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Abstract. We consider public-key encryption schemes based on error-correcting
codes that are IND-CCA2 secure in the standard model. We analyze a system due
to Dowsley, Müller-Quade and Nascimento. We then show how to instantiate the
Rosen-Segev framework with the McEliece scheme.

1 Introduction

The McEliece cryptosystem [10] is the first scheme based on coding theory problems
and it makes use of error-correcting codes (binary Goppa codes in the original pro-
posal). It is possible to produce CCA2-secure variants in the random oracle model
[4,6], but it is of interest to study systems that are secure in the standard model.
Rosen and Segev in [13] gave a general approach for CCA2 security in the stan-
dard model incorporating tools like lossy trapdoor functions and one-time signature
schemes. This general protocol can be applied directly to many different hard prob-
lems such as Quadratic Residuosity, Composite Residuosity, the d-linear Assumption
and the Syndrome Decoding Problem, as shown in [8]. Dowsley et al. [1] have tried
to apply the Rosen-Segev approach to the McEliece framework. To do this, a new
structure called k-repetition PKE is introduced, as well as a number of differences
in the key generation, encryption and decryption processes. It is claimed that the
scheme has IND-CCA2 security in the standard model.
In this paper we make some observations on the ambiguity of the description of the
scheme of [1], provide a correct formulation and proof of security, and then show
how to get a CCA2-secure cryptosystem based on the McEliece assumptions using
the original Rosen-Segev approach.
The paper is structured as follows: in the next section, formal definitions of the
schemes in use and the corresponding notions of security are presented. Section 3
recalls the original Rosen-Segev scheme. Section 4 features two existing proposals
for a scheme based on coding theory: the first makes use of the Niederreiter cryp-
tosystem [11], while the second is a summary of [1]. In Section 5 we propose an
alternative scheme to realize the Rosen-Segev protocol with McEliece. We conclude
in Section 6.



2 Preliminaries

We start with some formal cryptographic definitions.

A Public-Key Encryption scheme (PKE) consists of a 6-tuple (K,P,C, KeyGen,Enc,Dec)
defined as follows:

Table 1: Public-Key Encryption scheme

K
Kpubl the public key space.

Kpriv the private key space.

P The set of messages to be encrypted, or plaintext space.

C The set of the messages transmitted over the channel, or ciphertext space.

KeyGen A probabilistic key generation algorithm that takes as input a security parameter 1δ and
outputs a public key pk ∈ Kpubl and a private key sk ∈ Kpriv.

Enc A (possibly probabilistic) encryption algorithm that receives as input a public key pk ∈
Kpubl and a plaintext φ ∈ P and returns a ciphertext ψ ∈ C.

Dec A deterministic decryption algorithm that receives as input a private key sk ∈ Kpriv and
a ciphertext ψ ∈ C and outputs a plaintext φ ∈ P or the failure symbol ⊥.

A Signature scheme (SS) consists of a 6-tuple (K,M, Σ,KeyGen,Sign,Ver) defined as
follows:

Table 2: Signature scheme

K
Ksign the signing key space.

Kver the verification key space.

M The set of documents to be signed, or message space.

Σ The set of the signatures to be transmitted with the messages, or signature space.

KeyGen A probabilistic key generation algorithm that takes as input a security parameter 1δ and
outputs a signing key sgk ∈ Ksign and a verification key vk ∈ Kver.

Sign A (possibly probabilistic) signing algorithm that receives as input a signing key sgk ∈ Ksign

and a message µ ∈ M and returns a signature σ ∈ Σ.

Ver A deterministic decryption algorithm that receives as input a verification key vk ∈ Kver,
a message µ ∈ M and a signature σ ∈ Σ and outputs 1, if the signature is recognized as
valid, or 0 otherwise.



2.1 Security notions

We present here the most common notions of security for PKE’s.

Definition 1 (One-Way). A One-Way adversary is a polynomial-time algorithm
A that takes as input a public key pk ∈ Kpubl and a ciphertext ψ = Encpk(φ) ∈ C and
outputs φ′ ∈ P. The adversary succeeds if φ′ = φ. We say that a PKE is One-Way
Secure if the probability of success of any adversary A is negligible in the security
parameter, i.e.

Pr[pk←− Kpubl, φ←− P : A(pk,Encpk(φ)) = φ] ∈ negl(λ).1 (1)

Definition 2 (IND). An adversary A for the indistinguishability (IND) property is
a two-stage polynomial-time algorithm. In the first stage, A takes as input a public
key pk ∈ Kpubl, then outputs two arbitrary plaintexts φ0, φ1. In the second stage,
it receives a ciphertext ψ∗ = Encpk(φb), for b ∈ {0, 1}, and returns a bit b∗. The
adversary succeeds if b∗ = b. More precisely, we define the advantage of A against
PKE as

AdvA(λ) = Pr[b∗ = b]− 1
2
. (2)

We say that a PKE enjoys Indistinguishability if the advantage of any adversary A
over all choices of pk, ψ∗ and the randomness used by A is negligible in the security
parameter.

