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Abstract

In this paper we put forward the Bounded Player Model for secure computation. In this new
model, the number of players that will ever be involved in secure computations is bounded, but
the number of computations has no a-priori bound. Indeed, while the number of devices and
people on this planet can be realistically estimated and bounded, the number of computations
these devices will run can not be realistically bounded. We stress that in the Bounded Player
model, in addition to no apriori bound on the number of sessions, there is no synchronization
barrier, no trusted party, and simulation must be performed in polynomial time.

In this setting, we achieve concurrent Zero Knowledge (cZK) with sub-logarithmic round
complexity. Our security proof is (necessarily) non-black-box, our simulator is “straight-line”
and works as long as the number of rounds is ω(1).

We further show that unlike previously studied relaxations of the standard model (e.g.,
timing assumptions, super-polynomial simulation), concurrent-secure computation is impossi-
ble to achieve in the Bounded Player model. This gives evidence that our model is “closer”
to the standard model than previously studied models, and we believe might have additional
applications.

1 Introduction

Zero-knowledge proofs, introduced in the seminal work of Goldwasser, Micali and Rackoff [GMR85],
are a fundamental building block in cryptography. Loosely speaking, a zero-knowledge proof is
an interactive proof between two parties — a prover and a verifier — with the seemingly magical
property that the verifier does not learn anything beyond the validity of the statement being proved.
Subsequent to their introduction, zero-knowledge proofs have been the subject of a great deal of
research (see, for example, [BSMP91, DDN91, Ost91, OW93, DNS98, CGGM00, Bar01, IKOS09]),
and have found numerous applications in cryptography (e.g., [GMW87, FFS88]).

Concurrent zero knowledge. The original definition of zero knowledge, although very funda-
mental and useful to cryptography, is only relevant to the “stand-alone” setting where security
holds only if the protocol runs in isolation. As such, it does not suffice if one wishes to run a
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zero-knowledge proof over a modern network environment, such as the Internet. Towards that end,
Dwork, Naor and Sahai [DNS98] initiated the study of concurrent zero-knowledge (cZK) proofs
that remain secure even if several instances of the protocol are executed concurrently under the
control of an adversarial verifier. Subsequent to their work, cZK has been the subject of extensive
research, with a large body of work devoted to studying its round-complexity. In the standard
model, the round-complexity of cZK was improved from polynomial to slightly super-logarithmic
in a sequence of works [RK99, KP01, PRS02]. In particular, the Õ(log k)-round construction of
[PRS02] nearly matches the lower bound of Ω̃(log k) w.r.t. black-box simulation [CKPR01] (see
also [KPR98, Ros00]).

Despite a decade of research, the Õ(log k)-round construction of [PRS02] is still the most round-
efficient cZK protocol known. Indeed, the lower bound of [CKPR01] suggests that a breakthrough
in non-black-box simulation techniques is required to achieve cZK with sub-logarithmic round
complexity.1

Round-efficient cZK in relaxations of the standard model. While the round-complexity
of cZK in the standard model still remains an intriguing open question, a long line of work has been
dedicated towards constructing round-efficient cZK in various relaxations of the standard model.
Notable mentions include the super-polynomial time simulation (SPS) model [Pas03], timing model
[DNS98], various setup models (such as common reference string [BSMP91], etc.), the bounded-
concurrency model [Bar01], and preprocessing models [CO99, CGGM00]. Below, we briefly discuss
the state of the art on these models.
Constant-round cZK and more. In the SPS model [Pas03], the zero-knowledge simulator is
allowed to run in super-polynomial time, as opposed to running in polynomial time (as per the
standard definition of [GMR85]). Indeed, this relaxation has yielded not only constant-round cZK
[Pas03], but also concurrent-secure computation [LPV09, CLP10, GGJS12]. This stands in contrast
to the standard model, where concurrent-secure computation is known to be impossible to achieve
[Lin04, Lin03b, CKL03, CF01]. Similarly, in the timing model [DNS98], where an upper-bound
is assumed on the delivery time needed of a message (and therefore the adversary is assumed to
have only limited control of the communication network), constant-round cZK is known [DNS98,
Gol02, PTV10], as well as is multi-party computation secure w.r.t. general concurrent composition
[KLP05]. Another interesting relaxation of the standard model that has been previously studied
is the bounded-concurrency model [Bar01], where an apriori bound is assumed over the number
of sessions that will ever take place (in particular, this bound is known to the protocol designer).
Similar to the above models, one can not only realize constant-round bounded cZK [Bar01], but
also bounded-concurrent secure two-party and multi-party computation [Lin03a, PR03, Pas04].
Finally, note that similar results hold in popular models such as the common reference string
[BSMP91, SCO+01, CLOS02], key registration [BCNP04], etc.

The fact that all these models yield concurrently secure multi-party computation (which is
impossible to achieve in the standard model) gives evidence that they provide extremely powerful
simulation techniques (that rely on specific properties of these models) that are not possible in the
standard model. As such, one may argue that in retrospect, round-efficient constructions of cZK
in these models may only be of limited interest towards a solution in the standard model.

1In this paper we will only consider results based on standard complexity-theoretic and number-theoretic assump-
tions; therefore, we will not consider “non-falsifiable” assumptions such as the knowledge of exponent assumption.
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Preprocessing models. The zero-knowledge pre-processing model was proposed in [KMO89] in a
stand-alone setting and in [CO99] for cZK. In [CO99], interaction is needed between all the involved
players in a preprocessing phase. Then, after a synchronization-barrier is passed, the preprocessing
is over and actual proofs start. Interactions in each phase can take place concurrently, but the two
phases can not overlap in time. An improved model was later proposed in [CGGM00] where the
preprocessing is required to be non-interactive, and the model is called “Bare Public-Key” (BPK)
model, since the non-interactive messages played in the preprocessing can be considered as public
announcements of public keys. In this model it is known how to obtain constant-round concurrent
zero knowledge under standard assumptions [CV05, SV12].

The crucial restriction of these preprocessing models is that all players who wish to ever par-
ticipate in protocol executions must already play during the preprocessing phase, and new players
cannot be added “on-the-fly” during the proof phase. The necessity of the synchronization barrier
between the preprocessing phase and protocol computation phase severely limits the practical ap-
plicability of protocols in these models. However, all known round-efficient cZK protocols in the
above preprocessing models clearly do not work if the synchronization barrier is removed. The
same approach could be used to obtain a UC simulator but it has never been studied for the lack
of interest on a relaxed notion of UC. Indeed UC critically relies on allowing the environment to
interleave a given protocol with any other protocol. The preprocessing phase of the PP and BPK
models in some sense would temporary disconnect players from the environment and this is against
the spirit of UC. Interestingly, in [KL11] Kidron and Lindell proved that universally composable
(UC) two-party computation is impossible to achieve in the BPK model without a synchronization
barrier.

Our Question. While the above relaxations of the standard model discussed above have their
individual appeal, each of these models suffers from various drawbacks, either w.r.t. the secu-
rity guarantees provided (e.g., as in the case of the SPS model), or w.r.t. the actual degree of
concurrency tolerated (e.g., as in the case of the timing model). Indeed, despite the extensive
amount of research over the last decade, the round-complexity of cZK still remains open. In this
work, we ask the question whether it is possible to construct cZK protocols with sub-logarithmic
round-complexity in a natural model that does not suffer from the drawbacks of the previously
studied models; namely, it does not require any preprocessing, assumes no trusted party or tim-
ing assumptions or an a-priori bound on the number of protocol sessions, and requires standard
polynomial-time simulation and standard hardness complexity assumptions.

1.1 Our Results

In our work, we construct a concurrent (perfect) zero-knowledge argument system with sub-
logarithmic round-complexity in a mild relaxation of the standard model; we refer to this as the
Bounded Player model. In this model we only assume that there is an apriori (polynomial) upper-
bound on the total number of players that may ever participate in protocol executions. We do
not assume any synchronization barrier, or trusted party, and the simulation must be performed in
polynomial time. In particular, we do not assume any apriori bound on the number of sessions, and
achieve security under unbounded concurrency. As such, our model can be viewed as a strength-
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ening of the bounded-concurrency model.2,3 Below, we give an informal statement of our main
result.

Theorem 1 Assuming dense crypto systems and claw-free permutations, there exists an ω(1)-round
concurrent perfect zero-knowledge argument system with concurrent soundness in the Bounded
Player model.

Our security proof is (necessarily) non-black-box (see below), and the simulator of our protocol
works in a “straight-line” manner. Our result is actually stronger since we only require a bound
on the number of possible verifiers, while there is no restriction on the number of provers. We
prove concurrent soundness since sequential and concurrent soundness are distinct notions in the
Bounded Player model, precisely as shown by [MR01] for the BPK model.

We further show that the impossibility results of Lindell for concurrent-secure computation
[Lin04] also hold in the Bounded Player model. This gives evidence that the Bounded Player
model is much closer to the standard model than the previously studied models, and there is hope
that generalizations of our techniques may be applicable to the standard model as well.

1.2 Our Techniques

Recall that in the Bounded Player model, the only assumption is that the total number of players
that will ever be present in the system is apriori bounded. Then, an initial observation towards
our goal of constructing sub-logarithmic round cZK protocols is that the black-box lower-bound
of Canetti et al. [CKPR01] is applicable to our setting as well. Indeed, the impossibility result
of [CKPR01] relies on an adversarial verifier that opens a polynomial number `(k) of sessions and
plays adaptively at any point of time, depending upon the transcript generated “so far”. The same
analysis works in the Bounded Player model, by assuming that the adversarial verifier registers
a new key each time a new session is played. In particular, consider an adversarial verifier that
schedules a session si to be contained inside another session sj . In this case, a black-box simulator
does not gain any advantage in the Bounded Player model over the standard model. The reason is
that since the adversarial verifier of [CKPR01] behaves adaptively on the transcript at any point,
after a rewind the same session will be played with a fresh new key, thus rendering essentially
useless the fact that the session was already solved before. Note that this is the same problem that
occurs in the standard model, and stands in contrast to what happens in the BPK model (where
identities are fixed in the preprocessing and therefore do not change over rewinds).

