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Abstract. The Galois configuration of Nonlinear Feedback Shift Regis-
ters (NLFSRs) is attractive for stream ciphers for which high throughput
is very important. In this paper, we prove that any Galois NLFSR can be
transformed into an equivalent NLFSR in the Fibonacci configuration,
which is the conventional configuration of NLFSRs. The transformation
is mentioned in the proof. The mapping between the initial states of the
Galois NLFSR and its equivalent Fibonacci configuration is also derived.
Moreover, some properties of Galois NLFSRs are presented.
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1 Introduction

Linear Feedback Shift Registers (LFSRs) are one of the most popular devices
for generating pseudo-random sequences [1]. They are simple, fast, and easy to
implement in software and hardware. LFSRs are widely used in many appli-
cations such as error correcting codes, test pattern generation and symmetric
cryptography. The main disadvantage is that in a LFSR, the current state is
a linear function of the previous state, thus cryptographically insecure. As an
alternative, an Nonlinear Feedback Shift Register (NLFSR) whose current state
is a nonlinear function of its previous state can be used [2]. The main application
area of NLFSRs at present is cryptography [3]. The output sequences of NLFSRs
are normally very hard to break with existing cryptanalytic methods [4,5]. Many
NLFSR-based stream ciphers have been designed [6∼10].

The traditional configuration of NLFSRs is the Fibonacci configuration,
shown in Fig. 1, which consists of n binary storage elements from left to right as
n− 1, n− 2, · · · , 0 and the feedback is applied to the n− 1th bit only. Another
type of NLFSRs called (n, k)-NLFSRs was introduced in [11]. An (n, k)-NLFSR
can be considered as a generalization of the Ring type of LFSR to the nonlinear
case [12]. In an (n, k)-NLFSR, the feedback can potentially be applied to ev-
ery bit. It gives us a potential opportunity to compute each next state function
in parallel, thus increasing the speed of output sequence generation. However,
(n, k)-NLFSRs have several drawbacks:



1) The period of the output sequence of an (n, k)-NLFSR is not necessarily
equal to the length of the longest cyclic sequence of its consecutive states.

2)An output sequence of a (n, k)-NLFSR with the period 2n − 1 does not
necessarily satisfies the 1st and 2nd postulates of Golomb.

These drawbacks do not create any problems in the Fibonacci configuration
[2]. A kind of (n, k)-NLFSRs which is similar to the Galois LFSRs, also called the
Galois configuration (Fig.2) has been proposed [13]. It requires that any bit only
can return to itself and the left bits of it in this configuration. A mapping between
Fibonacci NLFSRs and Galois NLFSRs which satisfies the condition ”uniform”
has been presented [13,14]. The transformation from a given Fibonacci NLFSR
to the equivalent uniform Galois NLFSRs can potentially reduce the depth of
the circuits implementing feedback functions, thus decreasing the propagation
time and increasing the throughput. A method of finding the fastest equivalent
uniform Galois configuration for a given Fibonacci NLFSR has been mentioned
in [15].

In [13], the author argued that a Galois NLFSR which does not satisfy the
condition ”uniform” may or may not has an equivalent Fibonacci configuration.
For supporting this arguement, two examples have been presented. However,
the one to show the nonexistence is incorrect since it is not a Galois NLFSR. In
this paper, we prove that any Galois NLFSR can be equivalent to a Fibonacci
configuration, and show the transformation. A method of finding matching initial
states between the equivalent NLFSRs is also presented. Some properties of
Galois NLFSRs are given by the transformation. These results are useful to
analysis Galois NLFSRs.

Fig. 1. The Fibonacci configuration of NLFSR

Fig. 2. The Galois configuration of NLFSR



2 Preliminaries

In this section, we describe basic definitions and notation used in this paper.
The algebraic normal form (ANF) of a Boolean function f : {0, 1}n → {0, 1}

is a polynomial in GF(2) of type

f(x0, · · · , xn−1) =
2n−1∑
i=0

ci
n−1∏
k=0

xikk

where ci ∈ {0, 1} and (i0, i1, · · · , in−1) is the binary expansion of i with i0 being
the least significant bit.

