . Figure 2 shows the coe�cients, in the polynomial
expression for L, on the covariates as produced by the true key (in black) and on those as produced under an
incorrect hypothesis (in grey). The high nonlinearity of the AES, PRESENT (and DES) S-Boxes ensure that,
when viewed as a polynomial in Fk(X) rather than Fk∗(X), the leakage function L is also highly nonlinear in
form.
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Fig. 2. Coe�cients, in the polynomial expression for L, on the covariates as predicted under the correct and an incorrect key
hypothesis.

An attacker confronted with such evidence would be justi�ed in favouring hypothesis k∗ over k: intuitively, it
just seems more likely (especially given the known high nonlinearity of F ) that the `simpler' expression is the
correct one. In order to exploit the information represented by the model estimates, we therefore need to trust
this intuition (which implicitly also assumes that Mk = Fk�but since the target function is known to us this
is completely reasonable). In that sense, we have taken a step away from the generic strategy�but since the
intuition is not speci�c to any particular device it appears to be a very small step. That is, we just need to
assume that the leakage function is `su�ciently simple' compared to the target function. This is justi�ed for
a wide range of devices manufactured in CMOS technologies, including advanced 65-nanometer processes [24].
In fact, even for protected logic styles such as introduced by Tiri and Verbauwhede [30], it turns out that the
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ensuring a complex (e.g. highly nonlinear) leakage function is a challenging task [23]. Besides, the results in
Section 4.5 will also demonstrate that this `simplicity constraint' on the leakage function can be quite relaxed.

Of course, comparing graphs is not ideal from a practical perspective, besides which the true leakage function
may not always have so simple a form as to be visibly discernible: we would like to encapsulate the underlying
reasoning into an automated and systematic procedure for testing hypotheses. In the next section we introduce
a learning technique from data mining which uses our non device-speci�c intuition about `what the leakage
should look like' to produce, in a wide range of leakage scenarios, asymptotically successful key recovery against
injective targets even when provided with the full set of covariates U = Fm2 \ {0}. Such a strategy, whilst not
generic, may reasonably be described as generic-emulating.

4.4 A stepwise regression-based distinguisher

Stepwise regression [17] is a model-building tool whereby potential explanatory variables are iteratively added
and removed depending on whether they contribute su�cient explanatory power to meet certain threshold
criteria (see Appendix C for full details). The resulting regression model should therefore exclude `unimportant'
terms whilst retaining all of the `signi�cant' terms. In the context of linear regression DPA this equates to
testing each of the multiple binary models represented by u ∈ U separately (conditioned on current model) and
then privileging those which appear most meaningful.

Under a correct key hypothesis, and beginning with a full basis U = Fn2 \{0} we would expect to obtain a `good'
regression model which explains most of the variance in L, although with some minor terms absent if they do
not meet our threshold criteria for statistical signi�cance. The example depicted in Figure 2 above justi�es the
hope that the model produced under an incorrect hypothesis might be `less good': with the explanatory power
being so much more dispersed, the contribution of any individual term decreases. These small contributions
are prejudiced against in the model building process (depending on the threshold criteria) but their actual

contributions are real and so, therefore, is the loss in excluding them. If the aggregate loss is su�cient then the
resulting R2 will be enough reduced relative to the true key R2 to distinguish between the two.

Figure 2 also reinforces the intuition (discussed in Section 3.3) that S-Box vulnerability increases with size: the
extent to which explanatory power can be dispersed among the covariates under wrong-key reparametrisation
is restricted by the number of covariates, 2m − 1. So whilst the potentially distinguishing feature can still be
observed for the PRESENT S-Box it is less marked than in the case of AES, and we might expect key-recovery
to be more di�cult.