From the above observation, it is clear that we must resort to non-black-box techniques. Now,
a natural approach to leverage the bound on the number of players is to associate with each verifier
Vi a public key pki and then design an FLS-style protocol [FLS90] that allows the ZK simulator to
extract, in a non-black-box manner, the secret key ski of the verifier and then use it as a “trapdoor”
for “easy” simulation. The key intuition is that once the simulator extracts the secret key ski of
a verifier Vi, it can perform easy simulation of all the sessions associated with Vi. Then, since the
total number of verifiers is bounded, the simulator will need to perform non-black-box extraction
only an apriori bounded number of times (once for each verifier), which can be handled in a manner
similar to the setting of bounded-concurrency [Bar01].

2Note that an upper-bound on the total number of concurrent executions implies an upper-bound on the total
number of players as well.

3Indeed, it is realistic to assume that bounding the number of computers that will ever exist in the world is a
more realistic assumption than bounding the number of virtual processes.
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Unfortunately, the above intuition is misleading. In order to understand the problem with the
above approach, let us first consider a candidate protocol more concretely. In fact, it suffices to
focus on a preamble phase that enables non-black-box extraction (by the simulator) of a verifier’s
secret key since the remainder of the protocol can be constructed in a straightforward manner
following the FLS approach. Now, consider the following candidate preamble phase (using the non-
black-box extraction technique of [BL02]): first, the prover and verifier engage in a coin-tossing
protocol where the prover proves “honest behavior” using a Barak-style non-black-box ZK protocol
[Bar01]. Then, the verifier sends an encryption of its secret key under the public key PK that is
determined from the output of the coin-tossing protocol.

In order to analyze this protocol, we will restrict our discussion to the simplified case where only
one verifier is present in the system (but the total number of concurrent sessions are unbounded).
At this point, one may immediately object that in the case of a single verifier identity, the problem
is not interesting since the Bounded Player model is identical to the bare-public key model, where
one can construct four-round cZK protocols using rewinding based techniques. However, simulation
techniques involving rewinding do not ”scale” well to the case of polynomially many identities
(unless we use a large number of rounds) and fail4. Moreover the use of Barak’s straight-line
simulation technique is also insufficient since it works only when the number of concurrent sessions
is bounded (even when there is a single identity), but instead our goal is to obtain unbounded
concurrent zero knowledge. In contrast, our simulation approach is “straight-line” for an unbounded
number of sessions and scales well to a large bounded number of identities. Therefore, in the
forthcoming discussion, we will restrict our analysis to straight-line simulation. In this case, we
find it instructive to focus on the case of a single identity to explain our key ideas.

We now turn to analyze the candidate protocol. Now, following the intuition described earlier,
one may think that the simulator can simply cheat in the coin-tossing protocol in the “inner-most”
session in order to extract the secret key, following which all the sessions can be simulated in
a straight-line manner, without performing any additional non-black-box simulation. Consider,
however, the following adversarial verifier strategy: the verifier schedules an unbounded number of
sessions in such a manner that the coin-tossing protocols in all of these sessions are executed in a
“nested” manner. Furthermore, the verifier sends the ciphertext (containing its secret key) in each
session only after all the coin-tossing protocols across all sessions are completed. Note that in such
a scenario, the simulator would be forced to perform non-black-box simulation in an unbounded
number of sessions. Unfortunately, this is a non-trivial problem that we do not know how to solve
it. More concretely, note that we cannot rely on techniques from the bounded-concurrency model
since we cannot bound the total number of sessions (and thus, the total number of messages across
all sessions). Further, all other natural approaches lead to a “blow-up” in the running time of the
simulator. Indeed, if we were to solve this problem, then we would essentially construct a cZK
protocol in the standard model, which remains an important open problem that we do not solve
here.

In an effort to bypass the above problem, our first idea is to use multiple (ω(1), to be precise)
preamble phases (instead of only one), such that the simulator is required to “cheat” in only one
of these preambles. This, however, immediately raises a question: in which of the ω(1) preambles
should the simulator cheat? This is a non-trivial question since if, for example, we let the simulator

4Indeed when the simulator rewinds the adversarial verifier, there is a different view and therefore the adversary
will ask to play with new identities, making useless the work done with the old ones, as it happens in the standard
model.
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pick one of preambles uniformly at random, then with non-negligible probability, the simulator will
end up choosing the first preamble phase. In this case, the adversary can simply perform the same
attack as it did earlier playing only the first preamble phase, but for many different sessions so that
the simulator will still have to cheat in many of them. Indeed, it would seem that any randomized
oblivious simulation strategy can be attacked in a similar manner by simply identifying the first
preamble phase where the simulator would cheat with a non-negligible probability.

Towards that end, our key idea is to use a specific probability distribution such that the simulator
cheats in the first preamble phase with only negligible probability, while the probability of cheating
in the later preambles increases gradually such that the “overall” probability of cheating is 1 (as
required). Further, the distribution is such that the probability of cheating in the ith preamble is less
than a fixed polynomial factor of the total probability of cheating in one of the previous i−1 blocks.
Very roughly speaking, this allows us to prevent the adversary from attacking the first preamble
where the simulator cheats with non-negligible probability. More specifically, for any session, let
us call the preamble where the simulator cheats the “special” preamble. Further, let us say that
the adversary “wins” a session if he “stops” that session in the special preamble before sending the
ciphertext containing the verifier’s secret key. Otherwise, the adversary “loses” that session. Then,
by using the properties of our probability distribution, we are able to show that the adversary’s
probability of losing a session is more than the probability of winning. As a consequence, by careful
choice of parameters, we are able to show that the probability of the adversary winning more than
a polynomially bounded number of sessions without losing any sessions w.r.t. any given verifier
is negligible. Once we obtain this fixed bound, we are then able to rely on techniques from the
bounded-concurrency model [Bar01] to handle the bounded number of non-black-box simulations.
For the sake of brevity, the above discussion is somewhat oversimplified. We refer the reader to the
later sections for more details.
Extension to concurrent-secure computation - an impossibility Once we have a cZK
protocol (as discussed above) in the Bounded Player model, it may seem that it should be possible
to obtain concurrent-secure computation as well by using techniques from [Pas04]. Unfortunately,
this turns out not to be the case, as we discuss below.

The key technical problem that arises in the setting of secure computation w.r.t. unbounded
concurrency is the following. We cannot apriori bound the total number of “output delivery mes-
sages” (across all sessions) to the adversary; further, the session outputs cannot be “predicted” by
the simulator before knowing the adversary’s input. As such, known non-black-box simulation tech-
niques cannot handle these unbounded number of messages and they inherently fail.5 We remark
that the same technical issue, in fact, arises in the standard model as well.

While the above argument only explains why known techniques fail, we can also obtain a formal
impossibility result. Indeed, it is not difficult to see that the impossibility result of Lindell [Lin04]
also holds for the Bounded Player model. (See Appendix C for details.)

5We note that this problem does not occur in the case of zero knowledge because the adversary does not have
any input, and the session outputs are fixed to be 1.
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2 Preliminaries and Definitions

2.1 Bounded Player Model

In this paper, we consider a new model of concurrent security, namely, the bounded player model,
where we assume that there is an a-priori (polynomial) upper bound on the total number of player
that will ever be present in the system. Specifically, let n denote the security parameter. Then,
we will consider an upper bound N = poly(n) on the total number of players that can engage in
concurrent executions of a protocol at any time. We assume that each player Pi (i ∈ N) has an
associated unique identity idi, and that there is an established mechanism to enforce that party Pi
uses the same identity idi in each protocol execution that it participates in. We stress that such
identities, do not have to be established in advance. New players can join the system with their
own (new) identities, as long as the number of players does not exceed N .

We note that this requirement is somewhat similar in spirit to the bounded-concurrency model
[Bar01, Lin03a, PR03, Pas04], where it is assumed that the adversary cannot start more than
an a-priori fixed number of concurrent executions of a protocol. We stress, however, that in our
model, there is no a-priori bound on the total number of protocol sessions that may be executed
concurrently. In this respect, one can view the Bounded Player model as a strengthening of the
bounded-concurrency model.6 Indeed, one can perhaps argue that bounding the number of com-
puters in the world is a more realistic assumption than bounding the total number of protocols
(that may be executed concurrently).

Implementing the Bounded Player model. We formalize the Bounded Player model by
means of a functionality FNbp that registers the identities of the player in the system. Specifically,
a player Pi that wishes to participate in protocol executions can, at any time, register an identity
idi with the functionality FNbp. The registration functionality does not perform any checks on the
identities that are registered, except that each party Pi can register at most one identity idi, and that
the total number of identity registrations are bounded by N . In other words, FNbp refuses to register
any new identities once N number of identities have already been registered. The functionality FNbp
is formally defined in Figure 1.

In our constructions we will explicitly work in the setting where the identities of the parties are
public keys of a semantically secure encryption scheme. (Actually, we will only require that the
identities correspond to values in the range of a one-way function.) We note that in this particular
case, the functionality FNbp bears much resemblance to the bulletin-board certificate authority func-
tionality [KL11], which suffices for obtaining authenticated channels [Can04]. We finally remark
that our model is also closely related to the Bare Public-Key model, introduced by Canetti et al.
[CGGM00]. However, we stress that unlike the Bare Public-Key model, we do not assume any
synchronization barrier between the registration phase and the protocol computation phase. In
particular, we allow parties to register their identities even after the computation begins.