Indistinguishability can be achieved in various attack models. We present here two
of the most famous.

Definition 3 (IND-CPA). The attack game for IND-CPA (or passive attack)
proceeds as follows:

- Query a key generation oracle to obtain a public key pk.

- Choose φ0, φ1 ∈ P and submit them to an encryption oracle. The oracle will
choose a random b ∈ {0, 1} and reply with the “challenge” ciphertext ψ∗ =
Encpk(φb).

- Output b∗ ∈ {0, 1}.

We say that a PKE has Indistinguishability against Chosen Plaintext Attacks (IND-
CPA) if the advantage AdvCPA of any IND adversary A in the CPA attack model is
negligible.

An even stronger attack model, called CCA2, allows the adversary to make use
of a decryption oracle during the game, with the only exception that it is not allowed
to ask for the decryption of the challenge ciphertext.
1 For simplicity, from now on we denote the key as an index rather than as an input for the

algorithms Enc and Dec.



Definition 4 (IND-CCA2). The attack game for IND-CCA2 (or active attack)
proceeds as follows:

- Query a key generation oracle to obtain a public key pk.

- Make a sequence of calls to a decryption oracle, submitting any string ψ of the
proper length (not necessarily an element of C). The oracle will respond with
Decsk(ψ).

- Choose φ0, φ1 ∈ P and submit them to an encryption oracle. The oracle will
choose a random b ∈ {0, 1} and reply with the “challenge” ciphertext ψ∗ =
Encpk(φb).

- Keep performing decryption queries. If the submitted ciphertext is ψ = ψ∗, re-
turn ⊥.

- Output b∗ ∈ {0, 1}.
We say that a PKE has Indistinguishability against Adaptive Chosen Ciphertext
Attacks (IND-CCA2) if the advantage AdvCCA2 of any IND adversary A in the CCA2
attack model is negligible.

There are many notions of security for signature schemes; the one we present
here is what we need for the Rosen-Segev scheme.

Definition 5 (One-Time Strong Unforgeability). We define an adversary A
as a polynomial-time algorithm that acts as follows:

- Query a key generation oracle to obtain a verification key vk.

- Choose a message µ ∈ M and submit it to a signing oracle. The oracle will reply
with σ = Signsgk(µ).2

- Output a pair (µ∗, σ∗).

The adversary succeeds if Vervk(µ∗, σ∗) = 1 and (µ∗, σ∗) 6= (µ, σ). We say that a
signature scheme is One-Time Strongly Unforgeable if the probability of success of
any adversary A is negligible in the security parameter, i.e.

Pr[vk←− Kver : Vervk(A(vk, Signsgk(µ))) = 1] ∈ negl(λ). (3)

Note that in this scenario the adversary is only allowed to ask for the signature
of a single message (hence the One-Time), so this is a relatively weak security
assumption.

Definition 6 (Hard-Core Predicate). Let f be a one-way function and h be a
predicate, i.e. a function whose output is a single bit. Define an adversary A to be a
probabilistic polynomial-time algorithm that, on input f(x), tries to compute h(x),
i.e. A(f(x)) = b ∈ {0, 1}. The predicate h is a Hard-Core Predicate of the function
f if the probability Pr[b = h(x)]− 1

2 is negligible for all random choices of x.
2 As before, we use subscript notation for the algorithms Sign and Ver.



2.2 The McEliece cryptosystem

The original McEliece cryptosystem, based on coding theory, was introduced in 1978
by Robert J. McEliece [10] and, for an appropriate choice of parameters, it is still
unbroken. In the original proposal, binary Goppa codes are used as a basis for the
construction. We give here a more general and formal description according to the
definitions given in Section 2.1.

Table 3: The McEliece cryptosystem.

Setup Fix public system parameters q,m, n, k, w ∈ N such that k ≥ n− wm.

K
Kpubl the set of k × n matrices over Fq.

Kpriv the set of triples formed by a k × k invertible matrix, an n× n permutation matrix
and a code description3.

P The vector space Fkq .

C The vector space Fnq .

KeyGen Generate at random a polynomial g ∈ Fqm [x] and elements α1, . . . , αn ∈ Fqm , then build
the Goppa code Γ = Γ (α1, . . . , αn, g) over Fq and its generator matrix G. Select at
random a k × k invertible matrix S and an n × n permutation matrix P . Publish the
public key Ĝ = SGP ∈ Kpubl and store the private key (S, P,Γ ) ∈ Kpriv.