Definition 1. The dependence set of a Boolean function f is

dep(f) = {i|f |xi=0 6= f |xi=1}

where f |xi=j = f(x0, · · · , xi−1, j, xi+1, · · · , xn−1) for j ∈ {0, 1}.

Definition 2. A sequence s = (s0, s1, s2, · · · ) is eventually periodic if there ex-
ists two integers N ≥ 0 and T > 0 so that

si = si+T

for all i ≥ N . If N = 0, the sequence is called a purely periodic sequence.

An NLFSR consists of n binary storage elements, called bits. The order set
of values of these bits is called a state of the NLFSR. We denote a state at time
t by (s0[t], s1[t], · · · , sn−1[t]). t can be an arbitrary integer since we can take the
initial time to a smaller integer. At every clock cycle, the next state is determined
from the current state by updating the values of all bits simultaneously to the
values of the corresponding feedback functions fi (0 ≤ i ≤ n − 1). The output
of an NLFSR is the value of the 0th bit.

Definition 3. Two NLFSRs are equivalent if their sets of output sequences are
equal.

All NLFSRs considered in this paper have feedback functions of type

fi(x) = x(i+1) mod n ⊕ gi(x0, · · · , xi) (0 ≤ i ≤ n− 1) (1)

where gi is a Boolean function.
If for all 0 ≤ i ≤ n − 2 the feedback function are of type fi = xi+1, we

call it the Fibonacci configuration (Fig. 1). Otherwise, we call it the Galois
configuration (Fig. 2).

An NLFSR of type (1) can be described by a system of n nonlinear equations:
s0[t] = s1[t− 1]⊕ g0(s0[t− 1])
s1[t] = s2[t− 1]⊕ g1(s0[t− 1], s1[t− 1])
· · ·
sn−2[t] = sn−1[t− 1]⊕ gn−2(s0[t− 1], s1[t− 1], · · · , sn−2[t− 1])
sn−1[t] = s0[t− 1]⊕ gn−1(s0[t− 1], s1[t− 1], · · · , sn−1[t− 1]).

(2)



Definition 4. An n-bit NLFSR is uniform if for some 0 ≤ τ < n:
(a) fi(x) = xi+1 for 0 ≤ i < τ ,
(b) fi(x) = x(i+1) mod n ⊕ gi(x0, · · · , xτ ) for τ ≤ i < n

where gi is a nonzero Boolean function.

Any Fibonacci NLFSR is uniform. In [13], the author has discussed the trans-
formation from a Fibonacci NLFSR and its equivalent uniform Galois NLFSRs.
In this paper, we consider a more general problem: The relationship between
Galois NLFSRs (not necessarily uniform) and Fibonacci NLFSRs.

3 The Transformation from the Galois NLFSR to the
Fibonacci Configuration

We prove that any Galois NLFSR can be transformed into an equivalent Fi-
bonacci NLFSR and show the transformation in this section.

Lemma 1. The output sequences of a Fibonacci NLFSR can be generated by a
nonlinear recurrence of order n of type:

s0[t] =

2n−1∑
i=0

(ai

n−1∏
k=0

sik0 [t− n+ k]) (3)

where ai ∈ {0, 1} and (i0, i1, · · · , in−1) is the binary expansion of i with i0 being
the least significant bit. On the contrary, given a nonlinear recurrence (3), there
exists a Fibonacci NLFSR whose output sequences can be generated by it.

Proof. An n-bit Fibonacci NLFSR can be described by (2) with gi = 0 for
0 ≤ i ≤ n − 2, i.e., si[t] = si+1[t − 1] for 0 ≤ i ≤ n − 2. It implies that
sj [t− 1] = s0[t+ j − 1] for 1 ≤ j ≤ n− 1. Then the system of equations (2) can
be reduced to an equation by replacing sj [t− 1] to s0[t+ j− 1] for 1 ≤ j ≤ n− 1
in the last equation, i.e.,

s0[t+ n− 1] = s0[t− 1]⊕ gn−1(s0[t− 1], · · · , s0[t+ n− 2]). (4)

Hence we have

s0[t] = s0[t− n]⊕ gn−1(s0[t− n], · · · , s0[t− 1]).