2.2 Concurrent Zero Knowledge in Bounded Player Model

In this section, we formally define concurrent zero knowledge in the Bounded Player model. Our
definition, given below, is an adaptation of the one of [PRS02] to the Bounded Player mode, by

6Note that an upper bound on the total number of concurrent executions implies an upper bound on the total
number of player as well.
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Functionality FNbp

FNbp initializes a variable count to 0 and proceeds as follows.

• Register commands: Upon receiving a message (register, sid, idi) from some party
Pi, the functionality checks that no pair (Pi, id′i) is already recorded and that count <
N . If this is the case, it records the pair (Pi, idi) and sets count = count + 1. Other
wise, it ignores the received message.

• Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some party
Pj or the adversary A, the functionality checks if some pair (Pi, idi) is recorded. If
this the case, it sends (sid, Pi, idi) to Pj (or A). Otherwise, it returns (sid, Pi,⊥).

Figure 1: The Bounded Player Functionality FNbp.

also considering non-black-box simulation. Some of the text below is taken verbatim from [PRS02].
Let ppt denote probabilistic-polynomial time. Let 〈P, V 〉 be an interactive argument for a

language L. Consider a concurrent adversarial verifier V ∗ that, given input x ∈ L, interacts with
an unbounded number of independent copies of P (all on the same common input x and moreover
equipped with a proper witness w), without any restriction over the scheduling of the messages in
the different interactions with P . In particular, V ∗ has control over the scheduling of the messages
in these interactions. Further, we say that V ∗ is an N -bounded concurrent adversary if it assumes
at most N verifier identities during its (unbounded) interactions with P .7

The transcript of a concurrent interaction consists of the common input x, followed by the se-
quence of prover and verifier messages exchanged during the interaction. We denote by viewPV ∗(x, z,N)
the random variable describing the content of the random tape of the N -bounded concurrent ad-
versary V ∗ with auxiliary input z and the transcript of the concurrent interaction between P and
V ∗ on common input x.

Definition 1 (cZK in Bounded Player model) Let 〈P, V 〉 be an interactive argument system
for a language L. We say that 〈P, V 〉 is concurrent zero-knowledge in the Bounded Player model if for
every N -bounded concurrent non-uniform ppt adversary V ∗, there exists a ppt algorithm S, such
that the following ensembles are computationally indistinguishable, {viewPV ∗(x, z,N)}x∈L,z∈{0,1}∗
and {S(x, z,N)}x∈L,z∈{0,1}∗.

2.3 Building Blocks

In this section, we discuss the main building blocks that we will use in our cZK construction.

Perfectly Hiding Commitment Scheme. In our constructions, we will make use of a perfectly
hiding string commitment scheme, denoted Com. For simplicity of exposition, we will make the
simplifying assumption that Com is a non-interactive perfectly hiding commitment scheme (even
though such a scheme cannot exist). In reality, Com would be taken to be a 2-round commitment

7Thus, V ∗ can open multiple sessions with P for every unique verifier identity.
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scheme, which can be based on collections of claw-free permutations [GK96]. Unless stated other-
wise, we will simply use the notation Com(x) to denote a commitment to a string x, and assume
that the randomness (used to create the commitment) is implicit.

Perfect Witness Indistinguishable Argument of Knowledge. We will also make use of a
perfect witness-indistinguishable argument of knowledge system for all of NP in our construction.
Such a scheme can be constructed, for example, by parallel repetition of the 3-round Blum’s protocol
for Graph Hamiltonicity [Blu87] instantiated with a perfectly hiding commitment scheme. We will
denote such an argument system by 〈PpWI, VpWI〉.

Perfect Witness Indistinguishable Universal Argument. In our construction, we will use a
perfect witness-indistinguishable universal argument system, denoted 〈PpUA, VpUA〉. Such an argu-
ment system can be constructed generically from a (computational) witness-indistinguishable uni-
versal argument pUA by using techniques of [PR05b, PR05a]. Specifically, in protocol 〈PpUA, VpUA〉,
the prover P and verifier V first engage in an execution of pUA, where instead of sending its mes-
sages in the clear, P commits to each message using a perfectly hiding commitment scheme. Finally,
P and V engage in an execution of a perfect zero knowledge argument of knowledge where P proves
that the “decommitted” transcript of pUA is “accepting”. The resulting protocol is still a “weak”
argument of knowledge.

Perfect (Bounded-Concurrent) Zero-Knowledge. Our cZK argument crucially uses as a
building block, a variant of the bounded cZK argument of Barak [Bar01]. Similarly to [PR05a],
we modify the protocol appropriately such that it is perfect bounded cZK. Specifically, instead of
a statistically binding commitment scheme, we will use a perfectly hiding commitment scheme.
Instead of a computationally witness-indistinguishable universal argument (UARG), we will use
a perfect witness indistinguishable UARG, denoted 〈PpUA, VpUA〉 (see Section 2.3). Further, the
length parameter `(N) used in the modified protocol is a function of N , where N is the bound on
the number of verifiers in the system. Protocol 〈PpB, VpB〉N is described in Figure 3 and can be
based on claw-free permutations.

Resettable Witness Indistinguishable Proof System. We will further use a resettable witness-
indistinguishable proof system [CGGM00] for all of NP. Informally speaking, a proof system is
resettable witness indistinguishable if it remains witness indistinguishable even against an adver-
sarial verifier who can reset the prover and receive multiple proofs such that the prover uses the
same random tape in each of the interactions. While the focus of this work is not on achieving
security against reset attacks, such a proof system turns out to be useful when arguing concurrent
soundness of our protocol (where our proof relies on a rewinding based argument). We will denote
such a proof system by 〈PrWI, VrWI〉. It follows from [CGGM00] that such a proof system can be
based on perfectly hiding commitments.

Dense Cryptosystems [SP92]. We will use a semantically secure public-key encryption scheme,
denoted (Gen,Enc,Dec) that supports oblivious key generation (i.e., it should be possible to
sample a public key without knowing the corresponding secret key). More precisely, there exists
a deterministic algorithm OGen that takes as input the security parameter 1n and a sufficiently
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long random string σ and outputs a public key pk ← OGen(1n, σ), where pk is perfectly indistin-
guishable from a public key chosen by the normal key generation algorithm Gen. For simplicity
of exposition, we will assume that the OGen algorithm simply outputs the input randomness σ as
the public key. Such schemes can be based on a variety of number-theoretic assumptions such as
DDH [SP92].

3 Concurrent Zero Knowledge in Bounded Player Model

In this section, we describe our concurrent zero-knowledge protocol in the bounded player model.

Relation Rsim. We first recall a slight variant of Barak’s [Bar01] NTIME(T (n)) relation Rsim,
as used previously in [PR05a]. Let T : N→ N be a “nice” function that satisfies T (n) = nω(1). Let
{Hn}n be a family of collision-resistant hash functions where a function h ∈ Hn maps {0, 1}∗ to
{0, 1}n, and let Com be a perfectly hiding commitment scheme for strings of length n, where for
any α ∈ {0, 1}n, the length of Com(α) is upper bounded by 2n. The relation Rsim is described in
Figure 2.

Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}n × {0, 1}poly(n).
Witness: A program Π ∈ {0, 1}∗, a string y ∈ {0, 1}∗ and a string s ∈ {0, 1}poly(n).
Relation: Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1 if and only if:

1. |y| ≤ |r| − n.

2. c = Com(h(Π); s).

3. Π(y) = r within T (n) steps.

Figure 2: Rsim - A variant of Barak’s relation [PR05a]

Remark 1 The relation presented in Figure 2 is slightly oversimplified and will make Barak’s
protocol work only when {Hn}n is collision-resistant against “slightly” super-polynomial sized cir-
cuits. For simplicity of exposition, in this manuscript, we will work with this assumption. We
stress, however, that as discussed in prior works [BG02, Pas04, PR05b, PR05a], this assumption
can be relaxed by using a “good” error-correcting code ECC (with constant distance and polynomial-
time encoding and decoding procedures), and replacing the condition c = Com(h(Π); s) with c =
Com(ECC(h(Π)); s).

3.1 Our Protocol

We are now ready to present our concurrent zero knowledge protocol, denoted 〈P, V 〉. Let P and
V denote the prover and verifier respectively. Let N denote the bound on the number of verifiers
present in the system. Let fowf denote a one-way function, and (Gen,Enc,Dec) denote a semanti-
cally secure public-key encryption scheme that supports oblivious key generation. Let 〈PpB, VpB〉N
denote the perfect zero-knowledge proof system as described above. Further, let 〈PpWI, VpWI〉 denote
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Parameters: Security parameter n, length parameter `(N).
Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w such that RL(x,w) = 1.

Stage 1 (Preamble Phase):

V → P : Send h
R← Hn.

P → V : Send c = Com(0n).

V → P : Send r
R← {0, 1}`(N).

Stage 2 (Proof Phase):

P ↔ V : A perfect WI UARG 〈PpUA, VpUA〉 proving the OR of the following state-
ments:

1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃〈Π, y, s〉 s.t. Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1.

Figure 3: Protocol 〈PpB, VpB〉N

a perfect witness indistinguishable argument of knowledge, and let 〈PrWI, VrWI〉 denote a resettable
witness indistinguishable proof system.

The protocol 〈P, V 〉 is described in Figure 4. For our purposes, we set the length parameter
`(N) = n3 · N · P (n), where P (n) is a polynomial upper bound on the total length of the prover
messages in the protocol plus the length of the secret key of the verifier.

The completeness property of 〈P, V 〉 follows immediately from the construction. Due to lack
of space, we defer the proof of soundness to Appendix A. We remark that, in fact, we prove
concurrent soundness of 〈P, V 〉, i.e., we show that a computationally-bounded adversarial prover
who engages in multiple concurrent executions of 〈P, V 〉 (where the scheduling across the sessions
is controlled by the adversary) cannot prove a false statement in any of the executions, except
with negligible probability. We note that similarly to the Bare Public-Key model [CGGM00],
“stand-alone” soundness does not imply concurrent soundness in our model. Informally speaking,
this is because the standard approach of reducing concurrent soundness to stand-alone soundness
by “internally” emulating all but one verifier does not work since the verifier’s secret keys are
private. Indeed, Micali and Reyzin [MR01] gave concrete counter-examples to show that stand-
alone soundness does not imply concurrent soundness in the BPK model. We note that their results
immediately extend to our model.