Of course, our chosen example scenario relates to a very simple leakage function. For the attack to be successful
in more complex scenarios the target function F would have to introduce su�cient additional `dispersion' of the
explanatory power for the model quality to be a�ected. Moreover, the stepwise regression algorithm is sensitive
to the threshold criteria set by the user and even to the order in which the variables are introduced. The optimal
p-value at which to reject or accept candidate terms will vary depending on the properties of the target function
and the size of its domain (i.e. the number of equations in the system). Careful tuning may be necessary before
an attack becomes successful, and there is no prior guarantee that it can be so. Such decisions implicitly form
part of the `intuition' the attacker has about the true leakage. However, as previously mentioned this intuition
is reasonable for a wide range of technologies. Furthermore, the next section demonstrates that�even in the
`uninformed' case that U = Fn2 \ {0}�the stepwise approach can succeed (asymptotically) against injective
targets, regardless of the degree of the leakage function, and can improve the e�ciency of attacks against
noninjective targets by widening the margins by which the true key is distinguished from the alternatives.
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4.5 Asymptotic attack outcomes as knowledge on the power model varies

Figure 3 shows the distinguishing margins achieved (asymptotically) by linear regression-related attacks against
AES, PRESENT and DES, for leakage polynomials of increasing degree, and for di�ering levels of prior knowl-
edge on the data-dependent leakage, as follows:

� A perfectly characterised power model, which can be exploited straightforwardly in a correlation attack.
(Corresponds to the line labelled `Perfect model' in Figure 3).

� Knowledge of the degree d of the leakage polynomial, which can be exploited via LR and stepwise LR
attacks using a restricted covariate set (or initial covariate set in the case of stepwise LR) i.e., U = {u ∈
Fn2 \ {0}|HW (u) <= d}. (Labelled in Figure 3 as `Max degree LR' and `Max degree SW' respectively).

� No knowledge about the leakage polynomial, i.e., U = Fn2 \ {0}, in which case we are interested in the
performance of generic LR-based DPA and uniformed stepwise LR-based DPA. (Labelled in Figure 3 as
`Generic LR' and `Uninformed SW' respectively).

As expected, the attacks exploiting a perfect characterisation perform best and are not penalised as the degree
increases. LR with a known degree is decreasingly e�ective against injective targets (AES and PRESENT S-
Boxes) as enlarging the set of included covariates increases the amount of variance that can be explained under
a rival hypothesis�thus narrowing the distinguishing margins. It eventually fails altogether as it coincides
with the generic distinguisher. However, as conjectured, stepwise linear regression does succeed, even against
high degree leakage, and when combined with knowledge of the degree it is the best performing of all the
linear regression-based attacks. The third panel nicely illustrates the robustness of a generic strategy against a
noninjective target (namely, the �rst DES S-Box), whilst emphasising the e�ciency gains available from both
information on the degree and the use of stepwise regression.7
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Fig. 3. Median distinguishing margins of attacks against AES, PRESENT and DES S-Boxes as the leakage degree increases (500
experiments with uniformly random coe�cients between -10 and 10).

This �nal experiment allows us to come back on the requirement of `su�ciently simple' leakage function expressed
in Section 4.3. Namely, Figure 2 suggests that it is the comparative `complexity' (in some sense) of L ◦Fk ◦F−1k∗

relative to L which is exploited by stepwise regression in order to recover k∗. We might naturally conjecture
that the approach will eventually fail as long as L is su�ciently nonlinear, as there would no longer be any
clue by which to distinguish the true key. Somewhat surprisingly, the example attacks above do succeed even
when the leakage degree is maximal, so high polynomial degree is obviously not the relevant criteria to predict
attack failure, at least asymptotically. Yet, we are quite able to arti�cially construct leakage functions against
which stepwise regression does not succeed: for example, random permutations over {0, . . . , 2m−1}. This would
7 The asymptotic outcomes appear to be reliably consistent over the 500 repeated experiments�see Appendix D for more infor-
mation.
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indicate that the leakage functions for which the stepwise regression fails are the ones that achieve a high
cryptographic nonlinearity when interpreted as functions over Fm2 �at least when m is large enough. However,
we leave as an open question the precise properties of L which will cause such failures.

