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Abstract
Developers building cryptography into security-sensitive ap-
plications face a daunting task. Not only must they under-
stand the security guarantees delivered by the constructions
they choose, they must also implement and combine them
correctly and efficiently.

Cryptographic compilers free developers from having to im-
plement cryptography on their own by turning high-level
specifications of security goals into efficient implementations.
Yet, trusting such tools is risky as they rely on complex
mathematical machinery and claim security properties that
are subtle and difficult to verify.

In this paper, we present ZKCrypt, an optimizing crypto-
graphic compiler that achieves an unprecedented level of as-
surance without sacrificing practicality for a comprehensive
class of cryptographic protocols, known as Zero-Knowledge
Proofs of Knowledge. The pipeline of ZKCrypt tightly in-
tegrates purpose-built verified compilers and verifying com-
pilers producing formal proofs in the CertiCrypt framework.
By combining the guarantees delivered by each stage in the
pipeline, ZKCrypt provides assurance that the implementa-
tion it outputs securely realizes the high-level proof goal
given as input. We report on the main characteristics of
ZKCrypt, highlight new definitions and concepts at its foun-
dations, and illustrate its applicability through a represen-
tative example of an anonymous credential system.

1. INTRODUCTION
Zero-Knowledge Proofs of Knowledge (ZK-PoKs) [37, 36]
are two-party protocols in which a prover convinces a veri-
fier that it knows some secret piece of information satisfying
some property without revealing anything except the cor-
rectness of this claim. ZK-PoKs allow obtaining assurance
on a prover’s honest behavior without compromising pri-
vacy, and are used in a number of practical systems, includ-
ing Direct Anonymous Attestation (DAA) [17], a privacy-
enhancing mechanism for remote authentication of comput-
ing platforms, the identity mixer [19], an anonymous cre-
dential system for user-centric identity management, Off-
the-Record messaging [34, 15], a protocol enabling denia-
bility in instant messaging protocols, and privacy-friendly
smart metering [50], an emerging technology for smart me-
ters. However, more than 25 years after their inception [35],
the potential of ZK-PoKs has not yet been realized to its full

extent, and many interesting applications of ZK-PoKs still
only exist at the specification level. In our experience, one
main hurdle towards a larger use of ZK-PoKs is the difficulty
of designing and correctly implementing these protocols for
custom proof goals.

Zero-knowledge compilers [7, 45] are domain-specific com-
pilers that automatically generate ZK-PoKs for a large class
of proof goals. They are a promising enabling technology
for ZK-PoKs, because they allow developers to build cryp-
tographic protocols that use them, without being experts in
cryptography, and without the risk of introducing security
flaws in their implementations.

Zero-knowledge compilers embed sophisticated mathemat-
ical machinery and as a consequence implementing them
correctly can be difficult—arguably more difficult than im-
plementing optimizing compilers. Moreover, this type of
compilers cannot be tested and debugged because their pur-
ported correctness properties are formulated in the style of
provable security, and testing such properties is out of reach
of current methods. This state of affairs leaves practitioners
with no other option than blindly trusting that the compiler
is correct.

Contributions. We present ZKCrypt, a high-assurance zero-
knowledge compiler that outputs formally verified and opti-
mized implementations of ZK-PoKs for a comprehensive set
of proof goals. We consider the class of Σ-protocols for prov-
ing knowledge of pre-images under group homomorphisms,
which underly essentially all practically relevant applications
of ZK-PoKs, including all applications mentioned above and
the well-known identification schemes by Schnorr [53] and
Guillou-Quisquater [39].

ZKCrypt achieves an unprecedented level of confidence among
cryptographic compilers by leveraging and transposing to
the realm of cryptography two recent breakthroughs: veri-
fied compilation [42], in which the correctness of a compiler
is proved once and for all, and verifying compilation [47,
56], in which the correctness of the output of a compiler
is proved for each run. Specifically, ZKCrypt implements a
verified compiler that generates a reference implementation,
and a verifying compiler that outputs an optimized imple-
mentation provably equivalent to the reference implementa-
tion. Taken together, the proofs output by the compilers
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Figure 1: ZKCrypt architecture, depicting a verifying compiler that takes high-level proof goals G to optimized
implementations (top), relying on a verified compiler implemented in Coq/CertiCrypt (center). Full lines denote
compilation steps and translation over formalization boundary (i.e. the generation of code that can be fed
into formal verification tools), dashed lines denote formal verification guarantees. Rectangular boxes denote
code in various (intermediate) languages either stored in files or as data structures in memory. Rounded
rectangles represent the main theorems that are generated and formally verified by ZKCrypt and which jointly
yield the desired formal correctness and security guarantees.

establish that the reference and optimized implementations
satisfy the following properties1 (refer to Section 3.2 for the
full definitions):

• Completeness: an honest prover can always convince
an honest verifier;

• Proof of knowledge: a malicious prover cannot convince
a verifier without actually knowing the secret, except
with small probability;

• Zero-knowledge: a verifier following the protocol does
not learn additional information about the secret of
the prover.

The architecture of the compiler is shown in Figure 1. At
the top level, ZKCrypt is composed of a chain of compila-
tion components that generates C and Java implementations
of ZK-PoKs; these implementations can be turned into ex-
ecutable binaries using general-purpose compilers. These
top level compilation components are an extension of the
CACE compiler [2] with support for user-defined templates
and high-level proof goals. At the bottom level, ZKCrypt
generates formal evidence in CertiCrypt of the correctness
of each compilation step except code generation. The top
level compiler is independent of the bottom level verification
backend.

The main three verification phases in ZKCrypt are: resolu-
tion, verified compilation, and implementation. We briefly
describe key aspects of each phase:

1In the remainder of the paper, when we refer to the (rele-
vant) security properties of a ZK-PoK, we mean these three
properties.

1. Resolution takes a (user-friendly) high-level goal G and
outputs an equivalent goal Gres only consisting of proofs
of knowledge of pre-images under homomorphisms; such
pre-image proofs constitute atomic building blocks that
correspond to well known, concrete instances of ZK-
PoK protocols. The correctness of resolution is cap-
tured by a transformation that provably converts ZK-
PoK protocols for Gres into ZK-PoK protocols for G.
The compiler implements both the decomposition and
the transformation, and we prove a set of sufficient
conditions for correctness and security;

2. Verified compilation takes a resolved goal Gres and out-
puts a reference implementation Iref in the embedded
language of CertiCrypt.A once-and-for-all proof of cor-
rectness guarantees that this component only produces
reference implementations that satisfy the relevant se-
curity properties, for all supported input goals. This
result hinges on two contributions of independent in-
terest: a unified treatment of the proof of knowledge
property and a formalization of statistical zero-know-
ledge;

3. Implementation takes a resolved goal Gres and outputs
an optimized implementation Iopt. The correctness of
this step is established, in the style of verifying compi-
lation, using an equivalence checker proving semantic
equivalence between the reference and optimized im-
plementations Iref and Iopt.

Combining the correctness results for each phase yields a
proof that the optimized implementation Iopt satisfies the
security properties of the original high-level goal G.

Limitations. Although the verification component of our
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compiler is comprehensive, it currently has three limitations
that we describe next.

First, ZKCrypt delivers formal guarantees about the correct-
ness of the optimized implementation Iopt, but not for the last
step in the compilation chain, namely the generation of Java
or C code. Although we consider the verification of this last
compilation step as an important direction for future devel-
opment, we see this as an independent line of work, notably
since the verification goals involved at this level are of a dif-
ferent nature to those presented in this paper. Specifically,
the natural path to achieve correctness guarantees about bi-
naries is to extend ZKCrypt with formal verification at the
code generation level, and then to use a high-assurance com-
piler from C or Java to binaries. Given the characteristics
of the programming language in which the optimized imple-
mentations Iopt are described (cf. Appendix C), the key step
to adding a formal verification back-end for code generation
is to build a certified number theory library that matches
the one provided with the CACE compiler. Then, the com-
pilation from C to binaries can be certified directly using
state-of-the-art verified compilers, such as CompCert [42].

Second, we do not prove completeness of verification, i.e.,
that all CACE compiler program can be verified by our com-
ponent. There are two reasons for this. One is that there
are some known sources of incompleteness, as some of the
proof goals that can be handled by the CACE compiler are
not yet supported. A more fundamental reason is that certi-
fying compilation techniques, as used by part of the formal
verification back-end, are seldom proved complete; instead,
one validates the effectiveness of a technique by its ability
to cover a wide range of examples. As we will demonstrate
later in the paper, ZKCrypt satisfactorily complies with this
more practical view, as the class of goals for which verifi-
cation is available is already broad enough to cover most
practical applications.

Third, the automatic generation of formal proofs for the goal
resolution stage (i.e., the hypotheses of Theorem 1 in Sec-
tion 4) is not yet fully integrated into the compiler. However,
the Idemix example that we present as a proof of concept is
currently serving as a template for ongoing implementation
work, as it naturally generalizes to all goal translations per-
formed by ZKCrypt.

Paper organization. The applicability of ZKCrypt is il-
lustrated in Section 2 through a use case from the identity
mixer anonymous credential system [19]. Section 3 provides
some necessary background material on CertiCrypt and ZK-
PoKs. Sections 4–6 describe the resolution, verified compi-
lation and implementation phases, respectively. Section 7
briefly reports on experimental results obtained by applying
ZKCrypt to a wider range of examples. We give an overview
of related work in Section 8 and briefly conclude in Sec-
tion 9.

2. USE CASE
Anonymous credential systems [24, 25] are among the most
practically relevant applications of ZK-PoKs; examples of
prominent realizations include the IBM identity mixer li-
brary (Idemix) [23], the Microsoft U-Prove toolkit [46], as

well as Trusted Platform Modules (TPMs), which implement
the Direct Anonymous Attestation (DAA) protocol [17] and
are widely built into consumer devices. In a further and co-
ordinated effort to bring anonymous credential systems to
practice, the ABC4Trust project [1] is working to deliver
open reference implementations of attribute-based creden-
tial systems and to integrate them into real-world identity-
management systems.