On the contrary, given a nonlinear recurrence (3), by replacing sj [t−1] to s0[t+
j − 1] for 1 ≤ j ≤ n − 1, we can get the matching Fibonacci NLFSR with the

feedback function fn−1 =
2n−1∑
i=0

(ai
n−1∏
k=0

xikk ). 2

Theorem 1. A Galois NLFSR can be transformed into an equivalent Fibonacci
configuration.

Proof. Given a Galois NLFSR described by (2), we have



si[t− 1] = si−1[t]⊕ gi−1(s0[t− 1], s1[t− 1], · · · , si−1[t− 1])

for 1 ≤ i ≤ n− 1 by the first equation to the n− 1th equation of (2). Then from
the first equation to the n− 1th equation, we iteratively substitute for si[t− 1]
(1 ≤ i ≤ n− 1) their equivalent expressions:

Step 1: By the first equation, we have

s1[t− 1] = s0[t]⊕ g0(s0[t− 1]).

Step 2: By the second equation, we have

s2[t− 1] = s1[t]⊕ g1(s0[t− 1], s1[t− 1])

= s0[t+ 1]⊕ g0(s0[t])⊕ g1(s0[t− 1], s0[t]⊕ g0(s0[t− 1]))

= s0[t+ 1]⊕ h1(s0[t− 1], s0[t])

where h1(s0[t− 1], s0[t]) = g0(s0[t])⊕ g1(s0[t− 1], s0[t]⊕ g0(s0[t− 1])).
...
Step i: By the ith equation, we have

si[t− 1] = s0[t+ i− 1]⊕ hi−1(s0[t− 1], · · · , s0[t+ i− 2]).

where hi−1(s0[t− 1], · · · , s0[t+ i− 2]) = g0(s0[t+ i− 2])⊕ g1(s0[t+ i− 3], s0[t+
i− 2]⊕ g0(s0[t+ i− 3]))⊕ · · · ⊕ gi−1(s0[t− 1], s0[t] + g0(s0[t− 1]), · · · , s0[t+ i−
2]⊕ hi−2(s0[t− 1], · · · , s0[t+ i− 3])).

...
Therefore, the system of n equations (2) can be reduced to an equation

through substituting si[t − 1] (1 ≤ i ≤ n − 1) for their equivalent expressions
s0[t+ i− 1]⊕ hi−1(s0[t− 1], · · · , s0[t+ i− 2]) in the last equation:

s0[t+ n− 1]⊕ hn−2(s0[t], · · · , s0[t+ n− 2])
= s0[t− 1]⊕ hn−1(s0[t− 1], · · · , s0[t+ n− 2])

(5)

where hn−1(s0[t−1], · · · , s0[t+n−2]) = gn−1(s0[t−1], s0[t]+g0(s0[t−1]), · · · , s0[t+
n− 2]⊕ hn−2(s0[t− 1], · · · , s0[t+ n− 3])), i.e.,

s0[t] = s0[t− n]⊕ ϕ(s0[t− n], · · · , s0[t− 1])

where ϕ(s0[t−n], · · · , s0[t−1]) = hn−2(s0[t−n+ 1], · · · , s0[t−1])⊕hn−1(s0[t−
n], · · · , s0[t−1]). By Lemma 1, this nonlinear recurrence is equivalent to an n-bit
Fibonacci NLFSR with the feedback function fn−1 = x0 ⊕ ϕ(x0, · · · , xn−1). 2

In [13], the author argued that for a nonuniform Galois NLFSR, there may or
may not exists an equivalent Fibonacci NLFSR. To support the viewpoint, two
examples have been presented in the paper. One example to prove the existence
is as follows:

Example 1. Consider a 4-bit nonuniform Galois NLFSR with the following feed-
back functions:

f0 = x1 ⊕ x0
f1 = x2

f2 = x3

f3 = x0 ⊕ x2x3.