5 Conclusion

We have di�erentiated between the types of prior knowledge which an attacker might have about the device
leakage, and clari�ed the characteristics which appropriately de�ne a power model as `generic'. We have subse-
quently explored the distinguishers and scenarios which are compatible with such a construction. In particular,
we have been able to conclusively demonstrate that noninjectivity of the target function is an inescapable
prerequisite for such attacks to succeed, and moreover that this is not a su�cient condition but must be accom-
panied by certain other algebraic properties. The types of properties which do enable generic key recovery can
be reasonably expected of many functions used in cryptography thanks to the particular aims of S-Box design
criteria, but are not inevitably produced by the criteria. Our results show formally that the gap between generic
strategies and so-called pro�led attacks, taking advantage of prior knowledge on the leakage distribution, is not
only a matter of e�ciency (in terms of data and trace complexity to recover a key), but also of e�ectiveness (that
is, there exist situations in which only the latter can succeed). Hence, although the gap can be small in certain
scenarios (e.g. the �rst-order DPA in this paper), pro�led attacks such as [9] are the only way to perform sound
worst-case security evaluations [28]. We have then explained and developed the theory around linear regression-
based �rst-order DPA and argued for its use as an e�cient but �exible strategy. We have �nally demonstrated
how, by applying additional non device-speci�c intuition about the form of the leakage function, a data-mining
technique known as `stepwise regression' can produce (asymptotically) successful attacks even against injective
targets, and can, moreover, enhance the trace e�ciency of linear regression �rst-order DPA with or without
prior knowledge. We describe this strategy as `generic-emulating'. In this respect, an important scope of further
research is to extend such generic-emulating strategies in the context of higher-order DPA and implementations
protected with countermeasures. That is, can we also relax the limitations of generic-compatible distinguishers
such as [13,32] in this more challenging context, exploiting non device-speci�c intuitions as in this work.
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A Conditions for a generic strategy to succeed

Here we provide simple proofs for the claims stated in Section 3.3. For conciseness we �rst prove Proposition 2
part (c) and then show that parts (a) and (b) are covered as special cases.
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Proof. (Of 2(c)). Ultimately, k∗ is indistinguishable from k if F−1k [Fk(x)] ⊆ F−1k∗ [L−1[L ◦ Fk∗(x)]] ∀x ∈ Fn2 as
this implies that Fk is just as accurate a model for L ◦Fk∗ as Fk∗ (that is Precision(Fk) = Precision(Fk∗) = 1
and Recall(Fk) = Recall(Fk∗) as follows directly from the formulae).

It is su�cient to show that ∀x ∈ Fn2 , x′ ∈ F−1k [Fk(x)] ⇒ x′ ∈ F−1k∗ [Fk∗(x)], since, trivially, F
−1
k∗ [Fk∗(x)] ⊆

F−1k∗ [L−1[L ◦ Fk∗(x)]].

If DaF (x) depends on x only via F (x) we can write DaF (x) = c(F (x)) for some function c : Fm2 → Fm2 .

It thus follows that Fk∗(x) = F (x⊕k∗⊕a⊕a) = DaF (x⊕k∗⊕a)⊕F (x⊕k∗⊕a) = c(F (x⊕k∗⊕a))⊕F (x⊕k∗⊕a) =
c(Fk∗⊕a(x))⊕ Fk∗⊕a(x).

So if x′ ∈ F−1k∗⊕a[Fk∗⊕a(x)] then:

Fk∗(x
′) = c(Fk∗⊕a(x

′))⊕ Fk∗⊕a(x′)
= c(Fk∗⊕a(x))⊕ Fk∗⊕a(x)
= Fk∗(x).

I.e. x′ ∈ F−1k∗ [Fk∗(x)] and thus F−1k∗⊕a[Fk∗⊕a(x)] ⊆ F
−1
k∗ [Fk∗(x)] ⊆ F−1k∗ [L−1[L ◦ Fk∗(x)]].

Part (b) follows trivially once we notice that, if a ∈ Fn2 is a linear structure of F , we can replace c(F (x)) in the
above argument with c for some c ∈ Fm2 constant over all x.

Part (a) follows from the observation that if F is a�ne, the linear space of F is the whole of Fn2 so that k∗ is
indistinguishable from k = k′⊕a for all a ∈ Fn2 \{0} (and thus for all k ∈ K\{k∗} ⊆ Fn2 ) by the same argument.

Proof. (Of Proposition 3). That the condition is necessary follows directly from Proposition ??. Now suppose
that, additionally, L is injective.