An anonymous credential system typically consists of a col-
lection of protocols to issue, revoke, prove possession of cre-
dentials, etc. One key feature for ensuring anonymity is
that users can selectively reveal certain identity attributes
without disclosing anything else. Our running example is
extracted from Idemix, and involves a user with a valid cre-
dential of his name m1 and his birthdate m2; following Ca-
menisch et al. [23] we assume that the credential is a valid
Camenisch-Lysanskaya (CL) signature [20] on m1 and m2 is-
sued by some certification authority. Assume the user wants
to authenticate to a server and is willing to reveal his name
but not his birthdate. On the other hand, he is required to
show that he was born after a certain date b. To achieve
authentication agreeably to both parties, the user will re-
veal m1 and give a ZK-PoK that z is a valid CL signature
on m1,m2, where m2 ≥ b, without revealing m2. Using the
standard notation for ZK-PoK [22], this goal G is formally
stated as:

ZPK
[
m2 : z = CL(m1,m2) ∧ m2 ≥ b

]
The convention in the formulation above is that knowledge
of all values before the colon has to be proved, while all
other values are assumed to be publicly known. Note that
the first conjunct shows possession of a valid CL-signature
z on m1,m2, and the second conjunct shows that m2 ≥ b,
as required by the server policy.

ZKCrypt generates an optimized implementation of a ZK-
PoK and machine-checkable proofs that it satisfies the rele-
vant security properties. We give below an overview of the
compilation process.

Resolution. ZKCrypt resolves the above proof goal G to the
following goal Gres:

ZPK
[

(e,m2, v, r∆, u1, u2, u3, u4, r1, r2, r3, r4, α) :

Z

Rm1
1

= AeSvRm2
2 ∧ T∆Z

b = Zm2Sr∆ ∧
4∧
i=1

Ti = ZuiSri ∧ T∆ = Tu1
1 Tu2

2 Tu3
3 Tu4

4 Sα
]

The first conjunct is obtained by unfolding the definition
of the CL predicate, making explicit the groups elements Z
and S used in the signature. The remaining conjuncts are
obtained by applying Lipmaa’s technique [43] to resolve the
goal m2 ≥ b into equalities between exponentiations of Z
and S. This compilation step and the formal verification of
its correctness are described in detail in Section 4. In short,
we formalize the sufficient conditions for correctness based
on a procedure Translate for turning a witness for G into a
witness for Gres and a procedure Recover for computing a
witness for Gres from a witness for G.
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Verified compilation This phase outputs a reference im-
plementation Iref in the embedded language of CertiCrypt.
This is done in two steps: first, ZKCrypt extends the base
language of CertiCrypt by specifying and defining the neces-
sary algebraic constructions, e.g., the underlying group with
its operations and generators. Second, the compiler instan-
tiates a CertiCrypt module for Σ-protocols with the resolved
goal Gres expressed using a single homomorphism Φ. In the
use case we present, Φ is defined as:

Φ (e,m2, v, r∆, u1, u2, u3, u4, r1, r2, r3, r4, α)
.
=(

AeSvRm2
2 , Zm2Sr∆ , Zu1Sr1 , . . . , Zu4Sr4 , Sα

∏4
i=1 T

ui
i

)
This instantiation yields a reference implementation Iref of
a ZK-PoK protocol, comprising four procedures that rep-
resent the computations performed by each party during a
run of a Σ-protocol. Each procedure consists of either a
random assignment followed by a deterministic assignment,
or just a deterministic assignment. The completeness, proof
of knowledge, and honest verifier zero-knowledge (HVZK)
properties of Iref are a direct consequence of generic proofs
in CertiCrypt. Interestingly, statistical HVZK is established
using an approximate version of the Probabilistic Relational
Hoare Logic of CertiCrypt, which has been recently devel-
oped for different purposes [11].

Implementation This phase outputs a representation Iopt

that can be used for code generation. Contrary to the refer-
ence implementation, Iopt does not adhere to a constrained
shape; in particular, it uses long sequences of instructions
and branching statements. Also, algebraic expressions are
re-arranged in order to enable optimizations during code
generation. The equivalence of Iopt and Iref is proved in two
steps. First, ZKCrypt builds a representation of Iopt in the
embedded language of CertiCrypt. It then generates a proof
that Iopt satisfies the relevant security properties, by estab-
lishing that each algorithm in the protocol is observationally
equivalent to the matching algorithm in the reference imple-
mentation.

By glueing together the correctness proofs of the different
phases, one obtains the end-to-end guarantee that Iopt is a
correct implementation of a ZK-PoK for G.

3. PRELIMINARIES
3.1 An Overview of CertiCrypt
CertiCrypt [10, 12] is an automated toolset for proving the
security of cryptographic constructions in the computational
model. It builds upon state-of-the-art verification technolo-
gies to support code-based proofs, in which security is cast
in terms of equivalence of probabilistic programs. The core
of CertiCrypt is a rich set of verification techniques based
on a Relational Hoare Logic for probabilistic programs [10].
A recent extension [11] supports reasoning about a broad
range of quantitative properties, including statistical dis-
tance, which is crucial in our definition of zero-knowledge.

The CertiCrypt toolset consists of two main components.
Both allow proving that the distributions generated by prob-
abilistic experiments are identical or statistically close, but
differ in their degree of automation, flexibility and formal
guarantees. The first component, called CertiCrypt, excels

in flexibility and is fully formalized in the Coq proof assis-
tant; its verification methods are implemented in Coq and
proved correct w.r.t. program semantics. The second com-
ponent, EasyCrypt, delivers a higher degree of automation
by relying on SMT solvers and automated theorem provers
to discharge verification conditions arising in proofs. Easy-
Crypt generates proof certificates that can be mechanically
checked in Coq, thus practically reducing the trusted com-
puting base to that of the first component; however, it lacks
on generality as it only exposes a limited set of proof meth-
ods. ZKCrypt takes advantage of both components: it uses
the latter to check the correctness of goal resolution and the
former for verifying the compiler for reference implementa-
tions and the equivalence of reference and optimized imple-
mentations. We outline below some of the essential features
of both components.

Language. Programs are written in the procedural, prob-
abilistic imperative language pWhile. The statements of
the language include deterministic and probabilistic assign-
ments, conditional statements and loops, as given by the
following grammar:

C ::= skip nop
| V ← E deterministic assignment
| V $← DE probabilistic assignment
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call
| C; C sequence

where V is a set of variable identifiers, P a set of proce-
dure names, E is a set of expressions, and DE is a set of
distribution experssions.

This base language suffices to conveniently express a wide
class of cryptographic experiments and security properties.
However, to achieve greater flexibility, the language of deter-
ministic and random expressions is user-extensible. A pro-
gram c ∈ C in the language of CertiCrypt denotes a function
JcK from an initial memory m (a mapping from program
variables to values) to a distribution over final memories.
We denote by Pr [c, S : m] the probability of event S w.r.t
to the distribution JcK m. We refer the reader to Barthe et
al. [14] for a more detailed description of the language and
its semantics.

Reasoning principles. Proving the (approximate) equiv-
alence of the distributions generated by two probabilistic
programs in CertiCrypt amounts to deriving valid judgments
in an approximate Relational Hoare Logic (apRHL). We re-
strict our attention in this paper to a fragment of apRHL
that captures both perfect and statistical indistinguishabil-
ity of distributions generated by programs. We consider
judgments of the form

c1 ∼ε c2 : Ψ⇒ Φ , (1)

where c1 and c2 are probabilistic programs, Ψ,Φ binary re-
lations over program memories and ε ∈ [0, 1]. Taking Φ
as the equality relation on a subset of observable program
variables X, one recovers the usual definition of statistical
indistinguishability. In particular, given an event A, repre-
sented as a predicate over memories, if A only depends on
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variables in X, one has

m1 Ψ m2 =⇒ |Pr [c1,m1 : A]− Pr [c2,m2 : A] | ≤ ε .

We let c1 ≈Ψ,X
ε c2 denote the validity of (1) when Φ is the

equality relation on variables in X; we omit Ψ when it is the
total relation or can be inferred from the context.

3.2 Zero-Knowledge Proofs
All ZK-PoK protocols generated by ZKCrypt are Σ-protocols:

Definition 1 (Σ-protocol). Let R denote a binary
relation, (x,w) ∈ R, and let P1,P2, and V denote arbitrary
algorithms. A protocol between a prover P .

=P(x,w) and
a probabilistic polynomial-time (PPT) verifier V .

=V(x) is
called a Σ-protocol with challenge set C = {0, . . . , c+–1}, if
it satisfies the following conditions.

3-move form. The protocol is of the following form:

• P sets (r, st)← P1(x,w) and sends r to V;

• V sends a random challenge c $←C to P. We refer to
the algorithm that samples the challenge as Vc;

• P sends s← P2(x,w, st, c) to the verifier;

• V accepts if V(x, r, c, s) = true, otherwise V rejects.

Completeness. For an honest prover P, the verifier V ac-
cepts on common input x, whenever (x,w) ∈ R.

A triple (r, c, s) for which V(x, r, c, s) = true is called an
accepting conversation.

Informally, a two-party protocol is a proof of knowledge if
from every successful (potentially malicious) prover P∗, a
witness can be extracted within a certain time bound by a
knowledge extractor algorithm. For all practically relevant
Σ-protocols, the knowledge extractor works in two phases.
First, using rewinding black-box access to P∗, two accepting
conversations (r, c, s) and (r, c′, s′) are extracted. Then, in a
second step, a witness is computed from these conversations.
The first part of the knowledge extractor is well-known to
work for arbitrary Σ-protocols [28]. The second phase only
works only under certain conditions, which are formalized
next:

Definition 2 (Generalized Special Soundness).
A Σ-protocol satisfies generalized special soundness for a
relation R′, if there is a PPT algorithm that, on input a
relation R $←R(1λ), a value x in the language defined by R,
and any two accepting conversations, (r, c, s) and (r, c′, s′)
satisfying R′, computes a valid witness w satisfying R(x,w)
with overwhelming probability.

Observe that a Σ-protocol satisfying this definition is a proof
of knowledge for R if the conversations extracted by the first
phase of the knowledge extractor satisfy R′.

Definition 2 is a generalization of the classical notion of spe-
cial soundness found in the literature, e.g., Cramer [26], and
enables a uniform formalization of the proof of knowledge
property for all Σ-protocols supported by ZKCrypt. Roughly,
the special extractor algorithm will only be able to recover a
valid witness if the accepting conversations display specific
properties captured by relation R′. Furthermore, in some
cases, the existence of an algorithm that is able to extract
these conversations relies on a computational assumption.
To account for this, following Damg̊ard and Fujisaki [29],
we allow relation R to be sampled using an efficient algo-
rithm R. We will detail R and R′ for each concrete instance
of a Σ-protocol later2.