Enc On input a public key Ĝ ∈ Kpubl and a plaintext m ∈ P, sample a random error vector e
of weight w in Fnq and return the ciphertext ψ = mĜ+ e ∈ C.

Dec On input the private key (S, P,Γ ) ∈ Kpriv and a ciphertext ψ ∈ C, first compute ψP−1

then apply the decoding algorithm DΓ to it. If the decoding succeeds, multiply the output
m̂ by S−1, and return the resulting plaintext φ = m̂S−1. Otherwise, output ⊥.

The security of the McEliece scheme relies on two computational assumptions.

Assumption 1 (Indistinguishability) The matrix Ĝ output by KeyGen is com-
putationally indistinguishable from a uniformly chosen matrix of the same size.

Assumption 2 (Decoding hardness) Decoding a random linear code with pa-
rameters n, k, w is hard.

It is immediately clear that the following corollary is true.

Corollary 1. Given that both the above assumptions hold, the McEliece cryptosys-
tem is one-way secure under passive attacks.

Remark 1. In a recent paper [2], Faugère et al. presented a distinguisher for instances
of the McEliece cryptosystem that make use of high-rate Goppa codes. While the
distinguisher works only in a special case and doesn’t affect security for the general
scheme, it is still recommended to avoid such insecure choices of Γ .
3 For Goppa codes, given by the support α1, . . . , αn and the Goppa polynomial g.



We remark that it is possible to obtain CCA2 security for the McEliece cryptosystem
in the Random Oracle Model using standard conversions, for example see [6]. We
therefore consider only the Standard Model.

2.3 Computable functions and correlated products

We define here the notion of security under correlated products for a collection of
functions. Formally, we describe a collection of efficiently computable functions as
a pair of algorithms F = (G,F) where G is a generation algorithm that samples the
description f of a function and F(f, x) is an evaluation algorithm that evaluates the
function f on a given input x. We then define a k-wise product as follows:

Definition 7. Let F = (G,F) be a collection of efficiently computable functions and
k be an integer. The k-wise product Fk is a pair of algorithms (Gk,Fk) such that:

- Gk is a generation algorithm that independently samples k functions from F by
invoking k times the algorithm G and returns a tuple (f1, . . . , fk).
- Fk is an evaluation algorithm that receives as input a sequence of functions (f1, . . . , fk)
and a sequence of points (x1, . . . , xk) and invokes F to evaluate each function on the
corresponding point, i.e.

Fk(f1, . . . , fk, x1, . . . , xk) = (F(f1, x1), . . . ,F(fk, xk)).

A trapdoor one-way function is then an efficiently computable function that,
given the image of a uniform chosen input, is easy to invert with the use of a certain
trapdoor td but hard to invert otherwise; i.e. there exists an algorithm F−1 such
that F−1(td,F(f, x)) = x.
We may think to extend the notion to the case where the input is given according to a
certain distribution, that is, there exists a correlation between the points x1, . . . , xk.

Definition 8. Let F = (G,F) be a collection of efficiently computable functions with
domain D and Ck be a distribution of points in D1×· · ·×Dk. We say that F is secure
under a Ck-correlated product if Fk is one-way with respect to the input distribution
Ck.

In the special case where the input distribution Ck is exactly the uniform k-
repetition distribution (that is, k copies of the same input x ∈ D) we simply speak
about one-wayness under k-correlated inputs. Rosen and Segev in [13] showed that
a collection of lossy trapdoor functions for an appropriate choice of parameters can
be used to construct a collection of functions that is one-way under k-correlated
inputs. Their work is summarized in the next section.



3 The Rosen-Segev scheme

The computational assumption underlying the scheme is that there exists a collection
of functions F = (G,F) which is secure under k-correlated inputs. The scheme makes
use of a strongly-unforgeable signature scheme and of a hard-core predicate h for
the collection Fk.

KeyGenRS : Invoke G for 2k times independently and obtain the descriptions of
functions (f0

1 , f
1
1 , . . . , f

0
k , f

1
k ) and the corresponding trapdoors (td0

1 , td
1
1 , . . . , td0

k, td
1
k).

The former is distributed as the public key pk, while the latter is the private key sk.

EncRS : To encrypt a plaintext m ∈ {0, 1} with the public key pk, sample a key
from a strongly-unforgeable one-time signature scheme, say (vk, sgk) and a random
x ∈ {0, 1}N . Write vki for the i-th bit of vk and let h be a hard-core predicate, then:

– ci = F(f vki
i , x) for i = 1, . . . , k.

– y = m⊕ h(f vk1
1 , . . . , f vkk

k , x).

– σ = SignSS
sgk(c1, . . . , ck, y).