Choose x′ ∈ Fn2 such that #Dk∗⊕kF (F
−1[F (x′⊕k)]) 6= 1�which can be re-written as #Dk∗⊕kF (F

−1
k [Fk(x

′)]) 6=
1.

Thus ∃x′′ ∈ F−1k [Fk(x
′)] such that:

Dk∗⊕kF (x
′ ⊕ k) 6= Dk∗⊕kF (x

′′ ⊕ k)⇒ F (x′ ⊕ k ⊕ k∗ ⊕ k)⊕ F (x′ ⊕ k) 6= F (x′′ ⊕ k ⊕ k∗ ⊕ k)⊕ F (x′′ ⊕ k)
⇒ F (x′ ⊕ k∗)⊕ F (x′ ⊕ k) 6= F (x′′ ⊕ k∗)⊕ F (x′′ ⊕ k)
⇒ Fk∗(x

′)⊕ Fk(x′) 6= Fk∗(x
′′)⊕ Fk(x′′)

⇒ Fk∗(x
′) 6= Fk∗(x

′′) (since x′′ ∈ F−1k [Fk(x
′)])

⇒ x′′ 6∈ F−1k∗ [Fk∗(x
′)]

⇒ F−1k∗ [Fk∗(x
′)] 6= F−1k [Fk(x

′)]

Now we look at what this does to the precision and recall of Fk as a nominal model for Fk∗ , beginning with the
summands in the numerator of both expressions:

#F−1k∗ [L−1[L ◦ Fk∗(x)]] ∩ F−1k [Fk(x)] = #F−1k∗ [Fk∗(x)] ∩ F−1k [Fk(x)]

{
< 2n−m, if x = x′

≤ 2n−m, if x 6= x′.
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By the balancedness of F and the injectivity of L the denominator summands in the precision and recall
expressions always take the value 2n−m. In this case, then, we get that Precision(Fk∗) = Recall(Fk∗) = 1
whilst Precision(Fk) = Recall(Fk) < 1, so that a su�ciently sensitive generic-compatible distinguisher will be
able to reject the hypothesis k.

It only remains to show that su�ciency cannot be claimed when L is noninjective, which we do with a simple
illustrative example:

De�ne F : F3
2 → F2

2 and L : F2
2 → {1, 2} such that:

F (x) =


0, x ∈ {0, 3}
1, x ∈ {1, 2}
2, x ∈ {4, 5}
3, x ∈ {6, 7},

L(z) =

{
1, z ∈ {0, 1}
2, z ∈ {2, 3}.

So F0(x) = F (x⊕ 0) = F (x)

and F4(x) = F (x⊕ 4) =


0, x ∈ {4, 7}
1, x ∈ {5, 6}
2, x ∈ {0, 1}
3, x ∈ {2, 3}.

Then (for example) F−10 [F0(0)] = {0, 3} 6= {0, 1} = F−14 [F4(0)], but nonetheless F−10 [L−1[L ◦ F0(0)]] =
{0, 1, 2, 3} = F−14 [L−1[L ◦ F4(0)]] ⊃ F−14 [F4(0)] and in fact it can be checked that F−14 [F4(x)] ⊂ F−10 [L−1[L ◦
F0(x)]] ∀x ∈ F3

2 so that Precision(M4) = Precision(M0) = 1 and Recall(M4) = Recall(M0), implying that
key candidates 0 and 4 cannot be distinguished from one another.

B Linear regression

Linear regression is a statistical method for modelling the relationship between a single dependent variable Y
and one or more explanatory variables Z. It operates by �nding a least-squares solution β̂ to the system of
linear equations Y = Zβ+ε, where Y is an N -dimensional vector of measured outcomes, Z is an N -by-p matrix
of p measured `covariates', β is the p-dimensional vector of unknown parameters, and ε is the noise or error
term, that is, all remaining variation in Y which is not caused by Z. Once the model has been estimated, the
goodness-of-�t can be measured (for example) by the `coe�cient of determination', R2, which quanti�es the
proportion of variance explained by the model: R2 = 1− SSerror

SStotal
, where SStotal =

∑N
i=1(Yi −

1
N

∑N
i=1 Yi)

2 is the

total sum of squares and SSerror =
∑N

i=1(Yi − Ziβ̂)2 is the error sum of squares.