The proof of knowledge property ensures a verifier that a
convincing prover indeed knows the secret. On the other
hand, the verifier should not be able to deduce any infor-
mation about this witness. This is captured by the zero-
knowledge property. In the following, we denote by viewPV (x)
the random variable describing the content of the random
tape of V and the messages V receives from P during a suc-
cessful protocol run on common input x.

Definition 3 (Honest Verifier Zero Knowledge).
A protocol (P,V) is perfectly (resp. statistically) honest-
verifier zero-knowledge (HVZK), if there exists a PPT sim-
ulator S such that the distribution ensembles {S(x)}x and
{viewPV (x)}x are perfectly (resp. statistically) indistinguish-
able, for all inputs x in the language of R.

Note that this definition only gives guarantees against ver-
ifiers that do not deviate from the protocol specification.
Security against arbitrary verifiers can be realized by ap-
plying the Fiat-Shamir heuristic [32] to make the protocol
non-interactive, which is also supported by our compiler (al-
though, as we will explain later, this is currently outside of
the scope of the verification back-end). Further, other stan-
dard techniques to solve this problem exist [31].

3.3 The ΣGSP-Protocol
Almost all practical applications of ZK-PoKs are proofs for
pre-images under a group homomorphism φ : G → H. De-
pending on whether G is finite or G ' Z, (typically) either
the Σφ-, the Σexp-, or the ΣGSP-protocol is used [2]. In the
following we recapitulate the ΣGSP-protocol, which is central
for understanding the remainder, as it is used for the run-
ning example. For self-containment, the Σφ- and the Σexp-
protocols (a far less prevalent version of the ΣGSP-protocol)
are included in Appendix A.1 and Appendix A.2.All the
mentioned techniques are also incorporated in ZKCrypt.

The so called Generalized Schnorr Protocol (ΣGSP-protocol)
can be used to prove knowledge of pre-images under arbi-
trary exponentiation homomorphisms, in particular includ-
ing such with a hidden-order co-domain. That is, it can be
used for mappings of the form:

φ : Zm → H : (w1, . . . , wm) 7→

(
m∏
i=1

gwi
1i , . . . ,

m∏
i=1

gwi
ui

)
.

2For the completeness and zero-knowledge properties, we
quantify over all relations R in the range of R.
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In the protocol, an upper bound Ti on the absolute value
of each wi needs to be known. These values can be chosen
arbitrarily large, and required to assert that the protocol is
(statistically) zero-knowledge for wi ∈ [−Ti, Ti]. The proto-
col flow and the parties’ algorithms are given in Figure 2,
where ` is a security parameter regulating the tightness of
the statistical zero-knowledge property.

P(x, (w1, . . . , wm)) V(x)

ki $←[−2Tic+2`, 2Tic
+2`], 1 ≤ i ≤ m

r ← φ(k1, . . . , km)
r -

c� c $←C = {0, . . . , c+ − 1}

si ← ki + c(wi + Ti), 1 ≤ i ≤ m
s1, . . . , sm-

rxc
?
= φ(s1 − cT1, . . . , sm − cTm)

si
?
∈ [−2Tic+2`, 2Tic

+2` + 2Ti(c
+ − 1)], 1 ≤ i ≤ m

Figure 2: Protocol flow of the ΣGSP-protocol.

The ΣGSP-protocol is statistically HVZK for arbitrary values
of c+ (the simulation error is upper-bounded by m/2`)and
is sound for c+ = 2, i.e., for binary challenges. However, for
larger challenge sets, which are are required for efficiency
reasons, generalized special soundness can only be estab-
lished under certain computational assumptions.

Concerning generalized special soundness, the relation gen-
erator R picks a group H in which the generalized strong
RSA assumption [33] holds (i.e., given x $←H, it is hard to
find (w, e) ∈ H × Z \ {−1, 0, 1} such that x = we), and
defines:

R(x, (µ,w))
.
= x = µφ(w) ∧ µd = 1,

Here, φ is as before, the gij are generators of a large sub-
group of H with hidden order such that all relative discrete
logarithms (i.e., all loggij guv) are unknown to P, and d is

the product of all primes smaller than c+ dividing ordH.

The relation R′ is defined as follows:

R′((r, c, s), (r, c′, s′))
.
= (c− c′)|(s− s′) .

It can be shown [29] that the conversations extracted in the
first step of the knowledge extractor satisfy R′ with over-
whelming probability, given that H satisfies the generalized
RSA assumption and φ is defined as above. Thus, the ΣGSP-
protocol satisfies Definition 2 and is a ZK-PoK for R′.

For instance, if n = pq is a safe RSA modulus (i.e., p, q,
(p− 1)/2 and (q − 1)/2 are all prime), H = Z∗n and the gij
all generate the quadratic residues modulo n, we get d = 4
and knowledge of a pre-image is proved up to a fourth root
of unity.

3.4 Combination of Proof Goals
In practice one often has to prove knowledge of multiple, or
one out of a set of secret values in one step. This can be
achieved by And- and Or-compositions [27]. To support our
description of the Idemix example in the rest of the paper we
only require And-compositions of ΣGSP-protocols for homo-
morphisms φ1, . . . , φn. This can be realized by running a sin-
gle ΣGSP-protocol for the homomorphism φ = φ1 × · · · × φn.

Generic constructions for Boolean And- and Or-compositions
are given in Appendix A.3.

4. GOAL RESOLUTION
ZKCrypt generates implementations for arbitrary Boolean
And- and Or-compositions of pre-image proofs under group
homomorphisms and claims on the size of secrets. Formally,
the class of proof goals supported by the ZKCrypt front-end
can be defined as follows. Let x1, . . . , xn be public group
elements, or expressions only containing public values, and
let, for 1 ≤ i ≤ n, φi : Gi1×· · ·×Gimi → Hi be arbitrary and
potentially different group homomorphisms, where the Gij
are either arbitrary finite groups Z. Then every goal which
can logically be rewritten to the following form is supported:

ZPK
[
(w11, . . . , w1m1 , . . . , wn1, . . . , wnmn) :∨

G∈Γ

∧
i∈G

xi = φi(wi1, . . . , wimi) ∧
∧

(i,j)∈S

wij ∈ [Lij , Rij ]
]
,

where Γ ⊆ 2{1,...,n} and Gij = Z for all (i, j) ∈ S. Further,
the Lij , Rij are public integers or ±∞. Note that Lij = −∞
is equivalent to wij ≤ Rij and similar for Rij =∞.

The first compilation step consists of rewriting all semantic
expressions to pre-image proofs, i.e., every term w ∈ [L,R]
is rewritten to a proof specification of the following form [43,
41]:

ZPK
[
(w, r, w1, . . . , w8, r1, . . . , r8, rw, rL, rR) :

xw = gwhrw ∧
8∧
i=1

xi = hwihri ∧

xwg
−L =

4∏
i=1

xwi
i hrL ∧ gRx−1

w =

8∏
i=5

xwi
i hrw

]
. (2)

Here, g and h are both random generators of a group of
hidden order (e.g. the (signed) quadratic residues modulo
a safe RSA modulus n). Further, logg h and logh g must
be hard to compute. If such a group is already used in the
original proof goal, it can safely be reused.

4.1 A Cryptographic Perspective
We next describe how ZKCrypt deals with the formal verifi-
cation of the goal translation stage.

The starting point in the goal resolution procedure is a
(high-level) goal G associated to a relation generation algo-
rithm R, i.e., we aim to construct a Σ-protocol for proving
(in zero-knowledge) knowledge of a witness w for a pub-
lic input x such that R(x,w) holds, for R sampled from
R. The resolution procedure first defines a generator for a
(lower-level) family of relations Rres associated with a re-
solved goal Gres and then defines a translation algorithm
Translate(R, x, w) which, on input a relation R and a pair
(x,w), produces the description of a relation Rres and a pair
(x′, w′). The following properties must be satisfied by the
Translate algorithm:

1. Completeness. On a valid input (R, x, w), i.e., where
R is in the range of R and R(x,w) holds, Translate out-
puts triples (Rres, x

′, w′) such that Rres is in the range
of Rres, and Rres(x

′, w′) holds.
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2. Soundness. There is an efficient algorithm Recover
such that, for all PPT adversaries A, the following
holds for R $←R, (x,w) ∈ R and (Rres, x

′, w′)←A(R, x, w):
if (Rres, x

′) are in the range of Translate(R, x, w) and
Rres(x

′, w′) holds, Recover(Rres, x
′, w′) outputs w̃ such

that R(x, w̃) holds with overwhelming probability.

3. Public verifiability. The public outputs of Translate,
i.e., Rres and x′, can efficiently be checked to be in the
correct range for all valid public inputs (R, x).

4. Simulatability. There exists an efficient simulator S
which, on input R sampled from R and x in the lan-
guage that it defines, outputs (Rres, x

′) with a distribu-
tion identical (or statistically close) to that produced
by Translate(R, x, w) for a valid witness w.

Now, to construct a protocol for goal G, one first generates
descriptions of algorithms P′1, P′2 and V′ of a Σ-protocol for
goal Gres, and then defines the procedures for the high-level
protocol as follows:

• P1(x,w) runs Translate(R, x, w) to get (Rres, x
′, w′), and

P′1(x′, w′) to get (r′, st′), and returns

(r, st) = ((Rres, x
′, r′), (Rres, x

′, w′, st′)).

• P2(x,w, c, st) recovers (Rres, x
′, w′, st′) from st. It then

runs P′2(x′, w′, st′, c) to get s′ and returns s = s′.

• V(x, r, c, s) recovers (Rres, x
′, r′) from r and checks that

Rres and x are in the correct range w.r.t. R and x. It
then runs V′(x′, r′, c, s) and returns the result.

The correctness and security of the resulting protocol is es-
tablished in the following theorem. We present a proof in
Appendix B.