We now turn to prove that protocol 〈P, V 〉 is concurrent zero-knowledge in the Bounded Player
model.

3.2 Proof of Zero Knowledge

In this section, we prove that the protocol 〈P, V 〉 described in Section 3 is concurrent zero-knowledge
in the bounded player model. Towards this end, we will construct a non-black-box (polynomial-
time) simulator and then prove that the concurrent adversary’s view output by the simulator is
indistinguishable from the real view. We start by giving an overview of the proof and then proceed
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Parameters: Security parameter n, N = N(n), t = ω(1).
Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w s.t. RL(x,w) = 1.
Private Input to V : A public key pk = (y0, y1) and secret key sk = (b, xb) s.t. b R← {0, 1},
yb = fowf(xb).

Stage 1 (Preamble Phase): Repeat the following steps t times.

V → P : Send pk = (y0, y1).

P → V : Choose σp
R← {0, 1}n and send cp = Com(σp).

V → P : Send σv
R← {0, 1}n.

P → V : Send σp. Let σ = σp ⊕ σv.
P ↔ V : An execution of 〈PpB, VpB〉N to prove the following statement: ∃s s.t. c =

Com(σp; s) or ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
V → P : Send e1 = Encσ(xb), e2 = Encσ(xb).
V ↔ P : An execution of resettable WI 〈PrWI, VrWI〉 to prove the following statement:

∃〈i, b, xb, s〉 s.t. ei = Encσ(xb; s) and yb = fowf(xb).

Stage 2 (Proof Phase):

P ↔ V : An execution of perfect WIAOK 〈PpWI, VpWI〉 to prove the OR of the following
statements:

1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃〈b, xb〉 s.t. yb = fowf(xb).

Figure 4: Protocol 〈P, V 〉

to give details.

Overview. Barak’s argument system [Bar01] is zero-knowledge in the bounded-concurrency model
where the concurrent adversary is allowed to open at most m = m(n) concurrent sessions for a
fixed polynomial m. Loosely speaking, Barak’s simulator takes advantage of the fact that the total
number of prover messages across all sessions is bounded; thus it can commit to a machine that
takes only a bounded-length input y that is smaller than the challenge string r, and outputs the
next message of the verifier, in any session. In our model, there is no bound on the total number of
sessions, thus we cannot directly employ the same strategy. Towards this, an important observation
in our setting is that once we are able to “solve” a verifier identity (i.e., learn secret key of a verifier),
then the simulator does not need to do Barak-style simulation anymore for that identity. But what
of the number of Barak-style simulations that the simulator needs to perform before it can learn any
secret key? Indeed, if this number were unbounded, then we would run into the same problems that
one encounters when trying to construct non-black-box cZK in the standard model. Fortunately,
we are able to show that the simulator only needs to perform a bounded number of Barak-style
simulations before it can learn a secret key. Thus, we obtain the following strategy: the simulator
commits to an “augmented machine” that is able to simulate almost all of the simulator messages
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by itself; the remaining simulator messages are given as input to this machine. As discussed above,
we are able to bound the total number of these messages, and thus by setting the challenge string
r to be more than this bound, we ensure that the simulation is correct. More in details, the input
passed by the simulator to the machine consists of transcripts of concurrent sessions where again
the simulator had to use Barak-style simulation8 and the (discovered) secret keys of the verifiers
to be used by the machine to carry on the simulation by itself (without performing Barak-style
simulation).

The Simulator. We now proceed to describe our simulator. The simulator SIM consists of two
main parts, namely, SIMeasy and SIMextract. Loosely speaking, SIMextract is only used to cheat in
a “special” preamble block of a session in order to learn the secret key of a verifier, while SIMeasy
is used for the remainder of the simulation, which includes following honest prover strategy in
preamble blocks and simulating the proof phase of each session using the verifier’s secret key as the
trapdoor witness. Specifically, SIMextract cheats in the 〈PpB, VpB〉N protocol by committing to an
augmented verifier machine Π that contains the code of SIMeasy, allowing it to simulate all of the
simulator messages except those generated by SIMextract (in different sessions). As we show below,
these messages can be bounded to a fixed value. We now describe the simulator in more detail.
Setup and Inputs. Our simulator SIM interacts with an adversary V ∗ = (V ∗1 , . . . , V ∗N ) who
controls verifiers V1, . . . , VN . V ∗ interacts with SIM in m sessions, and controls the scheduling of
the messages. We give SIM non-black-box access to V ∗. Throughout the interaction, SIM keeps
track of a tuple ~β = (β1, . . . , βN ) representing the secret keys SIM has learned so far. At any point
during the interaction either βi = ski (more precisely, βi is one of the coordinates of ski) or βi is
the symbol ⊥. Initially, SIM sets each βi to ⊥, but it updates ~β throughout the interaction as
it extracts secret keys. Additionally, SIM keeps a counter ~a = (a1, . . . , aN ), incrementing ai each
time it executes a preamble block using SIMextract against V ∗. We have SIM halt and output
FAIL if any ai ever surpasses n3. Our technical lemma shows that this happens with negligible
probability. Finally, we have SIM keep track of a set of tuples

Ψ =
{(

(i, j, k)γ ;φγ
)

: γ = 1, . . . , n3N}

where each (i, j, k)γ ∈ [N ]× [m]× [t] and φγ is a string. The tuples (i, j, k)γ represent the preamble
blocks played by SIMextract; specifically, (i, j, k) corresponds to the k−th block of the j−th session
against V ∗. The string φγ is the collection of simulator messages sent in block (i, j, k)γ . This set
of tuples Ψ (along with β) will be the extra input given to the augmented machine. As we show
below, the total size of Ψ will be a priori bounded by a polynomial in n.

Consider the interaction of SIM with some V ∗ impersonating Vi. Each time V ∗ opens a session
on behalf of Vi, SIM chooses a random k ∈ {1, . . . , t} according to a distribution Dt which we
define later. This will be the only preamble block of the session played by SIMextract provided that
βi =⊥ when the block begins. If SIM has already learned the secret key ski, it does not need to
call SIMextract. We now describe the parts of SIM beginning with SIMeasy.
The sub-simulator SIMeasy. Recall that SIMeasy is run on input β and Ψ. When SIMeasy is
called to execute the next message of a preamble block, it checks if the message is already in Ψ.
If this is the case, SIMeasy just plays the message. Otherwise, SIMeasy plays fairly, choosing a

8The reason we pass this transcript as input is that in this way we can avoid the blow up of the running time of
the simulator when nested Barak-style simulations are performed.
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random σp and sending cp = Com(σp; s) for some s. Upon receiving σv, it returns σp and completes
〈PpB, VpB〉 using s as its witness. Its receipt of encryptions (e1, e2) and acceptance of 〈PrWI, VrWI〉
ends the preamble block. If SIMeasy does not accept V ∗’s execution of 〈PrWI, VrWI〉 it aborts the
interaction, as would an honest prover.

When SIMeasy is called to execute 〈PpWI, VpWI〉 then it checks if the secret key of the verifier
is in β. If yes, SIMeasy completes 〈PpWI, VpWI〉 using ski as its witness. Otherwise, βi =⊥ and
SIMeasy halts outputting FAIL. Our technical lemma shows that the latter does not happen, except
with negligible probability.
The sub-simulator SIMextract. When SIMextract is called to execute preamble block k of
session j with verifier V ∗i , it receives Ψ, β and a as input. We assume βi =⊥ since otherwise, SIM
would not have called SIMextract. Immediately upon being called, SIMextract increments ai and
adds the tuple

(
(i, j, k);φ

)
to Ψ. Initially, φ is the empty string, but each time SIMextract sends a

message, it appends the message to φ. By the end of the block, φ is a complete transcript of the
simulator messages in preamble block (i, j, k).

The preamble block begins normally, with SIMextract choosing a random string and sending cp,
a commitment to it. Upon receiving σv, however, SIMextract runs Gen obtaining key pair (σ, τ) for
the encryption scheme and returns σp = σ ⊕ σv. Next, SIMextract enters 〈PpB, VpB〉 which it com-
pletes using the the already extracted secret key. Formally, when V ∗ sends h, beginning 〈PpB, VpB〉,
SIMextract chooses a random s and sends Com

(
h(Π); s

)
, where Π is the next message function of

V ∗, augmented with the ability to compute all the intermediate messages sent by SIMeasy. The
machine Π takes input y = (Ψ, β) and outputs the next verifier message in an interaction between
V ∗ and a machine M who plays exactly like SIMeasy with the following exception. For each tuple(
(i, j, k);φ

)
∈ Ψ, M reads its messages of block (i, j, k) from the string y. In order to simulate

SIMeasy in the subprotocols 〈PpWI, VpWI〉, M also uses the tuple ~β = (β1, . . . , βN ) received as
input, where each βi is the secret key of the i′-th verifier (if available), and ⊥ otherwise.

After committing to Π, and receiving r, SIMextract completes 〈PpUA, VpUA〉 using witness
(Π,Ψ‖β, s) where Ψ and β might have been updated by other executions of SIMextract occur-
ring between the time SIMextract sent Com

(
h(Π); s

)
and received r. Our counter ensures that

|Ψ| is a priori bounded, while |β| is bounded by definition. By construction, Π correctly predicts
V ∗’s message r, and so (Π,Ψ‖β, s) is a valid witness for 〈PsUA, VsUA〉. Finally, SIMextract receives
encryptions e1, e2 and the proof of correctness in 〈PrWI, VrWI〉. It now decrypts the ciphertexts using
τ thereby learning secret key ski of V ∗i . If the decrypted value is a valid secret key ski, then it
updates β by setting βi = ski. Otherwise, it outputs the abort symbol ⊥ and stops. (It is easy to
see that since the proof system 〈PrWI, VrWI〉 is sound, the probability of simulator outputting ⊥ at
this step is negligible.)