The author investigated the output sequence of it and found the equivalent Fi-
bonacci NLFSR. However, we can get the equivalent Fibonacci NLFSR without
simulating it. First, the Galois NLFSR can be described by

s0[t] = s1[t− 1]⊕ s0[t− 1]

s1[t] = s2[t− 1]

s2[t] = s3[t− 1]

s3[t] = s0[t− 1]⊕ s2[t− 1]s3[t− 1].

Then

s1[t− 1] = s0[t]⊕ s0[t− 1]

s2[t− 1] = s1[t] = s0[t+ 1]⊕ s0[t]

s3[t− 1] = s2[t] = s1[t+ 1] = s0[t+ 2]⊕ s0[t+ 1].

Hence we have s0[t+3]⊕s0[t+2] = s0[t−1]⊕(s0[t+1]⊕s0[t])(s0[t+2]⊕s0[t+1]),
i.e., s0[t] = s0[t− 4]⊕ s0[t− 2]⊕ s0[t− 1]⊕ s0[t− 3]s0[t− 2]⊕ s0[t− 3]s0[t− 1]⊕
s0[t− 2]s0[t− 1]. Therefore the equivalent Fibonacci NLFSR is of the feedback
function f = x0 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3.

We can see that the cost of logic gates of an nonuniform Galois NLFSR and
its equivalent Fibonacci NLFSR may not equal through Example 1. Hence it is
interesting to find a transformation from a Fibonacci NLFSR to some nonuni-
form Galois NLFSRs with less cost of logic gates. Unfortunately, we find that
this problem seems more difficult than factorization of a polynomial.

Another example to prove the nonexistence in [13] is as follows:

Example 2. A 4-bit NLFSR with the following feedback functions:

f0 = x1 ⊕ x0x1
f1 = x2 ⊕ x0 ⊕ x0x2 ⊕ x0x1x2
f2 = x3 ⊕ x0 ⊕ x1 ⊕ x2 ⊕ x0x2 ⊕ x1x2
f3 = x0 ⊕ x1x3.

However, this example is incorrect since it is not a Galois NLFSR: x1 ∈ dep(f0)
and x2 ∈ dep(f1) are both not in accord with the definition of the Galois con-
figuration.

4 Matching Initial States and some Properties

This section firstly gives a method of finding the matching initial states between a
Galois NLFSR and its equivalent Fibonacci configuration. Then some properties
of Galois NLFSRs will be presented.



Given a Galois NLFSR, we can find the equivalent Fibonacci NLFSR by
the method introduced in the proof of Theorem 1. We iteratively substitute for
si[t− 1] (1 ≤ i ≤ n− 1) their equivalent expressions such as:

s1[t− 1] = s0[t]⊕ g0(s0[t− 1])
s2[t− 1] = s0[t+ 1]⊕ h1(s0[t− 1], s0[t])
· · ·
sn−2[t− 1] = s0[t+ n− 3]⊕ hn−3(s0[t− 1], · · · , s0[t+ n− 4])
sn−1[t− 1] = s0[t+ n− 2]⊕ hn−2(s0[t− 1], · · · , s0[t+ n− 3]).

(6)

If the Galois NLFSR is initialized to a state (s0[t0 − 1], · · · , sn−1[t0 − 1]), we
can get the values of s0[t0], · · · , s0[t0 + n − 2] through iteratively solving the
first equation to the last equation of (6). By Lemma 1, if we let the initial
state of the equivalent Fibonacci NLFSR be (s0[t0− 1], · · · , s0[t0 +n− 2]), then
the output sequence is expressed by the recurrence (4) with this initial state,
which is also the output sequence of the Galois NLFSR with the initial state
(s0[t0−1], · · · , sn−1[t0−1]). On the contrary, if the equivalent Fibonacci NLFSR
is initialized to the state (s0[t0− 1], · · · , s0[t0 +n− 2]), we can directly compute
the matching initial state (s0[t0 − 1], · · · , sn−1[t0 − 1]) of the Galois NLFSR by
(6).

This method seems more general, more direct and clearer than the method
introduced in [14], which discusses the mapping of initial states between a Fi-
bonacci NLFSR and its equivalent uniform Galois NLFSRs.