Theorem 1. Assume that algorithms P′1, P′2 and V′ yield
a Σ-protocol for Rres, which is complete, HVZK and satis-
fies generalized special soundness for relation R′res. Then, if
Translate satisfies the four properties listed above, algorithms
P1, P2 and V yield a Σ-protocol for R, which is complete,
HVZK and satisfies generalized special soundness for rela-
tion

R′((Rres, x
′, r′), c, s), (Rres, x

′, r′), ĉ, ŝ))=R′res((r
′, c, s), (r, ĉ, ŝ))

This result permits identifying precisely the proof obliga-
tions that suffice to formally verify that the resulting pro-
tocol is correct and secure. First of all, one needs to show
that the low-level protocol is itself correct and secure for the
relation generator Rres (in ZKCrypt this maps to the formal
verification of subsequent compilation steps, which we dis-
cuss later). Secondly, one needs to show that the Translate
procedure has all properties described in the theorem.

Idemix goal resolution. To make things more concrete, let
us go back to the goal resolution performed by ZKCrypt and
recast the rewriting performed for a term of the form w ≥ b
in the theoretical framework above (an upper bound on w

Translate(R, x, w):

Parse (A,S,R2, Z)← R
Parse (e,m2, v)← w
Find (u1, u2, u3, u4) s.t. m2 − b = u2

1 + u2
2 + u2

3 + u2
4

ri $←[0..2|n|2`], for i = ∆, 1, 2, 3, 4

α← r∆ −
∑4
i=1 uiri

Ti ← ZuiSri , for i = 1, 2, 3, 4
T∆ ← Tu1

1 Tu2
2 Tu3

3 Tu4
4 Sα

Y1 ← T∆Z
b

(g1, g2, g3, g4)← (T1, T2, T3, T4)
x′ ← (x, Y1, T1, T2, T3, T4, T∆)
w′ ← (e,m2, v, r∆, u1, u2, u3, u4, r1, r2, r3, r4, α)
return (Rres, x

′, w′)

Figure 3: Translate algorithm for Idemix example. Re-
lations R and Rres are as in (3) and (4).

can be treated analogously). This matches the resolution of
the proof goal in our Idemix running example. From Sec-
tion 2, and using x = Z/Rm1

1 , we can rewrite the relation
corresponding to goal G as

R(x,w)
.
= x = AeSvRm2

2 ∧ m2 ≥ b (3)

Here, we have w = (e,m2, v). Similarly, using Y1 = T∆Z
b,

the relation associated with resolved goal Gres is:

Rres(x
′, w′)

.
= x = AeSvRm2

2 ∧ Y1 = Zm2Sr∆ ∧
4∧
i=1

Ti = ZuiSri ∧ T∆ = gu1
1 gu2

2 gu3
3 gu4

4 Sα (4)

Here,

w′ = (e,m2, v, r∆, u1, u2, u3, u4, r1, r2, r3, r4, α)

x′ = (x, Y1, T1, T2, T3, T4, T∆)

We observe that implicit in the definition of these goals are
the relation generators R and Rres that produce descriptions
of the (hidden order) groups and generators that are used in
the protocol. Furthermore, note that the resolved goal Gres

can be handled by the ΣGSP protocol, for which ZKCrypt can
generate an implementation of a ZK-PoK protocol which is
proven to display the relevant security properties.

Figures 3 and 4 provide the pseudo-code of the Translate
and Recover algorithms for the Idemix example. Observe the
dual role of the Ti values in Gres: these values appear both
as generators in Rres, and as images in x′. As we will see,
this is essential to guarantee that witnesses for the original
goal G can be recovered. We will now discuss how we prove
that these algorithms satisfy the hypotheses of Theorem 1,
from which we can conclude that resolution is correct.

4.2 A Formal Verification Perspective
We illustrate our approach to verifying the goal translation
step on the same running example from Idemix. We first
show how we use EasyCrypt [12] to prove that the Trans-
late algorithm from Figure 3 satisfies the completeness and
soundness properties. We then discuss how the simulata-
bility and public verifiability properties are handled with a
once-and-for-all proof for supported goals.

Completeness of Translate. The idea underlying the com-
pleteness property is the following. Assume a prover knows

7



Recover(Rres, x
′, w′):

(e,m2, v, r∆, u1, u2, u3, u4, r1, r2, r3, r4, α)← w′

w ← (e,m2, v)
return w

Figure 4: Recover algorithm for Idemix example

w ≥ b. Then, by Lagrange’s Four Square Theorem [41], she
can find integers u1, . . . , u4 such that m − b =

∑4
i=1 u

2
i .

By choosing r∆, r1, . . . , r4 at random, and defining α =
r∆−

∑4
i=1 uiri she can now clearly perform the above proof.

Formally verifying this property using EasyCrypt is achieved
by proving that the following experiment always returns true
for all R in the range of R and all pairs (x,w) such that
R(x,w) holds:

(Rres, x
′, w′) $← Translate(R, x, w); return Rres(x

′, w′)

The Translate algorithm is represented in EasyCrypt in a form
very close to its description in Figure 3, with the sole dif-
ference that the decomposition of m2 − b as a sum of four
squares is computed by applying a function assumed to cor-
rectly implement Lagrange’s decomposition. The proof itself
is written as a series of game transitions, where the initial
experiment is gradually transformed until it is reduced to
the trivial program that simply returns true. All transitions
are proved automatically by the tool.

Soundness of Translate. A detailed specification of the Re-
cover algorithm for the Idemix example is given in Figure 4.
Let m′2

.
=
∑4
i=1 u

2
i +b. Clearly m′2 ≥ b and, by the definition

of Rres associated with Gres, we have that Z = AeSvRm1
1 Rm2

2 .
The correctness of Recover thus hinges on the fact that R
computationally guarantees m2 = m′2, down to the following
assumption:

Definition 4 (Unique representation assumption).
Let H be as before, and let Z and S be generators of H. If
a PPT algorithm outputs (a, b), (a′, b′) ∈ Z × Z such that

ZaSb = Za
′
Sb
′

then, with overwhelming probability, we have
that a = a′ ∧ b = b′.

Any witness w′ given to Recover, satisfying Rres(x
′, w′), for

publicly validated Rres and x′, can be expressed in the fol-
lowing form:

Zm2−bSr∆ = Zm
′
2−bSα+

∑4
i=1 riui

If m2 6= m′2, the input witness would provide two alternative
representations for the same value under generators Z and S,
contradicting the unique representation assumption. Thus,
necessarilly with overwhelming probability m2 = m′2.

Formally, if the group parameters are generated in a par-
ticular way, the unique representation assumption holds for
H = Z∗n if the factoring assumption holds for n [21]. The
Idemix specification incorporates this method into its param-
eter generation procedure. We note that this computational
assumption is used implicitly throughout relevant literature
when dealing with such transformations. We believe that
forcing such assumptions to be stated explicitly is one of the

advantages of using mechanized support to validate security
proofs for cryptographic protocols.

The correctness of this algorithm is again formally verified
in EasyCrypt. The proof is more intricate than in the case of
Translate, since we now must take into account the unique
representation assumption. The proof is quantified for all
relations R in the range of R, and all x and w such that
R(x,w) holds. Consistently with the definition of the sound-
ness property, we begin by defining the following experiment
in EasyCrypt:

(Rres, x
′, w′)← A(R, x, w);

w∗ ← Recover(Rres, x
′, w′);

if ¬Rres(x
′, w′) ∨ ¬pubVerify(R, x,Rres, x

′) then return ⊥
else return R(x,w∗)

Here, an adversary (i.e., a malicious prover) A is given such
an input (R, x, w), and outputs a tuple (Rres, x

′, w′). The
Recover algorithm is then called to produce a high-level wit-
ness. The experiment output expresses that the event in
which the adversary produces a valid tuple (Rres, x

′, w′) must
imply that Recover succeeds in obtaining a valid high-level
witness w∗. This is expressed as a disjunction where ei-
ther the adversary fails to produce publicly verifiable Rres,
x′ and a witness w′ such that Rres(x

′, w′) holds, or Recover
must succeed. Public verifiability is captured by a predi-
cate pubVerify imposing that Y1 = T∆Z

b, and gi = Ti for
i = 1, 2, 3, 4.

The proof establishes that this experiment is identical to
the trivial program that always returns true, except perhaps
when both Rres(x

′, w′) and pubVerif(Rres, x
′) hold, but the

witness w′ satisfies the following Boolean test:

m2 6= u2
1 + u2

2 + u2
3 + u2

4 + b ∨
r∆ 6= r1u1 + r2u2 + r3u3 + r4u4 + α

Intuitively, this failure condition can be triggered only if the
adversary was able to recover a low level witness which con-
tradicts the unique representation assumption: in the proof
we show that the probability of failure is bounded by the
probability that an adversary B finds two different represen-
tations for the same group element under generators Z and
S. On the other hand, conditioning on the event that fail-
ure does not occur, and through a series of transformations
involving algebraic manipulations, we show that Recover al-
ways succeeds. Again, the validity of all transformations is
handled automatically by EasyCrypt.

Public verifiability and simulatability. We now briefly
discuss why the resolution procedure used in Idemix can be
easily shown to satisfy public verifiability and simulatability.
This argument extends to all instances of the resolution step
implemented in ZKCrypt.

Looking at (4), one can immediately see that the public
outputs of Translate can be validated to be in the correct
range assuming that group membership can be efficiently
checked, and given the fixed structure of the low-level re-
lation. For simulatability we observe that the description
(Rres, x

′) output by Translate comprises the values of the im-
ages and x′ = (x, Y1, T1, T2, T3, T4, T∆) and of the generators
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(g1, g2, g3, g4) = (T1, T2, T3, T4) Since x and Y1 are fully de-
termined by public inputs and (T1, T2, T3, T4, T∆), all that
remains to show is that the latter values can be efficiently
simulated. Observing that the domain of ri is sufficiently
large for the distribution of Sri (i ∈ {1, 2, 3, 4,∆}) to be
statistically close to uniform in 〈S〉, we conclude that the
variables Ti (i ∈ {1, 2, 3, 4,∆}) are also statistically close to
uniform (note that Z and S are both generators of the same
group of hidden order). It follows that these values can be
trivially simulated by sampling uniformly random elements
in the target group.

5. VERIFIED COMPILATION
At the core of the formal verification tool of ZKCrypt sits
a verified compiler that generates correct and secure refer-
ence implementations of ZK-PoK for the following class of
resolved proof goals produced by the front end of the com-
piler:

(i) Atomic goals consisting of pre-image proofs under a
homomorphism with a finite domain using the Σφ-
protocol, including product homomorphisms where the
co-domain is a tuple of images in the range of the group
operation.