It is assumed that vk ∈ {0, 1}k: if not, it is enough to apply a universal one-way
hash function to obtain the desired length.
Finally, output the ciphertext ψ = (vk, c1, . . . , ck, y, σ).

DecRS : Upon reception of a ciphertext ψ:

– Verify the signature; if VerSS
vk((c1, . . . , ck, y), σ) = 0 output ⊥.

– Otherwise compute xi = F−1(tdvki
i , ci) for i = 1, . . . , k.

– If x1 = · · · = xk then set m = y ⊕ h(f vk1
1 , . . . , f vkk

k , x1) and return the plaintext
m, otherwise output ⊥.

The security of the scheme is summarized in the next theorem, which was proved
in [13].

Theorem 1. Assuming that F is secure under k-correlated inputs, and that the
signature scheme is one-time strongly unforgeable, the above encryption scheme is
IND-CCA2-secure.

The proof consists of a standard argument, divided in two parts. The first part
shows that if an adversary exists capable to break the CCA2 security of the scheme,
it can be converted to an adversary able to forge the signature scheme. In the second
part, assuming that the forgery doesn’t occur, an adversary is built that contradicts
the security of the hard-core predicate. For lack of space we don’t present the proof
here, but we refer the reader to [13] for more details.



4 Previous proposals

If we describe the McEliece encryption as a function fG(x, y) = xG+ y then clearly
this is not secure under correlated inputs: in fact, given two evaluations fG1(x, y) =
xG1 + y and fG2(x, y) = xG2 + y then clearly we could sum the outputs together
and, since the error vector cancels out (we assume we are in the binary case like in
the original McEliece scheme), we get x(G1 + G2) from which it is easy to recover
x. The problem is that, since we are defining a function, there is no randomness
anymore, whereas McEliece requires a random error vector in order to be secure
under k-correlated inputs. A mapping that incorporates a random element would
in fact give a different result for multiple encryptions of the same plaintext and so
won’t have a unique image.

We now present two alternative schemes that have been proposed to deal with the
matter.

4.1 Syndrome decoding

This construction was presented in [8] and is based on the Niederreiter cryptosystem
[11]. Since this relies on the properties of the parity-check matrix rather than the
generator matrix, it is often considered the “dual” cryptosystem and the computa-
tional assumptions for the security change accordingly.
The Niederreiter trapdoor function can be efficiently described as the family N =
(G,F) in the following way:

Generation: on input n, k the algorithm G generates a random parity-check matrix
H for an [n, k]-linear code with an efficient decoding algorithm over Fq, an (n−k)×
(n − k) random invertible matrix S and an n × n permutation matrix P , then
publishes the public key Ĥ = SHP and the private key (S, P, Γ ).

Evaluation: on input Ĥ, e, where e is a string of fixed weight w in Fn
q , the algorithm

F computes ψ = Ĥe and returns the ciphertext ψ.

It is possible to invert F using the trapdoor: on input (S, P, Γ ) and ψ, multiply ψ
by S−1, decode to obtain Pe and retrieve e by multiplying by P−1.

The function is proved to be one-way under k-correlated inputs in [8, Th. 6.2] if k
is chosen such that the Niederreiter assumptions hold for n and (n− k)k, and it is
intended to be used in the general Rosen-Segev framework.



4.2 k-repetition PKE

Dowsley, Müller-Quade and Nascimento [1] propose a scheme that resembles the
Rosen-Segev protocol trying to apply it to the McEliece cryptosystem. Despite the
authors claim that this is the “direct translation” of [13], clearly this is not the case.
Among other differences, the scheme doesn’t rely on a collection of functions but
instead defines a structure called k-repetition Public-Key Encryption (PKEk). This
is essentially an application of k samples of the PKE to the same input, in which
the decryption algorithm also includes a verification step on the k outputs. The
encryption step produces a signature directly on the McEliece ciphertexts instead
of introducing a random vector x as in the original scheme; therefore an IND-CPA
secure variant of McEliece’s cryptosystem [12] is necessary to achieve CCA2 security.
We briefly recall it below.

Table 4: The Randomized McEliece cryptosystem.

Setup Fix public system parameters q,m, n, k, w ∈ N such that k ≥ n− wm, k = k1 + k2.

K
Kpubl the set of k × n matrices over Fq.

Kpriv the set of triples formed by a k × k invertible matrix, an n× n permutation matrix
and a code description.

P The vector space Fk1q .

R The vector space Fk2q .

C The vector space Fnq .

KeyGen Generate at random a polynomial g ∈ Fqm [x] and elements α1, . . . , αn ∈ Fqm , then build
the Goppa code Γ = Γ (α1, . . . , αn, g) over Fq and its generator matrix G. Select at
random a k × k invertible matrix S and an n × n permutation matrix P . Publish the
public key Ĝ = SGP ∈ Kpubl and store the private key (S, P,Γ ) ∈ Kpriv.