Example 3. Consider the 4-bit Galois NLFSR of Example 1. We get a system of
equations: s1[t− 1] = s0[t]⊕ s0[t− 1]

s2[t− 1] = s0[t+ 1]⊕ s0[t]
s3[t− 1] = s0[t+ 2]⊕ s0[t+ 1].

If the Galois NLFSR is initialized to the state (s0[t0 − 1], s1[t0 − 1], s2[t0 −
1], s3[t0 − 1]) = (0110), then the corresponding initial state of the equivalent
NLFSR is (s0[t0 − 1], s0[t0], s0[t0 + 1], s0[t0 + 2]) = (0100).

By (6), we can directly get the following property of Galois NLFSRs:

Proposition 1. The ith bit (1 ≤ i ≤ n − 1) of a Galois NLFSR is equiva-
lent to the combination of some bits of the equivalent Fibonacci NLFSR. The
combination is determined by (6). Moreover, the period of an ith bit sequence
(1 ≤ i ≤ n − 1) is a factor of the period of the output sequence, and the period
of an ith bit sequence (1 ≤ i ≤ n − 1) which is not of all 1 or all 0 is equal to
the output sequence if the period of the output sequence is prime.

Proof. The proof is trivial by (6). 2

As we know, the state transition graph of a Fibonacci NLFSR consists of pure
cycles if and only if the feedback function of type: fn−1 = x0⊕gn−1(x1, · · · , xn−1)
[2]. For the Galois configuration, the state transition graph seems difficult to be



investigated since the period of an output sequence is not necessarily equal to
the length of the longest cyclic of their states. However, we can determine which
type of Galois NLFSRs can output purely periodic sequences.

Proposition 2. The output sequences of a Galois NLFSR are all purely periodic
if and only if the feedback function of type: f0 = x1 and fi = x(i+1) mod n ⊕
gi(x1, · · · , xi) for 1 ≤ i ≤ n− 1.

Proof. By Theorem 1, a Galois NLFSR described by (1) is equivalent to a Fi-
bonacci NLFSR with the feedback function f = x0⊕ϕ(x0, · · · , xn−1) where the
polynomial ϕ is computed by the iterative method in the proof of Theorem 1.
Then the output sequences are purely periodic if and only if x0 /∈ dep(ϕ) since
a period of a Fibonacci NLFSR always equals the longest cyclic sequence of its
consecutive states. By (5), x0 /∈ dep(ϕ) is equivalent to s0[t − 1] /∈ dep(hn−1)
where

hn−1

= gn−1(s0[t− 1], s0[t] + g0(s0[t− 1]), · · · , s0[t+ n− 2]⊕ hn−2(s0[t− 1], · · · , s0[t+ n− 3]))

where

hj(s0[t− 1], · · · , s0[t+ j − 1]) = g0(s0[t+ j − 1])⊕ g1(s0[t+ j − 2], s0[t+ j − 1]⊕ g0(s0[t+ j − 2]))

⊕ · · · ⊕ gj(s0[t− 1], s0[t] + g0(s0[t− 1]), · · · , s0[t+ j − 1]⊕ hj−1(s0[t− 1], · · · , s0[t+ j − 2]))

for 0 ≤ j ≤ n−2. Hence s0[t−1] /∈ dep(hn−1) is equivalent to s0[t−1] /∈ dep(hj)
for 0 ≤ j ≤ n− 1.

Iteratively computing hj from h0 to hn−1 with the given gi (0 ≤ i ≤ n− 1),
it is easy to get that s0[t − 1] /∈ dep(hj) for 0 ≤ j ≤ n − 1 is equivalent to
x0 /∈ dep(gi) for 0 ≤ j ≤ n− 1. 2

5 Conclusions

In this paper, we show how to transform a Galois NLFSR into the Fibonacci
configuration and how to find the matching initial states between the two equiv-
alent NLFSRs. Some properties of the output sequences and the sequences of
other bits of the Galois NLFSRs are presented.

Some problems of NLFSRs are still open. One problem is finding a trans-
formation from a Fibonacci NLFSR to some nonuniform Galois NLFSRs with
less cost of logic gates. Perhaps the most important one is finding a systematic
procedure for constructing NLFSRs with a guaranteed long period.
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