(ii) Atomic goals consisting of pre-image proofs under an
exponentiation homomorphism in a hidden-order group
using the ΣGSP-protocol, including product homomor-
phisms where the co-domain is a tuple of images in
the range of the group operation. In particular, these
include goals resulting from the resolution of interval
proofs as described in Section 4.

(iii) Arbitrary, possibly nested, AND- and OR-compositions
of proof goals as in point (i).

We stress that, although the code generation component of
ZKCrypt addresses an even broader set of proof goals, this
class was selected to cover essentially all practical applica-
tions.

Given a resolved proof goal Gres, the verified compiler is able
to generate a description of a reference implementation for
a suitable Σ-protocol, consisting of CertiCrypt programs cor-
responding to algorithms P1, P2, V and Vc. The generated
descriptions of these algorithms follow a carefully designed
structure, tailored to facilitate the formal proof that, for any
goal, the (therefore) verified compiler produces correct and
secure reference implementations.

The challenge here was to find the best balance between
the level of abstraction at which the formalization is per-
formed in CertiCrypt, and our goal to give formal verifica-
tion guarantees over the optimized implementations gener-
ated by ZKCrypt. On the one hand, proving that the gen-
erated reference implementations meet the prescribed cor-
rectness and security requirements is much easier if one can
reason abstractly about homomorphisms, group operations,
etc. On the other hand, we wish to prove observational
equivalence to programs produced by ZKCrypt in what is es-
sentially pseudo-code of an imperative language very close

P1〈Gres〉(x,w):
stP $← stType〈Gres〉
r ← Prover1〈Gres〉(x,w, stP )
return (r, stP )

Vc〈Gres〉():
c $← cType〈Gres〉
return c

P2〈Gres〉(x,w, c, stP ):

s← Prover2〈Gres〉(x,w, c, stP )
return s

V〈Gres〉(x, r, c, s):
a← Verifier〈Gres〉(x, r, c, s)
return a

Figure 5: Descriptions of reference implementa-
tions.

to common programming languages. We achieve a compro-
mise between these two aspects, which enables us to reach
both objectives simultaneously.

Concretely, we construct each algorithm as shown in Fig-
ure 5. Note that all algorithms have at most two statements:
a random assignment that samples all necessary random val-
ues up-front, and a deterministic assignment that computes
the output in terms of the input of the algorithm and the
sampled random values. For example, in algorithm P1〈Gres〉,
the first operation corresponds to sampling a tuple uniformly
at random from the set stType〈Gres〉, which corresponds to
a cartesian product of sets derived from the proof goal Gres.
The second statement consists of a single assignment that
evaluates a function of the inputs of the algorithm and the
randomly sampled tuple; this is typically a huge expression
performing all the necessary parsing and algebraic computa-
tions. More precisely, functions Prover1〈Gres〉, Prover2〈Gres〉
and Verifier〈Gres〉 may map to arbitrarily complex CertiCrypt
expressions.

We observe that by restricting the reference implementation
of protocols to the form shown in Figure 5 we do not lose gen-
erality. Indeed, this form is achievable for all goals, including
those comprising arbitrary (possibly nested) Boolean com-
positions of atomic goals, which is a non-trivial aspect of the
formalization approach adopted in ZKCrypt. Intuitively, for
atomic goals, the computations performed by the reference
implementation correspond to those described in Section 3.2
for the Σφ- and ΣGSP- protocols. For Boolean combinations
of Σφ-protocols, the reference implementation is generated
recursively by unfolding the inductively defined proof goal
according to the standard procedures for Boolean compo-
sition described in Section 3.2. This is made possible by
our approach to isolating random sampling operations from
other computations. For illustrative purposes we present a
short excerpt of the definition of the prover function Prover1

in Listing 1. The excerpt corresponds to the case of Boolean
compositions of proof goals that can be handled using the
Σφ-protocol, and takes as input a pair (x,w) and the value
stP comprising all values randomly sampled by the P1〈Gres〉
algorithm. The base case maps to a concrete homomor-
phism, whereas recursive calls construct homomorphisms for
And and Or combinations.

In addition to the descriptions of reference implementations
for the algorithms of Σ-protocols, the compiler also gener-
ates the auxiliary algorithms that are required to establish
security. In particular, for each goal, the compiler gener-
ates definitions of a suitable simulator and special extractor
that can be used in the theorem statements that capture
the zero-knowledge and proof of knowledge properties. The
ability to generate suitable simulators is also an essential
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part of generating ZK-PoK protocols for Or compositions
of Σφ-protocols. Indeed, the definitions of algorithms P1

and P2 explicitly rely on the simulator descriptions as part
of their code, as can be seen in the snippet in Listing 1:
in Or-compositions, the prover uses as a sub-procedure the
simulator of the protocol for which it does not know a wit-
ness.

Listing 1: Definition of algorithm Prover1 in Coq.
Fixpoint prove r ph i g :
expr (DomType g ) → expr (CodomType g ) →
expr (TGtype (RandTG g ) ) → expr (CodomType g ) :=
match g with
| Hom (PhiHom A B h) ⇒ fun w x ⇒ phiHom h
| And g1 g2 ⇒ fun w x ps ⇒

( p rove r ph i ( Fst w) ( Fst x ) ( Fst ps ) |
prove r ph i (Snd w) (Snd x ) (Snd ps ) )

| Or g1 g2 ⇒ fun w x ps ⇒
IF IsL (w) THEN
( prove r ph i ( ProjL w) ( Fst x ) ( Fst (Snd ps ) ) |

s im phi (Snd x ) ( Fst ps ) (Snd (Snd ps ) ) )
ELSE
( s im phi ( Fst x ) ( Fst ps ) ( Fst (Snd ps ) ) |

prove r ph i ( Pro j r w) (Snd x ) (Snd (Snd ps ) ) )
end

We discuss next how we prove the correctness and security
properties of reference implementations for all supported
proof goals.

Completeness. Completeness of reference implementations
is given by the CertiCrypt theorem below.

Theorem 2 (Completeness). For all supported goals
Gres, and all pairs (x,w) satisfying the associated relation,
we prove

c $← Vc〈Gres〉();
(r, stP) $← P1〈Gres〉(x,w);
s← P2〈Gres〉(x,w, c, stP);
a← V〈Gres〉(x, r, c, s)

≈{a}0 a← true

Intuitively, this formalization states that in an honest exe-
cution, the verifier always will accept. Observe that, also in
the protocol definition, the challenge generation is hoisted
to the beginning of the protocol, as this facilitates proving
equivalence claims. This is a valid transformation because
we only have to prove that properties hold for an honest
verifier that does not deviate from the protocol.

The proof of this theorem requires combined reasoning about
the algebraic manipulations performed by the protocol par-
ties. This is particularly challenging in the case of goals
based on Σφ, for which the proof is by induction on the
structure of the goal, dealing with the recursive definitions
of the algorithms themselves. For example, in the case of
Or-compositions, one needs to deal with the rearrangement
of recursive invocations, by establishing intermediate results
of the form:

(r, c, s, a) $← Protocol〈G1 ∨ G2〉(x, ι1(w1))

≈{r,c,s,a}0

(r1, c1, s1, a1) $← Protocol〈G1〉(π1(x), w1);
c $← cType〈Gres〉; c2 ← c− c1;

(r2, c2, s2, a2) $← S〈G2〉(π2(x), c2);
r ← (r1, r2); a← a1 ∧ a2

This result essentially states that the behavior of the pro-
tocol, when run on the prover side with the witnesses cor-
responding to goal G1 is identical to that of another proce-
dure which explicitly relies on a protocol for goal G1 and a
simulator for goal G2. The proof of this equivalence must
then make use of the recursive definition of the protocol (it-
self based on the prover and verifier algorithms presented in
Figure 5) and of the simulator, and requires proving that the
needed code rearrangements do not modify the semantics of
the experiments.

5.1 Honest Verifier Zero Knowledge Property
Honest verifier ZK of reference implementations is given by
the CertiCrypt theorem below.

Theorem 3 (HVZK). For all supported goals Gres, and
for all pairs (x,w) satisfying the relation associated with Gres,
we prove the following statistical equivalence:

c $← Vc〈Gres〉();
(r, stP) $← P1〈Gres〉(x,w);
s← P2〈Gres〉(x,w, c, stP);
a← V〈Gres〉(x, r, c, s)

≈{r,c,s}ε〈Gres〉 (r, c, s) $← S〈Gres〉(x)

Here, S〈Gres〉 is the simulator algorithm generated by ZKCrypt
for goal Gres. The concrete value of the statistical distance
between the distributions depends on the goal. For the
particular case of Σφ-protocols and Boolean combinations
thereof, this is actually 0, and so proving this property cor-
responds to showing that the distributions are identical, im-
plying perfect HVZK. In this case, the type of reasoning
required to construct the proof is very similar to that de-
scribed for completeness.

On the contrary, proving the zero knowledge property of
ΣGSP-protocols constitutes a significant challenge because
it requires reasoning about statistical distance. Given any
ΣGSP goal Gres defined over a homomorphism where the co-
domain is a tuple of arbitrary size m, we bound the statisti-
cal distance in the statement above by ε〈Gres〉 = m/2`, where
` is a concrete security parameter given as input to the com-
piler along with the goal specification (see Section 3.2). Es-
tablishing this result for arbitrary homomorphisms required
reasoning about the number of points contained in hyper-
cubes in Zm, and proving the upper bound using Bernoulli’s
inequality.

5.2 Proof of Knowledge
The following CertiCrypt theorem ensures that all generated
reference implementations satisfy the Generalized Special
Soundness introduced in Section 3.2.

Theorem 4 (Proof of Knowledge). For every sup-
ported valid goals Gres, for all (x,w) satisfying the relation
associated with Gres, and for any two accepting conversations
(r, c, s) and (r, c′, s′) satisfying relation R′〈Gres〉,

R〈Gres〉(x,E〈Gres〉(r, c, c′, s, s′)) = true .

The theorem statement nicely matches Definition 2, where
relation R′〈Gres〉 expresses the restriction on traces described
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in Section 3.2 for either Σφ- or ΣGSP- protocols. However, the
theorem includes an additional validity restriction on proof
goals that we now explain. Referring to Section 3.2, recall
that for c+ > 2 both the Σφ-protocol and the ΣGSP-protocol
can only be proven to satisfy Definition 2 if the underlying
homomorphisms satisfy an additional property. Our notion
of proof goal validity captures these extra restrictions. Con-
cretely, the validity requirement for Σφ goals implies that all
prime factors of special exponents for homomorphisms are
greater than c+. For the ΣGSP-protocol, the validity require-
ment is as follows. Recall, from Section 3.2 that R typically
samples an RSA modulus n and defines a relation R as

R(x, (µ,w))
.
= x = µφ(w) ∧ µd = 1 (mod n)

Here, d is the product of the primes dividing the order of the
multiplicative group modulo n, which are less than or equal
to c+. We require for validity that d satisfies this property.