Enc On input a public key Ĝ ∈ Kpubl, a plaintext m ∈ P and a randomness r ∈ P, sample a
random error vector e of weight w in Fnq and return the ciphertext ψ = (r|m)Ĝ+ e ∈ C.

Dec On input the private key (S, P,Γ ) ∈ Kpriv and a ciphertext ψ ∈ C, first compute ψP−1

then apply the decoding algorithm DΓ to it. If the decoding succeeds, multiply the output
by S−1, parse it as (r|m) and return the plaintext φ = m. Otherwise, output ⊥.

We now present the scheme described in [1]. Note that, in the paper, this is presented
as a general scheme, applicable to any IND-CPA secure PKE which is secure and
verifiable under k-correlated inputs.

KeyGenDMQN : Invoke KeyGenPKE for 2k times independently and obtain the col-
lection of public keys (pk0

1 , pk1
1 , . . . , pk0

k, pk1
k) and the corresponding private keys

(sk0
1 , sk

1
1 , . . . , sk

0
k, sk

1
k), then run the key generation algorithm for the signature scheme

to obtain a key (vk∗, sgk∗). Publish the public key pk = (pk0
1 , pk1

1 , . . . , pk0
k, pk1

k) and
choose the private key accordingly to vk∗, i.e. sk = (vk∗, sk1−vk∗1

1 , . . . , sk
1−vk∗k
k ).



EncDMQN : To encrypt a plaintext m with the public key pk, sample another, different
key (vk, sgk) from the signature scheme, then:

– ci = EncPKE

pk
vki
i

(m) for i = 1, . . . , k.

– σ = SignSS
sgk(c1, . . . , ck).

– Output the ciphertext ψ = (vk, c1, . . . , ck, σ).

DecDMQN : Upon reception of a ciphertext ψ:

– If vk = vk∗ or VerSS
vk((c1, . . . , ck), σ) = 0 output ⊥.

– Otherwise compute m = DecPKE

sk
vki
i

(ci) for some i such that vki 6= vk∗i .

– Verify that ci = EncPKE

pk
vki
i

(m) for all i = 1, . . . , t. If the verification is successful

return the plaintext m, otherwise output ⊥.

Since we know that vk 6= vk∗, there is at least one position in which they differ,
hence the decryption process is well defined.

Remark 2. Note that, even though the encryption process is not deterministic, for
McEliece encryption it is still possible to perform the check in the last step of
DecDMQN. It is in fact enough to check the Hamming weight of ci−mĜi where Ĝi is
the generator matrix corresponding to the public key pkvki

i . This is not clearly stated
by the authors along with the description of the general scheme, but it is mentioned
later on in [1, Theorem 3] for the particular case of the randomized McEliece.

Remark 3. Clearly, the above specification of the scheme is ambiguous. In fact, even
assuming that the underlying encryption scheme is IND-CPA secure, the encryption
step is described simply as EncPKE

pk
vki
i

(m) for i = 1, . . . , k, without indicating explicitly

the role of the randomness. In [1, Section 4] some remarks are made about the
security and there is the suggestion that the scheme in use be the randomized
McEliece scheme from [12] (see Table 4); however, precise details on how this should
be instantiated are missing. One could in general think at the k encryptions as
ci = EncPKE

pk
vki
i

(m, ri) = (ri|m)Ĝi + ei. In this case, since we check the Hamming

weight of ci − (ri|m)Ĝi, the check would obviously fail unless r1 = · · · = rk = r.

Remark 4. The KeyGen algorithm is slightly different from the Rosen-Segev case.
In particular, 2k keys are generated, then a random verification key vk∗ is chosen
and half of the private keys (the ones corresponding to vk∗) are discarded. This also
implies that decryption only works when vk 6= vk∗. This technique is used in the
context of the proof of Theorem 1, specifically in the second part while constructing
an efficient distinguisher for the hard-core predicate. While, as we will see in the
following, this is necessary for the proof (both for the original paper and for the
proposed scheme), it is certainly a redundant requirement in the KeyGen process.



In light of the previous observations, a more correct description of the scheme would
then be:

KeyGenDMQN : Invoke KeyGenPKE for 2k times independently and obtain the col-
lection of public keys (pk0

1 , pk1
1 , . . . , pk0

k, pk1
k) and the corresponding private keys

(sk0
1 , sk

1
1 , . . . , sk

0
k, sk

1
k). The former is distributed as the public key pk, while the lat-

ter is the private key sk.
EncDMQN : To encrypt a plaintext m with the public key pk, sample a key (vk, sgk)
from the signature scheme and a randomness r, then:

– ci = EncPKE

pk
vki
i

(m, r)4 for i = 1, . . . , k.