Analysis. There are two situations in which SIM outputs fail: if some counter ai exceeds n3,
or if SIMeasy enters an execution 〈PpWI, VpWI〉 without knowledge of sk. Note that the latter will
not happen, as to enter an execution of 〈PpWI, VpWI〉, all preamble blocks, in particular the one
played by SIMextract, must be complete, ensuring that SIMextract will have learned sk. In our
main technical lemma, we show that no counter will surpass n3 by proving that after SIM has run
SIMextract n

3 times against each Vi controlled by V ∗ it has, with overwhelming probability, learned
sk. Before stating the lemma, we introduce some terminology.

Now, focusing on a given verifier, we say that V ∗ has stopped session j in block k if the k−th
preamble block of session j has begun, but the (k + 1)−th has not. We say that V ∗ is playing
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strategy ~k′ = (k′1, . . . , k′m) if session j is stopped in block k′j for all j = 1, . . . ,m. As the interaction
takes polynomial time, V ∗ only gets to play polynomially many strategies over the course of the
interaction. Let kj ∈ {1, . . . , t} be the random number chosen by SIM at the beginning of session j
as per distribution Dt. This gives us a tuple ~k = (k1, . . . , km) where the kj are chosen independently
according to the distribution Dt (defined below). At any time during the interaction, we say that
V ∗ has won (resp. lost, tied) session j if k′j = kj (resp. k′j > kj , k′j < kj). A win for V ∗ corresponds
to SIM having run SIMextract, but not yet having learned sk. As SIM only gets to call SIMextract
n3 times, a win for V ∗ means that SIM has used up one of its budget of n3 without any payoff.
A loss for V ∗ corresponds to SIM running SIMextract and learning sk, thereby allowing SIM to
call SIMeasy in all remaining sessions. A tie means that SIM has not yet called SIMextract in the
session, and therefore has not used any of its budget, but has not learned sk.

Notice that these wins and ties are “temporary” events. Indeed, by the end of each session, V ∗
will have lost, as he will have completed the preamble block run by SIMextract. However, we choose
to use this terminology to better convey the key intuition of our analysis: for SIM to output FAIL,
it must be that at some point during the interaction, for some identity, V ∗ has won at least n3

sessions and has not lost any. We will therefore focus precisely on proving that the probability that
a PPT adversary V ∗ runs in the experiment m sessions so that the counter for one identity reaches
the value n3 is negligible.

For a verifier strategy ~k′ and a polynomial m, let P(~k′,m)(W,L) be the probability that in an
m−session interaction between V ∗ and SIM that V ∗ wins for some identity exactly W sessions
and loses exactly L, given that V ∗ plays strategy ~k′. The probability is over SIM ’s choice of ~k
with kj ∈ {1, . . . , t} chosen independently according to Dt (defined below) for all j = 1, . . . ,m.
The Distribution Dt and the Main Technical Lemma. Define Dt to be the distribution on
{1, . . . , t} such that

pk′ = Probk∈Dt

(
k = k′

)
= εnk

′
,

where ε is such that
∑
pk′ = 1. Note that ε is negligible in n.

Lemma 1 (Main Technical Lemma) Let ~k′ be a verifier strategy and m = m(n) a polynomial.
Then we have

P(~k′,m)(n
3, 0)

is negligible in n.

The above proves that any verifier strategy has a negligible chance of having n3 wins and no losses.
As V ∗ plays polynomially many (i.e., N) strategies throughout the course of the interaction, the
union bound proves that V ∗ has a negligible chance of ever achieving n3 wins and 0 losses. From
this it follows that, with overwhelming probability, V ∗ will never have at least n3 wins and no
losses, which implies that SIM outputs FAIL with negligible probability as desired.

Proof . We fix a verifier strategy ~k′ and a polynomialm and write P (W,L) instead of P(~k′,m)(W,L).
Let pk′ (resp. qk′) be the probability that V ∗ wins (resp. loses) a session given that he stops the
session in block k′. We chose the distribution Dt carefully to have the following two properties.
First, since p1 = εn is negligible, we may assume that V ∗ never stops in the first block of a session.
And secondly, for k′ ≥ 2 we have,

qk′ =
k′−1∑
i=1

pk′ = ε
nk
′ − 1

n− 1 ≥
εnk

′

2n = pk′

2n .
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It follows that no matter which what block V ∗ stops a session in, it will hold that the probability
he wins in that session is less then 2n times the probability that he looses that session. We will
use this upper bound on the probability of V ∗ winning a single session to show that P (n3, 0) is
negligible.

Let A be the event, (W,L) = (n3, 0), B be the event W + L = n3 and ¬B the event W + L 6= n3.
Since, A ⊂ B, and since P (A|¬B) = 0, we have that

P (n3, 0) = P (A) = P (A|B)P (B) + P (A|¬B)P (¬B) = P (A|B)P (B) ≤ P (A|B),

and so it suffices to prove that P (A|B) is negligible. We continue the proof for the case W +L = n3

(and thus m ≥ n3).

If W + L = n3 then V ∗ ties all but n3 of the sessions. Let

C = {C ⊂ [m] : |C| = n3}.

Then C is the set of possible positions for the sessions which are not ties. We are looking to bound
P
(
(W,L) = (n3, 0)

∣∣W + L = n3) and so we condition on the C ∈ C. Once a fixed C is chosen, the
position of each session which is not a tie is determined. Each such session must either be a win
or a loss for V ∗. Let p be the probability that some such session is a win. Since we proved already
that the probability that V ∗ wins in a given session is less then 2n times the probability that V ∗
looses in that session, we have that p ≤ 2n(1− p). Solving gives p ≤

(
1− 1

2n+1
)
. It follows that for

any C ∈ C, the probability that all sessions in C are wins is(
1− 1

2n+ 1

)n3

≤
[(

1− 1
2n+ 1

)2n+1]n
≤ e−n.

We therefore have

P (n3, 0) ≤ P
(
(W,L) = (n3, 0)

∣∣W + L = n3)
=

∑
C∈C

P
(
(W,L) = (n3, 0)

∣∣C)P (C)

≤ e−n
∑
C∈C

P (C) = e−n,

as desired.

Bounding the length parameter `(N). From the above lemma, it follows easily that the total
length of the auxiliary input y to the machine Π committed by SIMextract (at any time) is bounded
by n3 ·N · P (n), where P (n) is a polynomial upper bound on the total length of prover messages
in one protocol session plus the length of a secret. Thus, when `(N) ≥ n3 ·N · P (n), we have that
|y| ≤ |r| − n, as required.

Indistinguishability of views. Now that we have described our simulator, we show through a
sequence of hybrid experiments that its output is indistinguishable from the output of the adversary
when interacting with honest provers.

Our hybrid experiments will be Hi for i = 0, . . . , 7. We write Hi ≈ Hj if V ∗ cannot distinguish
between its interaction with Hi and Hj .
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H0. The experiment H0 is the fair prover. In each preamble block it sends cp = Com(σp; s) for
random σp, receives σv and returns σp. It completes 〈PpB, VpB〉 using s as its witness. It receives
the encryptions and V ∗’s proof of 〈PrWI, VrWI〉 completing the preamble block. We provide H0 with
a witness that x ∈ L which it uses to complete 〈PpWI, VpWI〉 at the end of each session.

H1. The experiment H1 plays similarly to H0. However, the execution of H1 takes exponential
time. It begins by computing the verifier secret keys by inverting the one-way functions in expo-
nential time. It will use knowledge of secret key in the protocols 〈PpWI, VpWI〉. The perfect witness
indistinguishability of 〈PpWI, VpWI〉 ensures that H1 ≈ H0.

H2. The experiment H2 plays similarly to H1. However 〈PpB, VpB〉 is run by using the witness for
x ∈ L. The perfect witness indistinguishability of 〈PpB, VpB〉 ensures that H2 ≈ H1.

H3. The experiment H3 plays similarly to H2. However, there is an update in all the preamble
blocks where the simulator would have tried to extract by playing a fake σp. The update consists
in running Gen therefore obtaining key pair (σ, τ) for the encryption scheme, and then in sending
σp = σ ⊕ σv. By the fact that the public key of dense secure cryptosystem has the uniform
distribution, we have that H3 ≈ H2.

H4. The experiment H4 plays similarly to H3. The only difference is that in all the preamble
blocks where the simulator would have tried to extract, and where the adversary plays the re-
settable witness indistinguishable proof, if the extracted strings (obtained by decrypting the two
encryptions) do not give a secret key then the experiment aborts. If the experiment does not
abort, then it continues by using the extracted secret key instead of the one obtained by running
in exponential time.

The unconditional soundness of the resettable witness indistinguishable proof guarantees that
the above abort can happen only with negligible probability, therefore correct secret keys are
extracted during this experiment and can be used after the extraction. Therefore H4 ≈ H3.

H5. The experiment H5 plays similarly to H4. The only difference is that in all the preamble
blocks where the simulator would have tried to extract, in its first message of 〈PpB, VpB〉, we
commit to the augmented machine Π. As before, the augmented machine Π predicts the next
message of V ∗ and is able to simulate all fair messages of H5. It therefore must take as input only
the prover messages of the preamble blocks where H5 does not play fairly. We have H5 keep track
of a set of tuples Ψ =

{(
(i, j, k)γ ; yγ

)
: γ = 1, . . . , n3N

}
, where the tuple

(
(i, j, k); y

)
means that

in the k−th preamble block of the j−th session against V ∗i , H5 sent messages y. Π also receives
a tuple ~β = (β1, . . . , βN ) where βi could correspond to a secret key of the i-th verifier and to
⊥ otherwise. The simulated prover will use them in 〈PpWI, VpWI〉 different than ⊥. As the only
difference between the output of H5 and H4 is that sometimes H5 commits to a different value than
H4 does, the perfect hiding of Com ensures that H5 ≈ H4.