Proving this theorem in CertiCrypt posed a different sort
of challenge when compared to the previous ones, as it is
not formulated in the form of a program equivalence state-
ment. Essentially, it translates into a proof goal formulated
over the semantics of the underlying algebraic constructions.
Here we make critical use of the extensive Coq library that
is included in ZKCrypt and that was developed to support
the semantics of the data types included in the necessary
CertiCrypt extensions. In turn, this library makes intensive
use of SSReflect [38] and its comprehensive Coq library on
algebraic and number theoretic results.

6. IMPLEMENTATION
To establish our ultimate verification goal, we translate the
optimized implementations of protocols generated by ZKCrypt
to the language of CertiCrypt. By taking advantage of the
convenient notation that ZKCrypt automatically sets up in
CertiCrypt, this translation step is straightforward and essen-
tially corresponds to pretty-printing the output implemen-
tation files. Our strategy to formally verify these optimized
implementations is to first establish an intermediate result
stating that these are correct with respect to a reference
implementation. More precisely, we establish that each of
the algorithms in the implementation file, namely P1, P2, V,
and Vc, are observationally equivalent to the corresponding
algorithms in the reference implementation. These results
are formalized in CertiCrypt by lemmas that typically look
as the one below.

Lemma 1 (Correctness of P1). For all (x,w) in the
domain of relation R, associated with resolved goal Gres, the
following equivalence holds:

(r, stP) $← P1(x,w) ≈{r,stP}
0 (r, stP) $← Pref

1 〈Gres〉(x,w)

Here Pref
1 refers to the reference implementation for algo-

rithm P1. Equivalence is formalized by imposing that, for
any possible fixed input, the outputs of both algorithms are
identically distributed. Several aspects make proving these
lemmas non trivial:

1. The reference implementation is expressed at a slightly
higher level of abstraction than the optimized imple-

mentation. In particular, the reference implementa-
tion expresses homomorphism computations as native
operations in the CertiCrypt language, whereas these
are expanded as lower-level operations over the under-
lying algebraic groups in the optimized protocol im-
plementation.

2. The reference implementation typically uses different
language constructions than the optimized protocol.
In particular, the reference implementation uses a min-
imum number of statements and local variables, in ex-
change for more elaborate expressions. For example,
expressions in the reference implementation pack pro-
gram variables into product data types, and contain
conditional expressions in order to eliminate the need
for if-then-else statements.

3. The ZK-compiler implementation may rearrange al-
gebraic expressions in order to enable the generation
of optimized implementations by the lower-level code
generators or back-ends.

These differences are clearly visible in Listing 2, where we
show an example of an observational equivalence proof goal
as it appears in CertiCrypt, extracted from the deniable au-
thentication example we include in the next section. The
reference and optimized implementation respectively sit at
the bottom and top of the listing.

Listing 2: Equivalence proof goal in CertiCrypt.
EqObs {x ,w} {r , st , x ,w}
[ i f IsL (w) then [

r1 $← Gs ;
t1 ← [ g ] [ ˆH] ( [ Gto nat ] r1 ) ;
t2 ← [ h ] [ ˆH] ( [ Gto nat ] r1 ) ]

else [

c1 $← cs ; s1 $← Gs ;
t1 ← [ g ] [ ˆH] ( [ Gto nat ] s1 ) [ /H]

Fst ( Fst x ) [ ˆH] ( [ c to nat ] c1 ) ;
t2 ← [ h ] [ ˆH] ( [ Gto nat ] s1 ) [ /H]

Snd ( Fst x ) [ ˆH] ( [ c to nat ] c1 ) ] ;
I f ! IsL (w) then [

r2 $← Gs ; t3 ← [ g ] [ ˆH] ( [ Gto nat ] r2 ) ]
else [

c2 $← cs ; s2 $← Gs ;
t3 ← [ g ] [ ˆH] ( [ Gto nat ] s2 ) [ /H]

Snd x [ ˆH] ( [ c to nat ] c2 ) ] ;
r ← ( ( t1 | t2 ) | t3 ) ;
s t ← IF IsL (w) THEN ( c2 | ( r1 | s2 ) )

ELSE ( c1 | ( s1 | r2 ) ) ; ]

[ s t $← E. Dprod cs (E. Dprod Gs Gs ) ;
r ← IF IsL (w) THEN

( [ phi ] Fst (Snd s t ) |
[ p s i ] Snd (Snd s t ) [ /H]
Snd x [ ˆH] ( [ c to nat ] ( Fst s t ) ) )

ELSE
( ( Fst ( [ phi ] Fst (Snd s t ) ) [ /H]
Fst ( Fst x ) [ ˆH] ( [ c to nat ] ( Fst s t ) ) |
Snd ( [ phi ] Fst (Snd s t ) ) [ /H]
Snd ( Fst x ) [ ˆH] ( [ c to nat ] ( Fst s t ) ) ) |
[ p s i ] Snd (Snd s t ) ) ]

Pleasingly, our automation approach performed well in han-
dling such equivalence proofs, both for this example and for
the ones described in Section 7. Specifically, we have found
that tactics already implemented in CertiCrypt are ideally
suited to reduce proof goals as the one in Listing 2 to lower-
level verification conditions over the semantics of operators
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used to implement the algorithms. Thanks to this, the prob-
lem of automation becomes one of constructing Coq tactics
that can solve these lower level goals. To do this, we combine
the powerful decision procedures ring and omega built into
Coq with customized tactics that handle patterns observed
in a comprehensive set of practical examples.

Combining the results. Once the equivalence lemmas
above are established, generic proof scripts can be used to
discharge the proof obligations associated with complete-
ness, honest verifier, and generalized special soundness of
optimized implementations. The theorem statements them-
selves are identical to those described in Section 5 for the
reference implementations produced by ZKCrypt; however,
their proofs are esentially different.

Listing 3: Protocol correctness lemma in CertiCrypt.
Lemma p r o t o c o l c o r r e c t : ∀ g E P1 V1 P2 V2 ,
EqObs {vW g ,vX g} {vT g , vPS g ,vW g ,vX g}
(P1 ++
[ vPS g ←Fst ( vP1Res g ) ; vT g ← Snd ( vP1Res g ) ] )
( Prover1 g ) →

EqObs {vT g , vPS g ,vW g ,vX g}
{vVS g , vC ,vT g , vPS g ,vW g ,vX g}

(V1 ++
[vVS g ← Fst (vV1Res g ) ; vC ← Snd (vV1Res g ) ] )
( v e r i f i e r 1 ++ [ vVS g ← (vC | vT g ) ] ) →

EqObs {vVS g , vC ,vT g , vPS g ,vW g ,vX g}
{vS g , vVS g , vC ,vT g ,vW g ,vX g})

P2 ( Prover2 g ) →
EqObs {vS g , vVS g , vC ,vT g ,vW g ,vX g}

{vA, vS g , vC ,vT g ,vW g ,vX g}
V2 ( V e r i f i e r 2 g ) →

EqObs {vW g ,vX g} {vA, vS g , vC ,vT g ,vW g ,vX g}
(P1 ++
[ vPS g ←Fst ( vP1Res g ) ; vT g ← Snd ( vP1Res g ) ]
++ V1 ++
[vVS g ← Fst (vV1Res g ) ; vC ← Snd (vV1Res g ) ]
++ P2 ++ V2)
( V e r i f i e r 1 ++ Prover1 g ++ Prover2 g ++ Ve r i f i e r 2 g )

We rely on a general lemma stating that any given algo-
rithms P1, P2, V, and Vc observationally equivalent to the
respective algorithms in a reference implementation, lead to
a protocol whose transcripts are distributed exactly as in
the reference implementation. The statement of this lemma
in CertiCrypt appears in Listing 3.

Proving the completeness and honest verifier zero knowledge
properties of the optimized protocol then amounts to argu-
ing that these results are directly implied by the identical
distributions displayed by reference and optimized protocol
implementations. For the soundness property, one appeals
directly to the correctness of the optimized V2 algorithm,
which implies that an accepting trace for the optimized pro-
tocol is a valid input to the knowledge extractor that is
proven to exist for the reference implementation.

7. MORE EXPERIMENTS AND RESULTS
Besides the running example presented in the previous sec-
tions, we also tested and verified the functionality of ZKCrypt
based on a representative set of proof goals of academic and
practical interest. We briefly report on some of these appli-
cations to illustrate the capabilities of ZKCrypt. We provide
benchmarking results in Table 1 in terms of lines of code of
the implementations output by the compiler and verification

time of formal proofs. We note that the formal verification
component of ZKCrypt described in this paper was devel-
oped in a way that is totally non-intrusive to the original
CACE compiler that generates the executable implementa-
tions, and hence the efficiency of the generated C- and Java-
implementations remains unaffected.

Electronic Cash. Electronic payment systems realize fully
digital analogues of classical cash systems involving bills and
coins. Besides high security and privacy guarantees, real-
world usability requires that they work off-line, i.e., the bank
must not be required to participate in transactions. One of
the first schemes satisfying this condition was suggested by
Brands [16]. All phases of his scheme use ZK-PoKs as sub-
protocols. For instance, when withdrawing money from a
bank account, a user has to prove its identity by proving
possession of a secret key. The respective proof goal is given
as follows:

ZPK
[

(u1, u2) : I = gu1
1 gu2

2

]
.

Here, I, g1, g2 ∈ Z∗p such that ord g1 = ord g2 = q, where
q|(p− 1) and p, q ∈ P. The secrets u1, u2 are elements of Zq.
This proof goal can be realized by a single instance of the
Σφ-protocol(see Appendix A.1).