– σ = SignSS
sgk(c1, . . . , ck).

– Output the ciphertext ψ = (vk, c1, . . . , ck, σ).

DecDMQN : Upon reception of a ciphertext ψ:

– If VerSS
vk((c1, . . . , ck), σ) = 0 output ⊥.

– Otherwise compute (m, r) = DecPKE

sk
vki
i

(ci) for some i.

– Verify that ci = EncPKE

pk
vki
i

(m, r) for all i = 1, . . . , t. If the verification is successful

return the plaintext m, otherwise output ⊥.

The construction is proved to be CCA2-secure in [1, Theorem 1]. We now repro-
duce a more careful proof of security.

Theorem 2 ([1]). Assuming that PKEk is IND-CPA secure and verifiable under
k-correlated inputs, and that the signature scheme is one-time strongly unforgeable,
the above encryption scheme is IND-CCA2-secure.

Let A be an IND-CCA2 adversary. During the attack game, A submits m0,m1

and gets back the challenge ciphertext ψ∗ = (vk∗, c∗1 , . . . , c
∗
k, σ
∗). Indicate with Forge

the event that, for one of A’s decryption queries ψ = (vk, c1, . . . , ck, σ), it holds
vk = vk∗ and VerSS

vk((c1, . . . , ck), σ) = 1. The theorem is proved by means of the two
following lemmas.

Lemma 1. Pr[Forge] is negligible.

Proof. Assume that there exists an adversary A for which Pr[Forge] is not negli-
gible. We build an adversary A′ that breaks the security of the one-time strongly
unforgeable scheme. A′ works as follows:
4 Note that the randomness we are expliciting here is the one necessary to realize the IND-CPA

security of PKE, hence Enc is still a randomized algorithm. In particular, for the McEliece
instantiation we would have ci = (r|m)Ĝi + ei.



Key Generation: Invoke KeyGenDMQN as above and return pk to A.

Decryption queries: Upon a decryption query ψ = (vk, c1, . . . , ck, σ):

1. If vk = vk∗ and VerSS
vk((c1, . . . , ck), σ) = 1 output ⊥ and halt.

2. Otherwise, decrypt normally using DecDMQN.

Challenge queries: Upon a challenge query m0,m1:

1. Choose random b ∈ {0, 1}.

2. Use EncDMQN to compute c∗i = Enc
pk

vk∗
i

i

(mb, r) for i = 1, . . . , k.

3. Obtain the signature σ∗ on (c∗1 , . . . , c
∗
k) with respect to vk∗5.

4. Return the challenge ciphertext ψ∗ = (vk∗, c∗1 , . . . , c
∗
k, σ
∗).

Note that, if Forge doesn’t occur, the simulation of the CCA2 interaction is perfect.
Therefore, the probability that A′ breaks the security of the one-time signature
scheme is exactly Pr[Forge]. The one-time strong unforgeability implies that this
probability is negligible. ut

Lemma 2.
∣∣∣Pr[b = b∗ ∧ ¬Forge]− 1

2

∣∣∣ is negligible.

Proof. Assume that there exists an adversary A for which
∣∣∣Pr[b = b∗ ∧¬Forge]− 1

2

∣∣∣
is not negligible. We build an adversary A′ that breaks the IND-CPA security of
PKEk. A′ works as follows:

Key Generation: On input the public key (pk1, . . . , pkk) for PKEk:

1. Execute KeyGenSS and obtain a key (vk∗, sgk∗).

2. Set pkvk∗
i = pki for i = 1, . . . , k.

3. Run KeyGenPKE for k times and denote the resulting public keys by (pk
1−vk∗1
1 ,

. . . , pk
1−vk∗k
k ) and private keys by (sk1−vk∗1

1 , . . . , sk
1−vk∗k
k ).

4. Return the public key pk = (pk0
1 , pk1

1 , . . . , pk0
k, pk1

k) to A.

Decryption queries: Upon a decryption query from A:

1. If Forge occurs output ⊥ and halt.

2. Otherwise, there will be some i such that vki 6= vk∗i . Decrypt normally using
DecDMQN with the key skvki

i previously generated.

5 Remember that in the one-time strong unforgeability game the adversary is allowed to ask to a
signing oracle for the signature on one message.



Challenge queries: Upon a challenge query m0,m1:

1. Send m0,m1 to the challenge oracle for the IND-CPA game of A′ and obtain the
corresponding challenge ciphertext (c∗1 , . . . , c

∗
k).

2. Sign (c∗1 , . . . , c
∗
k) using sgk∗ to get the signature σ∗.

3. Return the challenge ciphertext ψ∗ = (vk∗, c∗1 , . . . , c
∗
k, σ
∗).

Output: When A outputs b∗ also A′ outputs b∗.