H6. The experiment H6 plays similarly to H5. The only difference is that in 〈PpB, VpB〉 no wit-
ness for x ∈ L is used, but instead the simulator of 〈PpB, VpB〉 is run by using in the underlying
〈PpUA, VpUA〉 values (Π,Ψ, β, s) where Π is the augmented machine committed in the chosen ex-
ecution of 〈PpB, VpB〉, Ψ is the record of all messages sent in the chosen preamble blocks where
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it deviates from fair play, β is the vector of known keys, and s is the witness to be used in the
non-chosen execution of 〈PpB, VpB〉. The reason that |Ψ| can be a priori bounded by a polynomial
in n is that by the main technical lemma, we have that Π needs messages for at most n3N cho-
sen preamble blocks where H6 deviates from fair play. The perfect witness indistinguishability of
〈PpUA, VpUA〉 ensures that H6 ≈ H5.

H7. This is our simulator. We no longer give it a witness that x ∈ L, and we no longer allow it to
run in exponential time, so it obtains ski only through decryptions. Again, by the main technical
lemma, the probability that H7 successfully learns each ski before is needed is overwhelming. Our
technical lemma shows that H7 will not output FAIL except with negligible probability. Therefore
we have that H7 ≈ H6.
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Appendix

A Proof of Soundness

In this section, we prove the soundness of our cZK protocol described in Section 3. In fact, we will
prove concurrent soundness of 〈P, V 〉, i.e., we will show that a computationally-bounded adversarial
prover who engages in multiple concurrent executions of 〈P, V 〉 (where the scheduling across the
sessions is controlled by the adversary) cannot prove a false statement in any of the executions,
except with negligible probability. We note that similar to the bare-public key model [CGGM00],
“stand-alone” soundness does not imply concurrent soundness in our model. Informally speaking,
this is because the standard approach of reducing concurrent soundness to stand-alone soundness
by “internally” emulating all but one verifier does not work since the verifier’s secret keys are
private. Indeed, Micali and Reyzin [MR01] gave concrete counter-examples to show that stand-
alone soundness does not imply concurrent soundness in the bare public key model. We note that
their results immediately extend to our model.

We now proceed to formally prove the concurrent soundness of our protocol 〈P, V 〉. We claim
the following theorem.

Theorem 2 The protocol 〈P, V 〉 presented in Figure 4 is concurrently sound.

Proof of Theorem 2. We first introduce some notation. Recall that in our protocol, in the
execution of 〈PpWI, VpWI〉, the prover proves the OR of two statements. We will call a witness
corresponding to the first (resp., second) part of the statement as true (resp., trapdoor) witness.

We first state a basic lemma related to the soundness of each instance of 〈PpB, VpB〉N across
all executions of 〈P, V 〉. Its proof is essentially identical to [Bar01], hence below we only discuss a
proof sketch, using the terminology of [DGS09].

Lemma 2 Let P̂ be any non-uniform probabilistic polynomial time adversarial prover that engages
in any polynomial m = m(n) number of concurrent executions of 〈P, V 〉 with N honest verifiers.
Then, every instance of 〈PpB, VpB〉N across all executions of 〈P, V 〉 is sound.

Proof (Sketch). Let us assume the contrapositive, i.e., with non-negligible probability ε, there exists
at least one pair (i, k) such that P̂ successfully convinces the verifier of a false statement in the kth
instance (out of t = ω(1) instances) of 〈PpB, VpB〉N in session i. Let S denote the set of all such
pairs (i, k) and let v = |S|.

Now consider any pair (i∗, k∗) ∈ S. Let x̂ denote the statement proved by P̂ in 〈PpB, VpB〉i
∗,k∗

N .
We have that with probability at least ε/v, x̂ is false. In this case, we will construct a super-
polynomial time machine M that finds collisions for the hash function.9 Without loss of generality,
assume that P̂ is deterministic. Consider the transcript of messages (across all sessions) that
occur before P̂ sends the second protocol message in 〈PpB, VpB〉i

∗,k∗

N . Note that this transcript,
in particular, includes the hash function h that the verifier sends to P̂ as the first message of
〈PpB, VpB〉i

∗,k∗

N . We will call this transcript as the prefix for the rest of the protocol. Let ε′ = ε/v.
Now it must be the case that for at least ε′/2 fraction of the prefixes, the probability (over the rest

9As mentioned earlier, for simplicity of exposition, we are assuming that the hash function family is collision-
resistant against super-polynomial time adversaries. This assumption can be relaxed by use of good error correcting
codes [BG02, Pas04, PR05b, PR05a].
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of the verifier coins) that the adversarial prover P̂ will succeed in 〈PpB, VpB〉i
∗,k∗

N is at least ε′/2. We
will call this set of prefixes to be good. The machine M works as follows. It first runs P̂ and invokes
the weak knowledge extractor E for the universal argument system 〈PpUA, VpUA〉. The probability
(over all verifier random coins) of the prefix being good and E succeeding (given that prefix is good)
is at least ε′

2 · p(
ε′

2 ), where p is a polynomial10. Now, if E succeeds and extracts a program, say Π,
M rewinds P̂ up to the point where it sent the second message in 〈PpB, VpB〉i

∗,k∗

N and continues with
fresh random coins; in particular, it chooses a fresh random string r R← {0, 1}`(N) in 〈PpB, VpB〉i

∗,k∗

N ).
It then runs the extractor E again and if it succeeds, M obtains another program Π′. By a simple
counting argument, it follows immediately that if SΠ is the set of all possible outputs of Π, then
r ∈ SΠ with only negligible probability. Thus, we have that Π 6= Π′. However, since h(Π) = h(Π′)
(this follows from the computational binding property of Com), we have found collisions Π, Π′ for
h. The probability of finding collision can be computed as:

Pr[Coll] = Pr[pre is good prefix] · Pr[E succeeds in two independent executions with pre]− Pr[Π = Π′]

= ε′

2 · (p(
ε′

2 ))2 − negl(n).

It follows that the probability of this event is noticeable in n, which is a contradiction. This
completes the proof of Lemma 2.

Completing the Proof of Theorem 2. Let us assume the contrapositive, i.e., assume that
〈P, V 〉 is not concurrently sound. Then, with non-negligible probability ε, there exists an i such
that P̂ succeeds in proving a false statement to the verifier in session i. Let S denote the set of all
such i and let v = |S|.

Now, consider any i ∈ S. Note that it immediately follows from the (stand-alone) soundness
of 〈PpWI, VpWI〉 that with probability at least ε

v − negl(n), P̂ use a trapdoor witness in 〈PpWI, VpWI〉
in session i. Let Ṽ denote the verifier in session i and let pk = (y0, y1) denote the public key
of Ṽ . Now, we run P̂ such that in all protocol executions involving verifier Ṽ , we only use the
secret key xb corresponding to yb, where b R← {0, 1}. We now invoke the knowledge extractor E
for 〈PpWI, VpWI〉 on P̂ in session i. It follows from a standard argument (based on using “good”
prefixes) that E successfully extracts a trapdoor witness with probability p = p(ε) where p is some
polynomial. We now consider two cases:

1. With probability α, E outputs a witness x̂1−b such that y1−b = fowf(x̂1−b).

2. With probability p− α, E outputs a witness x̂b such that yb = fowf(x̂b).

If α is non-negligible (in n), then it is immediate to see that we can build a polynomial-time
inverter for one-way function fowf . Specifically, the inverter I for fowf works as follows. It runs the
entire experiment with P̂ in the same manner as above, except that y1−b is taken from an external
challenger for fowf . When E outputs a value x̂1−b, I outputs it as the pre-image of y1−b w.r.t. fowf .
Note that I succeeds with non-negligible probability α, which is a contradiction.

On the other hand, if α is negligible (in n), then we now focus on the second case. Let m̃
denote the total number of protocol sessions of 〈P, V 〉 involving verifier Ṽ . Then, we have that

10Recall that the success probability of the weak knowledge extractor is polynomially related to the success
probability of the prover [Bar01].
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with probability p − negl(n), when Ṽ (only) uses the secret key x0 in all m̃ protocol sessions, the
extractor E outputs a value x̂0, and similarly, when Ṽ (only) uses x1, E outputs a value x̂1, where
x̂b is such that fowf(x̂b) = yb. Then, by a standard hybrid argument, there exists a session j (out
of the m̃ sessions involving Ṽ ) such that when Ṽ (only) uses the secret key x0 (resp., x1) in session
j, the extractor E outputs a value x̂0 (resp., x̂1), with probability at least p′ = p−negl(n)

m̃ .11 Let H0
(resp., H1) denote the hybrid experiment where Ṽ uses x0 (resp., x1) in session j. Let x̂b be the
random variable that denotes the value that E extracts from P̂ in experiment Hb.

We will now argue that x̂0
c≡ x̂1, except with negligible probability, which is a contradiction to

the above hypothesis, and thus concludes our proof. Let {eq1, e
q
2}tq=1 denote the t = ω(1) pairs of

ciphertexts that Ṽ sends to P̂ in session j. Further, let {〈PrWI, VrWI〉q}tq=1 denote the t instances of
〈PrWI, VrWI〉 in session j. We consider three intermediate hybrid experiments Henc1 , Hwi and Henc2

described as follows.
Hybrid Henc1 : This is the same as H0, except that Ṽ prepares each ciphertext {eq1}tq=1 to be an
encryption of the secret key x1. We now invoke the knowledge extractor E (for for 〈PpWI, VpWI〉)
on P̂ in 〈PpWI, VpWI〉 in session i. Let x̂enc1 be the random variable that denotes the value that E
outputs.