Deniable Authentication. Any Σ-protocol can be trans-
formed into a non-interactive protocol using the Fiat-Shamir
heuristic [32]. The idea is to substitute the verifier’s first
algorithm by a cryptographic hash function: Instead of re-
lying on V to choose the challenge c uniformly at random,
the prover computes c itself as c ← H(r), where r is the
commitment computed in its first step. It then computes
its response s as in the original protocol. Upon receiving
(r, c, s), the verifier checks whether the triple is an accept-
ing conversation, and whether c = H(r).3

Clearly, proofs obtained in this way are not deniable. Namely,
the verifier can convince a third party that it knows the
prover’s secret by just forwarding (r, c, s). This problem
can be solved by migrating to designated verifier ZK proofs.
There, one assumes a public key infrastructure (PKI), where
each party deposits a public key. The prover then shows that
it either knows the secret key for its own public key, or the
secret key of the verifier. In this way the authentication
scheme becomes deniable, as V could simulate proofs using
its own secret key.

To make things concrete, we briefly recap the scheme of
Wang and Song [55] here. A party A holds a secret key
xA ∈ Zq, and publishes the corresponding public key yA =
(y1A, y2A) = (gxA , hxA ), where q ∈ P and g, h are elements
of Z∗p with order q. Now, authenticating P towards V boils
down to the following proof goal:

ZPK
[

(xP , xV) : (y1P = gxP ∧ y2P = hxP ) ∨ y1V = gxV
]
.

As the order q of g, h is known, this proof goal can be realized
using the Σφ-protocol and the composition rules stated in
Section 3.4 and Appendix A.3.
3Currently, the Fiat-Shamir heuristic is supported by the
code-generation component of ZKCrypt only, so the for-
mal verification tool currently only verifies the original Σ-
protocol.
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Type Compositions HLL (loc) PIL (loc) CertiCrypt (loc) Verification

Electronic Cash Σφ None 23 59 1288 < 2m
Deniable Authentication Σφ And, Or 31 89 1383 < 3m
Ring Signatures Σφ Or 37 110 1384 < 4m
Identity Mixer ΣGSP And 23 134 1515 < 25m

Table 1: Benchmarking results for representative applications of ZKCrypt. Type and Composition describe the
type and complexity of the protocol required to realize the proof goal. HLL, PIL and CertiCrypt denote the
lines of code of the high-level input file, the generated protocol and the generated formal proof. Verification
denotes the duration of generating the proofs and verifying them in CertiCrypt.

Ring Signatures. A ring signature scheme allows a set of
parties to sign documents on behalf of the whole group [52],
without revealing the identities of the signers. Such schemes
are often realized by modifying the Fiat-Shamir transforma-
tion as follows: instead of setting c← H(r), the prover sets
c← H(r,m), hashing the pair (m, r) where m is the message
to be signed.

In a very basic scenario one wants to allow each member of
the group to issue signatures on behalf of the group. Let
therefore be given a PKI containing public keys (yA, eA) ∈
Z∗nA
× Z for safe RSA moduli nA, and let each party A hold

its secret key xA satisfying yA = x
eA
A . For simplicity, assume

further that the group consists of only three parties. Then
the proof goal is given by:

ZPK
[

(x1, x2, x3) : y1 = xe11 ∨ y2 = xe22 ∨ y3 = xe33

]
.

Again, as the domain of each mapping x 7→ xei is finite,
realization is done using the Σφ-protocol and the techniques
stated in Section 3.4 and Appendix A.3.

Summary. Our experimental results illustrate that ZKCrypt
is flexible enough to generate and verify implementations for
a large set of proof goals occurring in practically relevant ap-
plications. We observe that, although proof verification is
performed automatically, the performance of the developed
Coq/Certicrypt tactics degrades significantly for proof goals
based on the ΣGSP-protocol. This is due to the complexity
of the formalization of the underlying algebraic structures,
which involve the definition of product homomorphisms with
a large number of inputs and outputs.

8. RELATED WORK
Cryptographic compilers for ZK-PoK were studied before
in two different lines of work; in the setting of the CACE
project [18, 6, 7, 2] and for e-cash applications [45].

The CACE compiler is a certifying compiler that generates
efficient implementations of zero-knowledge protocols. The
compiler takes moderately abstract specifications of proof
goals as input and generates C or Java implementations.
The core compilation steps (i.e., all but the backends) are
certifying in the sense that they generate an Isabelle [48]
proof of the existence of a knowledge extractor guarantee-
ing special soundness. However, neither the fundamental
zero-knowledge property nor completeness are addressed by
the compiler, and the verification component only supports
a very limited set of proof goals, not including the ΣGSP-
protocol. ZKCrypt builds on the compilation functionality
of the CACE compiler, adding a new front-end and a com-
pletely reengineered verification component. Moreover, it

solves several minor bugs, some of which were uncovered as
a direct consequence of the new formal verification back-end
development.

The ZKPDL compiler generates efficient distributed imple-
mentations of ZK-PoKs from high-level goals [45]. It has
been used to build a realistic e-cash library. ZKPDL offers a
level of abstraction similar to ours, but foregoes any attempt
to verify the generated code and supports a more restricted
set of proof goals.

Besides tools for ZK-PoK, there exists a large variety of
other domain specific compilers, including Fairplay [44] and
VIFF [30] for generating implementations of secure two-
party computations. Also, generic cryptographic compilers
offering differently abstract input languages have been pro-
posed, e.g., [4, 54, 9, 40]. However, none of these tools
supports formal verification.

A number of works have considered applications of formal
verification to zero-knowledge proofs. Barthe et al. [13]
use CertiCrypt to prove soundness, completeness, and zero-
knowledge of Σφ-protocols and simple And/Or-compositions
thereof. Although these results were constructed by hand
and needed to be extended for a wider range of proof goals
and arbitrary Boolean compositions, they are at the genesis
of the formal verification infrastructure of ZKCrypt. Backes
et al. [3] propose a method for checking that zero-knowledge
proofs are adequately used, and apply their method to the
DAA protocol.

9. CONCLUSIONS
ZKCrypt is an experimental high-assurance zero-knowledge
compiler that applies to the realm of cryptography state-of-
the-art approaches in verified and verifying compilation. It
achieves an unprecedented level of confidence among crypto-
graphic compilers. The verification infrastructure of ZKCrypt
is based on the CertiCrypt platform, and relies on a set of
carefully isolated concepts, including a new unified approach
to special soundness and a novel formal treatment of goal
resolution as a compilation step. We demonstrated that the
compiler and the verification component are able to handle
a large number of applications using ZK-PoKs.

There are plenty of avenues for future research in the field
of cryptographic compilation and verification in general, and
for the class of ZK-PoKs in particular. One future task is to
verify the last stage of the compiler chain, code generation,
to cover the entire compilation process. An interesting ques-
tion is how far verified compilation can be extended beyond
ZK-PoKs.
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APPENDIX
A. CRYPTOGRAPHIC BACKGROUND
A.1 The Σφ-Protocol
The Σφ-protocol allows one to efficiently prove knowledge of
preimages under homomorphisms φ : G → H with a finite
domain [53, 39]. For instance, it can be used to prove knowl-
edge of the content of ciphertexts under the Pailler [49] or
RSA [51] encryption schemes. Also, it can be used for all
homomorphisms mapping into a group over elliptic curves.
The protocol flow and the prover’s and verifier’s algorithms
are depicted in Figure 6.

P(x,w) V(x)

k $←G
r ← φ(k) r -

c� c $←C = {0, . . . , c+ − 1}

s← k + cw s - rxc
?
= φ(s)

Figure 6: Protocol flow of the Σφ-protocol.

It is well known that the protocol is perfectly honest-verifier
zero-knowledge for arbitrary φ and c+, and that it satisfies
the special soundness property whenever c+ = 2. However,
for many homomorphisms occurring in applied cryptography
a much larger challenge set can be used, resulting in a much
smaller cheating probability of the prover. Namely, this is
the case if a preimage of a known and fixed power of x can
be computed efficiently given only φ and x, i.e., if a pair
(u, v) ∈ G × Z \ {0} satisfying xv = φ(u) can be found in
PPT (homomorphisms with this property are calld special,
and (u, v) is a pseudo preimage of x under φ [5]). In this
case, the special soundness property is known to hold for
every c+ smaller or equal to the smallest prime dividing v.
For instance this condition is satisfied by homomorphisms
mapping into a group H of known order q: there we have
xq = φ(0). Similarly, if φ(w1, w2) = we1ψ(w2), where e ∈ Z
and ψ is a homomorphism, we have xe = φ(x, 0).

For the Σφ-protocol, the relation generator R required for
Definition 2 is given by the algorithm that always outputs
the fixed relation R = {(x,w) : x = φ(w)}, and relation
R′ only requires that c 6= c′ in the accepting conversations.
This corresponds to the classic notion of special soundness,
in which no computational assumption is necessary for the
success of the knowledge extractor.
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A.2 The Σexp-Protocol
The efficient usage of the ΣGSP-protocol depends on the given
assumptions on the homomorphism φ. The Σexp-protocol can
be used if those are not satisfied. Without going into details,
the idea is to assume the availability of a common reference
string containing a homomorphism ψ which satisfies the as-
sumptions for the ΣGSP-protocol. One then computes a com-
mitment to all secret values under ψ, and runs instances of
the ΣGSP-protocol for φ and ψ in parallel. The generalized
special soundness property of the overall protocol can then
be inferred from that for ψ. For details we refer to Bangerter
et al. [5, 8].

A.3 Boolean Compositions
Combining n Σ-protocols by a Boolean And, i.e., proving
knowledge of witnesses for all protocols simultaneously, can
easily be achieved by running the protocols in parallel, but
letting the verifier only choose a single challenge c, which is
then used for all protocols to combine.

Combining n predicates by a Boolean Or is slightly more
involved. The prover is allowed to simulate all-but-one ac-
cepting conversations (for the predicate i∗ it does not know
the secrets for) by allowing it to choose the correspond-
ing ci. The remaining challenge ci∗ is then fixed such that∑n
i=1 ci ≡ c mod c+. To ensure this, the response is now

given by ((s1, c1), . . . , (sn, cn)), where si is the response of
the ith predicate. In addition to running all verification al-
gorithms, the verifier also checks that the ci add up to the
challenge c.

B. PROOF OF THEOREM 1
The three move form of the protocol follows directly from
the specification of the algorithms for the high-level protocol.
For the completeness property, one combines the complete-
ness of the Translate algorithm with that of the underlying
protocol for the resolved goal. Given that Translate always
succeeds in producing a relation Rres for which the low level
protocol is complete and also a pair (x′, w′) satisfying this
relation, this implies that an honest verifier will always ac-
cept on an interaction with an honest prover.