As long as Forge doesn’t occur, it is clear that the IND-CPA advantage of A′ against
PKEk is the same as the IND-CCA2 advantage of A against the above scheme. Since
we are assuming the IND-CPA security of PKEk, we have the IND-CCA2 security
as desired. ut

Remark 5. It is clear that, as already mentioned by the authors in [12], the IND-
CPA security of the randomized McEliece scheme is not absolute, but depends on the
choice of the sizes of the message m and randomness r in the encryption procedure
(r|m)Ĝ+e. In the context of a CPA attack game, in fact, this ciphertext is subject to
general decoding attacks with partial information about the plaintext. As illustrated
in [12, Table 1], if the randomness r is not large enough, the IND-CPA security of
the scheme can be easily broken.

5 A direct translation of McEliece

We now explain how to realize the Rosen-Segev scheme using McEliece. The con-
struction arises naturally if we want to be as close as possible to the original McEliece
formulation. We hence follow the usual approach of the McEliece cryptosystem, that
is to choose a different random error vector every time we call the evaluation al-
gorithm; this implies that we are not using functions anymore. The construction is
proved to be secure under k-correlated inputs in Theorem 3. It proceeds as follows:

Describe McEliece as a pair McE = (G,F) composed by two algorithms: G is a
generation algorithm that samples a description, and F is an evaluation algorithm
that provides the evaluation on a given input.

Generation: on input n, k the algorithm G generates a random generator matrix G
for an [n, k]-linear code with an efficient decoding algorithm over Fq, a k×k random
invertible matrix S and an n× n permutation matrix P , then publishes the public
key Ĝ = SGP and the private key (S, P, Γ ).

Evaluation: on input Ĝ,m the algorithm F generates a random error vector e of
fixed weight w in Fn

q , computes ψ = mĜ+ e and outputs the ciphertext ψ.



It is possible to invert F using the trapdoor: on input (S, P, Γ ) and ψ, multiply ψ
by P−1, decode to obtain mS and retrieve m by multiplying by S−1.

We claim that this encryption process is secure under k-correlated inputs. This is
proved in the following theorem, which closely follows the proof of [8, Th. 6.2]. First,
we need a lemma:

Lemma 3. If Assumption 2 holds for parameters n̂, k and ŵ, then the ensembles
{(G,mG + e) : G ∈ Fk×n̂

q ,m ∈ Fk
q , e ∈ Wn̂,ŵ} and {(G, y) : G ∈ Fk×n̂

q , y
R←− Fn̂

q } are
computationally indistinguishable.

This was proved in [3] for the syndrome decoding (Niederreiter) case. We know
[7] that the two formulations are equivalent; in particular, any adversary able to dis-
tinguish the above ensembles can be used to build an adversary for the Niederreiter
case. Therefore, the above lemma must also be true. A complete proof is given in
Appendix A.

Theorem 3. Fix an integer k. If the parameters n, k, w are chosen such that de-
coding a random linear code with parameters nk, k and wk is hard, then the above
encryption process is secure under k-correlated inputs.

Proof. Let A be an adversary for the one-wayness under k-correlated inputs. We
define the advantage of A to be

AdvA(λ) = Pr[A(Ĝ1, . . . , Ĝk,F(Ĝ1,m), . . . ,F(Ĝk,m)) = m]

where Ĝ1, . . . , Ĝk are k independent public keys generated by G.
We assume the indistinguishability assumption holds: we can then exchange all
the matrices Ĝi with uniform matrices Ui with a negligible advantage for the at-
tacker. Now, let’s define the k × nk matrix U by concatenating the rows of the
matrices Ui, i.e. U = (U1| . . . |Uk). We assume that the distributions (U1, . . . , Uk,
F(U1,m), . . . ,F(Uk,m)) and (U,F(U,m)) are interchangeable without a significant
advantage for the attacker. Note that in the latter the error vector used will have
length nk and weight wk. A formal argument will be provided in Appendix B. We
now invoke Lemma 3 with n̂ = nk and ŵ = wk. Hence

AdvA(λ) = Pr[A(U,F(U,m)) = m]− Pr[A(U, y) = m] ∈ negl(n)

and since this last one is of course negligible, we conclude the proof. ut

One can then implement the Rosen-Segev scheme using this choice of F and G. For
completeness we present the details below.

KeyGenP : Invoke G for 2k times independently and obtain the collections of public
keys pk = (pk0

1 , pk1
1 , . . . , pk0

k, pk1
k) and private keys sk = (sk0

1 , sk
1
1 , . . . , sk

0
k, sk

1
k), where

pki
j = (Ĝj)i and ski

j = (S, P, Γ )i
j as above.