In the case that Z includes a constant term (the associated parameter estimate is called the intercept), the
coe�cient of determination is the square of the correlation coe�cient between the outcomes and their predicted
values: R2 = ρ(Zβ̂, Y )2. It is appealing as an attack distinguisher by virtue of this close relationship with
correlation, coupled with the fact that it requires far less knowledge about the true form of the leakage to
succeed. In correlation DPA the attacker has prior knowledge of a power modelM and the distinguishing vector
takes the form Dρ(k) = ρ(Lk∗(X) + ε,M ◦ Fk(X)). In linear regression DPA the challenge is to simultaneously

recover the true power model along with the correct key as follows:

� Model the measured traces in function of the predicted coordinate function outputs and such higher-order
interactions as you believe to be in�uential.

� Estimate the parameters and compute the resulting R2 under each possible key hypothesis.
� If the largest R2 is produced by the predictions relating to the correct key hypothesis then the attack has
succeeded.
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The LR-based distinguishing vector is thus: DLR(k) = ρ(Lk∗(X) + ε, α̂k,0 +
∑

u∈U Fk(X)uα̂k,u)
2, where ρ is

Pearson's correlation coe�cient, de�ned for two random variables A, B as ρ(A,B) = Cov(A,B)√
Var(A)Var(B)

.

C Stepwise regression

The inputs to the procedure are an N × 1 vector Y containing observations of the dependent variable, p N × 1
vectors {Zi}pi=1 for each of the candidate explanatory variables, a set of indices indicating terms to be included
regardless of explanatory power Ifix ⊂ {1, . . . , p} and a set of indices indicating additional terms to include in
the initial model Iinitial ⊆ {1, . . . , p} (s.t. Ifix ∩ Iinitial = ∅).

1. Set Iin = Iinitial. Set Itest = {1, . . . , p} \ {Iin ∪ Ifix}.
2. For all j ∈ Itest �t the model Y = β0+

∑
i∈Ifix∪Iin βiZi+βjZj + ε using least-squares regression and obtain

the p-value on Zj (call it pvalj).
3. If minj∈Itest pvalj ≤ pvaladd then set Iin = Iin ∪ argminj∈Itestpvalj , Itest = Itest \ argminj∈Itestpvalj and

repeat from step 2.
4. Else �t the model Y = β0 +

∑
i∈Ifix∪Iin βiZi + ε using least-squares regression and obtain {pvali}i∈Iin .

5. If maxi∈Iin pvali ≥ pvalrem then set Iin = Iin \ argmaxi∈Itestpvali, Itest = Itest ∪ argmaxi∈Itestpvali and
return to step 2.

6. Else return Iin.

Note that the p-values on included terms change when other terms are added or removed�hence the need for
an iterative procedure that re-tests the signi�cance of included terms to identify candidates for removal. The
threshold p-values for model entry and removal, pvaladd and pvalrem, are user-determined and will in�uence the
resulting model. The terms included in the initial model will also in�uence the result. The MatLab defaults are
pvaladd = 0.05, pvalrem = 0.1 and Iinitial = Ifix = ∅.

D Variability of measured outcomes

The asymptotic outcomes reported in Section 4.5 are based on 500 di�erent leakage functions constructed to
have uniformly random coe�cients between -10 and 10. Figure 3 displays the medians but provide a reliable
indication of the behaviour over the whole sample as the variance is moderate, at least in the case of AES
and DES S-Boxes. By way of illustration, Figure 4 below shows the 1st percentiles of the measured outcomes
observed. Successful outcomes against AES and DES are preserved (although diminished); there are more failure
cases against the PRESENT S-Box, which we conjecture is due to its smaller size, which restricts the degree
of cryptographic nonlinearity attainable. It should, of course, be noted that these attacks use �xed stepwise
inclusion/exclusion thresholds, and that the failure cases may respond to more sensitive tuning.
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Fig. 4. First percentile of the distinguishing margins of attacks against AES, PRESENT and DES S-Boxes as the actual degree of
the leakage polynomial increases (500 experiments with uniformly random coe�cients between -10 and 10).
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