For the honest verifier zero-knowledge property, one needs
to rely on both the completeness and the simulatability of
Translate. Simulatability ensures that Rres and x′ can be
sampled statistically close to the output of Translate, even
without knowing the witness. Furthermore, from complete-
ness, we know that Translate always produces a relation Rres

in the range of Rres, and a pair (x′, w′) satisfying this rela-
tion. On the other hand, the fact that the low level protocol
is HVZK implies that, for all relations Rres in the range of
Rres, there exists a simulator that can generate a valid trace
for this protocol from Rres and x′. By combining the trace
for the low-level protocol with the simulated Rres and x′, we
get a valid simulated trace for the high level protocol.

Finally, the completeness and soundness conditions for Trans-
late, combined with the generalized special soundness for the
low-level ZK-PoK protocol, imply that it is possible to con-
struct a suitable generalized special extractor for the high-
level protocol. Note that, in this case the prover is not
assumed to be honest, which means that it might not be
running the Translate algorithm correctly. Hence, for this

to be possible, it is crucial that the verifier is able to use
the public verifiability property, to check that the low level
relation and public input are in the range of Translate, and
hence in the range of Rres. Observe also that the general-
ized special soundness for the high level protocol is actually
defined with respect to a relation on traces that reflects the
restrictions required for the low level protocol. In practice,
this means that the proof of knowledge property of the high-
level protocol will only be guaranteed if the computational
hardness assumptions underlying Rres can be publicly ver-
ified to hold in an instance Rres, derived from an honestly
sampled high-level relation R. For our purposes, this means
that the traces provided to the generalized special extractor
we need to construct can be passed directly to the general-
ized special extractor for the low-level protocol, to recover
a valid low-level witness w′. We now appeal to the sound-
ness property of Translate, which guarantees that this low
level witness can be translated back into the required wit-
ness for the original goal G using the Recover protocol, with
overwhelming probability.

C. INPUT AND OUTPUT FILES OF THE
USE CASE

In the following we give the input files specifying the proof
goal of our use case in Section 2, as well as the outputs of the
goal resolution and the implementation phases, respectively.
We omit giving outputs of the backends here, as these are
essentially standard C- and Java-programs without further
interest for this paper.

C.1 The Proof Goal G
Figure 7 shows the input (a .zk-file) for our running exam-
ple. It can easily be obtained by instantiating the template
CL(m1,m2) by the mapping underlying the CL-signature
scheme [20], as is already done in the identity mixer specifi-
cation as well. The rest of the file essentially only describes
the algebraic setting, and the required security properties.

Declarations {
Int(2048) n;
Zmod*(n) z, R_1, R_2, A, S;
Int(1000) m_1, m_2, e, v, b;
}
Inputs {
Public := n, z, R_1, A, S, R_2, b;
ProverPrivate := e, m_2, v;
}
Properties {
KnowledgeError := 80;
SZKParameter := 80;
ProtocolComposition := P_0;
}
SigmaGSP P_0 {
Homomorphism(phi: Z^3 -> Zmod*(n):

(e,m_2,v) |-> (A^e*S^v*R_2^m_2));
ChallengeLength := 80;
Relation(
(z*R_1^(-m_1)) = phi(e,m_2,v) And m_2 >= b);

}

Figure 7: .zk-file specifying Idemix proof goal G.

The first two blocks, Declarations and Inputs, are almost
self-explanatory. First, all variables used in the protocol
are declared. The compiler natively supports several data
types, including integers, additive and multiplicative residue
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groups as well as certain groups over elliptic curves. If other
algebraic structures are required, users can specify abstract
group types, and only have to supply implementations in
the target language (e.g., Java) at compilation time. Then,
the variables are passed as public or private inputs to the
parties. Typically, variables will be declared as private if
and only if knowledge of these values has to be proved.

The Properties block specifies the intended security prop-
erties and the proof goal of the protocol. In our example,
the KnowledgeError of the generated protocol shall be at
most 2−80, and the statistical distance of simulated from
real protocol runs must be at most 2−SZKParameter. Inside
ZKCrypt, the KnowledgeError parameter is translated onto a
concrete challenge length, and SZKParameter gives the secu-
rity parameter controlling the tightness of the HVZK prop-
erty. Note that the specified values are consistent with the
specifications of the identity mixer [23].

Finally, the proof goal only consists of a single predicate.
This predicate is then specified in detail. It shall be proved
using a SigmaGSP-protocol, and the relation to be proved is
that of our running example. The maximum ChallengeLength

that may safely be used for the homomorphism at hand is
given by 80 (this cannot be computed from phi as it would
require to compute the order of Zmod*(n), which is infeasi-
ble; it must thus be specified by the user). We observe that,
for concrete values of n, i.e., strong RSA moduli, this pa-
rameter implicitly gives the concrete value of d (the product
of all primes smaller than c+ dividing ordH) for which the
proof of knowledge property will hold.

C.2 The Resolved Proof Goal Gres

As discussed in detail in Section 2 and Section 4, ZKCrypt
resolves all interval claims in the proof goal G in a first step,
resulting in a resolved proof goal Gres only containing preim-
age claims under group homomorphisms. The output of this
goal resolution phase is the .psl-file given in Figure 8. The
syntax and semantics of the single blocks are identical to
.zk-files, with the only exception that no interval claims are
allowed any more in .psl-files. The assignments to x_1 and
x_2 in the Declarations-block define relations that have to
be satisfied by the inputs and which are later verified at run-
time. It can be seen that up to minor syntactical changes
the proof goal is exactly that specified in (3).

C.3 The Optimized Implementation Iopt

As explained in Section 2, the implementation phase trans-
forms the resolved proof goal into an optimized implemen-
tation Iopt. This .pil-file can be thought of as some kind of
pseudocode, which makes all algebraic operations and mes-
sages to be sent explicit.

On a high level, the .pil-file consists of two sets of algorithms
for the prover and the verifier, respectively, which are then
compiled into C- and Java-code by the respective backends,
which essentially only need to perform syntactic rewriting.
For illustration purposes, we show the verifier’s algorithm of
our running example in Figure 9. The ...-blocks substitute
complex algebraic expressions, which were removed due to
space constraints. The semantics of the single commands
is straightforward: CheckMembership checks whether a vari-

able lies in a given interval or group. The Verify command
Declarations {
Int(2048) n;
Int(1000) b, m[1..2], e, v, r_Delta, r[1..4],

u[1..4], alpha;
Zmod*(n) z, R[1..2], A, S, T_Delta, T[1..4],

x_1 := z*R_1~Aă(-m_1), x_2 := T_Delta*z^b;
}
Inputs {
Public := n, b, m_1, z, R[1..2], A, S,

T_Delta, T[1..4];
ProverPrivate := e, m_2, v, r_Delta, r[1..4],

u[1..4], alpha;
}
Properties {
KnowledgeError := 80;
SZKParameter := 80;
ProtocolComposition := P_0;
}
SigmaGSP P_0 {
Homomorphism(phi: Z^13 -> Zmod*(n)^7:
(e,m_2,v,r_Delta,u_1,u_2,u_3,u_4,r_1,r_2,r_3,
r_4,alpha) |->
(A^e*S^v*R_2^m_2,z^m_2*S^r_Delta,z^u_1*S^r_1,
z^u_2*S^r_2,z^u_3*S^r_3,z^u_4*S^r_4,
T_1^u_1*T_2^u_2*T_3^u_3*T_4^u_4*S^alpha));

ChallengeLength := 80;
Relation((x_1,x_2,T_1,T_2,T_3,T_4,T_Delta) =

phi(e,m_2,v,r_Delta,u_1,u_2,
u_3,u_4,r_1,r_2,r_3,r_4,alpha));

}

Figure 8: .psl-file with resolved Idemix proof goal Gres.

checks whether or not the condition the specified algebraic
relation is satisfied. If either of these checks fails, the verifier
aborts and rejects the protocol run. It accepts, if and only
if all checks were successful.

Def (Void): Round2([...,...] _s_1, ... , _s_13) {
CheckMembership(_s_1, [...,...]);
CheckMembership(_s_2, [...,...]);
CheckMembership(_s_3, [...,...]);
CheckMembership(_s_4, [...,...]);
CheckMembership(_s_5, [...,...]);
CheckMembership(_s_6, [...,...]);
CheckMembership(_s_7, [...,...]);
CheckMembership(_s_8, [...,...])
CheckMembership(_s_9, [...,...]);
CheckMembership(_s_10, [...,...]);
CheckMembership(_s_11, [...,...]);
CheckMembership(_s_12, [...,...]);
CheckMembership(_s_13, [...,...]);
Verify(x_1 == (z*(R_1^(-m_1));
Verify(x_2 == (((T_Delta)*(z^b)));
Verify((_t_1*(x_1^_c)) == ...);
Verify((_t_2*(x_2^_c)) == ...);
Verify((_t_3*(T_1^_c)) == ((z^_s_5)*(S^_s_9)));
Verify((_t_4*(T_2^_c)) == ((z^_s_6)*(S^_s_10)));
Verify((_t_5*(T_3^_c)) == ((z^_s_7)*(S^_s_11)));
Verify((_t_6*(T_4^_c)) == ((z^_s_8)*(S^_s_12)));
Verify((_t_7*(T_Delta^_c)) == T_1^_s_5* ...);

}

Figure 9: .pil-file with the Idemix implementation Iopt.

More generally, the implementation language supports a broad
set of operations, including assignments, random choices
in groups and intervals, if-then-else branches checking
whether certain values are known to the prover, loops and
native commands for certain further cryptographic schemes
which are required to efficiently realize certain Boolean com-
positions of proof goals.

17


	Introduction
	Use Case
	Preliminaries
	An Overview of CertiCrypt
	Zero-Knowledge Proofs
	The GSP-Protocol
	Combination of Proof Goals

	Goal Resolution
	A Cryptographic Perspective
	A Formal Verification Perspective

	Verified Compilation
	Honest Verifier Zero Knowledge Property
	Proof of Knowledge

	Implementation
	More Experiments and Results
	Related work
	Conclusions
	References
	Cryptographic Background
	The -Protocol
	The exp-Protocol
	Boolean Compositions

	Proof of Theorem 1
	Input and Output Files of the Use Case
	The Proof Goal G
	The Resolved Proof Goal Gres
	The Optimized Implementation Iopt