We now claim that x̂0
c≡ x̂enc1 . Suppose that this is not the case. Then, by a standard hybrid

argument, there exists q ∈ [t] such that x̂0:q is distinguishable from x̂0:q+1, where x̂0:q is the random
variable that denotes the value extracted by E in the intermediate hybrid experiment H0:q that
is essentially the same as H0, except that e1

1, . . . , e
q
1 are prepared as encryptions of x1. (Thus, we

have that H0:t is the same as Henc1 .) In this case, we first note that if the execution of 〈PpWI, VpWI〉
in session i concludes before P̂ receives (eq+1

1 , eq+1
2 ), then the witness used in 〈PpWI, VpWI〉 must be

information-theoretically independent of the value encrypted in eq+1
1 , which gives us a contradiction.

Therefore, we now only consider the case where the execution of 〈PpWI, VpWI〉 in session i concludes
after P̂ receives (eq+1

1 , eq+1
2 ). In this case, we will construct a polynomial-time machine M that

breaks the semantic security of the encryption scheme (Gen,Enc,Dec).
M works in the same manner as hybrid H0:q, except that it also interacts with an external

challenger C (for the encryption scheme (Gen,Enc,Dec)) in the following manner. M receives a
public key σ from C and then “forces” it to be the outcome of the (q+1)th coin-tossing subprotocol
in session j. Specifically, after receiving the value σp from P̂ in the (q+1)th coin-tossing subprotocol,
M rewinds P̂ and sends a value σv = σ ⊕ σp. It now sends x0, x1 to C and receives a challenge
ciphertext e∗. M continues in the same manner as H0:q, except that it prepares eq+1

1 = e∗. Now,
note that if e∗ is an encryption of x0, then this machine is identical to H0:q, otherwise it is identical
to H0:q+1. M now invokes the knowledge extractor E on P̂ in 〈PpWI, VpWI〉 in session i. Note that
the sessions i and j may be interleaved in such a manner that when E rewinds P̂ to send a new
“challenge” in 〈PpWI, VpWI〉, either of the following two events happen:

1. P̂ sends a new commitment string c′ = Com(σ′p) in the (q + 1)th coin-tossing subprotocol
in session j. In this case, M simply continues session j honestly until it receives σ′p. At this
point, it rewinds P̂ again to send a value σv = σ ⊕ σ′p and then continues honestly.

2. Alternatively, P̂ may simply send a new value σ′p and then proceed to prove its correctness
in the execution of 〈PpB, VpB〉j,q+1

N . If this is the case, then M simply aborts.
11Here, the hybrids are such that Ṽ uses x0 in all session j′ < j, and x1 in all sessions j′ > j.
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Now, conditioned on the event that M does not abort, we have that at some point, E stops and
outputs a value, say, x̂. Then, M finds b such that fowf(x̂) = yb and outputs b to C. It follows
easily that M succeeds with noticeable (in n) advantage, which is a contradiction. Thus it only
remains to argue that M aborts only with negligible probability. To see this, we first note that
it follows from the Soundness Lemma 2 that P̂ only proves a true statement in each instance of
〈PpB, VpB〉N , except with negligible probability. Then, by the computational binding property of
the commitment scheme, we have that P̂ cannot send decommitment c to two different values σp
and σ′p, except with negligible probability. Thus, we have the σ′p = σp, except with negligible
probability.
Hybrid Hwi: This is the same as Henc1 , except that for every q ∈ [t], Ṽ uses the witness corre-
sponding to eq1 in the resettable-WI 〈PrWI, VrWI〉q. We now invoke the knowledge extractor E on
P̂ in 〈PpWI, VpWI〉 in session i in experiment Hwi. Let x̂wi be the random variable that denotes the
value that E outputs.

We now claim that x̂enc1
c≡ x̂wi. Suppose that this is not the case. Then by a standard hybrid

argument, there exists q ∈ [t] such that x̂enc1:q is distinguishable from x̂enc1:q+1 with noticeable
probability, where x̂enc1:q is the random variable that denotes the value extracted by E in the
intermediate hybrid experiment Henc1:q that is essentially the same as Hwi, except that Ṽ uses
the witness corresponding to e`1 in 〈PrWI, VrWI〉` for every ` ∈ [1, q]. (Thus, we have that Henc1:t
is the same as Henc1 .) In this case, we will construct a polynomial-time machine M that breaks
the resettable witness indistinguishability property of 〈PrWI, VrWI〉. M works in the same manner
as hybrid Henc1:q, except that it forwards the (q + 1)th instance of 〈PrWI, VrWI〉 in session j, i.e.,
〈PrWI, VrWI〉q+1, to an external prover P (for the resettable-WI protocol 〈PrWI, VrWI〉) in the following
manner. M first gives w1, w2 to P , where w1 is the witness corresponding to eq+1

1 , and similarly,
w2 is the witness corresponding to eq+1

2 . Now, during the execution of 〈PrWI, VrWI〉q+1, M simply
forwards each message msgP from P to P̂ and similarly forwards each response msgP̂ from P̂ to P .
It then runs the knowledge extractor E on P̂ in 〈PpWI, VpWI〉 in session i to extract a value, say x̂.
Note that if sessions i and j are scheduled such that when E rewinds P̂ in 〈PpWI, VpWI〉 in session i,
P̂ sends a new lth round-message msg′

P̂
in 〈PrWI, VrWI〉q+1, then M resets P to the point where its

supposed to receive the lth round message and sends msg′
P̂

. It then continues the execution in the
same manner as described above. When E finally outputs x̂, then M finds b such that fowf(x̂) = yb
and outputs b to P . It follows easily that M succeeds with noticeable (in n) advantage, which is a
contradiction.
Hybrid Henc2 : This is the same as Henc2 , except that Ṽ prepares each ciphertext eq2 to be an
encryption of x1. We now run the extractor E on P̂ in experiment Henc2 . Let x̂enc2 be the random
variable that denotes the value that E outputs. For the same reasons as argued above (for Hybrid
Henc1), it follows that x̂wi

c≡ x̂enc2 .
This concludes the proof of Theorem 2.

B Concurrent Self-Composition in the Bounded Player Model

In this section, we present the definition for concurrent (self-composition) secure multi-party compu-
tation in the bounded player model. The definition we give below is an adaptation of the definition
of concurrent secure computation with adaptive inputs [Lin04, Pas04], to the setting of bounded
player model. Parts of the definition below have been taken almost verbatim from [Lin04, Pas04].
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We first setup notation. We denote computational indistinguishability by c≡, and the security
parameter by n. For notational simplicity, we let the lengths of the parties’ inputs be n. An n-ary
functionality is denoted as f : ({0, 1}∗)n → ({0, 1}∗)n, where f = f1, . . . , fn. Let P1, . . . , Pn denote
the set of n-player that wish to jointly compute f . The output of Pi with input xi is defined to
be fi(~x), where ~x = x1, . . . , xn. In the context of concurrent composition, each party uses many
inputs (one per execution) and these may be chosen adaptively based on previous outputs. The
fact that bounded player model is considered relates to the fact that the total number of parties
that may engage in concurrent protocol executions is a-priori bounded.

In this work, we consider a malicious, static adversary. The scheduling of the messages across
the concurrent executions is controlled by the adversary. We do not focus on fairness, hence we
do not guarantee output delivery. The security of a protocol is analyzed by comparing what an
adversary can do in the protocol to what it can do in an ideal scenario, where a trusted party
computes the function output on the inputs of the parties. Unlike in the case of stand-alone
computation, in the setting of concurrent executions, the trusted party computes the functionality
many times, each time upon different inputs. We now proceed to describe the ideal and real models
of computation.

Ideal model. In the ideal model, there is a trusted party that computes the functionality f
based on the inputs handed to it by the player. Let there be N parties P1, . . . , PN where arbitrary
(possibly intersecting) subsets of n parties may engage in an arbitrary (polynomial) number of
concurrent sessions. Let I ⊂ N denote the subset of corrupted parties controlled by the adversary.
An execution in the ideal model with an adversary with auxiliary input z corrupting parties I
proceeds as follows:

Inputs: The inputs of the parties P1, . . . , PN are respectively determined by probabilistic polyno-
mial time Turing machines M1, . . . ,MN and the initial inputs x1, . . . , xN to these machines.
As will be described below, these Turing machine determine the input values to be used by
the different parties in the protocol executions. These input values are computed from the
initial input, the current session number and outputs that were obtained from executions that
have already concluded. Note that the number of previous outputs ranges from zero (when no
previous outputs have been obtained) to some polynomial in n that depends on the number
of sessions initiated by the adversary.

Session initiation: The adversary initiates a new session by sending a (start-session, Pi) to the
trusted party. If Pi /∈ I, then the trusted party sends (start-session, s) to Pi, where s is the
index of the session.

Honest parties send inputs to trusted party: Upon receiving (start-session, s) from the trusted
party, honest party Pi applies its input-selecting machine Mi to its initial input xi, the session
number s and its previous outputs, and obtains a new input xi,j .12 Pi then sends (s, xi,j) to
the trusted party.

Corrupted parties send inputs to trusted party: Whenever the adversary wishes, it may send
a message (s, x′i,j) to the trusted party for any x′i,s ∈ {0, 1}n of its choice, on behalf of a cor-
rupted party Pi. It can send the pairs (s, x′i,s) in any order it wishes and can also send them

12Specifically, in the first session, xi,1 = Mi(xi, 1). In the later sessions s, xi,s = Mi(xi, s, yi,1, . . . , yi,w), where w
sessions have concluded and the outputs of Pi were yi,1, . . . , yi,w.
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adaptively. The only limitation is that for any s, at most one pair indexed by s can be sent
to the trusted party on behalf of Pi.