EncP : To encrypt a plaintext m with the public key pk, sample a key (vk, sgk) and
a random x ∈ {0, 1}k, then:

– ci = F(pkvki
i , x) for i = 1, . . . , k.

– y = m⊕ h(pkvk1
1 , . . . , pkvkk

k , x).

– σ = SignSS
sgk(c1, . . . , ck, y).

where vki represents the i-th bit of vk. As in [13] we can assume m to be a single bit,
in which case h describes a hard-core predicate for McEliece; the protocol extends
easily to multiple bits plaintexts.
Finally, output the ciphertext ψ = (vk, c1, . . . , ck, y, σ).

DecP : Upon reception of a ciphertext ψ:

– Verify the signature; if VerSS
vk((c1, . . . , ck, y), σ) = 0 output ⊥.

– Otherwise compute xi = F−1(skvki
i , ci) for i = 1, . . . , k.6

– If x1 = · · · = xk then set m = y⊕h(pkvk1
1 , . . . , pkvkk

k , x1) and return the plaintext
m, otherwise output ⊥.

The security is assessed in the following corollary:

Corollary 2. The above encryption scheme is IND-CCA2 secure in the standard
model.

Proof. By Theorem 3, the collection of McEliece encryption schemes McE is k-
correlation secure. Then this is analogous to Theorem 1, noting that the same argu-
ment applies when F = McE, i.e. f describes a randomized algorithm rather than a
function. The proof uses the same steps as in Theorem 2, with the exception that
in our case Lemma 2 is proved by constructing an adversary A′ that works as a
predictor for the hard-core predicate h. ut

6 Conclusions

The scheme of Dowsley et al. [1] is a first proposal to translate the Rosen-Segev
protocol to the McEliece framework. However, the construction is ambiguous, as we
have shown in Section 4.2. Another criticism of the Dowsley, Müller-Quade, Nasci-
mento idea is the strange and unnecessary “forgetting” of half the private keys, and
forbidding ciphertexts to feature the verification key vk∗. The original Rosen-Segev
scheme has no such requirements.
We therefore present a construction that successfully deals with the problem, pro-
viding a choice of algorithms F and G that can be used directly into the Rosen-Segev
scheme preserving the original framework.
6 By analogy with the Rosen-Segev scheme. Clearly in practice it would be much more efficient,

rather than decoding k ciphertexts, to just decode one and then re-encode and test as in [1,
Theorem 3].
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A Proof of Lemma 3

Consider the problem of distinguishing the ensembles {(H,HeT ) : H ∈ F(n̂−k)×n̂
q ,

e ∈ Wn̂,ŵ} and {(H, y) : H ∈ F(n̂−k)×n̂
q , y

R←− Fn̂−k
q } as in [3] and suppose A is a

probabilistic polynomial-time algorithm that is able to distinguish the ensembles of
Lemma 3. In particular, say A outputs 1 if the challenge ensemble is of the form
(G,mG+e) and 0 otherwise. We show how to construct an adversary A′ that solves
the above problem.

Let (H, z) be the received input, where z is either HeT for a certain error vector
e ∈ Wn̂,ŵ or a random vector of Fn̂−k

q . By linear algebra, is easy to find a vector
x ∈ Fn̂

q with wt(x) ≥ ŵ such that z = HxT . Submit (G̃, x) to A, where G̃ is the
generator matrix associated to H. Now, if z = HeT we can write x = m̃G̃ + e; in
this case, in fact, we have HxT = z = HeT =⇒ H(x − e)T = 0 and clearly this
implies that (x−e)T is a codeword. Then A will output 1 and so will A′. Otherwise,
A will output 0 and so will A′. In both cases, A′ is able to distinguish correctly and
this terminates the proof. ut

B An indistinguishability assumption on error vectors

Similarly to what happens for the IND-CPA security of the McEliece variant (as
pointed out in Remark 5), also in this case the security we are trying to achieve is
not absolute, but depends on a suitable choice of parameters. The assumption in
this case is that we can replace the vector (mU1 + e1| . . . |mUk + ek) with the vector
mU + e, where U = (U1| . . . |Uk) and e is a random error vector of weight wk; in
other words, we would like to argue that e′ = (e1| . . . |ek) is indistinguishable from
e. Note that wt(e′) = wt(e) but while the distribution of the error positions on e is
truly pseudorandom, e′ is formed by k blocks of weight w each. It is plausible that
the number of vectors of this kind (that we denote #e′) is not too small compared
to the total of error vectors with same length and weight. Unfortunately, the only
estimate we can provide is not of help:

#e′

|Wnk,wk|
=

(
n

w

)k

(
nk

wk

) ≥
( n
w

)wk

(ne
w

)wk
=

1
ewk

. (4)

However, the bound is not tight, and experimental evidence indicates that this
ratio is much bigger.