Trusted party answers corrupted parties: When the trusted party has received messages (s, x′i,j)
from a set of n parties P`1 , . . . , P`n (where `1, . . . , `n ∈ [N ]), it sets ~x′s = (x′`1,s, . . . , x

′
`n,s

).
It then computes f(~x′s) and sends (s, f`i(~x′s)) to party P`i for every `i ∈ Is, where Is ⊆ I
denotes the set of corrupted parties in session s. Note that Is must be such that |Is| < n.

Adversary instructs the trusted party to answer honest parties: When the adversary sends
a message of the type (send-output, s, `i) to the trusted party, the trusted party sends (s, f`i(~x′s))
to party P`i .

Outputs: Each honest party Pi always outputs the values fi(~x′s) that it obtained from the trusted
party. The adversary may output an arbitrary (probabilistic polynomial-time computable)
function of its initial-input and the messages obtained from the trusted party.

Let S be a non-uniform probabilistic polynomial-time machine (representing the ideal-model
adversary). Then, the ideal execution of f with security parameter n, input selecting machines M =
M1, . . . ,MN , initial inputs ~x = (x1, . . . , xN ) and auxiliary input z to S, denoted idealNf,I,S,M (n, ~x, z),
is defined as the output vector of the honest parties and S from the above ideal execution.

Real model. We next consider the real model in which a real two-party protocol is executed (and
there exists no trusted third party). Let f , I, N be as above and let Π be a multi-party protocol
for computing f . Let A denote the adversary. Then, the real concurrent execution of Π with
security parameter n, input selecting machines M = M1, . . . ,MN , initial inputs ~x = (x1, . . . , xN )
and auxiliary input z to A, denoted realNΠ,I,A,M (n, ~x, z), is defined as the output vector of the
honest parties and A, resulting from the following real-world process. The real world execution
proceeds as follows. Each honest party Pi first chooses an identity idi and registers it with FNbp. A
corrupted party may choose to register its identity at any time it wishes, even after the computation
begins. An honest party initiates a new session whenever it receives a start-session message from A.
It then applies its input selecting machine to its initial input, the session number and its previously
received outputs, and obtains the input for this session. Note that arbitrary (possibly intersecting)
sets of n (out of N) player may be participating in concurrent executions of Π. The scheduling
of all messages throughout the executions is controlled by the adversary. That is, the execution
proceeds as follows. The adversary sends a message of the form (s,msg, Pi, Pj) to an honest party
Pi on behalf of a corrupted party Pj . If that honest party is participating in session s, and this is
the first message it has received from Pj , then it first retrieves the identity idj of Pj from FNbp. It
then adds (msg, Pi, Pj) to its view of session s and replies according to the instructions of Π and
this view.

Security Definition. Having defined the ideal and real models of computation, we are now
ready to give our formal security definition.

Definition 2 (Concurrent Self-Composition in Bounded Player Model).) Let N = N(n)
be a polynomial and let f and Π be as above. Protocol Π is said to securely compute f under
concurrent composition in the N -bounded player model if for every real model non-uniform proba-
bilistic polynomial-time adversary A, there exists an ideal-model non-uniform probabilistic expected
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polynomial-time adversary S, such that for all input-selecting machines M = M1, . . . ,MN , every
z ∈ {0, 1}∗, every ~x = (x1, . . . , xN ), and every I ⊂ [N ],13

{
idealNf,I,S,M (n, ~x, z)

}
n∈N

c≡
{

real
FN

bp
Π,I,A,M (n, ~x, z)

}
n∈N

C Impossibility Results in Bounded Player Model

In [Lin04], Lindell gave broad impossibility results for unbounded concurrent self-composition in the
standard model. We observe that the impossibility result of [Lin04] carries over in a straightforward
manner to bounded player model considered in the present work. Below, in what is largely an
informal discussion, we elaborate on this observation. [Lin04, Lin03b, CKL06, KL11]

Lindell’s impossibility result [Lin04] for unbounded concurrent self-composition in the standard
model is obtained by combining three different results. Below, we will recall all of these results
and discuss how each of them carry over to the bounded player model. First, we recall some basic
definitions from [Lin04]. A large part of text below is taken verbatim from [Lin04].

Security under concurrent general composition. Informally speaking, concurrent general
composition considers the case that a protocol ρ for securely computing some functionality f , is run
concurrently (many times) with arbitrary other protocols π. In other words, the secure protocol
ρ is run many times in a network in which arbitrary activity takes place. (Note that in contrast,
in concurrent self-composition, we only consider security for concurrent executions of the same
protocol ρ.) The formalize security in this setting, we model the arbitrary network activity π as
a “calling protocol” with respect to the functionality f f. That is, π is a protocol that contains,
among other things, “ideal calls” to a trusted party that computes a functionality f . This means
that in addition to standard messages sent between the parties, protocol π’s specification contains
instructions of the type “send the value x to the trusted party and receive back output y”. Then, the
real-world scenario is obtained by replacing the ideal calls to f in protocol π with real executions
of protocol ρ. The composed protocol is denoted πρ and it takes place without any trusted help.
Security is defined by requiring that for every protocol π that contains ideal calls to f , an adversary
interacting with the composed protocol πρ (where there is no trusted help) can do no more harm
than in an execution of π where a trusted party computes all the calls to f . This therefore means
that ρ behaves just like an ideal call to f , even when it is run concurrently with any arbitrary
protocol π. We refer the reader to [Lin04] for a formal security definition.
Concurrent general composition in the bounded player model. We note that security under concur-
rent general composition can be naturally defined in the bounded player model by considering an
a-priori bound on the total number of player in the system, in the same manner as in Definition 2.
More specifically, we will consider an a-priori bound N on the total number of player in the system.
Then, arbitrary (possibly intersecting) subsets of parties may be involved in unbounded concurrent
executions of ρ, in the presence of arbitrary other protocols π. (Note that π can be at-most an
N -party protocol.) Security is defined in the same manner as above.

13Here it should be implicit that I is such that the adversary corrupts at most n − 1 parties in each protocol
execution.
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Functionalities that enable bit transmission. Informally speaking, a functionality enables
bit transmission if it can be used by the parties to send bits to each other. We now recall the formal
definition from [Lin04].

Definition 3 (Bit-transmitting functionality) A deterministic functionality f = (f1, f2) en-
ables bit transmission from P1 to P2 if there exists an input y for P2 and a pair of inputs x, x′ for
P1 such that f2(x; y) 6= f2(x′; y). Likewise, f enables bit transmission from P2 to P1 if there exists
an input x for P1 and a pair of inputs y, y′ for P2 such that f1(x; y) 6= f1(x; y′). A functionality
enables bit transmission if it enables bit transmission from P1 to P2 and from P2 to P1.

The above definition can be easily generalized to probabilistic functionalities, as well as to multi-
party functionalities in a straightforward way. We refer the reader to [Lin04] for more details.

Extending Lindell’s impossibility result to bounded player model. We now consider the
three steps involved in the impossibility result in [Lin04], and briefly discuss why they carry over
to the bounded player model.

Step 1: First, it is shown in [Lin04] that for every functionality f that enables bit transmission,
security under unbounded concurrent self-composition is equivalent to security under con-
current general composition. That is, if f enables bit transmission, then f can be securely
computed unbounded concurrent self-composition if and only if it can be securely computed
under concurrent general composition.
We note that [Lin04] proves this (unconditional) result for two-party setting where only one
set of parties run all of the protocol executions. As such, the result already works in the
bounded player model.

Step 2: Next, we use the result of [Lin03b], where it is shown that security under concurrent
general composition implies security in the universal composability framework [Can01]. This
result is also unconditional, and in fact, also works in a setup model (such as a common
reference string, etc).
Once again, we note that [Lin04] obtains this result even for the restrictive case where only
one set of parties engage in two-party protocol executions (the adversary is assumed to be
static). As such, this result is also applicable to the bounded player model.

Step 3: Finally, one can use the result of Canetti et al. [CKL06] that shows a large class of
functionalities for which UC security cannot be achieved. With respect to the bounded
player model, we note that very recently, Kidron and Lindell [KL11] show that the results of
[CKL06] can be extend to the bulletin-board certificate authority model, which is formalized
in essentially the same manner as our bounded player model, in that the parties register their
unique identities to a functionality. We note that the result in [KL11] already works when
the number of parties are a-priori bounded, as such it is applicable to our setting.

Combining these three steps, we can obtain broad impossibility results for concurrent self-
composition in the bounded player model. In order to obtain the formal statement, let us first recall
the class of functionalities Ψ for which concurrent general composition is shown to be impossible
[Lin03b]. The following is taken verbatim from [Lin04, Lin03b].
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1. Let f : {0, 1}∗ → {0, 1}∗ be a deterministic polynomial-time function that is (weakly) one-
way. Then, the functionality (x, λ)→ (λ, f(x)) cannot be securely computed under concurrent
general composition by any non-trivial protocol.

2. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a deterministic polynomial-time functionality. If f
depends on both parties’ inputs, then the functionality (x, y) → (f(x, y), f(x, y)) cannot
be securely computed under concurrent general composition 2. Let f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗ be a deterministic polynomial-time functionality and let f = (f1, f2). If
f is not completely revealing14 then the functionality (x, y) → (f1(x, y), f2(x, y)) cannot be
securely computed under concurrent general composition by any non-trivial protocol.

Further, let Φ be the set of all two-party functionalities that enable bit transmission. Then, we
obtain the following result:

Corollary 1 Let f be a functionality in Φ ∩ Ψ. Then f cannot be securely computed under un-
bounded concurrent self composition by any non-trivial protocol.

Remark. We note that the above discussion is relevant to the “fixed-roles” setting where the
parties play the same roles in each session in the concurrent self-composition setting. If we allow
interchangeable roles, then as shown in [Lin04], essentially all functionalities are impossible to
realize. We refer the reader to [Lin04] for more details.

14Informally, a functionality is completely revealing if one party can choose an input so that the output of the
functionality will reveal the other party’s input. See [Lin03b, Lin04] for details.
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